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Abstract
In this paper we propose a generalisation to the Markov Arrival Process (MAP) risk model,
by allowing for a delayed receipt of required capital injections whenever the surplus of an
insurance firm is negative. Delayed capital injections often appear in practice due to the
time taken for administrative and processing purposes of the funds from a third party or the
shareholders of a firm. We introduce a MAP risk model that allows for capital injections
to be received instantaneously, or with a random delay, depending on the amount of deficit
experienced by the firm. For this model, we derive a system of Fredholm integral equations
of the second kind for the Gerber-Shiu function and obtain an explicit expression (in matrix
form) in terms of the Gerber-Shiu function of theMAP risk model without capital injections.
In addition, we show that the expected discounted accumulated capital injections and the
expected discounted overall time in red, up to the time of ruin, satisfy a similar integral
equation, which can also be solved explicitly. Finally, to illustrate the applicability of our
results, numerical examples are given.
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1 Introduction

Let {Ut }t�0 be the risk process of an insurer at time t � 0, defined by

Ut = u + ct −
Nt∑

i=1

Xi, (1.1)

where u � 0 is the insurer’s initial capital, c > 0 is the continuously received constant
premium rate, {Nt }t�0 is a counting process denoting the number of claims received up
to time t � 0 with a sequence of random variables {σi}i∈N denoting the i-th claim epoch
and {Xk}k∈N+ forms a sequence of i.i.d. random variables representing the amount of the k-
th claim, having (common) cumulative distribution function (c.d.f.)FX(·), density function
fX(·), and finite mean μ = E(X) < ∞.

In this paper, we consider a fairly general setting for the above risk model by assuming
that the claim counting process, {Nt }t�0, with {σi}i∈N claim arrival epochs, is governed by a
Markovian Arrival Process (MAP), which includes the classical and (most) Sparre Andersen
risk models, as well as models with correlated inter-claim times as special cases. A MAP
with representation MAPm

(�α�,D0,D1
)
, of order m � 1, is a two-dimensional Markov

process, denoted by {(Nt , Jt )}t�0, on the state spaceN0×{1, . . . , m}, where {Jt }t�0 denotes
the state of an underlying Continuous-Time Markov Chain (CTMC), defined on the state
space E. For E = {1, . . . , m}, the underlying CTMC exhibits two different categories of
state transition: (a) transitions between states i and j �= i ∈ E, occurring without an
accompanying claim, which are given by the (i, j)-th element of D0, namely D0(i, j) ≥ 0,
and (b) transitions from state i to state j (possibly with j = i) in E with an accompanying
claim, which are given by the (i, j)-th element of D1, namely D1(i, j) ≥ 0. The diagonal
elements of D0 are assumed to be negative such that each row of the matrix D0+D1 is zero.
Moreover, the initial state distribution of the underlying CTMC is given by the probability
row vector �α� = (α1, . . . , αm), with αi = P(J (0) = i), for i ∈ E, where � denotes
the transpose vector/matrix. For more details of MAP’s see Neuts (1979), Latouche and
Ramaswami (1999), and Badescu et al. (2005a) and the references therein.

Due to the matrix form of the MAP set up, it has been natural throughout the litera-
ture to assume that claim amounts, {Xk}k∈N+ , follow a phase-type (PH) distribution, which
allows for analysis of the overall risk model through the extensive theory of matrix analytic
methods, see for e.g. Badescu et al. (2005a, b), Ahn and Badescu (2007), among others.
In addition, given that a claim occurs during a transition from state i to j ∈ E (with rate
D1(i, j)), the versatility of theMAP allows for the claim size distribution to be dependent on
the environmental states prior to and following the claim arrival epoch, i.e. states i, j ∈ E.
This flexibility provides the framework for modelling claim sizes that depend on external
environmental factors, such as automobile liabilities and weather conditions or claims aris-
ing from natural disasters. Under this general formulation, any claim that occurs during a
transition from state i to j ∈ E is assumed (without loss of generality, see Ramaswami
(2006) pp. 501 and Appendix 2 of the same paper for details) to have a phase-type distribu-
tion of order n � 1, with representation PHn( �γ �

ij ,Hij ), which is equivalent in distribution
to the absorption time of an (n + 1)-dimensional CTMC where the transitions between its
n transient states are given by the transition rate matrix Hij , transitions into the absorb-
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ing state by the column vector �hij = (
hij (1), . . . , hij (n)

)� = −Hij
�1n, where �1n is an

n × 1 column vector of units, and initial distribution given by the probability row vector
�γ �
ij = (

γij (1), . . . , γij (n)
)
, such that the associated c.d.f. and p.d.f. are given by

Fij (x) = 1 − �γ �
ij eHij x�1n, fij (x) = �γ �

ij eHij x �hij .

One of the first considerations of the MAP/PH model, in an insurance setting, was pro-
posed by Badescu et al. (2005a) through its comparison with fluid queue processes. The
related fluid queue process comprises of an underlying irreducible CTMC with transition
intensity matrix

T =
(
T11 T12
T21 T22

)
,

where, during the sojourn time that the CTMC spends in states governed by the matrix T11,
the fluid process increases and, on the other hand, decreases during times spent in the states
governed by the matrix T22. The connection between the fluid queue process and the risk
process is realised by relating the duration of increasing fluid flow with incoming premiums
- without loss of generality the premiums can be set as c = 1 due to possibility of rescaling
the time units - and, by freezing the time evolution upon a transition from increasing flow
to decreasing, the decreasing fluid flow with the claim size random variables (see Badescu
et al. (2005a) for details). It was pointed out in this paper that this model can incorporate
dependence between claim sizes and the state of the environmental process, however, the
mathematical representation was not discussed. Ramaswami (2006) extended this work and
considered the dependent case more explicitly. Therefore, we will recall the construction
of the sub-matrices from this work below and direct the reader to Ramaswami (2006) for
further details.

In general, for the state dependent MAP/PH risk model described above, the associated
fluid flow process with rate matrix T, has m + m2n environmental states with sub-matrices
Tkl , for k, l = 1, 2, defined as follows:

(a) T11 = D0, since any state transition that occurs without an accompanying claim is
equivalent to a state transition whilst remaining in the upward flowing segment of the
fluid process;

(b) In order to model the dependent claim size/downward flowing segment of the fluid
process, we require three indices (i, j, k), where i, j ∈ E are the environmental states
prior to and following the claim arrival epoch, respectively, and k ∈ {1, . . . , n} is
the initial state of the corresponding PH claim size distribution, i.e. the state with ini-
tial probability γij (k). It follows that the set of all elements (i, j, k) is of size m2n

and the governing matrix T12, which describes transitions from upward flow to down-
ward flow in the fluid process or equivalently a transition with an accompanying claim
arrival, is such that the non-zero elements T12(i, (i, j, k)) are defined by

T12(i, (i, j, k)) = D1(i, j)γij (k), (1.2)

which represents the rate at which a claim arrives during a transition from state i to
j ∈ E with initial state k for the PH claim size distribution having representation

PHn

(
�γ �
ij ,Hij

)
.
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(c) The sojourn time and state transitions whilst in the downward flowing segment of
the fluid process are described by the sub-matrix T22 which has non-zero elements
associated to the triple indices (i, j, k), defined by the equation

T22 ((i, j, r), (i, j, s)) = Hij (r, s), for 1 � r, s,� n, (1.3)

where Hij (r, s) denotes the (r, s)-th element of the transient matrix Hij for the PH
claim size distribution. This corresponds to the possible transitions within the transient
states of the PH distribution before absorption.

(d) Finally, the sub-matrix T21 contains the transition rates from the downward flow back
to the upward flow in the fluid process and, due to the aforementioned connection
between the fluid and risk process, is equivalent to the absorption rates of the PH
distribution. Thus, all the non-zero elements are defined by the equation

T21 ((i, j, r), j) = −
∑

s∈{1,...,n}
Hij (r, s) = hij (r). (1.4)

We point out here that although there may be multiple state transitions within the
‘downward flowing’/claim size segment of the process, we have frozen time at the
claim arrival epoch. With this in mind, it is vital that the above set-up for the sub-
matrices of T are constructed in such a way as to preserve the state of the MAP at the
time of the claim arrival. That is, given that a claim occurs during a transition from
states i to j ∈ E, the transition matrix T must be constructed so that following the
claim size/downward flow transitions, we arrive back in state j of T11 = D0, at which
point time restarts and the risk/fluid process continues.

Remark 1 Due to the high dimensionality of the dependent model and the complexity of
the possible state transitions, it is difficult to define explicit forms of the sub-matrices of
T and thus, we have to express the matrices as described above. However, in the case of
independent and identically distributed claims, i.e. no dependence on the states prior to and
following the claim arrival epoch, the dimensions of T reduce to m + mn and the sub-
matrices can be written explicitly as

T =
(
T11 T12
T21 T22

)
=

(
D0 �γ � ⊗ D1

�h ⊗ Im H ⊗ Im

)
,

where Im denotes the m-dimensional identity matrix, ⊗ the Kronecker product and �γ �, H
and �h represent the (common) PH claim size distribution of order n (see Badescu et al. 2005a).
Moreover, in the non-dependent, we can express the so-called net profit condition by

[�π�D1�1m

]−1
> −[ �γ �H−1�1n

]
, (1.5)

where �π� denotes the stationary probability of the CTMC, {Jt }t�0. This can be modified for
the dependent case by accommodating for the variety of different PH transient generators
Hij and and corresponding initial vectors �γ �

ij , the details of which are omitted here.

For the aboveMAP/PHmodel we define T = inf{t > 0 : Ut < 0} to be the time to ruin and

φδ(u) =
m∑

i=1

αiφδ,i(u),

where
φδ,i(u) = E

(
e−δT ω (UT −, |UT |) I(T <∞)

∣∣U0 = u, J0 = i
)

,
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to be the Gerber-Shiu expected discounted penalty function, where δ � 0 is a discount
factor, ω(·, ·) a non-negative, bivariate function describing the penalty at ruin, UT − and
|UT | the surplus immediately prior and deficit at ruin, respectively, and I(A) denotes the
indicator function with respect to the event A.

The Gerber-Shiu function was first introduced in the seminal paper of Gerber and Shiu
(1998) and unifies a variety of different risk quantities into a single function; a detailed
study of which, for the MAP/PH risk model, can be found in Ahn and Badescu (2007). In
the following years, the MAP risk model has attracted some attention in the actuarial and
queuing theory literature and has been extended beyond the consideration of this general
risk quantity in a number of different directions, see Badescu et al. (2007b) for a risk model
with a multi-threshold strategy, Dibu and Jacob (2019) for a claim/by-claim risk model,
Cheung and Landriault (2009) for the perturbed MAP risk models with dividend barrier
strategies and the references therein.

On the other hand, as well as technical extensions to distributional aspects of the classic
risk model, there have also been significant generalisations in terms of market features. In
particular, the consideration of possible capital injections to restore the capital level when
a firm is in deficit. The addition of capital injections within the classic risk model was
first proposed by Pafumi (1998), for which a fall below zero required a necessary capital
injection, equal to the size of the deficit below zero, to restore the surplus. Following its
inception, the capital injection risk model has received a great deal of attention [see for
example (Kulenko and Schmidli 2008; Nie et al. 2011) and the references therein], with all
of models considering instantaneous receipt of the required injection.

In practice, capital injections are usually applied to a firm following some delay time
(due to administration or processing requirements or periodicity of the decision for the
capital injection - for the latter see Zhang et. 2018) and thus, the instantaneous receipt of
capital injections proposed in the current models is, in some cases, an unnatural consider-
ation. Ramsden and Papaioannou (2019) considered the Cramér-Lundberg risk model with
delayed capital injections and derived a number of results for the ruin probability, however,
their assumption that there is no restriction on the maximum size of the required capital
injection and thus, the possibility to recover from an arbitrarily large deficit, is optimistic.
In this paper, in order to better capture the reality of capital injection transactions, we intro-
duce a delayed capital injection risk model with deficit constraints that allow for correlations
between inter-claim times and claim amounts. For this model, we show that the Gerber-Shiu
function satisfies a system of Fredholm integral equations, which can be solved to provide
an explicit solution.

This paper is organised as follows: In Section 2, we define a MAP/PH risk models with
delayed capital injections. In Section 3, we derive a system of Fredholm integral equations for the
Gerber-Shiu function. The latter system of integral equations is solved explicitly in Section 4.
In Section 5 , we consider a further quantity of interest, namely the expected accumulated
capital injections up to time of ultimate ruin and show that these quantities also satisfy the
Fredholm integral equation of the previous sections, which can be solved explicitly. Finally,
in Section 6, we give numerical examples to illustrate the applicability of the results.

2 The Delayed Capital Injection Risk Model

In this section, we will introduce a modified form of the delayed capital injection risk model
proposed by Ramsden and Papaioannou (2019), adapted to the MAP/PH setting and define
the associated time to ultimate ruin.
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Firstly, in a similar way to Ramsden and Papaioannou (2019), let us consider a deter-
ministic value k � 0, which, in the following, will be referred to as a critical value for the
deficit of the surplus process, indicating whether the receipt of a necessary capital injection
comes with some time delay or is received instantaneously. Further, let us impose a second
critical value, denoted by 	 � k � 0, such that a deficit greater than this level results in
immediate ruin. Then, due to the fact that the (possible) delay time of a capital injection is
dependent on the deficit size at the first deficit time, T , we have three different possibilities:

(i) |UT | � k, for which a capital injection of size |UT | is required to restore the surplus
to a non-negative level and is received instantaneously from readily available funds;

(ii) k < |UT | < 	, for which the available funds are unable to cover the required
capital injection and thus, the injection is received after some random time delay, dis-
tributed according to the (common) continuous random variable L, with c.d.f.FL(·)
and p.d.f. fL(·). During this delay time of the capital injection, we assume that the
company continues to receive premium income and thus, if the surplus is able to
recover to the zero level exclusively from these premiums before the receipt of the
capital injection, and the occurrence of subsequent claim (in which case ruin occurs
- see below), the company cancels the processing capital injection and restarts from
this point [see Fig. 1b].

(iii) |UT | ≥ 	, for which the shareholders are not willing to inject the required amount of
capital in a single transaction and immediate ruin occurs at this point [see Fig. 1d].

Fig. 1 Possible sample paths following a fall into deficit
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Given the above set up, the modified surplus process with delayed capital injections,
denoted {Ũt }t≥0, is given by

Ũt = Ut +
∞∑

i=1

|ŨTi
|I({|ŨTi

|�k}∪{(
k<|ŨTi

|<	
) ∩ (Ti+Li�t)

}), (2.1)

where Ti = inf{t > Ti−1 : Ũt < 0, Ũt− � 0}, is the i -th time the surplus falls below zero,
with T0 = 0 and T1 = T , and {Li}i∈N+ is the sequence of delay time random variables
corresponding to the i-th deficit, with P (Li = 0) = 1 almost surely if |ŨTi

| � k and

Li
d∼ L, otherwise.
For the modified process {Ũt }t≥0, ultimate ruin can occur in one of two ways such that

the time to ruin, denoted T̃ , is defined by

T̃ = min{T̃1, T̃2},
where

T̃1 = inf
{
σi > 0 : −	 < Ũσi−1 < −k, σi − σi−1 <

{
Lj ∧ |Ũσi−1 |

}}
,

for i, j ∈ N
+, is the time of ruin due to the occurrence of a subsequent, following a fall into

deficit between −	 and −k, before the receipt of the delayed capital injection or recovery
to zero via premiums alone [see Fig. 1c] and

T̃2 = inf{t � 0 : Ũt � −	},
is the time of ruin due to a claim occurrence that drops the surplus below the level −	

[see Fig. 1d]. Thus, the corresponding Gerber-Shiu function for the risk model in Eq. 2.1,
denoted φ̃δ,k,	(u) ≡ φ̃δ(u), is defined by

φ̃δ(u) =
m∑

i=1

αiφ̃δ,i (u), (2.2)

where

φ̃δ,i (u) = E
(
e−δT̃ ω̃

(
ŨT̃ −, |ŨT̃ )|)I(T̃ <∞)

∣∣Ũ0 = u, J0 = i
)
, for i ∈ E. (2.3)

Remark 2 Due to the set up of this model and definition of ultimate ruin, the surplus prior to
ruin can, in fact, be negative and be interpreted as the deficit prior to ruin. This extends the
classical Gerber-Shiu function for which the penalty function takes only positive variables.

The results for the Gerber-Shiu function defined in Eq. 2.2 will be given in terms of risk
quantities of the MAP/PH risk model in the absence of capital injections. For this reason,
we further define the following associated risk quantities, for which explicit expressions
can be found in the MAP/PH risk model and can be easily retrieved as special cases of the
Gerber-Shiu function, see for e.g. Ahn and Badescu (2007).

Given that the MAP process has initial state i ∈ E and is in state j ∈ E at the time of
deficit, let F[a,b](u, t, x) = (

F
[a,b]
ij (u, t, x)

)m

i,j=1 with elements

F
[a,b]
ij (u, t, x) = P(T < t, UT − � x, a � |UT | � b, JT = j

∣∣J0 = i, U0 = u),
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be the joint probability of the time to deficit, the surplus prior to deficit and the size of the
deficit in the interval [a, b]. Then, we denote the corresponding joint density matrix by

F′(u, t, x, y) = (
fij (u, t, x, y)

)m

i,j=1 =
( ∂3

∂t∂x∂y
F

[a,y]
ij (u, t, x)

)m

i,j=1
.

Finally, let W[a,b](u, t) = (
W

[a,b]
ij (u, t)

)m

i,j=1 = limx→∞ F[a,b](u, t, x) denote the m-
dimensional square matrix, whose elements represents the joint probability of the time to
deficit and the size of a deficit in the interval [a, b], with corresponding joint density matrix

W′(u, t, y) = (
wij (u, t, y)

)m

i,j=1 =
(∫ ∞

0
fij (u, t, x, y) dx

)m

i,j=1
=

( ∂2

∂t∂y
W

[a,y]
ij (u, t)

)m

i,j=1
.

3 AMatrix Fredholm Integral Equation

In this section, we use probabilistic arguments to show that the Gerber-Shiu function vector
��δ(u) = (

φ̃δ,1(u), . . . , φ̃δ,m(u)
)�, satisfies a Fredholm integral equation of the second

kind.
Due to the number of possible events that can occur following a fall into deficit, we

separate the events into individual cases. That is, by conditioning on the size of the deficit
below zero, the subsequent claim inter-arrival time and corresponding capital injection delay
time, L, we have the following cases:

(i) A deficit of at most k � 0: In this case, the capital injection is received instanta-
neously and the MAP process restarts with zero surplus;

(ii) A deficit between the two critical levels k � 0 and 	 � k: In this case, the capital
injection is received after some time delay during which there exists three further
possible events:

(a) The capital injection is received before the arrival of a subsequent claim or recov-
ery to the zero level via premiums and the process restarts from some positive
capital. Note that, during the time delay the MAP may make non-claim state
transitions which are described by the matrix exponential eD0s ;

(b) A claim arrival occurs before the capital injection is received or the process
recovers to the zero level via premiums. In this case, ultimate ruin occurs (T̃1)
and a penalty ω̃(x, y) is enforced ;

(c) Neither the capital injection nor a claim arrival occurs before the surplus is able
to recover to the zero level via premiums. Thus, the capital injection is cancelled
and the surplus restarts from zero, accounting for any (possible) non-claim state
transitions of the MAP;

(iii) Finally, the deficit can exceed the critical level 	 � k � 0. In this case, immediate
ruin occurs (T̃2) and a penalty ω̃(x, y) is enforced.

Hence, by conditioning on the time of the possible events described above (in order), the
state of the MAP at the time of deficit and using the joint distribution matrices defined in
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Section 2, it follows that the Gerber-Shiu function vector, ��δ(u), satisfies the following
integral equation

��δ(u) =
∫ ∞

0

∫ k

0
e−δtW′(u, t, y) ��δ(0) dy dt

+
∫ ∞

0

∫ 	

k

e−δtW′(u, t, y)

[∫ y

0
e−δsfL(s)eD0s ��δ(s) ds

+
∫ y

0
e−δsFL (s) eD0sT12

∫ ∞

0
eT22x�t22 ω̃(s − y, y + x − s)dxds

+ e−δyFL(y)eD0y ��δ(0)
]
dy dt

+
∫ ∞

0

∫ ∞

0

∫ ∞

	

e−δtF′(u, t, x, y)�1m ω̃(x, y) dy dx dt, (3.1)

where �t22 = −T22 �1m.
Now, let us define the matrices

G′
δ(u, y) = (

gδ
ij (u, y)

)m

i,j=1 =
∫ ∞

0
e−δtW′(u, t, y)dt (3.2)

and

G[a,b]
δ (u) = (

G
[a,b]
δ,ij (u, y)

)m

i,j=1 =
∫ b

a

G′
δ(u, y)dy, (3.3)

which denote the joint discounted density function of ruin and the deficit at ruin and the
joint discounted probability of ruin with a deficit size in the interval [a, b], respectively.
Employing these matrices, the integral (3.1) can be re-written in the form

��δ(u) = Aδ(u) ��δ(0) + �bδ(u) +
∫ 	

0
G[s∨k,	]

δ (u)e−δsfL(s)eD0s ��δ(s) ds, (3.4)

where

Aδ(u) = G[0,k]
δ (u) +

∫ 	

k

G′
δ(u, y)e−δyFL (y) eD0ydy, (3.5)

and

�bδ(u) =
∫ 	

k

G′
δ(u, y)

∫ y

0
e−δsFL (s) eD0sT12

∫ ∞

0
eT22x�t22 ω̃(s − y, y + x − s)dxdsdy

+
∫ ∞

0

∫ ∞

0

∫ ∞

	

e−δtF′(u, t, x, y)�1m ω̃(x, y) dy dx dt, (3.6)

where x ∨ y denotes the maximum between x and y, whilst F′(u, t, x, y) and G′
δ(u, y)

are known risk quantities from the MAP/PH risk model in the absence of capital injections.
In order to obtain an explicit solution to the integral (3.4), we first have to determine the

constant value ��δ(0), which can be found by setting the initial capital u = 0 within the
integral equation itself and solving the resulting equation with respect to ��δ(0), yielding

��δ(0) = (Im − Aδ(0))
−1

[�bδ(0) +
∫ 	

0
G[s∨k,	]

δ (0)e−δsfL(s)eD0s ��δ(s) ds
]
, (3.7)

provided the inverse matrix (Im − Aδ(0))−1 exists, which is proved in the following lemma.
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Lemma 1 Under the net profit condition, the matrix (Im − Aδ(0)) is non-singular and thus
invertible.

Proof To show that (Im − Aδ(0)) is a non-singular matrix, by the Lévy-Desplanques The-
orem [see Horn and Johnson 2012] it suffices to prove that (Im − Aδ(0)) is a strictly
diagonally dominant matrix, i.e.

∣∣∣1 −
(
G

[0,k]
δ,ii (0) +

m∑

n=1

∫ 	

k

gδ
in(0, y)e−δyFL(y)

(
eD0y

)
ni

dy
)∣∣∣

>

m∑

j �=i

∣∣∣G[0,k]
δ,ij (0) +

m∑

n=1

∫ 	

k

gδ
in(0, y)e−δyFL(y)

(
eD0y

)
nj

dy

∣∣∣,

for all i = 1, . . . , m, or equivalently

1 >

m∑

j=1

(
G

[0,k]
δ,ij (0) +

m∑

n=1

∫ 	

k

gδ
in(0, y)e−δyFL (y)

(
eD0y

)
nj

dy
)
, (3.8)

since

0 � G
[0,k]
δ,ii (0) +

m∑

n=1

∫ 	

k

gδ
in(0, y)e−δyFL (y)

(
eD0y

)
ni

dy � G
[0,k]
δ,ii (0) +

m∑

n=1

∫ 	

k

gδ
in(0, y)dy

�
m∑

n=1

(
G

[0,k]
δ,in (0) +

∫ 	

k

gδ
in(0, y) dy

)
=

m∑

n=1

G
[0,	]
δ,in (0) � 1.

Using similar arguments, for the R.H.S. of the inequality in Eq. 3.8, we have

m∑

j=1

(
G

[0,k]
δ,ij (0) +

m∑

n=1

∫ 	

k

gδ
in(0, y)e−δyFL (y)

(
eD0y

)
nj

dy
)

�
m∑

j=1

G
[0,k]
δ,ij (0) +

m∑

j=1

m∑

n=1

∫ 	

k

gδ
in(0, y)

(
eD0y

)
nj

dy
)
dy

�
m∑

j=1

(
G

[0,k]
δ,ij (0) +

∫ 	

k

gδ
ij (0, y) dy

)
=

m∑

j=1

G
[0,	]
δ,ij (0) < 1,

under the net profit condition, which proves (3.8) and thus completes the proof.

Substituting the explicit form of the boundary condition, ��δ(0), given in Eq. 3.7, back
into Eq. 3.4, we get the following proposition.

Proposition 1 For u ≥ 0, the Gerber-Shiu vector, ��δ(u), satisfies the integral equation

��δ(u) = �vδ(u) +
∫ 	

0
Kδ(u, s) ��δ(s) ds, (3.9)
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which is in the form of an inhomogeneous Fredholm integral equation of the second kind
with kernel Kδ(u, s), given by

Kδ(u, s) = Lδ(u, s)fL (s) e(D0−δIm)s,

where
�vδ(u) = Aδ(u) (Im − Aδ(0))

−1 �bδ(0) + �bδ(u), (3.10)

and
Lδ(u, s) = Aδ(u) (Im − Aδ(0))

−1G[s∨k,	]
δ (0) + G[s∨k,	]

δ (u), (3.11)

with Aδ(u) and �bδ(u), given by Eqs. 3.5 and 3.6, respectively.

4 An Explicit Solution for the FredholmMatrix Equation

In this section, we derive an explicit expression for the Fredholm integral equation system
of Proposition 1 and thus, an explicit expression for the Gerber-Shiu function.

Following from the general theory of solving Fredholm integral equations [see Zemyan
2012], the integral (3.9) has an explicit and obtainable solution provided that the kernel,
Kδ(u, s), is separable, by which we mean it can be written in the (general) form

Kδ(u, s) =
N∑

i=1

Mδ,i (u)Nδ,i (s),

for some matricesMδ,i (u) and Nδ,i (s). It follows from the form of the kernel and the matrix
Lδ(u, s), given in Proposition 1, that Kδ(u, s) is separable provided the matrix G[s,	]

δ (u),
for s � 	, is separable.

In order to show the matrix G[s,	]
δ (u) is separable, we recall the analysis of the Gerber-

Shiu function for a MAP/PH risk model in the absence of capital injections [see Ahn and
Badescu (2007)]. In this paper, the solution of the Gerber-Shiu function avoids the use of
roots to the generalised Lundberg’s equation and, instead, is represented in terms of the
Laplace-Stieltjes transform (LST) of the so-called busy period duration of a fluid flow,
which can be represented as

�(δ) =
∫ ∞

0
e−δxe�(δ)xT12e

T22xdx,

where
�(δ) = (T11 − δIm) + �(δ)T21,

for which the matrix �(δ) can be calculated iteratively as a solution to a fixed point problem
[see Asmussen (2000), Chapter VIII, Proposition 4.3]. Based on the LST of the busy period
in the risk process we obtain the following lemma.

Lemma 2 For u ≥ 0, the discounted deficit at ruin matrix, G[s,	]
δ (u), is separable and can

be written in the form
G[s,	]

δ (u) = Mδ(u)N(s)

where

Mδ(u) = �
( δ

2

)
e[T22+T21�( δ

2 )]u and N(s) =
∫ 	

s

eT22yT21dy.
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Proof Setting the deficit dependent penalty function ω1(z) = I(z≤y) in Theorem 4.3 of Ahn
and Badescu (2007), replacing the vector �t22 with the matrix T21 to account for the state of
the MAP at the time of ruin and differentiating the resulting equation w.r.t. y, we obtain

G′
δ(u, y) = �

( δ

2

)
e[T22+T21�( δ

2 )]ueT22yT21.

Then, by recalling (3.3), the result follows immediately.

Now, since G[s,	]
δ (u), is separable, it follows that the kernel is itself separable and can be

expressed in the form

Kδ(u, s) = Mδ,1(u)Nδ,1(s),

where

Mδ,1(u) = Aδ(u) (Im − Aδ(0))
−1Mδ(0) + Mδ(u) (4.1)

and

Nδ,1(s) = N(s ∨ k)fL (s) eD0s , (4.2)

where N(s) is given by Lemma 2.
Substituting this form of the kernel back into Eq. 3.9, yields

��δ(u) = �vδ(u) + Mδ,1(u)

∫ 	

0
Nδ,1(s) ��δ(s) ds,

for which, for smooth choices of ω̃(·, ·), the integral ∫ 	

0 Nδ,1(s) ��δ(s) ds converges and eval-

uates to some column vector of constants, say �βδ . Thus, the general solution to the above
integral equation is given by

��δ(u) = �vδ(u) + Mδ,1(u)�βδ, (4.3)

and it remains to determine the value of the constant vector �βδ . This can be found following
a similar methodology to that of the scalar case in Ramsden and Papaioannou (2019). That
is, we multiply (4.3) by Nδ,1(s) (on the left) and integrate from 0 to 	, to give

∫ 	

0
Nδ,1(s) ��δ(s) ds =

∫ 	

0
Nδ,1(s)�vδ(s) ds +

∫ 	

0
Nδ,1(s)Mδ,1(s)�βδ ds.

Now, noticing that the integral on the left hand side of the above equation is exactly the
vector of constants, �βδ , solving for this vector yields the following theorem.

Theorem 1 For u ≥ 0, in the MAP/PH risk model with deficit dependent delayed capital
injections, the Gerber-Shiu function, φ̃δ(u), is given by

φ̃δ(u) = �α� ��δ(u),

where �α is the initial probability vector of the MAP and ��δ(u) is given by

��δ(u) = �vδ(u) + Mδ,1(u)�βδ,

with

�βδ =
[
Imn −

∫ 	

0
Nδ,1(s)Mδ,1(s) ds

]−1 ∫ 	

0
Nδ,1(s)�vδ(s) ds,

and �vδ(u),Mδ,1(u) and Nδ,1(u) are given by Eqs. 3.10, 4.1 and 4.2, respectively.
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5 The Expected Discounted Accumulated Capital Injections until Ruin

In this section, we consider a further quantity that will be of interest to an insurance com-
pany when it comes to quantitative risk management and mitigation, namely the expected
discounted accumulated capital injections up to the time of ultimate ruin, which gives an
indication of the (discounted) amount of funds needed to keep the company solvent during
its lifetime. This particular quantity could be used to determine the net single premium of
a reinsurance contract providing the necessary capital injections, as seen in Pafumi (1998)
and Nie et al. (2011). Alternatively, it could be used to determine the present value of divi-
dends to be paid to the companies shareholders, who may contribute to such injections when
needed.

Let {Zu(t)}t≥0 be a pure jump process denoting the accumulated capital injections in a
continuous time delayed setting, up to time t � 0, for the risk process Ũt , with initial capital
u � 0. Further, define �zδ(u) = (z̃δ,1(u), z̃δ,2(u), . . . , z̃δ,m(u))�, with

z̃δ,i (u) = E[e−δT̃ Z̃u(T̃ ) |Ũ0 = u, J (0) = i], for i ∈ E,

where δ � 0 is the constant discount rate and T̃ the time of ultimate ruin as defined
in Section 2. Then, it follows that the unconditional value for the expected, discounted
accumulated capital injections until ruin, denoted z̃δ(u), is determined by

z̃δ(u) = E
[
e−δT̃ Z̃u(T̃ )

] =
m∑

i=1

αi z̃δ,i (u).

Given that the MAP process has initial state i ∈ E and is in state j ∈ E at the time of
deficit, by conditioning on the time and amount of the first fall into deficit, the subsequent
delay time, claim inter-arrival time and using the joint density matrix of the time to and
size of the deficit, i.e.W′(u, t, y) (defined in Section 2), along with matrices G′

δ(u, y) =∫ ∞
0 e−δtW′(u, t, y)dt and G[a,b]

δ (u) = ∫ b

a
G′

δ(u, y)dy, we obtain that

�zδ(u) =
∫ ∞

0

∫ k

0
e−δtW’(u, t, y)

[
y�1m + �zδ(0)

]
dy dt +

∫ ∞

0

∫ 	

k

e−δtW’(u, t, y)

×
[∫ y

0
e−δsfL(s)eD0s

[
y�1m + �zδ(s)

]
ds + e−δyFL (y) eD0y�zδ(0)

]
dy dt

=
∫ k

0
y G′

δ(u, y)�1m dy + G[0,k]
δ (u)�zδ(0) +

∫ 	

k

FL (y)G′
δ(u, y)e−[δIm−D0]y�zδ(0) dy

+
∫ 	

k

y G′
δ(u, y)

∫ y

0
fL(s)e−[δIm−D0]s�1m ds dy

+
∫ 	

0
fL(s)G[s∨k,	]

δ (u)e−[δIm−D0]s�zδ(s) ds

= �χδ(u) + Aδ(u)�zδ(0) +
∫ 	

0
fL(s)G[s∨k,	]

δ (u)e−[δIm−D0]s�zδ(s) ds, (5.1)

where, Aδ(u) is given by Eq. 3.5 and

�χδ(u) = ∫ k

0 y G′
δ(u, y)�1m dy + ∫ 	

k
y G′

δ(u, y)
∫ y

0 fL(s)e−[δIm−D0]s�1m ds dy. (5.2)
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In a similar way to the previous sections, in order to find an explicit solution to the
integral (5.1), we first have to determine �zδ(0), which can be found by setting u = 0 in
Eq. 5.1 and then solving with respect to �zδ(0), which gives

�zδ(0) = (
Im − Aδ(0)

)−1
[
�χδ(0) + ∫ 	

0 fL(s)G[s∨k,	]
δ (0)e−[δIm−D0]s�zδ(s) ds

]
,

where
(
Im − Aδ(0)

)−1 exists by Lemma 1. Then, by substituting the expression for �zδ(0)
in Eq. 5.1, we have the following proposition.

Proposition 2 For u ≥ 0, the expected discounted accumulated capital injections up to the
time of ultimate ruin, �zδ(u), satisfies the integral equation

�zδ(u) = �ζδ(u) + ∫ 	

0 Kδ(u, s)�zδ(s) ds, (5.3)

which is in the form of an inhomogeneous Fredholm integral equation of the second kind
with kernel Kδ(u, s) given by Proposition 1 and

�ζδ(u) = Aδ(u)
(
Im − Aδ(0)

)−1 �χδ(0) + �χδ(u), (5.4)

with �χδ(u) given by Eq. 5.2.

Now recall from Section 4 that Kδ(u, s) is separable, i.e. Kδ(u, s) = Mδ,1(u)Nδ,1(s),
where Mδ,1(u) and Nδ,1(s) are given by Eqs. 4.1 and 4.2, respectively and thus adopting
the same methodology as in Section 4, the explicit solution to the inhomogeneous Fredholm
integral equation of the second kind in Eq. 5.3 is given by the following theorem.

Theorem 2 For u ≥ 0, in the MAP/PH risk model with deficit dependent delayed capital
injections, the expected discounted capital injections until ruin, is given by

z̃δ(u) = �α��zδ(u), (5.5)

where �α is the initial probability vector of the MAP and �zδ(u) is given by

�zδ(u) = �ζδ(u) + Mδ,1(u) �γδ (5.6)

with

�γδ =
[
Imn −

∫ 	

0
Nδ,1(s)Mδ,1(s)ds

]−1 ∫ 	

0
Nδ,1(s)�ζδ(s)ds

and �ζδ(u),Mδ,1(u) and Nδ,1(u) given by Eqs. 5.4, 4.1 and 4.2, respectively.

6 Numerical Illustration

In the previous sections, we have shown that a number of risk quantities can be expressed
explicitly for the MAP/PH delayed capital injection risk model. Although these expressions
are indeed explicit, they are quite complex and require a number of substitutions and matrix
manipulations. Therefore, in this section, we illustrate the applicability and emphasise the
accessibility of these results numerically by providing examples for a particular case of the
Gerber-Shiu function, namely the ruin probability, as well as, examples for the expected
accumulated capital injections until ruin.

For comparison purposes, we choose the same parameters as in Ahn and Badescu (2007).
That is, the inter-arrival times governed by theMAP, follow a generalised Erlang distribution
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having three phases with rates λ1 = λ2 = 0.5 and λ3 = 0.3, respectively. Moreover, the
initial probability vector is given by α = (1, 0, 0), so that the mean claim arrival time is
7.33. Moreover, the non-dependent claims (independent of claim arrival transition states -
see Remark 1) follow the Phase-type distribution with representation

�γ � = (0.1, 0.1, 0.3, 0.5),

and

H =

⎛

⎜⎜⎝

−1/10 1/10 0 0
0 −1/6 1/6 0
0 0 −1/3 1/3
0 0 0 −1/2

⎞

⎟⎟⎠ .

For the delay clock random variable L, we consider three different distributions for
illustration and comparative purposes:

(i) Exponential Delay (ExD) clock with mean 3.32,
(ii) An Erlang Delay (ErD) clock with mean 7.33, initial probability vector (1, 0, 0) and

generator matrix

⎛

⎝
−0.4928 0.4928 0

0 −0.4928 0.4928
0 0 −0.4928

⎞

⎠ ,

(iii) A Generalised Erlang Delay (GErD) clock with mean 16.89, initial probability vector
(1, 0, 0) and the generator matrix

⎛

⎝
−1.5 1.5 0
0 −0.17763 0.17763
0 0 −0.09440

⎞

⎠ .

Finally, the first and the second critical values of the risk process Ũt are chosen to be k = 0.5
and 	 = 10, respectively.

6.1 Ruin Probabilities

In this subsection, we provide numerical results for the ruin probabilities. That is, we set
δ = 0 and ω̃(·, ·) = 1, which reduces the Gerber-Shiu function in Eq. 2.3 to the well known
ruin probability.

Based on the above set of parameters the numerics for ruin probabilities, given the initial
starting phase of the inter-arrival time distribution, for the ExD, ErD and GErD clocks are
given by the table below.

Remark 3 We observe from the table above that the ruin probabilities increase as the
expected delay time increases. This result is expected due to the definition of ruin in the
above model as the longer the insurance firm has to wait for the required capital injection,
whilst in red, the more probable is its for the insurance firm to inccur a subsequent claim
and cause ultimate ruin, see also Figs. 2, 3, 4 and Table 1.

For a graphical representation of these results, the probability of ruin for the aforemen-
tioned three delay clocks (as a function of the initial surplus) have also been plotted in the
figures below.
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Fig. 2 Initial Phase I: Ruin Probabilities vs Initial Capital

6.2 The Expected Discounted Accumulated Capital Injections

In this subsection, we also provide some numerical results for the expected accumulated
capital injections until ruin.

Based on the above set of parameters and the initial starting phase of the inter-arrival time
distribution, we present below the numerical results for the expected accumulated capital
injections until ruin ExD, ErD and GErD clocks. Note that these results correspond to the
un-discounted injections as we have set the parameter δ = 0.

Graphically the above results (as a function of the initial surplus) are given by the figures
below.

Remark 4 We observe from these results that the expected accumulated capital injections
decrease as the expected delay time increases. This should be expected due to the fact that
a longer delay time before receipt of the required capital injection exposes the firm to a
higher chance of ruin due to a subsequent claim arrival when in deficit (See Figs. 5, 6 and
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Fig. 4 Initial Phase III: Ruin Probabilities vs Initial Capital

Table 1 Ruin Probabilities for Exponential Delay (ExD), Erlang Delay (ErD) and Generalised Erlang Delay
(GErD) clocks

u Initial Phase I Initial Phase II Initial Phase III

ExD ErD GErD ExD ErD GErD ExD ErD GErD

0 0.2575 0.3044 0.3225 0.2597 0.3099 0.3290 0.2531 0.3070 0.3270

10 0.1829 0.2162 0.2291 0.1845 0.2201 0.2336 0.1798 0.2180 0.2322

30 0.0945 0.1117 0.1183 0.0953 0.1137 0.1207 0.0929 0.1127 0.1200

50 0.0488 0.0577 0.0611 0.0492 0.0587 0.0623 0.0479 0.0582 0.0619

100 0.0093 0.0110 0.0117 0.0094 0.0112 0.0119 0.0092 0.0111 0.0118
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Fig. 5 Initial Phase I: Expected Accumulated Capital Injection vs Initial Capital
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Fig. 6 Initial Phase II: Expected Accumulated Capital Injection vs Initial Capital

7 and Table 2) and consequently, the capital injection is never received. On the other hand,
shorter delay times result in a higher probability of the capital injection being received
before ultimate ruin and thus allowing the company to continue with the possibility of
further injections required for future falls into deficit.

Remark 5 Comparing the numerical results of both of these quantities (ruin probability and
expected accumulated capital injections) produces an interesting question of risk ‘trade off’
for the company. That is, although shorter delay times for the capital injections reduces the
probability of ruin, at the same time this causes an increase in the expected accumulated
capital injections which have to be considered as a cost to the company, i.e.

Smaller the delay in capital injections ⇒ Smaller the ruin probabilities

⇒ Bigger the cost of capital (expected accumulated capital injections).

This cost is most likely to come in the form of dividend payments if the injections are
funded by the shareholders, returns on equity investment from a government injection or
simply a repayment of the injection if received as a loan. In any case, these extra ‘costs’
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Fig. 7 Initial Phase III: Expected Accumulated Capital Injection vs Initial Capital
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Table 2 Expected accumulated capital injection for Exponential Delay (ExD), Erlang Delay (ErD) and
Generalised Erlang Delay (GErD) clock

u Initial Phase I Initial Phase II Initial Phase III

ExD ErD GErD ExD ErD GErD ExD ErD GErD

0 8.9729 6.4727 5.3588 9.5003 6.8531 5.5324 10.0423 7.2441 5.7108

10 6.3729 4.5971 3.8060 6.7475 4.8673 3.9293 7.1324 5.1450 4.0560

30 3.2933 2.3756 1.9669 3.4869 2.5153 2.0306 3.6858 2.6588 2.0960

50 1.6997 1.2261 1.0151 1.7996 1.2982 1.0480 1.9023 1.3722 1.0818

100 0.3251 0.2345 0.1942 0.3442 0.2483 0.2004 0.3638 0.2625 0.2070

need to be accounted for and will result in a higher probability of ruin to those stated above.
Determining the most efficient trade-off is a matter of optimisation and was considered in
the non-delayed setting by Nie et al. (2011).
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injections. Insur Math Econ 43(2):270–278
Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods in stochastic modelling. ASA-

SIAM Series on Statistics and Applied Probability , Philadelphia
Neuts MF (1979) A versatile Markovian point process. J Appl Probab 16(4):764–779
Nie C, Dickson DC, Li S (2011) Minimizing the ruin probability through capital injections. Ann Actuar Sci

5(02)):195–209

http://creativecommonshorg/licenses/by/4.0/


Methodology and Computing in Applied Probability

Pafumi G (1998) On the time value to ruin. Discuss North Amer Actuar J 2(1):75–76
Ramaswami V (2006) Passage times in fluid models with application to risk processes. Methodol Comput

Appl Probab 8(4):497–515
Ramsden L, Papaioannou A (2019) On the time to ruin for a dependent delayed capital injection risk model.

Appl Math Comput 352:119–135
Zemyan SM (2012) The classical theory of integral equations: a concise treatment. Springer Science &

Business Media
Zhang Z, Cheung ECK, Yang H (2018) On the compound Poisson risk model with periodic capital injections.

ASTIN Bullet 48(1):435–477

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Delayed Capital Injections for a Risk Process with Markovian Arrivals
	Abstract
	Introduction
	The Delayed Capital Injection Risk Model
	A Matrix Fredholm Integral Equation
	An Explicit Solution for the Fredholm Matrix Equation
	The Expected Discounted Accumulated Capital Injections until Ruin
	Numerical Illustration
	Ruin Probabilities
	The Expected Discounted Accumulated Capital Injections

	References


