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Abstract
This paper investigates the use of model-free reinforcement learning to compute the optimal value
in two-player stochastic games with parity objectives. In this setting, two decision makers, player
Min and player Max, compete on a finite game arena—a stochastic game graph with unknown but
fixed probability distributions—to minimize and maximize, respectively, the probability of satisfying
a parity objective. We give a reduction from stochastic parity games to a family of stochastic
reachability games with a parameter ε, such that the value of a stochastic parity game equals the
limit of the values of the corresponding simple stochastic games as the parameter ε tends to 0.
Since this reduction does not require the knowledge of the probabilistic transition structure of the
underlying game arena, model-free reinforcement learning algorithms, such as minimax Q-learning,
can be used to approximate the value and mutual best-response strategies for both players in the
underlying stochastic parity game. We also present a streamlined reduction from 1 1

2 -player parity
games to reachability games that avoids recourse to nondeterminism. Finally, we report on the
experimental evaluations of both reductions.
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1 Introduction

Reinforcement Learning (RL, [34]) is an optimization approach applicable to stochastic games
with unknown but fixed probability distributions (unknown stochastic games). Users of RL
must specify a scalar reward signal whose expected return should be maximized. Therefore,
an objective to be satisfied has to be expressed in terms of scalar rewards, whose expected
value is then maximized. Turning a specification manually into such an optimization problem
is laborious and error prone [38, 22]. We therefore need an automatic conversion from
specifications to rewards in order to leverage the power of a logical specification in RL.

Reinforcement learning approaches can broadly be classified as model-free [33] and model-
based [12, 37]. Model-based approaches sample the environment and rewards to learn a
model of the stochastic game, while model-free approaches aim to compute optimal strategies
without explicitly estimating the transition probabilities and rewards. Model-free approaches
to RL, such as Q-learning [34], are asymptotically space-efficient [33] and enable the use of
universal approximation architectures, such as deep neural networks [13, 22], to store optimal
strategies; they have been demonstrated to scale well [33, 32, 15]. The focus of this paper
is to enable model-free RL to learn optimal strategies in unknown stochastic games with
ω-regular objectives [29] given as parity objectives.

We study stochastic parity games with unknown transition structure, where two players—
Player Min and Player Max—take turns to choose actions on a stochastic game arena (SGA)
to form an infinite play. Each position-action pair of the SGA is colored with a priority
from a finite set of natural numbers. The goal of Player Min is to choose her actions so as
to minimize the probability that the highest infinitely-occurring priority is an odd number,
while the goal of Player Max is the opposite. It is known that stochastic parity games
are positionally determined [8, 7] and, when the transition structure is known, the optimal
strategies can be computed in NP ∩ co-NP. This paper investigates the use of model-free
reinforcement learning in approximating the value of the stochastic parity game when the
transition structure is not known.

Littman [25] proposed the Markov Games framework to study the optimal strategies of
players in stochastic games with unknown but fixed probability distributions. For payoffs of
the players defined using stochastic reachability payoffs (under the stopping game assumption)
or, analogously, stochastic discounted payoffs, Littman generalized the classical Q-learning [36,
4] algorithm to compute the optimal value of a game. This algorithm, known as the minimax-
Q algorithm, was shown to converge [26] to the optimal value of the game. To enable the
application of off-the-shelf convergent RL algorithms, such as the minimax-Q algorithm,
for stochastic parity objectives, one needs to reduce the stochastic parity objective to a
stochastic reachability objective. Moreover, to enable model-free RL, such a reduction cannot
use any information about the transition structure (such as end-component decomposition)
of the underlying stochastic game arena. This paper provides such model-free reduction from
stochastic parity games to stochastic reachability games.

There are translations of stochastic parity games to stochastic games with scalar payoffs
that—unlike model-free RL—require that the model is known [8, 6, 2]. Other approaches
are applicable to non-stochastic parity games [5], or to qualitative games [7], whose goal is
to compute strategies that guarantee almost-sure satisfaction of the parity condition.

The problem of translating ω-regular objectives into scalar rewards was recently solved in
the case of one strategic agent (also known as the case of 1 1

2 players) when the environment
is modeled as a Markov Decision Process (MDP) [17]. The MDP is equipped with a Büchi
acceptance condition, and the resulting 1 1

2 -player Büchi game is reduced to a reachability
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game by adding a sink state, which is reachable via all accepting transitions of the Büchi
game with probability ε. As ε tends to 0, the probability of reaching the sink approaches the
probability of satisfaction of the objective.

The translation of ω-regular objectives to scalar rewards for 1 1
2 -player games makes use of

Büchi automata with restricted nondeterminism (limit-deterministic automata [35, 10, 16, 31]
and, more generally, good-for-MDPs (GFM) automata [18]).

However, for 2 1
2 players, even the restricted nondeterminism that is acceptable for 1 1

2
players may lead to incorrect results, because a strategic player may force the objective
automaton to reject a valid computation. Therefore, to solve the case of two strategic agents,
one can resort to deterministic parity (or similarly powerful [29, 21]) automata. Since all
ω-regular objectives are expressible as deterministic parity conditions, we present in Section 3
a reduction of stochastic parity games [7, 8] to stochastic reachability games [30, 9]. The
latter can be solved by known model-free RL algorithms [25, 26].

For 1 1
2 -player games, a more efficient reduction from stochastic parity games to stochastic

reachability games is possible, and we discuss such a reduction in Section 4. Such a direct
translation relieves the RL agent from the task of controlling the nondeterministic choices
made by the Büchi automaton that encodes the objective.

2 Preliminaries

A probability distribution over a finite set S is a function d : S→[0, 1] such that
∑
s∈S d(s) = 1.

Let D(S) denote the set of all discrete distributions over S. We say a distribution d ∈ D(S)
is a point distribution if d(s)=1 for some s ∈ S. For d ∈ D(S) we write supp(d) for
{s ∈ S : d(s) > 0}.

2.1 Stochastic Parity Games and Simple Stochastic Games
A stochastic game arena (SGA) G is a tuple (S,A, T, SMin, SMax), where S is a finite set of
states, A is a finite set of actions, T : S ×A −⇁ D(S) is the probabilistic transition (partial)
function, and {SMin, SMax} is a partition of the set of states S.

For s ∈ S, A(s) denotes the set of actions that can be selected in state s. For states s, s′ ∈ S
and a ∈ A(s) we write p(s′|s, a) for T (s, a)(s′). A run of G is an ω-word 〈s0, a1, s1, . . .〉 ∈
S× (A×S)ω such that p(si+1|si, ai+1) > 0 for all i ≥ 0. A finite run is a finite such sequence,
that is, a word in S× (A×S)∗. For an infinite run r, we write inf(r) for the set of state-action
pairs that appear infinitely often in r. We write RunsG(FRunsG) for the set of runs (finite
runs) of the SGA G and RunsG(s)(FRunsG(s)) for the set of runs (finite runs) of the SGA G
starting from state s. We write last(r) for the last state of a finite run r.

A game on an SGA G starts with a token in an initial state s ∈ S; players Min and Max
construct an infinite run by taking turns to choose enabled actions, and then moving the
token to a successor state sampled from the selected distribution. A strategy of player Min in
G is a partial function µ : FRuns → D(A), defined for r ∈ FRuns if and only if last(r) ∈ SMin,
such that supp(σ(r)) ⊆ A(last(r)). A strategy ν of player Max is defined analogously.

A strategy σ is pure if σ(r) is a point distribution wherever it is defined; otherwise, σ is
mixed. We say that σ is stationary if last(r) = last(r′) implies σ(r) = σ(r′) wherever σ is
defined. A strategy is positional if it is both pure and stationary. Let ΣMin and ΣMax be the
sets of all strategies of player Min and player Max, respectively. Similarly, ΠMin and ΠMax
denote the sets of all positional strategies of player Min and player Max, respectively.

Let RunsGµ,ν(s) denote the subset of runs RunsG(s) starting from state s that are consistent
with player Min and player Max following strategies µ and ν, respectively. The behavior
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of an SGA G under a strategy pair (µ, ν) ∈ ΣMin × ΣMax is defined on a probability space
(RunsGµ,ν(s),FRunsGµ,ν(s),PrGµ,ν(s)) over the set of infinite runs RunsGµ,ν(s). Given a random
variable f : RunsG → R over the infinite runs of G, we denote by EGµ,ν(s) {f} the expectation
of f over the runs in the probability space (RunsGµ,ν(s),FRunsGµ,ν(s),PrGµ,ν(s)).

Let [k] denote the set of natural numbers {0, 1, . . . , k − 1}. We consider the following
payoffs of player Min to player Max.

Stochastic Parity Payoff. A stochastic parity payoff in an SGA G is defined by a
priority function pri : S ×A→ [k] that assigns to each state-action pair a natural number
called the priority (or color) of that pair. The stochastic parity payoff PGµ,ν(s) for a
strategy pair (µ, ν) ∈ ΣMin × ΣMax from an initial state s ∈ S is the probability that the
highest recurring priority is odd, i.e.,

PGµ,ν(s) = Pr Gµ,ν(s)
{
r ∈ RunsGµ,ν(s) : max {pri(s, a) : (s, a) ∈ inf(r)} is odd

}
.

A stochastic Büchi payoff is a stochastic parity payoff with k = 2. It is customarily
specified as a set of accepting transitions: those with priority 1.
Stochastic Reachability Payoff. A stochastic reachability payoff in an SGA G is
defined by two distinguished sink states: the accepting sink state sa ∈ S and the rejecting
sink state sr ∈ S. Recall that a sink state s satisfies p(s|s, a) = 1 for all a ∈ A. The
stochastic reachability payoff RGµ,ν(s) for a strategy pair (µ, ν) ∈ ΣMin × ΣMax from an
initial state s ∈ S is the probability of reaching the accepting sink sa, i.e.,

RGµ,ν(s) = Pr Gµ,ν(s)
{
r ∈ RunsGµ,ν(s) : r visits sa

}
.

We refer to a stochastic game arena with a parity payoff as a stochastic parity game (SPG)
G = (G, pri), and to a stochastic game arena with a reachability payoff as a stochastic
reachability game (SRG) G′ = (G, sa, sr).

We assume that an SRG is a stopping game, i.e., for every pair of strategies (µ, ν) ∈
ΣMin ×ΣMax and every initial state s ∈ S, the set {sa, sr} is visited with probability 1. This
implies that there are no sinks besides sa and sr and, in addition, that at least one sink is
reachable with positive probability from every state in S.

Given a payoff function C ∈ {P,R}, the objective of player Max in the corresponding
game G is to maximize the payoff, while the objective of player Min is the opposite. For
every state s ∈ S, we define its upper value Val(G, s) as the minimum payoff player Min can
ensure irrespective of player Max’s strategy. Similarly, the lower value Val(G, s) of a state
s ∈ S is the maximum payoff player Max can ensure irrespective of player Min’s strategy, i.e.,

Val(G, s) = inf
µ∈ΣMin

sup
ν∈ΣMax

CGµ,ν(s) and Val(G, s) = sup
ν∈ΣMax

inf
µ∈ΣMin

CGµ,ν(s) .

The inequality Val(G, s) ≤ Val(G, s) holds of all two-player zero-sum games. A game is
determined when, for every state s ∈ S, its lower value and its upper value are equal; we
then say that the value of the game Val exists and Val(G, s) = Val(G, s) = Val(G, s) for every
s ∈ S. For a strategy µ ∈ ΣMin of player Min and similarly, for a strategy ν ∈ ΣMax of player
Max, we define their values Valµ and Valν as

Valµ : s 7→ sup
ν∈ΣMax

CGµ,ν(s) and Valν : s 7→ inf
µ∈ΣMin

CGµ,ν(s) .

We say that a positional strategy µ∗ ∈ ΠMin of player Min is optimal if Valµ∗ = Val. Similarly,
a positional strategy ν∗ ∈ ΠMax of player Max is optimal if Valν∗ = Val. We say that a game
is positionally determined if both players have positional optimal strategies.
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I Theorem 1 ([8, 7, 9]). Stochastic parity games and stochastic reachability games are
positionally determined and are in NP ∩ co-NP.

2.2 Markov Decision Processes and Markov Chains
If, for every state s ∈ SMin, or for every state s ∈ SMax, A(s) is a singleton, then G is a
Markov Decision Process (MDP). If we want to emphasize that only Player Max (Min) has
choices, we refer to Max-MDPs (Min-MDPs). If, for every state s ∈ S, A(s) is a singleton,
then G is a Markov chain. We denote by Gµ (Gν) the MDP obtained by fixing the strategy
of player Min (Max) to positional strategy µ ∈ ΠMin (ν ∈ ΠMax). If the strategies of both
players are fixed, we denote the resulting Markov chain by Gµ,ν .

Since an MDP has one strategic player, we can define an MDP by the tuple (S,A, T ).
For an MDPM = (S,A, T ), we define its directed underlying graph GR(M) = (V,E) where
V = S and E = {(s, s′) : T (s, a)(s′) > 0 for some a ∈ A(s)}. A sub-MDP ofM is an MDP
M′ = (S′, A′, T ′), where S′ ⊂ S, A′ ⊆ A, is such that A′(s) ⊆ A(s) for every s ∈ S′, and
T ′ is T restricted to S′ and A′. M′ is closed under probabilistic transitions, i.e., for all
s ∈ S′ and a ∈ A′, we have that T (s, a)(s′) > 0 implies that s′ ∈ S′. An end-component [11]
of an MDP is a sub-MDP such that its underlying graph is strongly connected. Once an
end-component C of an MDP is entered, there is a strategy that visits every state-action
combination in C with probability 1 and stays in C forever. Moreover, for every strategy the
union of the end-components is visited with probability 1.

A bottom strongly connected component (BSCC) of a Markov chain is a recurrent class. A
BSCC is even if the highest priority of its transitions is even; otherwise the BSCC is odd.

3 From Stochastic Parity Games to Stochastic Reachability Games

In this section, we now show how to construct, for a Stochastic Parity Game G, a family of
Stochastic Reachability Games (SRGs) Gε, parametrized by a parameter ε ∈ (0, 1), that have
strong convergence properties to G: for sufficiently small ε, optimal positional strategies (of
either player) for Gε are also optimal positional strategies for G, and the limit value (when ε
goes to 0) of Gε goes to the value of G for every state. Thus, learning optimal strategies for
this family of SRGs can be used to obtain optimal strategies for G.

3.1 Limit Reachability Theorem
Given a stochastic parity game G = (G = (S,A, T, SMin, SMax), pri), with pri : S × A →
[k], and ε ∈ (0, 1), we define a related stochastic reachability game Gε = (Gε = (S ∪
{sa, sr} , A, T ε, SMin∪{sr} , SMax∪{sa}), sa, sr) such that:

T ε(s, a)(s′) =



1 if s = s′ = sa or s = s′ = sr

εk−i if s ∈ S, s′ = sa, i = pri(s, a), and i is odd
εk−i if s ∈ S, s′ = sr, i = pri(s, a), and i is even
(1− εk−i) · T (s, a)(s′) if s, s′ ∈ S and i = pri(s, a)
0 otherwise.

An example is shown in Figure 1, where boxes denote states in SMax, large circles denote
states in SMin and small circles denote probabilistic branches. Intuitively, for small enough ε,
the chance of prematurely moving to the wrong sink is negligible. Specifically, the probability
of reaching a sink from a transient transition is negligible, while in a recurrent set of states,
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Figure 1 An SPG G (left) and the corresponding SRG Gε (right).

the probability of reaching a sink from a lower priority transition is negligible compared to
the probability of doing so from a higher priority transition. The definition of T ε also applies
to 1 1

2 -player games and to Markov chains; it is illustrated in Figure 2.

I Proposition 2. For every SPG G, the SRG Gε is a stopping game.

In the next section, we prove the following lemma.

I Lemma 3. For every positional strategy pair (µ, ν) ∈ ΠMin ×ΠMax and every state s ∈ S
we have that PGµ,ν(s) = limε↓0RG

ε

µ,ν(s). Moreover, for sufficiently small ε, optimal strategies
for Gε are also optimal for G.

I Theorem 4. For every stochastic parity game G = ((S,A, T, SMin, SMax), pri) and the set
of stochastic reachability games Gε, we have that Val(G, s) = limε↓0 Val(Gε, s), for all s ∈ S.

Proof. Notice that, for every positional strategy ν ∈ ΠMax, we have that:

inf
µ∈ΣMin

PGµ,ν(s) = min
µ∈ΠMin

PGµ,ν(s) = min
µ∈ΠMin

lim
ε↓0
RG

ε

µ,ν(s)

= lim
ε↓0

min
µ∈ΠMin

RG
ε

µ,ν(s) = lim
ε↓0

inf
µ∈ΣMin

RG
ε

µ,ν(s). (1)

The first and the last equalities follow due to the optimality of positional strategies in
stochastic parity games (Theorem 1), while the second and the third equalities follows from
Lemma 3. Now, observe that for all s ∈ S we have that:

ValP(G, s) = sup
ν∈ΣMax

inf
µ∈ΣMin

PGµ,ν(s) (by definition)

= max
ν∈ΠMax

inf
µ∈ΣMin

PGµ,ν(s) (from Theorem 1)

= max
ν∈ΠMax

lim
ε↓0

inf
µ∈ΣMin

RG
ε

µ,ν(s) (from (1))

= lim
ε↓0

max
ν∈ΠMax

inf
µ∈ΣMin

RG
ε

µ,ν(s) (from Lemma 3)

= lim
ε↓0

sup
ν∈ΣMax

inf
µ∈ΣMin

RG
ε

µ,ν(s) (from Theorem 1)

= lim
ε↓0

ValR(Gε, s) (by definition). J
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3.2 Absorption Probabilities
For a pair of positional strategies (µ, ν), a stochastic game arena G (Gε) reduces to a Markov
chain Gµ,ν (Gεµ,ν), whose states are partitioned into a set of transient states and one or more
recurrent (communicating) classes, where a communicating class is a class that becomes
recurrent when removing the sinks sa and sr. Comparing the Markov chains Gµ,ν and Gεµ,ν ,
one observes that:

Every transient state of the Markov chain Gµ,ν remains transient in Gεµ,ν .
All recurrent classes of Gµ,ν become communicating classes of Gεµ,ν .
The chain Gεµ,ν is absorbing; the runs that do not eventually reach either sa or sr form a
set of measure 0.
Since a positional strategy selects one action for each state, exactly one priority in [k],
denoted by pri(s) is associated to each state of Gµ,ν .

Note that the runs of Gµ,ν that do not reach some recurrent class are a set of measure 0.
Moreover, the runs that reach the absorbing states of Gε without going through a recurrent
class of G are a set, whose measure converges to 0 when ε goes to 0. Hence, we can analyze
the Markov chains induced by positional strategies (µ, ν) one recurrent class at a time.

I Lemma 5. Suppose the Markov chainM is recurrent.
1. The sum of the absorption probabilities of the two sinks ofMε is always 1.
2. The limit, for ε that goes to 0, of the absorption probabilities of the odd sink ofMε is 1

if, and only if, the highest priority of the states inM is odd.
3. The limit, for ε that goes to 0, of the absorption probabilities of the even sink ofMε is 1

if, and only if, the highest priority of the states inM is even.

Proof. The first claim follows fromMε being a stopping game (cf. Proposition 2). For the
second claim, let M be the n× n transition matrix ofM. Let pri(i) be the priority of state
i. The Markov chainMε is absorbing and its transition matrix Mε can be written in the
following form:

Mε =
(
I2 0
R Q

)
,

where Iu is the u× u identity matrix, R is n× 2, and Q is n× n. The first two rows and
columns of Mε are named o and e (odd and even, respectively). The other rows and columns
are numbered from 0 to n− 1. Let E be the n× n diagonal matrix such that

eii = εk−pri(i) .

The matrix R is defined by rio = eii if pri(i) is odd and 0 otherwise; likewise rie = eii if pri(i)
is even and 0 otherwise. The matrix Q is defined by

Q = (In − E) ·M .

The probabilities of reaching the sinks from the remaining states are computed as

P = (In −Q)−1 ·R ,

where N = (In −Q)−1 is called the fundamental matrix for the absorbing chain Mε and nij
is the expected number of times the absorbing chain is in state j if it starts in state i [23,
Theorem 3.2.1] [14, Theorem 11.4]. Since M is recurrent, nij > 0. Let N+

i (ε) = maxj{nij}

CONCUR 2020



10:8 Model-Free Reinforcement Learning for Stochastic Parity Games

01sa sr

m0(1− ε)

ε

(1−m0)(1− ε)

m1(1− ε2)

ε2

(1−m1)(1− ε2)

11

Figure 2 An augmented Markov chain.

and N−i (ε) = minj{nij}. That gives lower and upper bounds for the rows of N that are
strictly positive row vectors with uniform entries. Then,

lim
ε↓0

N−i (ε)
N+
i (ε)

·
∑

0≤`<n r`o∑
0≤`<n r`e

≤ lim
ε↓0

pio
pie
≤ lim

ε↓0

N+
i (ε)

N−i (ε)
·
∑

0≤`<n r`o∑
0≤`<n r`e

.

Since N+
i

(ε)
N−
i

(ε) converges to the ratio of the largest stationary probability inM to the smallest
such probability, regardless of i, its limit is positive and finite. The limit of pio/pie is therefore
determined by the ratio of the sums of the columns of R. Both columns are polynomials in ε
with no constant term, and the lowest degree of the two polynomials is different—one is even
and the other is odd. Therefore, either pio/pie goes to infinity (or the denominator stays 0),
or pio/pie goes to 0. Since pio + pie = 1, this entails that one probability goes to 1 (the one
for the column of R with the lowest degree term), while the other goes to 0.

The proof for the third claim is similar. J

I Example 6. Figure 2 shows an augmented Markov chain whose original Markov chain has
two states, State 0 with priority 2 and State 1 with priority 1. The probabilities m0 and m1
are from [0, 1]. The transition matrix, Mε, of the augmented chain is given by:

Mε =


1 0 0 0
0 1 0 0
0 ε m0 (1− ε) (1−m0) (1− ε)
ε2 0 (1−m1)

(
1− ε2) m1

(
1− ε2)

 .

The fundamental matrix N is:

N = 1
|I −Q|

·
(

1−m1 +m1ε
2 (1−m0)(1− ε)

(1−m1)(1− ε2) 1−m0 +m0ε

)
,

with |I −Q| = ε
(
1−m1 + ε(1−m0)− ε2(1−m0 −m1)

)
. The probabilities of eventually

reaching the sinks are given by:

N ·R = ε

|I −Q|

(
ε(1− ε)(1−m0) 1−m1 +m1ε

2

ε(1−m0 +m0ε) (1− ε2)(1−m1)

)
.

Both rows of N ·R sum to 1 and

lim
ε↓0

N ·R =
(

0 1
0 1

)
,

as expected.

Proof of Lemma 3. For a given pair of positional strategies (µ, ν) ∈ ΠMin×ΠMax on G, and
for every state s of the Markov chain G(µ,ν), Lemma 5 shows that the following holds for
every state s ∈ S:
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1. if the state s is in an even BSCC of G(µ,ν) then limε↓0RG
ε

µ,ν(s) = 0 = PGµ,ν(s),
2. if the state s is in an odd BSCC of G(µ,ν) then limε↓0RG

ε

µ,ν(s) = 1 = PGµ,ν(s),

Let s ∈ S be a transient state of G(µ,ν). Let fµ,νs be the expected number of transitions
taken before reaching a BSCC when starting at s in G(µ,ν). Note that, with argument similar
to the one used in [17, Lemma 2], one shows that

RG
ε

µ,ν(s)− εfµ,νs ≤ PGµ,ν(s) ≤ RG
ε

µ,ν(s) + εfµ,νs .

That is, the effect of transient states vanishes with ε. Therefore, as ε goes to 0, RGεµ,ν(s)
tends to PGµ,ν(s).

Note that this means that, for either player, for every strategy µ or ν that is superior
over a strategy µ′ or ν′, respectively, in PG , there is an ε′ > 0 such that, for ε ∈ (0, ε′), µ or
ν is superior over µ′ or ν′, respectively, in RGε .

Given that optimal strategies are positional, and that there are only finitely many
positional strategies, this implies that there is an ε′ > 0 such that, for ε ∈ (0, ε′), optimal
strategies for either player in RGε are also optimal in PG . J

4 Markov Decision Processes with Parity Objectives

The reduction of Section 3 works for all stochastic parity games, but, for a parity condition
with k priorities, it employs up to k distinct powers of ε. In practice, this may lead to slow
convergence as a reinforcement learner will require long episodes. We introduce another
reduction, which is only valid for 1 1

2 -player games (Markov decision processes), but only uses
the first power of ε. We consider Max-MDPs. (Min-MDPs can be treated by dualizing the
MDP first.)

Our reduction is obtained by composing the MDP with the following priority tracker
gadget.

I Definition 7 (Priority Tracker). Given a set of priorities [k] and a parameter 0 ≤ ε ≤ 1,
the priority tracker T ε is an MDP (S,A, T ) where:

S = {sI , sa} ∪ {s2c : 2c ∈ [k]} is the set of states with 2 + dk/2e states including a
distinguished initial state sI , an accepting sink state sa, and a state s2c for each pair
(2c, 2c+ 1) of priorities (w.l.o.g., we assume that k is even);
A = [k] is the set of actions that are labeled by priorities from the set [k]; and
T : S ×A→ D(S) is the transition function defined in the following way.

T (s, a)(s′) =



1− ε if s = s′ = sI

ε if s = sI and s′ = s2c and a ∈ {2c, 2c+ 1}
1 if s = s′ = s2c and a < 2c
ε if s = 2c, a = 2c+ 1, and s′ = sa

1− ε if s = 2c, a = 2c+ 1, and s′ = 2c
1 if s = 2c, a > 2c+ 1, and s′ = 2ba/2c
1 if s = s′ = sa

0 otherwise.

An example of the priority tracker for priority set {0, 1, . . . , 5} is shown in Figure 3. Intuitively,
for small enough ε, the gadget is, with high probability, still in state sI when the MDP
enters an end component. Moreover, for small enough ε, the gadget is very likely to see the
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sI

s0 s2 s4

sa

0, 1
2, 3

4, 5

ε

1− ε

ε

1− ε

ε

1− ε

0

1

2, 3

4, 5

0-2

3

4, 5

0-4

5

ε

1− ε

ε

1− ε

ε

1− ε

0-5

Figure 3 Priority tracker gadget for priorities 0-5.

dominant priority of the end component before it reaches sa, in which case it reaches sa with
probability 1 if and only if the dominating priority of the end component is odd.

To prove that the gadget of Figure 3 may be used for 1 1
2 -player stochastic games (Max-

MDPs), we make use of a Büchi automaton (i.e., with a parity condition with priorities 0
and 1), which is derived from the priority tracker gadget, as follows.

The Parity to Büchi (PtB) gadget for 2k priorities, Pk, is a Büchi automaton over the
alphabet [2k] that accepts the language of the following LTL property:

G F{2k − 1} ∨ (F G [2k − 2] ∧ (G F{2k − 3} ∨ · · · )) . (2)

The PtB P6 is shown in Figure 4. In general, the PtB is related to the priority tracker
gadget for the same number of priorities by the following transformation. One replaces the
transitions from the initial state by nondeterministic transitions (all non-accepting), and
uses non-accepting transitions:

from state 2c, one self-loops with every priority d < 2c+ 1;
from state 2c, one moves to state 2 · bd/2c for every priority d > 2c+ 1;

and accepting transitions
from state 2c, one self-loops with every priority d = 2c+ 1.

I Lemma 8. Let B be the synchronous composition of the Max-MDP M = ((S,A, T, SMin,

SMax), pri) and P2k, with pri : S ×A→ [2k]. Then, for every s ∈ S,

Val(M, s) = Val(B, (s, sI)) .

Proof. The automaton P2k is good for MDPs [18], because it is a suitable limit-deterministic
Büchi automaton [16, 31]. This means that it can be composed with any Max-MDP equipped
with a parity condition to compute the probability of satisfaction of (2). J
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sI

s0 s2 s4

0-5

0, 1 2, 3 4, 5

0

2, 3

4, 5

1

0-2

4, 5

3

0-4

5

Figure 4 PtB gadget for priorities 0-5. The transitions marked with a dot are accepting.

Let M = (M, pri) be a stochastic game arena, with no choices for Player Min and with
parity objective, and T ε be the priority tracker. We define Mε

T to be the synchronous
composition of M with T ε, synchronized with the priorities of the transitions. We assume
that Mε

T is equipped with a reachability objective with sa as the accept state.

I Theorem 9. For every Max-MDP M = ((S,A, T, SMin, SMax), pri) and its induced set of
stochastic reachability games Mε

T , we have that, for all s ∈ S,

Val(M, s) = lim
ε↓0

Val(Mε
T , (s, sI)) .

Proof. The proof is in two parts.
Bounding the limit from below. In the first part of the proof we show that, for every
δ > 0, there exists an εδ > 0 such that for every ε < εδ we have that

Val(Mε
T , (s, sI)) ≥ Val(M, s)− δ.

Assume that player Max plays a positional strategy, which is optimal for M. We first
consider the special cases that s is in a winning or losing BSCC in the Markov chain
induced by this strategy.

The state s is in an accepting BSCC with dominating odd priority o. In this case, the
probability to satisfy the parity objective is 1.
At the same time, in composition with the priority tracker gadget, no state se with
e > o can be reached in the priority tracker, and there is a path from every state to sa
in the finite product Markov chain. The reachability probability is therefore also 1. In
this case Val(Mε

T , (s, sI)) = Val(M, s) holds.
The state s is in a rejecting BSCC. In this case, the probability to satisfy the parity
objective is 0, and Val(Mε

T , (s, sI)) ≥ Val(M, s) holds trivially.
It is therefore enough to select εδ small enough that the chance of progressing away from
the initial state sI of the priority tracker before reaching a BSCC in the induced Markov
chain happens with a probability below δ.
Note that the chance of reaching any BSCC with the priority tracker still in state
sI is naturally no bigger than the chance of reaching the BSCC with or without the
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Figure 5 The reduction of the PtB gadget for priorities 0-5 to the reachability problem (right).

priority tracker being in state sI . Therefore, with the two special cases from above,
Val(Mε

T , (s, sI)) ≥ Val(M, s)− δ follows. (εδ can, for example, be chosen as δ divided by
the expected number of transitions taken before reaching a BSCC.)
Bounding the limit from above. In the second part of the proof we show

Val(Mε
T , (s, sI)) ≤ Val(Bε, (s, sI)) ≤ Val(B, (s, sI)) + δ = Val(M, s) + δ.

For the first inequality, note that Bε is similar to Mε
T , except in the nondeterministic

vs. probabilistic transitions from state sI . Therefore, the priority tracker gadget can be
interpreted as what one gets when the player uses a particular positional randomized
strategy to resolve the nondeterminism in Bε. As this is one possible strategy to resolve
the nondeterminism, the inequality follows.
The equation follows from the fact that the PtB is good for MDPs [18], because it is
a suitable limit-deterministic Büchi automaton [16, 31] that recognizes the words of
priorities, where the highest priority that occurs infinitely often is odd.
To establish the middle inequality, consider the gadget Bε that is obtained by composing
the gadget in Figure 5 with the MDP. Hahn et al. [17, Lemma 2] showed for such SLDBA
that, for every δ′, there exists ε0 such that, for all ε < ε0, we have that

Val(B, (s, sI))− δ′ ≤ Val(Bε, (s, sI)) ≤ Val(B, (s, sI)) + δ′ (3)

holds; this provides the second inequality. J

While the previous theorem proves that the priority-tracker works in the case of Max-
MDPs, unfortunately this reduction cannot be used for general stochastic games, or even
Min-MDPs, where (just as the nondeterminism in the MDP and the PtB gadget are resolved
by different players) Min can gain an unfair advantage from knowing the state of the priority
tracker gadget, as demonstrated by the following lemma.



E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak 10:13

I Lemma 10. The priority tracker construction is incorrect for stochastic parity games,
even when restricted to Min-MDPs.

Proof. The game of Figure 6 shows that the priority-tracker should not be used for Min-
MDPs (or generally for 2 1

2 -player games). The example game is a Min-MDP: Min is the only
player who makes moves. Yet, Max wins because the highest recurring priority is either 3
or 1. If, however, Min chooses b from q0 until the priority-tracker enters state s2, and then
switches to action a, the highest recurring priority is intuitively deemed to be even (as it is
not 3, while the priority tracker is in the component that intuitively checks if it is 2 or 3)
and Min is adjudicated the game, because Max cannot reach the reachability target sa. J

5 Experimental Results

Our reduction from stochastic parity games to stochastic reachability games can be done on
the fly because the augmentation of the game graph only requires knowledge of the current
priority. This enables us to use model-free RL to solve the stochastic reachability game that
results from our reduction. We use minimax Q-learning for alternating Markov Games [26] to
compute strategies. By assigning an undiscounted reward of +1 for reaching sa (and 0 reward
otherwise), the values of state-action pairs computed by Q-learning are direct estimates of
the probability of reaching sa, and hence of the probability to satisfy the property.

The models we use to test our reduction [27] are in Table 1. This table presents the name
of the game, the number of states of the game, the priorities in the game, the probability to
satisfy the property by player Max when both players play optimally, and the probability as
estimated by Q-learning. As a verifying step, we fixed Max player’s strategy after learning
and solved the resulting stochastic parity game with Mungojerrie [17]. The resulting
probability to satisfy the property is presented in the table. We also show the time (in
seconds) that it took for Q-learning to compute the strategies, and the value of ε used in
learning. Each episode was run until it terminated by a transition to a sink.

In coprobActive [1], a cop and a robber take turns, deterministically moving to adjacent
vertices on a house-shaped graph. Cop is player Max and robber is player Min. The ω-regular
property for our game is to eventually reach a state where the cop and robber are at the
same vertex. Both players select their starting vertex in the first move of the game, starting
with the cop’s selection. In this game, the cop has a winning strategy. coprobPassive is
identical except the robber has an additional action where she does not move. In this variant,
the robber has a winning strategy. coprobActiveP and coprobPassiveP are identical to the
prior two models except that moves are only successful with probability 1/2. The state will
remain unchanged if the move is unsuccessful. The cop has a winning strategy in both of
these models. The randomME model is a randomized mutual exclusion protocol [3, p. 836],
modified to allow simultaneous requests by the two clients. Player Max controls the arbiter,
while player Min controls both clients. The objective of the game is to guarantee absence of

q0 q1a(1)

b(3)

a(2)

Figure 6 A parity game. Both states are controlled by player Min.
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Table 1 Q-learning results for games. Estimated probabilities, verifying probabilities, and times
are the average of three runs. We tuned hyperparameters individually for each experiment.

Name states priorities prob. estim. prob. verify prob. time (s) ε

coprobActive 104 0,1 1 0.99 1 1.13 0.05
coprobPassive 105 0,1 0 0 0 0.46 0.05
coprobActiveP 105 0,1 1 0.99 1 2.97 0.03
coprobPassiveP 105 0,1 1 0.99 1 4.01 0.03
coprobSafe 148 0,1 1 0.99 1 3.50 0.03
coprobSafeP 150 0,1 13/15 0.85 0.86 13.57 0.03
randomME 30 1,2,3 1 0.95 1 4.43 0.04
harding 6 0,1,2 1 0.96 1 2.88 0.04
smg1 8 0,1 1 0.97 1 2.91 0.02
difference 99241 0,1 1 0.92 1 12.23 0.1
ttt 6321 0,1 1 1 1 1.57 0.07
coins 38200 0,1 1 0.97 1 2.92 0.05
penney 1745 0,1 1/3 0.33 0.33 0.28 0.1
robots 45784 0,1 1 1 0.94 1031.29 0.003

starvation for one client. The harding example [20] shows that the use of nondeterministic
automata to express ω-regular objectives for games with two strategic players may lead to
incorrect results. In smg1 messages are exchanged between a server and a client [24]. In
difference [39], the Max player chooses digits and the Min players assigns them to places
in two two-digit numbers, x and y. The goal of Player Max is to guarantee x − y ≥ 40.
Example ttt is a model of the tic-tac-toe game. In coins [39], the two players remove in
turn a coin from one end of a row of 4 coins. Player Max tries to collect coins worth at least
as much as the coins collected by Player Min. In penney [28], each player chooses a sequence
of three heads and tails. A fair coin is then tossed repeatedly, and the first player whose
sequence turn up wins. In robots [19], two robots, each controlled by one player, navigate
a grid world. Table 1 shows a strong correlation between the value of ε needed to reliably
learn an optimal strategy and the learning time.

The reduction of Section 4 from parity objectives to reachability objectives for Markov
decision processes can be done on the fly because it only requires knowledge of the current
priority. As before, we can use model-free RL to solve the resulting reachability objective.

In Table 2 we compare 3 methods that use Q-learning to learn a strategy that maximizes
the probability of satisfying a parity objective in a MDP. In Method 1, we translate the parity
objective into a SDLBA objective and use the reduction from [17]. In Method 2, we treat our
MDP as a stochastic game (with only one player) and utilize the reduction from Section 3.
In Method 3, we use the reduction introduced in Section 4. We tuned the hyperparameters
to minimize time subject to the following constraints. First, the strategies produced, as
verified by the model checker, satisfied the property with the maximum probability. Second,
since each method produces an estimate of the probability of the satisfaction of the property,
the estimated probability of satisfaction was within 10% of the true value.

The examples deferred and chocolates have properties where the learner has many
opportunties to transition the SLDBA to its final accepting region. The difficulty here is that
the learner must learn to wait to make this transition, which happens with low probability
during the initial phase of Q-learning where the learner explores randomly. Methods 2 and
3 perform better in these examples because there is no additional choice for the learner to
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Table 2 Q-learning results for MDPs. The Q-table for each experiment was initialized to zero.

Name states priorities Meth. 1 time (s) Meth. 2 time (s) Meth. 3 time (s)
deferred 74,25 1,2 3.63 2.73 0.52
trafficNtk 392,773 0,1,2 0.45 1.87 1.88
chocolates 7168,1034 1,2 1523.89 13.21 8.14
shoot1 1175,595 0,1,2 0.36 > 2000 33.26
agridGR2 252,216 0-5 25.59 58.26 13.97

learn. In shoot1 and trafficNtk, all methods are able to produce strategies that satisfy
the property with the maximum probability relatively easily. However, Methods 2 and 3
require small values of ε in order for the estimated probabilites to be close to their true
values, increasing the learning time. In agridGR2, the large number of priorities is harmful
to Method 2’s performance due to the increasing powers of ε. Throughout each of these
experiments, Method 3 outperforms Method 2 and is competitive with Method 1.

6 Conclusion

We have presented a reduction from stochastic parity games to stochastic reachability games
that allows one to apply model-free reinforcement learning to the computation of the game
values and optimal strategies. We have also described a translation that, while only suitable
for 1 1

2 -player games—more precisely, for Max-MDPs—requires shorter training episodes than
the more general reduction. Initial experiments show that the proposed approach allows an
off-the-shelf reinforcement learning algorithm like minimax Q-learning to compute optimal
strategies for games of moderate size.

References
1 M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied Mathematics,

8:1–12, 1984.
2 D. Andersson and Miltersen P. B. The complexity of solving stochastic games on graphs. In

Algorithms and Computation, pages 112–121, 2009.
3 C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
4 V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic approximation

and reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000.
5 K. Chatterjee and N. Fijalkow. A reduction from parity games to simple stochastic games. In

Games, Automata, Logics and Formal Verification, GandALF, pages 74–86, June 2011.
6 K. Chatterjee and T. A. Henzinger. Reduction of stochastic parity to stochastic mean-payoff

games. Inf. Process. Lett., 106(1):1–7, 2008.
7 K. Chatterjee, M. Jurdziński, and T. A. Henzinger. Simple stochastic parity games. In

Computer Science Logic (CSL), pages 100–113, 2003.
8 K. Chatterjee, M. Jurdziński, and T. A. Henzinger. Quantitative stochastic parity games. In

Symposium on Discrete Algorithms, SODA, pages 121–130, 2004.
9 A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
10 C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. J. ACM,

42(4):857–907, July 1995.
11 L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University,

1998.
12 J. Fu and U. Topcu. Probably approximately correct MDP learning and control with temporal

logic constraints. In Robotics: Science and Systems, July 2014.

CONCUR 2020



10:16 Model-Free Reinforcement Learning for Stochastic Parity Games

13 I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
14 C. M. Grinstead and J. L. Snell. Introduction to Probability. Amer. Math. Soc., 1997.
15 A. Guez et al. An investigation of model-free planning. CoRR, abs/1901.03559, 2019.
16 E. M. Hahn, G. Li, S. Schewe, A. Turrini, and L. Zhang. Lazy probabilistic model checking

without determinisation. In Concurrency Theory, (CONCUR), pages 354–367, 2015.
17 E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. Omega-regular

objectives in model-free reinforcement learning. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 395–412, 2019. LNCS 11427.

18 E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. Good-for-MDPs
automata for probabilistic analysis and reinforcement learning. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 306–323, 2020. LNCS 12078.

19 E. M. Hahn, S. Schewe, A. Turrini, and L. Zhang. A simple algorithm for solving qualitative
probabilistic parity games. In Computer Aided Verification, Part II, pages 291–311, 2016.
LNCS 9780.

20 A. Harding, M. Ryan, and P.-Y. Schobbens. A new algorithm for strategy synthesis in LTL
games. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2005),
pages 477–492, Edinburgh, UK, 2005. LNCS 3440.

21 T. A. Henzinger and N. Piterman. Solving games without determinization. In 15th Conference
on Computer Science Logic, pages 394–409, Szeged, Hungary, September 2006. LNCS 4207.

22 Alex Irpan. Deep reinforcement learning doesn’t work yet. https://www.alexirpan.com/
2018/02/14/rl-hard.html, 2018.

23 J. G. Kemeny and J. L. Snell. Finite Markov Chains. Van Nostrand, 1960.
24 M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time

systems. In Computer Aided Verification (CAV), pages 585–591, July 2011. LNCS 6806.
25 M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In

International Conference on Machine Learning, pages 157–163, 1994.
26 M. L. Littman and C. Szepesvári. A generalized reinforcement-learning model: Convergence

and applications. In International Conference on Machine Learning, pages 310–318, 1996.
27 Stochastic parity game reinforcement learning benchmarks. https://github.com/cuplv/

parityRLBenchmarks, 2020.
28 W. Penney. Problem 95. Penney-ante. Journal of Recreational Mathematics, 2(4):241, 1969.
29 D. Perrin and J.-É. Pin. Infinite Words: Automata, Semigroups, Logic and Games. Elsevier,

2004.
30 L. S. Shapley. Stochastic games. Proc. Nat. Acad. Sci. U.S.A., 39:1095–1100, 1953.
31 S. Sickert, J. Esparza, S. Jaax, and J. Křetínský. Limit-deterministic Büchi automata for

linear temporal logic. In Computer Aided Verification (CAV), pages 312–332, 2016. LNCS
9780.

32 D. Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature,
529:484–489, January 2016.

33 A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-free reinforcement
learning. In International Conference on Machine Learning, ICML, pages 881–888, 2006.

34 R. S. Sutton and A. G. Barto. Reinforcement Learnging: An Introduction. MIT Press, second
edition, 2018.

35 M. Y. Vardi. Automatic verification of probabilistic concurrent finite state programs. In
Foundations of Computer Science, pages 327–338, 1985.

36 Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In Machine Learning, pages
279–292, 1992.

37 M. Wen and U. Topcu. Probably approximately correct learning in stochastic games with
temporal logic specifications. In IJCAI, pages 3630–3636, 2016.

38 E. Wiewiora. Reward shaping. In Encyclopedia of Machine Learning, pages 863–865. Springer,
2010.

39 P. Winkler. Mathematical Puzzles: A Connoisseur’s Collection. A K Peters, 2004.

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://github.com/cuplv/parityRLBenchmarks
https://github.com/cuplv/parityRLBenchmarks

	Introduction
	Preliminaries
	Stochastic Parity Games and Simple Stochastic Games
	Markov Decision Processes and Markov Chains

	From Stochastic Parity Games to Stochastic Reachability Games
	Limit Reachability Theorem
	Absorption Probabilities

	Markov Decision Processes with Parity Objectives
	Experimental Results
	Conclusion

