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Abstract:

Sensing of nutrients by chemosensory cells in the gastrointestinal tract 
plays a key role in transmitting food related signals, linking information 
about composition of ingested foods to digestive processes. In recent 
years, a number of G protein-coupled receptors (GPCR) responsive to a 
range of nutrients have been identified. Many are localised to intestinal 
enteroendocrine (chemosensory) cells, promoting hormonal and 
neuronal signalling locally, centrally, and to the periphery. The field of 
gut sensory systems is relatively new and still evolving. Despite huge 
interest in these nutrient sensing GPCR, both as sensors for nutritional 
status and targets for preventing development of metabolic diseases, 
major challenges remain to be resolved. However, the gut expressed 
sweet taste receptor, resident in L-enteroendocrine cells and responsive 
to dietary sweetener additives, has already been successfully explored 
and utilised as a therapeutic target, treating weaning related disorders in 
young animals. In addition to sensing nutrients, many GPCR are targets 
for drugs used in clinical practice. As such these receptors, in particular 
those expressed in L-cells, are currently being assessed as potential new 
pathways for treating diabetes and obesity. Furthermore, growing 
recognition of gut chemosensing of microbial-produced short chain fatty 
acids has led further attention to the association between nutrition and 
development of chronic disorders focusing on the relationship between 
nutrients, gut microbiota and health. The central importance of gut 
nutrient sensing in the control of gastrointestinal physiology, health 
promotion and gut-brain communication offers promise that further 
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therapeutic successes and nutritional recommendations will arise from 
research in this area.
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19 Abstract:

20 Sensing of nutrients by chemosensory cells in the gastrointestinal tract plays a key role in 

21 transmitting food related signals, linking information about composition of ingested foods to 

22 digestive processes. In recent years, a number of G protein-coupled receptors (GPCR) 

23 responsive to a range of nutrients have been identified. Many are localised to intestinal 

24 enteroendocrine (chemosensory) cells, promoting hormonal and neuronal signalling locally, 

25 centrally, and to the periphery. The field of gut sensory systems is relatively new and still 

26 evolving. Despite huge interest in these nutrient sensing GPCR, both as sensors for nutritional 

27 status and targets for preventing development of metabolic diseases, major challenges remain 

28 to be resolved. However, the gut expressed sweet taste receptor, resident in L-enteroendocrine 

29 cells and responsive to dietary sweetener additives, has already been successfully explored and 

30 utilised as a therapeutic target, treating weaning related disorders in young animals. In addition 

31 to sensing nutrients, many GPCR are targets for drugs used in clinical practice. As such these 

32 receptors, in particular those expressed in L-cells, are currently being assessed as potential new 

33 pathways for treating diabetes and obesity. Furthermore, growing recognition of gut 

34 chemosensing of microbial-produced short chain fatty acids has led further attention to the 

35 association between nutrition and development of chronic disorders focusing on the 

36 relationship between nutrients, gut microbiota and health. The central importance of gut 

37 nutrient sensing in the control of gastrointestinal physiology, health promotion and gut-brain 

38 communication offers promise that further therapeutic successes and nutritional 

39 recommendations will arise from research in this area.

40
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41 Introduction

42 The intestinal epithelium is a major boundary with the outside world. Epithelial cells lining the 

43 surface of the intestinal epithelium are in direct contact with a luminal environment, the 

44 composition of which varies dramatically. It has long been recognised that the gut is capable 

45 of sensing changes in its luminal content and responding by releasing chemical signals. In 

46 1902, Bayliss and Starling(1) noted that increasing the acidity in the lumen of the small intestine 

47 elicited pancreatic secretions, and that this was mediated, not via the nervous system, but by a 

48 humoral factor produced by the gut epithelium that they termed ‘secretin’.

49 Indeed, we now know that the nerve endings that transmit signals evoked by changes in the gut 

50 luminal contents do not reach the intestinal lumen and that information about the chemical 

51 nature of the luminal contents is transmitted to neurons via enteroendocrine cells linking the 

52 gut, brain and peripheral tissues.

53 Enteroendocrine cells (EEC), scattered amongst the cells lining the intestinal epithelium are 

54 pivotal to the chemosensing pathways of the intestinal tract. They are flask-shaped, with the 

55 majority having open-type morphology with apically extended processes making direct contact 

56 with ingested nutrients and microbial products in the gut lumen. These cells respond to changes 

57 in luminal contents by releasing gut hormones into systemic circulation via their basolateral 

58 membrane domain. There are at least sixteen discrete cell types that make up the 

59 enteroendocrine family (generally named after letters of alphabet) and collectively they 

60 produce over twenty different hormones(2). These include cholecystokinin (CCK), peptide YY 

61 (PYY) and glucagon-like peptides 1 and 2 (GLP-1, GLP-2). CCK is released by I-cells 

62 predominantly located in the proximal intestine, whereas PYY, GLP-1 and GLP-2 are secreted 

63 mostly by L-cells residing frequently in the distal gut. However, L-cells have also been 

64 identified in the duodenum albeit in lower number than observed in jejunum and ileum(3). 

65 Secretion of CCK, GLP-1 or PYY slows down gastric emptying, as well as reducing appetite 

66 and food intake. GLP-1 also functions as an incretin hormone, stimulating insulin secretion 

67 from pancreatic β-cells, improving meal-related glycaemia. GLP-2, coproduced with GLP-1, 

68 promotes intestinal epithelial cell growth and increased nutrient absorption(4,5).

69 Although it was believed that gut hormone secretion was the result of direct EEC sensing of 

70 nutrients in the lumen of the intestine, until recently little was known about the initial molecular 

71 recognition events involved in the enteroendocrine luminal sensing.

72
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73 G protein-coupled receptors (GPCR) and intestinal nutrient sensing

74 G protein-coupled receptors (GPCR) represent the largest family of cell-surface mediators of 

75 signal transduction(6). They are encoded by about 800 different genes in humans(7), enabling 

76 cells to respond to many diverse sensory inputs. Hence, GPCR are well-established targets for 

77 almost half of all therapeutic drugs, yet many are denominated as “orphan receptors” whose 

78 physiological agonists remain unknown. As such these receptors have attracted significant 

79 attention in terms of continued identification and characterisation, with recognition that they 

80 are potential targets for novel drug discovery. With more recent evidence that nutrient sensing 

81 in the gastrointestinal tract is accomplished by a number of GPCR(8), the role of these receptors 

82 as important nutritional targets is becoming increasingly evident.

83 Nutrient-sensing GPCR are categorised as either class A or class C. GPCR belonging to class 

84 C, such as the calcium sensing receptor (CaSR) and the taste 1 family receptors (T1R) are 

85 comprised of an N-terminal signal sequence, seven transmembrane domains coupled with a 

86 large extracellular domain (Venus flytrap module) and C-terminal cytoplasmic domain. Class 

87 A receptors such as fatty acid receptors also have seven transmembrane domains, but lack the 

88 Venus flytrap module(9). In general, nutrient sensing GPCR are classified based on their α- 

89 subunits and the corresponding downstream signalling pathways they recruit. They are grouped 

90 into families Gαs, Gαi, Gαq, Gα12/13, and gustducin. The physiological effects produced by these 

91 receptors in response to nutrients are mainly mediated via cyclic adenosine monophosphate 

92 (cAMP) and Ca2+ signalling cascades. Gαs stimulates adenylate cyclase (AC) leading to an 

93 increase in intracellular concentration of cAMP. Gαi inhibits AC resulting in decreased 

94 intracellular cAMP. Gαq stimulates phospholipase C (PLC) resulting in the generation of 

95 diacylglycerol (DAG) and inositol triphosphate (IP3), which respectively activate protein 

96 kinase C (PKC) triggering Ca2+ release from intracellular stores. Gα12/13 couples to the 

97 activation of the small G-protein Rho. Gustducin, a heterotrimeric G protein and mainly a 

98 member of Gαi family, can stimulate phosphodiesterase resulting in cAMP degradation, but in 

99 parallel the co-released Gβγ subunits activate PLC-β2 leading to IP3 mediated Ca2+ release. The 

100 consequent elevation of cytoplasmic Ca2+ activates the Ca2+sensitive transient receptor 

101 potential channel M5 (TRPM5) triggering membrane depolarization and opening of voltage-

102 gated Ca2+ channels(9,10). It has also been reported that gustducin activation stimulates adenylate 

103 cyclase, increasing cAMP directly or indirectly closing basolateral K+ channels and triggering 

104 membrane depolarisation(11).
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105 Several nutrient-sensing GPCR have been identified in the intestinal epithelium. They are 

106 expressed mainly on the apical membrane domain of enteroendocrine cells and are directly 

107 activated by a variety of nutrients. These include receptors for glucose, amino acids, peptides, 

108 protein hydrolysates, calcium and both long and short chain fatty acids (Fig.1)(12). Nutrient 

109 sensing initiates a cascade of events involving hormonal and neural pathways. This culminates 

110 in functional responses that ultimately regulate vital physiological processes including food 

111 intake (appetite and satiety), nutrient digestion and absorption, intestinal barrier function, gut 

112 motility, and insulin secretion.

113 This review focuses on G protein-coupled receptors responsive to digestive products of 

114 macronutrients.

115

116 Carbohydrates

117 One of the primary functions of carbohydrates is to provide body energy. They comprise of 

118 sugars, digestible polysaccharides (such as starch) and non-digestible carbohydrates consisting 

119 of plant-based fibres and non-starch polysaccharides. In the small intestine, digestible 

120 polysaccharides are hydrolysed by pancreatic amylase and brush border membrane 

121 disaccharidases to constituent monosaccharides, glucose, galactose and fructose(13). Non-

122 digestible carbohydrates which escape digestion in the small intestine, reach the large intestine 

123 where they are fermented by gut microbiota, predominantly to short chain fatty acids.

124

125 Intestinal glucose (sweet) sensing

126 Glucose is an effective inducer of secretion of gut hormones such as GLP-1, GLP-2 and 

127 glucose-dependent insulinotropic peptide (GIP). A well- known example of gastrointestinal 

128 chemosensation (the incretin effect) is the observation that orally ingested glucose is a much 

129 more effective stimulator of insulin secretion from the pancreas than is intravenously injected 

130 glucose(14), inferring the presence of an intestinal luminal glucose sensor responsible for 

131 glucose-induced gut peptide release.

132 In 2005, we reported, for the first time, that the heterodimeric sweet taste receptor T1R2-T1R3, 

133 previously characterised in the lingual epithelium, is expressed in gut EEC, and proposed that 

134 it acts as the intestinal glucose sensor(15).

Page 6 of 21

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

6

135 Further work demonstrated that all signalling elements involved in sweet taste transduction in 

136 the gustatory buds of the tongue, T1R2-T1R3, PLCβ-2, TRPM5, α-gustducin and other 

137 associated signalling elements are co-expressed in both L- and K-EEC in human and mouse 

138 intestine(16,17). In mice in which the genes encoding for α-gustducin and T1R3 were deleted, 

139 there was a failure to secrete GLP-1 in response to luminal glucose(16,17). These knockout mice 

140 also had abnormal insulin response and prolonged elevation of postprandial blood glucose, 

141 indicating that the sweet receptor expressed in intestinal L-cells coupled to α-gustducin sense 

142 luminal glucose leading to secretion of GLP-1(16,18). More recent work(19) has confirmed and 

143 extended these studies to demonstrate that in mouse small intestine, T1R2, T1R3, α-gustducin 

144 and GLP-2 are co-expressed in the same L-enteroendocrine cells and that mouse intestine 

145 secretes GLP-2 in response to glucose(19). Moreover, this glucose-induced GLP-2 release was 

146 inhibited by gurmarin (a specific inhibitor of mouse T1R3)(20,21). Furthermore, the non-nutritive 

147 sweetener, sucralose, also induced GLP-2 release from mouse small intestine, which was again 

148 inhibited by gurmarin. However, the sweetener aspartame, that does not activate mouse T1R2-

149 T1R3(22), did not induce GLP-2 release, supporting the conclusion that the T1R2-T1R3 

150 receptor, expressed in L-cells, senses luminal glucose and sweeteners to secrete GLP-2. A 

151 number of studies(3,23,24) confirming the findings of previous reports(16,17) have demonstrated 

152 that transcripts for T1R2, T1R3, α-gustducin, TRPM5 and  GLP-1, are expressed in the mucosa 

153 of human proximal intestine. Young et al. (2009) also reported that expression of T1R2, at 

154 mRNA level, was reduced in the intestine of diabetic subjects with higher fasting blood glucose 

155 concentration(23). The magnitude of GLP-1, GLP-2 and GIP secretion, has been reported to be 

156 diminished in patients with type 2 diabetes(25). A recent work has also shown that the number 

157 of EEC, including L-cells, is reduced significantly in the intestine of morbidly obese and 

158 diabetic individuals with type 2 diabetes compared to that in healthy controls(4). Thus, the 

159 reduction in T1R2 transcript level observed in diabetics(23) may be due to a reduced number of 

160 EEC expressing T1R2 and other signalling elements required for glucose-induced GLP-1 

161 secretion. Moreover, it has been demonstrated that the intragastric administration of glucose, 

162 in healthy subjects, resulted in secretion of GLP-1 and PYY, which was significantly reduced 

163 when lactisole, the specific inhibitor of human T1R3(26) was co-administered(3,24). They have 

164 concluded that in human intestine T1R2-T1R3 is involved in glucose-induced secretion of 

165 GLP-1 and PYY, with potential consequences for reducing food intake, decreasing gut motility 

166 and increasing insulin secretion (the latter in response to GLP-1).

167
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168 Mechanisms underlying intestinal sweet sensing and glucose transport regulation 

169 One important manifestation of intestinal glucose sensing by T1R2-T1R3, expressed in L-cells, 

170 is the regulation of intestinal glucose transport.

171 The major route for transport of dietary glucose from the lumen of the intestine into absorptive 

172 enterocytes is via the brush border membrane protein, the Na+/glucose cotransporter 1, 

173 SGLT1(27,28). Absorption of glucose by SGLT1 also activates electrolyte (NaCl) and water 

174 absorption, the route used for oral rehydration therapy(29-31). SGLT1 activity and expression 

175 has been shown to be directly regulated by luminal glucose, including metabolisable, non-

176 metabolisable and membrane-impermeable glucose analogues(32-34). Furthermore, the pathway 

177 underlying monosaccharide-enhanced SGLT1 expression was via a luminal membrane glucose 

178 GPCR(34,35).

179 Recent experimental evidence has demonstrated that T1R2-T1R3 expressed in L-cells senses 

180 dietary glucose (and other natural/artificial sweeteners) resulting in secretion of GLP-2, which 

181 then, via a neuro-paracrine pathway involving the enteric nervous system, enhances the half-

182 life of SGLT1 mRNA in neighbouring absorptive enterocytes. This leads to increased activity 

183 and expression of SGLT1, and enhanced intestinal glucose absorption(19). Knocking out the 

184 genes for T1R2, T1R3, or GLP-2 receptor abolishes the ability of mouse intestine to upregulate 

185 SGLT1 expression and activity in response to luminal glucose or sweeteners(19).

186 It has been shown that the expression (and activity) of SGLT1 is enhanced in the intestine of 

187 human subjects with type 2 diabetes. This increase was shown to be independent of dietary 

188 carbohydrate intake level, or any changes in blood glucose or insulin concentration(27), and 

189 proposed to be due to alterations in the mechanisms and signalling pathways involved in 

190 regulation of SGLT1 activity and expression.

191 As noted above, the total number of EEC, the expression of T1R2 and levels of gut hormones 

192 including GLP-1, GLP-2 and GIP are all significantly reduced in the intestine of diabetic 

193 individuals(4,23,25). Thus, it appears that in type 2 diabetes deregulation of intestinal glucose 

194 sensing and downstream signalling may play a role in the observed overexpression of intestinal 

195 SGLT1.

196

197 Therapeutic potential of T1R2-T1R3
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198 Post weaning intestinal disorders are major health problems for the young. Weaning-associated 

199 diarrhoea, dehydration, and nutrient malabsorption results in high levels of mortality in farm 

200 animals worldwide. The findings that small concentrations of specific natural/artificial 

201 sweeteners are detected by the intestinal T1R2-T1R3 sweet receptor, activating the pathway 

202 leading to increased glucose, electrolyte and water absorption (oral rehydration therapy)(29), 

203 has attracted worldwide uptake of these additive sweeteners in the diet of weaning animals. 

204 This innovation has improved the health and survival rate of young animals through avoidance 

205 of intestinal disorders, thereby increasing weight, enhancing immunity and optimising feed 

206 utilisation allowing the translation of scientific discoveries to animal health and welfare 

207 benefits(31,36,37). Modulation of human intestinal T1R2-T1R3 activity may also have 

208 applications in humans by controlling glucose absorption(23).

209

210 Proteins

211 Dietary proteins are essential for growth, provision of energy and health maintenance. In the 

212 small intestine, proteins are digested by pancreatic and brush border membrane proteases to di-

213 tri-oligopeptides and amino acids. There are these products that likely target EEC stimulating 

214 secretion of a range of gut hormones including CCK, GLP-1 and PYY(38). The satiety effects 

215 associated with high-protein diets may also be mediated by sensing of the amino-acid 

216 constituents of proteins.

217

218 Intestinal sensing of protein hydrolysis products

219 Intestinal amino acid sensing

220 A number of GPCR have been identified to respond to amino acids. They belong to a sub-

221 group of C class GPCR and include CaSR, the heterodimeric umami receptor T1R1-T1R3, the 

222 goldfish 5.24 receptor and its mammalian ortholog GPCR6A, and the metabotropic glutamate 

223 receptors (mGluR).

224 CaSR is a homodimeric receptor that predominantly couples to Gαq, activating 

225 phosphatidylinositol (PI)-specific PLC and inducing mobilisation of intracellular Ca2+(39). 

226 However, it also couples to Gαs, Gαi and Gα12/13
(40). CaSR is a multimodal sensor for several 

227 key nutrients, notably Ca2+ ions and L-amino acids, and is expressed abundantly throughout 
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228 the gastrointestinal tract(39,41). Although it acts as a sensor for Ca2+ in the gut lumen, it is 

229 allosterically activated by L-amino acids; responding to aromatic, aliphatic and polar, but not 

230 to branched or positively charged, amino acids(42). CaSR is highly expressed in gastrin-

231 secreting G-, somatostatin-secreting D-(43), and CCK-secreting I-cells(44), and has been 

232 proposed to facilitate amino acid-induced secretion of these gut hormones. In studies using 

233 STC-1 cells, it was shown that extracellular presence of L-phenylalanine (Phe) induced 

234 mobilisation of intracellular Ca2+ and CCK secretion which was inhibited with the allosteric 

235 CaSR inhibitor NPS2143(45). Moreover, native intestinal I-cells from mice deficient in CaSR 

236 showed impaired L-Phe mediated Ca2+ responses and CCK release(44), indicating that CaSR 

237 plays a significant role in the chemosensing of amino acids in the GI tract.

238 GPRC6A is a Gq/11-coupled receptor widely expressed in human and rodent tissues. Being a 

239 promiscuous amino acid sensor, and expressed in the digestive system, it has been proposed to 

240 act as a candidate for sensing digested amino acids in the GI tract(43,46). It has been reported by 

241 two groups that GPRC6A is involved in L-ornithine (Orn)-induced GLP-1 release in the 

242 intestinal L-cell line GLUTag(47,48). However, Oya et al. (2013) were unable to measure L-Orn-

243 induced GLP-1 release from mixed primary cultures of mouse small intestine(48). There are 

244 equally conflicting results using GPRC6A knockout mouse models. Alamshah et al. (2016) 

245 demonstrated that L-arginine (Arg) induced secretion of PYY from both wild type and 

246 GPRC6A KO mouse primary colonic L cells(49). Jørgensen & Bräuner-Osborne (2020) 

247 addressing the in vivo relevance of these findings, administered L-Orn and L-Arg orally to the 

248 full locus and exon VI GPRC6A KO mouse models(50). Whilst there was an immediate GLP-1 

249 release that diminished over time, there were no overall differences in the ability of KO-mouse 

250 models and wild type mice to secrete GLP-1 in response to these amino acids. The authors 

251 concluded that GPRC6A, in vivo, does not play a role in GLP-1 secretion in response to basic 

252 L-amino acids(50). Further work is required to unravel the precise role of GPRC6A in intestinal 

253 chemosensing.

254

255 Taste 1 receptor 1 and receptor 3 (T1R1-T1R3).

256 In taste cells of lingual epithelium, the heterodimeric combination of T1R1 and T1R3, members 

257 of the T1R family, has been identified as a broad-spectrum L-amino acid sensor responsible 

258 for mediating perception of the savoury “umami” taste of monosodium glutamate (Glu)(22,51). 

259 In rodents and many other mammalian species, T1R1-T1R3 responds to a wide variety of L-
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260 amino acids in the millimolar range. However, the receptor is not activated by L-tryptophan 

261 (Trp)(52). The human T1R1-T1R3 complex functions as a much more specific receptor, 

262 responding selectively to monosodium glutamate and aspartic acid (as well as to the Glu 

263 analogue l-AP4)(22,51,53). The T1R1-T1R3 heterodimer, like the sweet receptor T1R2-T1R3, is 

264 expressed in EEC(15) and is coupled to gustducin for the transmission of intracellular signals(54). 

265 Using STC-1 cells and native mouse intestinal tissue it has been shown that gut expressed 

266 T1R1-T1R3 serves as an intestinal L-amino acid sensor modulating amino acid-induced CCK 

267 release(55). Using siRNA to inhibit expression of T1R1 mRNA and protein in STC-1 cells, it 

268 was demonstrated that inhibition of T1R1 expression had no effect on protein hydrolysate or 

269 peptide-induced CCK release, indicating that T1R1-T1R3 is not the intestinal sensor for 

270 peptones. However, in T1R1 knockdown STC-1 cells, there was significant decline in Phe-, 

271 leucine- and Glu-induced CCK release. Conversely, Trp- induced CCK secretion was 

272 unaffected by inhibition of T1R1 expression, in agreement with Trp not being an agonist for 

273 T1R1-T1R3(55).

274 Thus, both CaSR and T1R1-T1R3 have been recognized as intestinal L-amino acid sensors 

275 mediating CCK secretion in response to aromatic amino acids such as L-Phe(44,55). Using a 

276 range of agonists and antagonists of CaSR and T1R1-T1R3 it has been demonstrated that CaSR 

277 is an intestinal L-amino acid receptor specifically sensing aromatic amino acids, while T1R1-

278 T1R3 responds to a broad spectrum of L-amino acids provoking CCK secretion from intestinal 

279 endocrine I-cells(55).

280

281 Peptone receptor

282 The identity of the cell surface receptor(s) involved in peptone-induced CCK release remains 

283 unknown. GPCR92/93 is not a member of the C-class GPCR but has been proposed as a 

284 candidate sensor for peptones in STC-1 cells(56). Further work is required to elucidate the 

285 peptone-sensing role of this GPCR, if any, in the intestine.

286

287 Fats

288 Fats play an important role in nutrition. As well as providing 30-40% of total body energy, they 

289 also offer essential fatty acids such as linoleic (omega-6) and α-linoleic (omega-3) acid that 
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290 cannot be de novo synthesised in the body. Like other macronutrients, fats must first be digested 

291 before triggering hormone secretion and are much more effective when administered into the 

292 gut lumen than into the circulation. Fat ingestion stimulates secretion of a number of gut 

293 hormones, including CCK, GLP-1 and GIP(57). It is reported that long chain fatty acids (LCFA) 

294 inhibit gastric emptying and induce satiety(58), with short chain fatty acids (SCFA) eliciting 

295 GLP-1 and PYY secretion(59).

296 Intestinal fatty acid sensing

297 There are four principal GPCR, FFA1-FFA4, that have been officially classified as members 

298 of a free fatty acid receptor family. FFA1 (GPR40) and FFA4 (GPR120) are activated by both 

299 saturated and unsaturated medium-chain (carbon length 8-12) and longer chain (carbon chain 

300 length 14-22) fatty acids and are mainly Gαq-coupled(60). The supporting evidence that long 

301 chain fatty acid receptors contribute directly to intestinal fatty acid chemosensing is from the 

302 findings that their expression in GI tract is largely limited to the enteroendocrine cell 

303 population. The pattern of expression of FFA4 in enteroendocrine cells appears to be similar 

304 to that of FFA1. This has highlighted the need for highly selective ligands to probe their 

305 functions. Based on these observations, a number of preclinical and clinical developmental 

306 programmes have explored the therapeutic potential of agonists of FFA1. Indeed, some 

307 synthetic agonists of FFA1 have shown the capacity to improve glycaemic control in diabetes. 

308 However, questions remain in terms of sustainability of effects during long term treatment(60). 

309 There are conflicting experimental evidence relating to the roles of FFA1 and FFA4(61-63) and 

310 is not clear which one plays the more important role in enteroendocrine fatty acid sensing. 

311 Despite such concerns, the evidence suggests many positive reasons to promote FFA4 as a 

312 promising therapeutic target. They include the potential capacity to regulate GLP-1 secretion 

313 from L-cells to promote insulin release and to reduce insulin resistance via anti-inflammatory 

314 mechanisms. Thus, efforts have been made in medicinal chemistry for improving the selectivity 

315 of ligands between FFA1 and FFA4, and it is proposed that perhaps combined agonists of FFA1 

316 and FFA4 may impart greater anti-diabetic efficacy, than targeting either receptor 

317 selectively(60).

318 The short chain fatty acid (SCFA) receptors FFA2 (GPR43) and FFA3 (GPR41) have been 

319 shown, by immunohistochemistry, to be expressed in colonic L-cells. They selectively bind to 

320 and are activated by SCFA (carbon chain length 1-6), particularly acetate (C2), propionate (C3) 

321 and butyrate (C4). FFA2 responds to C2-C3 fatty acids and couples to Gαi/o as well as Gαq, 
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322 whereas FFA3 preferentially binds C3-C5 and couples only to Gαi/o. These SCFA are 

323 generated predominantly in the distal gut by microbial fermentation of non-digestible 

324 carbohydrates, such as fibre and non-starch polysaccharides. It has been reported that non-

325 digestible and fermentable dietary fibre and starch, as well as SCFA themselves, enhance GLP-

326 1 secretion(64). Moreover, the SCFA-induced release of GLP-1 from EEC appears to be 

327 mediated by FFA2(65).

328 Although also activated by the same group of SCFA as FFA2, and with a broadly similar 

329 expression profile, FFA3 is less well characterised than FFA2. To date, there have been no 

330 reports of highly selective synthetic ligands for FFA3 that target the same binding site as SCFA, 

331 and as such, detailed understanding of the function of this receptor lags behind(66). There is also 

332 significant species orthologue variation in the pharmacology of SCFA receptors in respect to 

333 their endogenous ligands, which can be translated to species selectivity of synthetic ligands 

334 targeting these receptors.

335 As alterations in population and diversity of gut microbiota are associated with dysbiosis, there 

336 is considerable interest in both prebiotic and probiotic strategies to modulate microbial 

337 populations and hence the effectiveness of SCFA production(67). Thus, the physiological role 

338 of SCFA receptors, and their relative importance, compared with other possible targets of 

339 prebiotic supplementation remains to be established.

340

341 Other free fatty acid related receptors

342 GPR84 is recognised as a receptor responsive to medium-chain fatty acids. However, it is by 

343 far the least studied and understood of the currently described receptors for fatty acids. GPR119 

344 is predominantly coupled to Gαs and is responsive to monoacylglycerols, products of 

345 triglycerides hydrolysis. It is proposed that small-molecule ligands of GPR119 increase GLP-

346 1, GIP and insulin release(68), however studies have shown these ligands have limited glucose 

347 lowering and incretin activity in subjects with type 2 diabetes(69).

348

349 Concluding remarks
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350 The nutrient sensing GPCR, expressed in EEC, play important roles in sensing the gut luminal 

351 environment, transmitting nutrient-evoked signals leading to coordination of various 

352 physiological functions such as nutrient digestion, absorption, insulin secretion and food 

353 intake.

354 Targeting the gut-expressed sweet receptor, T1R2-T1R3, with dietary sweetener additives has 

355 made a significant contribution to veterinary medicine, through enhancing absorption of 

356 glucose, electrolytes and water (oral rehydration therapy) in young animals, thereby preventing 

357 weaning-induced intestinal disorders. This strategy may also have applications for the 

358 prevention of digestive disorders in premature or newborn human infants. As many GPCR are 

359 targets for numerous drugs used in clinical practice, a number of GPCR expressed in gut 

360 chemosensory cells are currently under assessment as potential new pathways for treating 

361 diabetes and obesity. However, a number of these receptors remain poorly or incompletely 

362 characterised. It is envisaged that access to high quality and well-defined agonists/antagonists, 

363 appropriate animal models, closer collaborations between different disciplines, and true ligand 

364 selectivity/specificity will allow further expansion of this GPCR repertoire. It is predicted that 

365 with these basic criteria in place the potential for much more convincing target validation of 

366 nutrient sensing GPCR will be possible.

367 With the major role that gut nutrient sensing plays in the control of gastrointestinal physiology 

368 and gut-brain communication, it is expected that further therapeutic successes and nutritional 

369 recommendations will arise from research in this area.

370
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A schematic diagram of an enteroendocrine cell with luminal-facing nutrient sensing G protein-coupled 
receptors and downstream signalling pathways. Taken from Reimann et al. (2012)(12) with permission from 

Cell Press. 

81x83mm (300 x 300 DPI) 

Page 22 of 21

Cambridge University Press

Proceedings of the Nutrition Society


