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ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting synovial joints. Neutrophils
are believed to play an important role in both the initiation and progression of RA, and large
numbers of activated neutrophils are found within both synovial fluid (SF) and synovial tissue from
RA joints. In this study we analysed paired blood and SF neutrophils from patients with severe,
active RA (DAS28> 5.1, n=3) using RNA-seq. 772 genes were significantly different between
blood and SF neutrophils. IPA analysis predicted that SF neutrophils had increased expression
of chemokines and ROS production, delayed apoptosis, and activation of signalling cascades
regulating the production of NETs. This activated phenotype was confirmed experimentally by
incubating healthy control neutrophils in cell-free RA SF, which was able to delay apoptosis
and induce ROS production in both unprimed and TNFα primed neutrophils (p< 0.05). RA
SF significantly increased neutrophil migration through 3mM transwell chambers (p< 0.05)
and also increased production of NETs by healthy control neutrophils, including exposure of
myeloperoxidase (MPO) and citrullinated histone-H3-positive DNA NETs. IPA analysis predicted
NET production was mediated by signalling networks including AKT, RAF1, SRC and NF-κB.
Our results expand the understanding of the molecular changes that take place in the neutrophil
transcriptome during migration into inflamed joints in RA, and the altered phenotype in RA SF
neutrophils. Specifically, RA SF neutrophils lose their migratory properties, residing within the
joint to generate signals that promote joint damage, as well as inflammation via recruitment and
activation of both innate and adaptive immune cells. We propose that this activated SF neutrophil
phenotype contributes to the chronic inflammation and progressive damage to cartilage and bone
observed in patients with RA.
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1 INTRODUCTION
Rheumatoid arthritis (RA) is an inflammatory
disorder characterised by systemic inflammation,
including swelling and pain in synovial joints.
Left untreated, uncontrolled inflammation will
destroy joints, causing deformity and disability.
Many studies have shown that blood neutrophils
have an aberrant, activated phenotype in RA,
characterised by increased production of ROS
and cytokines, and delayed apoptosis (Wright
et al., 2014b, 2011; Martelli-Palomino et al., 2017;
Marchi et al., 2018). As well as having an activated
phenotype in peripheral blood, activated neutrophils
are found at high numbers in both synovial joints
and tissues of patients with RA (Wittkowski et al.,
2007; Turunen et al., 2016; Mourao et al., 2010).
Their presence is accompanied by high levels
of neutrophil granule proteins in synovial fluid,
including myeloperoxidase (MPO), cathepsin G,
proteinase 3, elastase and lactoferrin (Wright
et al., 2014b; Edwards et al., 1988; Thieblemont
et al., 2016; Wong et al., 2009; Nzeusseu Toukap
et al., 2014). These granule proteins contribute
to the pathogenesis of RA through proteolytic
cleavage and activation of proteins (including
cytokines and chemokines), cleavage of soluble
receptors to initiate trans-signalling (such as the
IL-6 receptor) and degradation of cartilage (e.g.
cleavage of collagen fibres) (Wright et al., 2014b;
Pham, 2006; Baici et al., 1982; Van den Steen
et al., 2002; Desgeorges et al., 1997). Ex vivo
synovial fluid (SF) neutrophils have an altered
phenotype compared to paired blood neutrophils
for example displaying higher levels of superoxide
(O2

•-) production, and containing phosphorylated
p47phox, indicating assembly and activation of the
NADPH oxidase (NOX2) in vivo (El Benna et al.,
2002). They also express the high-affinity FcγR1
receptor (CD64) and MHC Class II proteins (Cross
et al., 2003; Quayle et al., 1997; Robinson et al.,
1992; Cedergren et al., 2007). SF neutrophil lysates
also have lower levels of granule proteins such
as MPO, confirming their degranulation within
the synovial joint (Edwards et al., 1988). Animal
studies and human case studies of early RA suggest

an important role for neutrophils in the initiation of
synovial inflammation in RA joints (Wittkowski
et al., 2007; Mourao et al., 2010; Wipke and
Allen, 2001), possibly through the release of
granule enzymes and production of VEGF, both
of which enable fibroblast adhesion and growth
of the inflammatory synovial pannus (Kasama
et al., 2000; McCurdy et al., 1995). A key role
for exposure of citrullinated antigens on neutrophil
extracellular traps (NETs) has been proposed in
the initiation of auto-immunity and development of
anti-citrullinated peptide auto-antibodies (ACPA) in
RA (Wright et al., 2014b; Khandpur et al., 2013).
NET products are present in both RA serum and
synovial fluid (Pieterse et al., 2018) and have also
been observed in synovial biopsy tissues from
RA patients, characterised by positive staining for
CD15, elastase, MPO and citrullinated (cit) histone
H3 (Khandpur et al., 2013; Spengler et al., 2015).
It was recently shown that up to 70% of newly-
diagnosed RA patients have auto-antibodies in their
serum that recognise NET components (ANETA)
(de Bont et al., 2020).

We have extensively studied neutrophil phenotype
in RA and shown that RA neutrophils have activated
NF-κB signalling leading to delayed apoptosis
(Wright et al., 2011). Additionally, we have shown
using RNA-seq that neutrophil gene expression is
altered in RA compared to healthy controls (Wright
et al., 2015). Gene expression in RA patients
pre-TNFi therapy can be used to stratify patients
based on response or non-response to therapy
(Wright et al., 2017). Whilst several studies have
analysed SF neutrophil functions, to our knowledge
none have measured the transcriptome of RA SF
neutrophils compared to paired blood neutrophils.
In this study we first used RNA-seq to describe
the changes that take place when blood neutrophils
migrate into RA joints and then validated our
bioinformatics predictions using healthy control
neutrophils incubated in RA SF in vitro. We
show that RA SF neutrophils have an altered
phenotype, including decreased expression of
genes associated with extravasation and migration,
increased expression of chemokines, FcγR1 and
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MHC II, decreased apoptosis and increased ROS
and NET production. All of these altered properties
enable SF neutrophils to regulate inflammatory
events by attracting and activating innate and
adaptive immune cells, including other neutrophils,
T cells, NK cells, monocytes, macrophages and
dendritic cells within diseased RA joints.

2 METHODS
2.1 Ethics statement and patient

selection
This study was approved by the University of
Liverpool Committee on Research Ethics for
healthy controls, and NRES Committee North West
(Greater Manchester West, UK) for RA patients.
All participants gave written, informed consent in
accordance with the declaration of Helsinki. All
patients fulfilled the ACR 2010 criteria for the
diagnosis of RA (Fransen and van Riel, 2005).

2.2 Blood and synovial fluid collection
Peripheral blood was drawn into heparinised
vacutainers from healthy controls and RA patients.
Synovial fluid was aspirated from the knee joint
of RA patients (n=3) approximately 1 month prior
to the start of the TNFi therapy Etanercept. All
patients had a DAS28 score greater than 5.1 at
the time of sample collection. Patients had a mean
age of 59 years and an average disease duration
of 20.6 years; 2 patients were female. Synovial
fluid was decanted into universal tubes containing
50µL heparin immediately upon collection and
neutrophils were isolated within 1h.

2.3 Neutrophil isolation
Neutrophils were isolated from heparinised
peripheral blood using Polymorphprep (Axis
Shield) as previously described (Wright et al., 2011,
2013). Erythrocytes were lysed using hypotonic
lysis with ammonium chloride buffer. Synovial
fluid was passed through gauze prior to dilution 1:1
with PBS. Neutrophils were isolated from diluted
synovial fluid using Ficoll-Paque (GE Healthcare).
Neutrophil purity from both peripheral blood and
synovial fluid isolations were > 97% as assessed

by cytospin (Supplementary figure 1). Neutrophils
accounted for an average of 85.7% leukocytes
in whole synovial fluid as assessed by cytospin
(Supplementary figure 1). Following isolation,
neutrophils were resuspended in RPMI 1640 media
(Life Technologies) containing L-glutamine (2mM)
and Hepes (25mM) at a concentration of 5x106/mL.
Aliquots of synovial fluid were centrifuged at 2000g
for 5 min to remove leukocytes. Cell-free synovial
fluid was decanted and frozen at -20oC.

2.4 RNA extraction
RNA was isolated from 107 neutrophils using
Trizol-chloroform (Life Technologies), precipitated
in isopropanol and cleaned using the RNeasy kit
(Qiagen) including a DNase digestion step. RNA
was snap-frozen in liquid nitrogen and stored at -
80oC. Total RNA concentration and integrity were
assessed using the Agilent 2100 Bioanalyser RNA
Nano chip. RNA integrity (RIN) was ≥ 7.0.

2.5 RNA sequencing
Total RNA was enriched for mRNA using poly-A
selection. Standard Illumina protocols were used
to generate 50 base pair single-end read libraries.
Libraries were sequenced on the Illumina HiSeq
2000 platform. Reads were mapped to the human
genome (hg38) using TopHat v2.0.4 (Trapnell
et al., 2009) and gene expression (RPKM) values
were calculated using Cufflinks v2.0.2 (Trapnell
et al., 2012). A minimum RPKM threshold of
expression of 0.3 was applied to the data in order
to minimise the risk of including false positives
against discarding true positives from the dataset
(Wright et al., 2013; Thomas et al., 2015). Statistical
analysis was carried out using Cuffdiff with a 5%
false discovery rate (FDR).

2.6 Bioinformatics analysis
Bioinformatics analysis was carried out using
IPA (Ingenuity Systems, www.ingenuity.com),
as previously described, applying a Benjamini-
Hochberg correction to p-values for canonical
pathway and upstream regulator analysis. Heatmaps
were produced using MeV (Saeed et al., 2006)
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with Euclidean clustering and average linkage.
Multivariate partial least squares-discriminant
analysis (PLS-DA) was performed on count data,
generated using Rsubread (Liao et al., 2019) using
mixOmics v6.10.9 (Rohart et al., 2017) working in
R v 3.6.3. Modular analysis of gene expression was
carried out using the CRAN package tmod (Weiner,
2018) and based on the modular framework for
classifying blood genomics studies proposed by
Chaussabel and colleagues (Chaussabel et al.,
2008).

2.7 Measurement of apoptosis
Neutrophils (5x105/mL) were incubated at 37oC in
5% CO2 in RPMI 1640 (+Hepes, +L-glutamine)
for 18h in the absence or presence of 10% AB
serum (Sigma) or 10% cell-free synovial fluid.
Following incubation, 2.5x104 cells were diluted
in 50µL of HBSS (Life Technologies) containing
0.5µL Annexin V-FITC (Life Technologies), and
incubated in the dark at room temperature for
15 min. The total volume was then made up to
500µL with HBSS containing propidium-iodide (PI,
1µg/mL, Sigma Aldrich) before analysis by flow
cytometry (>5,000 events analysed) using a Guava
EasyCyte flow cytometer.

2.8 Measurement of ROS production
Neutrophils (5x106/mL) were incubated with
or without TNFα (10ng/mL, Merck) for 20
min. Following priming, neutrophils (2.5x105)
were diluted in HBSS in the presence of
10µM luminol (Sigma Aldrich). ROS production
was stimulated by either f-Met-Leu-Phe (fMLP,
10-6M, Sigma Aldrich) or 25% cell-free synovial
fluid. Luminol-enhanced chemiluminescence was
measured continuously for 60 min on a Tecan plate
reader.

2.9 Chemotaxis assay
The chemotaxis assay was carried out in 24-
well tissue culture plates (coated with 12mg/mL
poly-hema to prevent cell adhesion) using
hanging chamber inserts with a 3µM porous
membrane (Merck), as previously described

(Wright et al., 2014a). Media containing fMLP
(10−8M), interleukin-8 (100ng/mL, Sigma) or 25%
(v/v) synovial fluid was added to the bottom
chamber. Neutrophils (106/mL) were added to the
top chamber and incubated for 90 min at 37oC and
5% CO2. The number of migrated cells after 90 min
incubation was measured using a Coulter Counter
Multisizer-3 (Beckman Coulter).

2.10 Assay for neutrophil extracellular
trap (NET) production

Neutrophils were seeded (at 2x105 cells/500µL)
in RPMI media plus 2% AB serum in a 24-well
plate containing poly-L-lysine coated coverslips as
previously described (Chapman et al., 2019). Cells
were allowed to adhere for 1h prior to stimulation
with phorbol 12-myristate 13-acetate (PMA, 50nM,
Sigma), A23187 (3.8µM, Sigma) or 10% RA SF.
Cells were incubated for a further 4h to allow
for NET production. Cells adhered to coverslips
were fixed with 4% paraformaldehyde prior to
immunofluorescent staining. Briefly, coverslips
were removed from the plate and washed with PBS,
permeabilised with 0.05% Tween 20 in TBS, fixed
with TBS (2% BSA) and then stained for 30 min
on drops of TBS (2% BSA) on parafilm stretched
across a clean 24-well plate. Primary antibodies
used were mouse anti-myeloperoxidase (1:1000,
Abcam) and rabbit anti-citrullinated histone H3
(1:250, Abcam). Coverslips were washed three
times with TBS prior to secondary antibody staining
(anti-rabbit AlexaFluor488, 1:2000, anti-mouse
AlexaFluor647, Life Technologies) in TBS (+2%
BSA) for 30 min. Coverslips were washed prior to
staining with DAPI (1g/mL, Sigma (Sigma). Slides
were imaged on an Epifluorescent microscope
(Zeiss) using a 40X objective. Images were analysed
using ImageJ (Schindelin et al., 2015) and are
presented with equal colour balance.

2.11 Statistical analysis
Statistical analysis of experimental data was
performed using a Student’s t-test or ANOVA in
GraphPad Prism (v5) as stated in the text.
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3 RESULTS
3.1 Transcriptomic alternations from

blood to synovial fluid
In order to determine the changes in RA
neutrophil transcriptome induced by migration
from peripheral blood to inflamed, synovial
joints, we isolated paired blood and synovial fluid
neutrophils from patients with RA (n=3) with active
disease (DAS28> 5.1) prior to commencement
of biologic therapy with the TNF inhibitor
etanercept. Transcriptome sequencing (RNAseq)
identified 772 genes that were significantly different
between peripheral blood neutrophils and synovial
fluid (SF) neutrophils (FDR< 0.05). Of these,
412 genes were significantly higher in blood
neutrophils and 347 were higher in synovial fluid
neutrophils. Multivariate partial least squares-
discriminant analysis (PLS-DA) on the expressed
neutrophil transcriptome (∼14,000 genes) modelled
the difference between PB and SF neutrophil
transcriptomes with a ROC AUC = 1 (Figure
1, p< 0.05, 2 components). Modular analysis
of the transcriptional networks active in RA
blood and SF neutrophils revealed activation of
gene modules regulating localisation, cytoskeletal
remodelling, and cell signalling (ATP, small
GTPases, phosphatidylinositol) in both blood and
SF neutrophils. However, signalling in response to
MHC, toll-like receptors, inflammasomes and type
I interferons were higher in SF neutrophils (Figure
1B). Modules corresponding to integrin signalling
and recruitment of neutrophils were higher in blood
neutrophils compared to SF.

In order to determine the signalling pathways
most altered in RA neutrophils following migration
from peripheral blood to synovial joints, we
carried out bioinformatics analysis using Ingenuity
Pathway Analysis (IPA) applying a 1.5-fold change
in gene expression cut-off. The pathways most
significantly up-regulated in SF neutrophils were:
Antigen Presentation Pathway (p=10-8), Role of
NFAT in the regulation of the immune response
(p=10-7), and Acute phase response signalling
(p=10-6). EIF2 Signalling (p=10-8), STAT3 pathway
(p=10-8), Leukocyte Extravasation (p=10-7) and
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Figure 1. Informatics analysis of blood and
synovial fluid (SF) neutrophil transcriptomes. (A)
PLS-DA modelling of blood and SF neutrophil
transcriptomes using mixOmics. Blood and
SF neutrophils were discriminated based on 2
components with an AUC of 1.0 (p< 0.05). (B)
Modular analysis of gene expression networks in
blood and SF neutrophils using tmod (AUC> 0.8).
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Granulocyte Adhesion and Diapedesis (p=10-6)
were the most down-regulated pathways (Figure
2A). Chemokine signalling was up-regulated in RA
SF neutrophils (p=10-4). Chemokines up-regulated
in RA SF (Figure 2B) included those associated
with attraction of both innate and adaptive immune
cells, including other neutrophils (CXCL8, CXCL1,
CXCL2), T cells, monocytes and macrophages,
natural killer cells and dendritic cells (CXCL16,
CXCL10, CCL2, CCL3, CCL4) (Mantovani et al.,
2011; Griffith et al., 2014; Tecchio and Cassatella,
2016). Genes up- and down-regulated genes in the
Leukocyte Extravasation Signalling pathway are
shown in Figure 2C (p=10-7). HIF-1α signalling
was up-regulated (p=10-4), in line with the known
hypoxic state of the RA SF joint (Cross et al., 2006),
and the HIF-1α transcription factor complex was
predicted to be activated in RA SF neutrophils
(p=5.8x10-12).

The Antigen Presentation Pathway was predicted
to be up-regulated (p=10-8), and indeed genes for
MHC Class II (HLA-DMA, HLA-DMB, HLA-
DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5)
were all significantly higher in SF neutrophils in
line with previous reports (Cross et al., 2003).
Networks of genes regulating the migration and
activation of antigen presenting cells were predicted
to be up-regulated in SF neutrophils (Figure 3).
In particular, these networks were predicted to be
regulated by ERK (Figure 3A), MYD88 (Figure 3B)
and TICAM1 signalling (Figure 3C). We also noted
genes encoding the high affinity FcγR1 (FCGR1A,
FCGR1B, FCGR1C) were significantly higher in
RA SF neutrophils (FDR< 0.01), as previously
reported (Quayle et al., 1997).

Glycolysis enzymes were highly expressed in
RA SF neutrophils (glycolysis pathway activation
p=10-3). This is in line with our recent
metabolomics analysis of RA SF which identified
lower levels of substrates for glycolysis in RA
SF; this corresponds to higher levels of anaerobic
cellular metabolism under hypoxic conditions
(Anderson et al., 2018). Lactate dehydrogenase

enzymes were also higher in SF neutrophils (LDHA,
LDHB; FDR< 0.05). These enzymes catalyse the
reduction of pyruvate to lactate producing NAD+

and enabling continued energy production under the
hypoxic cellular state (Kumar and Dikshit, 2019).

3.2 Effect of synovial fluid on neutrophil
migration, apoptosis and ROS
production

In order to validate the predictions of the IPA
analysis, we tested the ability of RA SF to
alter neutrophil function. We found that 25%
RA SF (3 separate donors, all RF positive)
could significantly induce healthy blood neutrophil
migration through a 3µM transwell membrane
(Figure 4A, ANOVA p< 0.0001) compared to
both random migration (Tukey’s post-hoc p<
0.001), and known chemoattractants fMLP (10-8M,
Tukey’s post-hoc p< 0.001) and interleukin-8 (IL-
8, 100ng/mL, Tukey’s post-hoc p< 0.001). We
also observed a delay in neutrophil apoptosis (18h)
induced by incubating healthy control neutrophils
in 10% cell-free SF from the RA neutrophil donors
(Figure 4B). This delay in apoptosis was significant
for all RA SF compared to untreated (media only)
neutrophils (p< 0.05). However, when the RA
SF was compared to 10% AB serum, the delay in
apoptosis was only significant for SF1 (p< 0.05).
Apoptosis was not significantly altered by migration
into synovial fluid through a transwell membrane
(3µM, data not shown). IPA analysis indicated that
this delay in apoptosis was via the up-regulation of
the NFκB transcription factor complex (p=2.9x10-8)
in response to activation of TNF receptors 1 and
2 (TNFR1 signalling p=10-2; TNFR2 signalling
p=10-3) in RA SF neutrophils (Figure 4C).

We next used IPA to predict which cytokines were
regulating neutrophil gene expression in RA SF. The
major cytokines predicted were interferon-gamma
(IFNγ), TNFα, interleukin-1β, interleukin-6 (IL-
6) and granulocyte-colony stimulating factor (G-
CSF) (Figure 5A, p¡10-15). The levels of these
cytokines had previously been measured in the
donor RA SF as part of a parallel study (Figure
5B) (Wright et al., 2012). Evidence of RA SF
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Figure 2. Transcriptomic analysis of peripheral blood (PB) and synovial fluid (SF) neutrophils. (A) IPA
signalling pathways predicted to be up-regulated (red) or down-regulated (green) in SF neutrophils. (B)
Heatmap showing chemokine gene expression in PB and SF neutrophils. (C) Leukocyte extravasation
pathway showing genes up-regulated (red) or down-regulated (green) in SF neutrophils (white = not
expressed).

neutrophil activation by cytokines can be seen
by measuring the respiratory burst in cytokine-
primed and unprimed blood and SF neutrophils
using luminol-enhanced chemiluminescence. When

unprimed blood neutrophils were activated with
fMLP, little or no ROS production is observed;
this is greatly enhanced by priming for 20 min
with TNFα (Figure 5C). However, unprimed RA
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A B C

Figure 3. Activation of gene networks in RA SF neutrophils that control migration and activation of
antigen presenting cells. These networks are regulated by (A) ERK, (B) MYD88 and (C) TICAM1.

SF neutrophils produced around 2-fold greater
ROS compared to unprimed RA blood neutrophils,
indicating the SF neutrophils have been primed in
vivo by synovial cytokines (Figure 5C). Production
of reactive oxygen species was predicted by IPA
canonical pathway analysis (p=10-3, data not
shown).

IPA analysis also predicted that RA SF neutrophils
had been activated by immunoglobulins (p<
0.01, data not shown); this is likely to be
immune complexes such as rheumatoid factor
(RF) and/or anti-citrullinated protein antibodies
(ACPA). The presence of immune complexes in
RA SF can be detected using luminol-enhanced
chemiluminescence (Robinson et al., 1992). Soluble
immune complexes activate a rapid respiratory burst
in cytokine primed neutrophils (Figure 5D) whereas
insoluble immune complexes activate a slower and
more sustained respiratory burst in both cytokine-
primed and unprimed neutrophils (Figure 5E).

3.3 Effect of synovial fluid on NET
production

NETs are implicated in the pathology of RA by the
exposure of antigenic proteins such as citrullinated
histones (Wright et al., 2014b; Khandpur et al.,
2013). Whilst the exact signalling mechanisms
regulating NET production in have yet to be
fully elucidated, several signalling pathways that
contribute to NET production have been proposed,

including: Raf-MEK-ERK, RIPK1-RIPK3-MLKL,
AKT, p38-MAPK and cSrc as the four main drivers
in NOX2-dependent NETosis (Hakkim et al., 2011;
Desai et al., 2016; Amini et al., 2016; Khan and
Palaniyar, 2017). Interestingly, all these signalling
pathways were predicted by IPA as up-stream
regulators of gene expression in RA SF neutrophils
(p< 0.01). Signalling networks regulated by AKT,
RAF1 and SRC are shown in Figure 6A.

We therefore tested the ability of RA SF
to activate NET production by healthy control
neutrophils. We found that 10% RA SF increased
NET production by neutrophils to levels similar
to that of positive controls PMA and A23187 as
shown by the level of extracellular DNA (DAPI),
myeloperoxidase (MPO) and citrullinated histone
H3 visible on exposed on NET structures (Figure
6B).

4 DISCUSSION
In this study we have described for the first time the
changes in gene expression that take place in RA
neutrophils following migration into inflamed joints.
Using RNA-seq we have revealed an activated
neutrophil phenotype in RA SF, characterised
by increased expression of chemokines, delayed
apoptosis and increased activation of kinases and
transcription factors which may be implicated in the
production of NETs.
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A B

C

p<0.0001 p<0.05

Figure 4. Effect of RA SF on neutrophil migration and apoptosis. (A) Neutrophil chemotaxis was
significantly increased towards fMLP, interleukin-8 and 10% RA SF. (B) Neutrophil apoptosis was
significantly delayed by RA SF over 18h. (C) IPA apoptosis signalling pathway showing up-regulation
(red) and down-regulation (green) of genes associated with regulation of apoptosis in SF neutrophils (white
= not expressed).

Our experiments showed that RA SF decreased
the rate of neutrophil apoptosis, which may be
attributed to the high levels of inflammatory
cytokines present. We previously measured the
levels of 13 cytokines in RA SF and found high

levels of IL-1β, IL-1ra, IL-2, IL-4, IL-8, IL-
10, IL-17, IFN-γ, G-CSF, GM-CSF and TNF-α
(Wright et al., 2012). Many of these cytokines have
been demonstrated individually to delay neutrophil
apoptosis in vivo, including G-CSF, GM-CSF, IL-
1β, TNFα and IFN-γ, although this is often at

9



Wright et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16 18

Lu
m

in
es

ce
nc

e 
(m

V)

Time (min)

Primed Blood

Unprimed Blood

Primed SF

Unprimed SF

0

0.1

0.2

0.3

0.4

0.5

0 6 12 18

Lu
m

in
es

ce
nc

e 
(m

V)

Time (min)

Unprimed
Primed

0

0.5

1

1.5

0 6 12 18 24 30 36 42 48 54

Lu
m

in
es

ce
nc

e 
(m

V)

Time (min)

Unprimed
Primed

A B

C D E

0 10 20 30 40 50

IFNG

GCSF

TNF

IL1B

IL6

-log10 p-value

Figure 5. Cytokines in RA SF prime the neutrophil respiratory burst. (A) IPA predicted up-stream
cytokine regulators of gene expression in RA SF neutrophils (IFNG, interferon-γ; GCSF, granulocyte
colony stimulating factor; TNF, tumour necrosis factor α; IL1B, interleukin 1β; IL6, interleukin 6). (B)
Levels of cytokines measured in RA SF from which the neutrophils sequenced by RNA-seq were isolated.
(C) ROS production by RA blood and SF neutrophils (with and without cytokine priming) to fMLP.
RA SF also activates ROS production in healthy neutrophils. SF containing soluble immune complexes
(D) activates ROS production in cytokine primed neutrophils, whereas SF containing insoluble immune
complexes (E) activates ROS production in both primed and unprimed neutrophils.

concentrations in excess of those found in vivo
(Cross et al., 2008; Derouet et al., 2004; Moulding
et al., 1998; Watson et al., 1998; Maianski et al.,
2004; van den Berg et al., 2001; Salamone et al.,
2004; Sakamoto et al., 2005). GM-CSF secreted
by synovial fibroblasts in response to IL-17 and
TNFα has been shown to delay neutrophil apoptosis
(Parsonage et al., 2008), however a separate study
found that apoptosis delay induced by RA SF
was not related to the TNF or GM-CSF content,
but did correlate with adenosine (Ottonello et al.,
2002). Lactoferrin present in RA SF also delays
neutrophil apoptosis and may serve as a feed-back
anti-apoptotic mechanism for activated neutrophils
(Wong et al., 2009). In a separate study, RA
SF was shown to be pro-apoptotic in overnight
neutrophil cultures, but this effect was reversed
when neutrophils were incubated with SF under

conditions of hypoxia which more closely model
the RA joint (Cross et al., 2006). Relatively few
apoptotic neutrophils are present in freshly-isolated
RA SF (Raza et al., 2005), and whilst SF is anti-
apoptotic, the question remains as to the fate of SF
neutrophils. One possibility is that they undergo
efferocytosis by synovial macrophages, or another
is that they may reverse migrate from the joint
back into circulation, as demonstrated in zebrafish
models of inflammation (Ellett et al., 2015).

RA neutrophils contain high intracellular levels of
citrullinated proteins, mediated through activation
of peptidylarginine deiminases (PADs) (Romero
et al., 2013). These include known auto-antibody
targets: cit-actin, cit-histone H1.3, cit-histone H3,
cit-vimentin (Khandpur et al., 2013; Romero et al.,
2013). We recently showed that NETs produced
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Untreated PMA A23187 10% RA SF

DAPI MPO Cit-H3

B

A

Figure 6. Activation of NET production by RA SF. (A) IPA predicted activation of signalling cascades
regulated by AKT, RAF1 and SRC which may regulate NET production. (B) Neutrophils were incubated
for 4h with PMA (50nM), A23187 (3.8µM) or 10% RA SF. NET production was increased by RA SF as
measured by DAPI staining of extracellular NET DNA (blue), and staining for myeloperoxidase (MPO,
red) and citrullinated histone H3 (cit-H3, green) on NET structures.
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by RA neutrophils contain citrullinated proteins,
including those proteins previously mentioned as
antibody targets: cit-α-enolase, cit-histone H2A,
cit-histone H4, cit-vimentin, cit-MNDA (Chapman
et al., 2019). In our previous study, we also showed
that RA NETs contained significantly higher levels
of CRISP3 and MMP8, and IL-8 compared to NETs
produced by SLE neutrophils. We also reported the
presence of methylated and acetylated proteins on
RA NETs, particularly acetylated and methylated
histones (Chapman et al., 2019). This matches
the recent observation that NET debris in RA
serum in vivo contains high levels of acetylated
histones, indicative of NOX2-independent NET
production (Pieterse et al., 2018). A recent study
reported no association of ACPA with the amount
of NET material in RA serum (de Bont et al., 2020).
Interestingly, antibodies to NET material (ANETA)
were present in ACPA negative patients as well as
ACPA positive, although ANETA were significantly
higher in those patients seropositive for RF (de Bont
et al., 2020).

The RAGE-TLR9 pathway plays a key role
in both the internalisation and presentation of
citrullinated NET peptides on MHC Class II in
fibroblast-like synoviocytes (FLS). This leads to the
development of ACPA specific to the citrullinated
NET peptides and cartilage damage in mouse
models of RA (Carmona-Rivera et al., 2017). A role
for NET-derived elastase in cartilage destruction has
also been proposed, whereby elastase contained
in NET material disrupts the cartilage matrix
and induced the release of PAD2 by fibroblast-
like synoviocytes (FLS) leading to citrullination
of cartilage fragments (Carmona-Rivera et al.,
2020). These citrullinated cartilage fragments are
subsequently internalised and presented by FLS and
macrophage to antigen specific T-cells leading to the
development of auto-immunity and ACPA in HLA-
DRB1*04:01 transgenic mice (Carmona-Rivera
et al., 2020).

It has previously been shown that levels of ACPA
in RA SF correlate with neutrophil numbers and
severe disease activity, and that SFs with high
ACPA titres induce high levels of ROS and NET

production (Gorlino et al., 2018). A separate study
demonstrated that depletion of ACPA from RA SF
inhibits NET production in vitro (Sur Chowdhury
et al., 2014). A role for IgA immune complexes
in RA SF has also been proposed, with SF rich
in IgA inducing NET and ROS production and
release of lactoferrin by healthy control neutrophils
in a mechanism that was inhibited by blockade
of the FcαRI receptor (Aleyd et al., 2016). RA
SF also contains high levels of extracellular DNA,
concentrations of which correspond to neutrophil
counts and PAD activity, and which have been
attributed to NETs (Spengler et al., 2015). Our
recent proteomics study identified both PAD2
and PAD4 in RA NETs (Chapman et al., 2019).
PAD enzymes have also been identified by IHC
in synovial biopsies, localised with MPO in
necrotic areas of synovial tissue (Turunen et al.,
2016) that contain large areas of citrullinated and
hypercitrullinated proteins, possibly indicating the
presence of NET structures within synovial tissue.

Whilst the exact signalling mechanism for NET
production remains unclear, at least two modes of
NET production (NETosis) have been described:
NOX2-dependent and NOX2-independent. NOX2-
dependent NETosis occurs via activation of the
NADPH-oxidase (NOX2) and production of ROS.
This causes increased intracellular membrane
permeability, elastase release into the nucleus
and degradation of histones leading to chromatin
decondensation and NET release (Papayannopoulos
et al., 2010). NOX-2 independent NETosis does
not require the production of ROS by the NADPH
oxidase. In this case, mitochondrial ROS combine
with increased intracellular calcium levels to
activate PADs leading to hypercitrullination of
histones, chromatin decondensation and NET
release (Neeli et al., 2008; Douda et al., 2015).
Signalling pathways including Raf-MEK-ERK,
RIPK1-RIPK3-MLKL, AKT, p38-MAPK and cSrc
have been identified as some of the drivers of
NETosis (Hakkim et al., 2011; Desai et al., 2016;
Amini et al., 2016; Khan and Palaniyar, 2017). In
our study, all of these signalling pathways were
predicted to be activated in RA SF neutrophils.
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Interestingly, all of the kinase activation networks
predicted also included downstream activation
of NF-κB. This important signalling pathway,
activated by cytokines such as TNFα and IL-1β
has not yet been implicated in NET production
and would be an interesting candidate for future
investigation.

Our RNA-seq analysis identified increased expression
of MHC Class II genes in RA SF neutrophils. We
have previously shown that whilst healthy control
neutrophils do not express MHC Class II, RA blood
neutrophils express MHC Class II RNA, and RA SF
neutrophils expression both RNA and MHC Class
II protein, although the latter was contained within
intra-cellular pools which were mobilised to the
plasma membrane following overnight incubation
(Cross et al., 2003). Expression of co-stimulator
molecules CD80 and CD86 was only detected at
very low levels. However, SF neutrophils were
able to stimulate CD4+ T-cell proliferation via
a mechanism that could be inhibited by an anti-
MHC Class II antibody (Cross et al., 2003). We
also detected increased expression of a number of
chemokines in RA SF, including CCL3, CCL4,
CCL10,, CXCL16, CXCL2, CXCL8. These
chemokines play a key role in regulating the
inflammatory response in the joint, not only through
recruitment of other neutrophils (CXCL1, CXCL2,
CXCL8), but also through the recruitment and
activation of both innate and adaptive immune
cells (Mantovani et al., 2011; Griffith et al., 2014;
Tecchio and Cassatella, 2016) as summarised in
Figure 7. This increased production of chemokines
within the joint, coupled with a down-regulation of
adhesion receptors, suggests that RA SF neutrophils
become resident within the joint to drive further
inflammation through recruitment and activation of
other immune cells.

Whilst a predominantly pro-inflammatory role for
SF neutrophils has been proposed in our study,
several studies have suggested a pro-resolving role
for neutrophils in inflammatory arthritis (Headland
and Norling, 2015). For example, neutrophil-
derived microvesicles may be anti-inflammatory in
animal models of inflammatory arthritis through

Figure 7. Summary of the role of inflammatory
role of chemokines expressed by RA SF
neutrophils.

expression of the pro-resolving protein annexin-A1
(Headland et al., 2015). Annexin-A1 is released
from neutrophil granules following extravasation
and is found in synovial fluid. This protein has
many pro-resolving functions, including promoting
apoptosis and decreasing neutrophil:endothelial
cell adhesion and extravasation (Headland and
Norling, 2015; Perretti and Solito, 2004). Indeed,
annexin-A1 knock out mice suffer from exacerbated
synovial inflammation and cytokine production
in a methylated BSA-induced model of joint
inflammation (Yang et al., 2004). Nanoparticles
coated in neutrophil membranes decrease cytokine
production, suppress synovial inflammation and
prevent joint damage in both collagen-induced
arthritis and a human transgenic mouse model of
arthritis (Zhang et al., 2018). In gout, aggregated
NETs degrade a number of pro-inflammatory
cytokines, including IL-6, TNFα and IL-1β, and
promote resolution of inflammation (Schauer et al.,
2014) and in an infection model, neutrophil granule
proteins degraded inflammatory proteins, including
TNFα and IL-1β (Gresnigt et al., 2012).

Our findings provide novel insight into the
multitude of ways that synovial neutrophils drive
chronic inflammation in RA. This raises the
possibility that aberrant neutrophil activation
may be a target of future therapeutics in this
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chronic and life-limiting condition. A number of
new therapies which directly or indirectly target
neutrophil function have been proposed or are
in clinical trial (Nemeth et al., 2020). Inhibitors
of CXCR1/CXCR2, the receptor for CXCL8
(interleukin-8), have been demonstrated to reduce
neutrophil adhesion and recruitment to synovial
joints in murine models of inflammatory arthritis
(Cunha et al., 2008), an effect which was associated
with lower TNFα levels and disease activity
(Coelho et al., 2008). JAK inhibitors including
tofacitinib and baricitinib, which target signalling
down-stream of cytokine receptors including IL-
6, interferon-α and -γ, and GM-CSF receptors,
are clinically effective in treating RA (Burmester
et al., 2013; Taylor et al., 2017) although many
patients report transient neutropenia and increased
infections. These drugs have been shown to
inhibit cytokine signalling in neutrophils, including
inhibition of migration and ROS production by
RA neutrophils (Mitchell et al., 2017). The anti-
GM-CSF therapy mavrilimumab was effective in
decreasing RA disease activity in a Phase 2b clinical
trial, with over 70% of RA patients achieving an
ACR20 improvement in the group receiving the
highest dosing regime (Burmester et al., 2017). Anti-
G-CSF therapy prevents neutrophil migration into
joints, suppressed cytokine production and halting
the progression of murine arthritis (Campbell et al.,
2016). Finally, a number of novel therapeutics
which target neutrophil proteases, including MPO
and elastase, have been effective in reducing
neutrophil-driven inflammation in animal models
of inflammatory disease (Zheng et al., 2015) and
human respiratory disease (Stockley et al., 2013)
respectively. These inhibitor drugs have potential to
inhibit NET production and damage to cartilage
associated with inflammation in RA synovial
joints, and thus may be potential therapeutics for
repurposing to target neutrophil-driven RA joint
inflammation.

In conclusion, we have used RNA-seq and
experimental analysis of paired blood and SF
RA neutrophils to describe a pro-inflammatory
SF neutrophil phenotype which includes delayed

apoptosis, production of ROS, and release of
NETs. RA SF neutrophils down-regulate adhesion
molecules to become resident in the joint and
drive inflammation via increased production of
chemokines that attract and activate both innate
and adaptive immune cells. We propose this
altered neutrophil phenotype contributes to the pro-
inflammatory nature of active RA and explains
the role of neutrophils in the pathogenesis of the
disease.
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