
Faithful and Effective Reward Schemes for
Model-Free Reinforcement Learning of

Omega-Regular Objectives

Ernst Moritz Hahn1, Mateo Perez2, Sven Schewe3,
Fabio Somenzi2, Ashutosh Trivedi2, and Dominik Wojtczak3

1 University of Twente, The Netherlands
2 University of Colorado Boulder, USA

3 University of Liverpool, UK

Abstract. Omega-regular properties—specified using linear time tem-
poral logic or various forms of omega-automata—find increasing use in
specifying the objectives of reinforcement learning (RL). The key prob-
lem that arises is that of faithful and effective translation of the objective
into a scalar reward for model-free RL. A recent approach exploits Büchi
automata with restricted nondeterminism to reduce the search for an
optimal policy for an ω-regular property to that for a simple reachability
objective. A possible drawback of this translation is that reachability re-
wards are sparse, being reaped only at the end of each episode. Another
approach reduces the search for an optimal policy to an optimization
problem with two interdependent discount parameters. While this ap-
proach provides denser rewards than the reduction to reachability, it is
not easily mapped to off-the-shelf RL algorithms. We propose a reward
scheme that reduces the search for an optimal policy to an optimization
problem with a single discount parameter that produces dense rewards
and is compatible with off-the-shelf RL algorithms. Finally, we report an
experimental comparison of these and other reward schemes for model-
free RL with omega-regular objectives.

1 Introduction

A significant challenge to widespread adoption of reinforcement learning (RL) is
the faithful translation of designer’s intent to the scalar reward signal required
by RL algorithms [19]. Logic-based specifications help in two ways: by precisely
capturing the intended objective, and by allowing its automatic translation to
a reward function. Omega-regular objectives, such as those expressed in Linear
Temporal Logic (LTL) [25] and by ω-automata [28], have recently been proposed
to specify learning objectives for both model-based [10,20] and model-free RL.

Model-free RL algorithms do not construct a model of the environment;
hence, they often scale better than model-based algorithms. However, applying
model-free RL to ω-regular properties requires one to address separate concerns:

1. Finding the right automata representation to build product MDPs with
ω-regular acceptance conditions on the fly [13].

2. Translating the acceptance condition into a reward assignment that is appro-
priate for RL, such as reachability or maximizing an overall reward earned.

3. Computing policies that maximize expected reward with a RL technique,
like Q-learning, which normally applies discounting to the rewards.

In addressing these concerns, one strives to achieve an overall translation that
is faithful (maximizing reward means maximizing probability of achieving the
objective) and effective (RL quickly converges to optimal strategies). In this
paper, we focus on the second step, and explore its interplay with the third step
when using off-the-shelf RL tools and techniques.

The first approach to learning for ω-regular objectives used deterministic
Rabin automata [30]. While the reduction used from Rabin automata to rewards
does not have the required correctness properties [12]—there is still no direct
translation from Rabin automata to rewards—this work opened the door to
using reinforcement learning for temporal and ω-regular properties.

The problems with handling Rabin automata suggest that one should use
automata with simpler acceptance mechanisms, like Büchi automata. However,
Büchi automata require nondeterminism to recognize all ω-regular languages.
Nondeterministic machines can use unbounded look-ahead to resolve nondeter-
ministic choices. However, model checking and reinforcement learning (RL) for
Markov Decision Process (MDPs [29]) have a game setting, which restricts the
resolution of nondeterminism to be based on the past.

Being forced to resolve nondeterminism on the fly, an automaton may end
up rejecting words it should accept, so that using it can lead to incorrect re-
sults. Due to this difficulty, initial solutions to game solving and probabilistic
model checking have been based on deterministic automata—usually with Rabin
or parity acceptance conditions. For two-player games, Henzinger and Piterman
proposed the notion of good-for-games (GFG) automata [16]. These are non-
deterministic automata that simulate [26,15,9] a deterministic automaton that
recognizes the same language. The existence of a simulation strategy means that
nondeterministic choices can be resolved without look-ahead.

On an MDP, however, the controller is not facing a strategic opponent who
may take full advantage of the automaton’s inability to resolve nondeterminism
on the fly. Vardi was the first to note that probabilistic model checking is possible
with Büchi automata only capable of restricted nondeterminism [37]. Limit de-
terministic Büchi automata (LDBA) [6,11,31] make no nondeterministic choice
after seeing an accepting transition. They still recognize all ω-regular languages
and are, under mild restrictions [31], suitable for probabilistic model checking.

The second generation of methods for reinforcement learning therefore used
such limit-deterministic Büchi automata [12,3,14]. These papers differ signifi-
cantly in how they translate the Büchi condition into rewards. The first approach
[12] reduces to reachability: in a nutshell, it translates traversing an accepting
transition to reaching a fresh target state with a low probability 1 − ζ, and to
continuing to traverse the product MDP with high probability ζ. The second ap-
proach [3] assigns fixed rewards whenever passing an accepting transition, while
using a complex discounting strategy: when passing an accepting transition, the

reward is given and a discount factor of γB ∈]0, 1[is applied to the remaining
rewards, whereas when traversing a non-accepting transition no reward is given,
and a different discount factor γ ∈]0, 1[is applied. For the approach to be cor-
rect, it is required that γB be a function of γ with the property that, when γ goes
to 1, 1−γ

1−γB(γ) goes to 0. The advantage of this method is that rewards appear

earlier, but at the cost of having two parameters (that are not independent of
each other), and an overhead in the calculation. The third approach [14] uses
a constant discount factor γ ∈]0, 1], which (while not technically correct [12,3])
usually works and provides good results in practice.

We use transformations on the reward structure from our reachability reduc-
tion in [12] to infer simple alternative total and discounted reward structures
that favor the same strategies as the reachability reduction from [12] and there-
fore inherit the correctness from there. The total reward structure keeps the
accepting sink, and simply provides a reward whenever an accepting transition
is taken, regardless of whether or not the sink is reached. We show that this in-
creases the expected payoff obtained from a strategy by a constant factor, thus
preserving preferences between different strategies.

The discounted reward structure does not introduce the accepting sink, but
works on the unadjusted product MDP. It uses a biased discount, where a dis-
count is only made when an accepting transition is passed. This is closely related
to [3], but keeps the vital separation of concerns that allows us to keep the proofs
simple and the method easy to use and understand: We introduce a reduction
that produces a faithful reward structure with a single variable ζ. Coupled to a
learning technique that uses discounted rewards, our approach is equivalent to
that of [3] (though it suggests that γ is really a function of γB , not the other way
round), but with a clear separation of concerns: the smaller factor γB (which
corresponds to ζ · γ in this setting) is the ingredient that makes the reward
structure faithful, the larger discount factor γ simply provides contraction.

A good reward scheme should promote fast learning by giving dense rewards
with low variance. It should also be compatible with off-the-shelf RL algorithms,
so that state-of-the-art algorithms may be used promptly and with little effort.
The rewards produced by the scheme of [12] tend to be sparse because they are
only possible at the end of an episode, when the target state is reached. On the
other hand, the reachability-based rewards can be directly used with any off-the-
shelf RL algorithm [17,32]. The total reward structure provides dense rewards
and is straightforward to integrate with off-the-shelf RL algorithms. However,
it is affected by the high variability of the return. Discounted rewards fix the
problem with variability, but require the implementations of RL algorithms to
accommodate state-dependent discounts.

While the reward transformations are ways to ‘shape’ rewards in the literal
sense of arranging them in a way that they appear early, they are orthogonal to
classic reward shaping techniques like adding potentials to MDP states [27,22].
As an orthogonal approach, it is a potentially helpful addition to all the reward
schemes discussed above.

Reward machines [18,5] is a related notion of providing a formal structure to
specify rewards. Reward machines are Mealy machines where the inputs are the
observations of the MDP and the outputs are scalar rewards. The key difference
of reward machines from ours is that reward machines interpret specification of
finite traces (e.g. LTL on finite prefixes [8]). Moreover, they allow specification
of arbitrary scalar rewards for various events, while in our work the reward is
given strictly according to the formal specification.

This paper is organized as follows. After the preliminaries, we first introduce
the novel total reward and then the new faithful total rewards based on biased
discounts (Sections 3.2 and 3.3) for good-for-MDP automata. In Section 4, we
discuss how to use Q-learning for this faithful reward scheme. In Section 5, we
evaluate the impact of the contributions of the paper on reinforcement learning
algorithms. Section 6 presents conclusions.

2 Preliminaries

A nondeterministic Büchi automaton is a tuple A = 〈Σ,Q, q0, ∆, Γ 〉, where
Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state,
∆ ⊆ Q × Σ × Q are transitions, and Γ ⊆ Q × Σ × Q is the transition-based
acceptance condition.

A run r of A on w ∈ Σω is an ω-word r0, w0, r1, w1, . . . in (Q × Σ)ω such
that r0 = q0 and, for i > 0, it is (ri−1, wi−1, ri) ∈ ∆. We write inf(r) for the set
of transitions that appear infinitely often in the run r. A run r of A is accepting
if inf(r) ∩ Γ 6= ∅.

The language, LA, of A (or, recognized by A) is the subset of words in Σω

that have accepting runs in A. A language is ω-regular if it is accepted by
a Büchi automaton. An automaton A = 〈Σ,Q,Q0, ∆, Γ 〉 is deterministic if
(q, σ, q′), (q, σ, q′′) ∈ ∆ implies q′ = q′′. A is complete if, for all σ ∈ Σ and all
q ∈ Q, there is a transition (q, σ, q′) ∈ ∆. A word in Σω has exactly one run in
a deterministic, complete automaton.

A Markov decision process (MDP) M is a tuple 〈S, s0, A, T,Σ, L〉 where S
is a finite set of states, s0 is a designated initial state, A is a finite set of actions,
T : S × A→ D(S), where D(S) is the set of probability distributions over S, is
the probabilistic transition function, Σ is an alphabet, and L : S × A × S → Σ
is the labeling function of the set of transitions. For a state s ∈ S, A(s) denotes
the set of actions available in s. For states s, s′ ∈ S and a ∈ A(s), we have that
T (s, a)(s′) equals Pr (s′|s, a).

A run ofM is an ω-word s0, a1, . . . ∈ S×(A×S)ω such that Pr (si+1|si, ai+1) >
0 for all i ≥ 0. A finite run is a finite such sequence. For a run r = s0, a1, s1, . . . we
define the corresponding labeled run as L(r) = L(s0, a1, s1), L(s1, a2, s2), . . . ∈
Σω. We write Runs(M) (FRuns(M)) for the set of runs (finite runs) ofM and
Runss(M) (FRunss(M)) for the set of runs (finite runs) of M starting from
state s. When the MDP is clear from the context we drop the argument M.

A strategy inM is a function µ : FRuns → D(A) such that for all finite runs
r we have supp(µ(r)) ⊆ A(last(r)), where supp(d) is the support of d and last(r)

is the last state of r. Let Runsµs (M) denote the subset of runs Runss(M) that
correspond to strategy µ and initial state s. Let ΣM be the set of all strategies.
A strategy µ is pure if µ(r) is a point distribution for all runs r ∈ FRuns and
we say that µ is stationary if last(r) = last(r′) implies µ(r) = µ(r′) for all runs
r, r′ ∈ FRuns. A strategy is positional if it is both pure and stationary.

The behavior of an MDP M under a strategy µ with starting state s is
defined on a probability space (Runsµs ,Fµs ,Prµs) over the set of infinite runs of µ
from s. Given a random variable over the set of infinite runs f : Runs → R, we
write Eµs {f} for the expectation of f over the runs ofM from state s that follow
strategy µ. A Markov chain is an MDP whose set of actions is singleton. For
any MDP M and stationary strategy µ, let Mµ be the Markov chain resulting
from choosing the actions in M according to µ.

Given an MDP M and an automaton A = 〈Σ,Q, q0, ∆, Γ 〉, we want to
compute an optimal strategy satisfying the objective that the run of M is in
the language of A. We define the semantic satisfaction probability for A and a
strategy µ from state s as:

PSemMA (s, µ) = Pr µs
{
r∈Runsµs : L(r)∈LA

}
and

PSemMA (s) = sup
µ

(
PSemMA (s, µ)

)
.

A strategy µ∗ is optimal for A if PSemMA (s, µ∗) = PSemMA (s).
When using automata for the analysis of MDPs, we need a syntactic variant

of the acceptance condition. Given an MDP M = 〈S, s0, A, T,Σ,L〉 and an
automaton A = 〈Σ,Q, q0, ∆, Γ 〉, the product M × A = 〈S × Q, (s0, q0), A ×
Q,T×, Γ×〉 is an MDP augmented with an initial state (s0, q0) and accepting
transitions Γ×. The function T× : (S×Q)× (A×Q) −⇁ D(S×Q) is defined by

T×((s, q), (a, q′))((s′, q′)) =

{
T (s, a)(s′) if (q, L(s, a, s′), q′) ∈ ∆
0 otherwise.

Finally, Γ× ⊆ (S×Q)×(A×Q)×(S×Q) is defined by ((s, q), (a, q′), (s′, q′)) ∈ Γ×
if, and only if, (q, L(s, a, s′), q′) ∈ Γ and T (s, a)(s′) > 0. A strategy µ× on the
product defines a strategy µ on the MDP with the same value, and vice versa.
(For a stationary µ×, µ may need memory.) We define the syntactic satisfaction
probabilities as

PSatMA ((s, q), µ×) = Pr µs
{
r ∈ Runsµ

×

(s,q)(M×A) : inf(r) ∩ Γ× 6= ∅
}

PSatMA (s) = sup
µ×

(
PSatMA ((s, q0), µ×)

)
.

Note that PSatMA (s) = PSemMA (s) holds for a deterministic A. In general,
PSatMA (s) ≤ PSemMA (s) holds, but equality is not guaranteed because the opti-
mal resolution of nondeterministic choices may require access to future events.

An automaton A is good for MDPs (GFM), if PSatMA (s0) = PSemMA (s0)
holds for all MDPs M [13]. For an automaton to match PSemMA (s0), its non-
determinism is restricted not to rely heavily on the future; rather, it must be

possible to resolve the nondeterminism on-the-fly. In this paper we only consider
GFM automata, which have this ability.

For ω-regular objectives, optimal satisfaction probabilities and strategies can
be computed using graph-theoretic techniques over the product structure. How-
ever, when the MDP transition structure is unknown, such techniques are not
applicable. Model-free reinforcement learning overcomes this limitation.

3 Faithful Translation of Objectives to Rewards

The problem we address is the following:

Given MDP M with unknown transition structure and a GFM Büchi au-
tomaton A accepting an ω-regular objective ϕ, compute a strategy optimal
for A, that is, a strategy that maximizes the probability that M satisfies ϕ.

Reinforcement learning (RL) provides a framework to compute optimal strate-
gies from repeated interactions with an MDPs with unknown transition struc-
ture. It consists of maximizing the expectation of a scalar reward. Of the two
main approaches to RL, model-free and model-based, the former, which is asymp-
totically space-efficient [33], has been shown to scale well [35].

Bridging the gap between ω-regular specifications and model-free RL re-
quires a translation from specification to scalar reward such that a model-free
RL algorithm maximizing scalar rewards produces a policy that maximizes the
probability to satisfy the specification. We call this requirement faithfulness. An-
other key requirement on such a translation is effectiveness: the reward should
be formulated to help mainstream RL algorithms (such as Q-learning [38]) to
reliably and quickly learn such optimal policies. We next present three solu-
tions to the faithfulness requirement. From the approach of [12] we derive two
reward schemes that translate the maximization of satisfaction probability to
total reward and discounted reward problems. In Sections 4 and 5 we discuss
their effectiveness.

3.1 Reachability Rewards

The reduction from [12] (see Figure 1) was the first faithful translation of
ω-regular objectives to scalar rewards for model-free RL. Maximizing the chance
to realize an ω-regular objective given by an MDP Büchi automaton A for an
MDPM is reduced to maximizing the chance to meet the reachability objective
in the augmented MDP Rζ (for ζ ∈]0, 1[) obtained from M×A by

– adding a new target state t (either as a sink with a self-loop or as a point
where the computation stops; we choose here the latter view) and by

– making the target t a destination of each accepting transition τ of M×A
with probability 1− ζ and multiplying the original probabilities of all other
destinations of an accepting transition τ by ζ.

0

1 2

τ2

τ0
p 1 − p

τ1 0

1 2

τ2

t

τ0

pζ

(1 − p)ζ

1 − ζ, +1

ζ

1 − ζ, +1

τ1

Fig. 1: Reachability reward scheme.

We define the probability to reach the sink t in Rζ as

PSatR
ζ

t ((s, q), µ) = Pr µs {r ∈ Runsµ(s,q)(R
ζ) : r reaches t}

PSatR
ζ

t (s) = sup
µ

(
PSatR

ζ

t ((s, q0), µ)
)
.

Theorem 1 ([12]). The following holds:

1. Rζ (for ζ ∈]0, 1[) and M×A have the same set of strategies.
2. For a positional strategy µ, the chance of reaching the target t in Rζµ is 1 if,

and only if, the chance of satisfying the Büchi objective in (M×A)µ is 1:

PSatR
ζ

t ((s0, q0), µ) = 1 ⇔ PSatMA ((s0, q0), µ) = 1.
3. There is a ζ0 ∈]0, 1[such that, for all ζ ∈ [ζ0, 1[, an optimal reachability

strategy µ for Rζ is an optimal strategy for the Büchi objective in M×A:

PSatR
ζ

t ((s0, q0), µ) = PSatR
ζ

t (s0) ⇒ PSatMA ((s0, q0), µ) = PSatMA (s0).

3.2 Total and Dense Rewards

Theorem 1 proves the faithfulness of the translation to reachability of [12], which,
however, has a drawback. For ζ close to 1, the rewards occur late: they are sparse.
Addressing this concern leads to our second translation, which produces denser
rewards and reduces the problem to the maximization of total reward.

We build, for a GFM Büchi automaton A and an MDP M, the augmented
MDP T ζ (for ζ ∈]0, 1[) obtained from M×A in the same way as Rζ , i.e., by

– adding a new sink state t (as a sink where the computation stops) and
– by making the sink t a destination of each accepting transition τ of M×A

with probability 1 − ζ and by multiplying the original probabilities of all
other destinations of an accepting transition τ by ζ.

UnlikeRζ , MDP T ζ is equipped with a total reward (also known as undiscounted
reward) objective, where taking an accepting (in M×A) transition τ provides
a reward of 1, regardless of whether it leads to the sink t.

Let N(r) be the number of accepting transitions in a run r of T ζ . Then,

ETotalT
ζ

((s, q), µ) = Eµ(s,q){N(r) : r ∈ Runsµ(s,q)(T
ζ)}

ETotalT
ζ

(s) = sup
µ

(
ETotalT

ζ

((s, q0), µ)
)
.

Note that the set of runs with N(r) =∞ has probability 0 in Runsµ(s,q)(T
ζ): they

are the runs that infinitely often do not move to t on an accepting transition,
where the chance that this happens at least n times is ζn for all finite n.

Theorem 2. The following holds:

1. MDP T ζ (for ζ ∈]0, 1[), MDP Rζ (for ζ ∈]0, 1[), and product MDPM×A
have the same set of strategies.

2. For a positional strategy µ, the expected reward for T ζµ is r if, and only if,

the chance of reaching the target t in Rζµ is r/(1− ζ):

PSatR
ζ

t ((s0, q0), µ) = (1− ζ)ETotalT
ζ

((s0, q0), µ).

3. The expected reward for T ζµ is in
[
0, (1− ζ)−1

]
.

4. The chance of satisfying the Büchi objective in (M×A)µ is 1 if, and only
if, the expected reward for T ζµ is (1− ζ)−1.

5. There is a ζ0 ∈]0, 1[such that, for all ζ ∈ [ζ0, 1[, a strategy µ that maximizes
the reward for T ζ is an optimal strategy for the Büchi objective in M×A.

Proof. (1) Obvious, because all the states and their actions are the same apart
from the sink state t for which the strategy can be left undefined.

(2) The sink state t can only be visited once along any run, so the expected
number of times a run starting at (s0, q0) while using µ is going to visit t is the

same as its probability of visiting t , i.e., PSatR
ζ

t ((s0, q0), µ). The only way t can
be reached is by traversing an accepting transition and this always happens with
the same probability (1 − ζ). So the expected number of visits to t is the ex-

pected number of times an accepting transition is used, i.e., ETotalT
ζ

((s0, q0), µ),
multiplied by (1− ζ).

(3) follows from (2), because PSatR
ζ

t ((s0, q0), µ) cannot be greater than 1.

(4) follows from (2) and Theorem 1 (2).

(5) follows from (2) and Theorem 1 (3). ut

3.3 Discounted and Dense Rewards

The expected undiscounted reward for T ζµ can be viewed as the expected total

sum of dynamically discounted rewards for (M×A)µ, by giving a reward of ζi

when passing through an accepting transition when i accepting transitions have
been used before. We call these ζ-biased discounted rewards.

Let D = M×A and, for a run r with N(r) = n accepting transitions, let

the ζ-biased discounted reward be Disctζ(r) =
∑n−1
i=0 ζ

i = 1−ζn
1−ζ if n < ∞ or

Disctζ(r) =
∑∞
i=0 ζ

i = 1
1−ζ if n =∞. Let

EDisctDζ ((s, q), µ) = Eµ(s,q)
{
Disctζ(r) : r ∈ Runsµ(s,q)(D)

}
EDisctDζ (s) = sup

µ

(
EDisctDζ ((s, q0), µ)

)
.

Theorem 3. For every positional strategy µ, the expected reward for T ζµ is equal
to the expected total ζ-biased discounted reward for Dµ, i.e., for every start state

(s, q) we have: EDisctDζ ((s, q), µ) = ETotalT
ζ

((s, q), µ).

Proof. Note that for any start state (s, q) and n ≥ 0:

Pr µs
{
r ∈ Runsµ(s,q)(T

ζ) : N(r) > n
}

= Pr µs
{
r ∈ Runsµ(s,q)(D) : N(r) > n

}
· ζn .

This is because the only transition-wise difference between T ζ and D is that
every time an accepting transition is passed through in T ζ , the process stops
at the sink node with probability 1− ζ. Therefore, in order to use more than n
accepting transitions in T ζ , the non-stopping option has to be chosen n times
in a row, each time with probability ζ.

For any random variable X : Ω → N∪{∞} we have EX =
∑
n≥0 Pr(X > n).

Now from the definition of EDisctDζ ((s, q), µ) and ETotalT
ζ

((s, q), µ) we get:

EDisctDζ ((s, q), µ) =
∑
n≥1

Pr µ(s,q)
{
r ∈ Runsµ(s,q)(D) : N(r) = n

}
·
∑

0≤i<n

ζi

+ Pr µ(s,q)
{
r ∈ Runsµ(s,q)(D) : N(r) =∞

}
·
∑
i≥0

ζi

(∗)
=
∑
n≥0

Pr µ(s,q)
{
r ∈ Runsµ(s,q)(D) : N(r) > n

}
· ζn

=
∑
n≥0

Pr µ(s,q)
{
r ∈ Runsµ(s,q)(T

ζ) : N(r) > n
}

= ETotalT
ζ

((s, q), µ) ,

where (∗) follows by expanding the products and joining up the terms that have
a common factor of the form ζn. ut

This improves over [3] because it provides a clearer separation of concerns:
the only discount factor represents the translation to reachability. The use of
Q-learning [35] introduces two other parameters, the discount factor γ and the
learning rate α, with γ, α ∈]0, 1[. For fixed parameters, Q-learning works in
the limit when the parameters are chosen in the right order—e.g., lim

γ↑1
lim
α↓0

of

the expected value works, while lim
α↓0

lim
γ↑1

does not—and when experimenting with

different learning approaches, it is useful to separate concerns, rather then mixing
parameters from the learning mechanism with those required for faithfulness.

Thus, using only one discount parameter, ζ, instead of two (called γ and γB
in [3]) parameters (that are not independent) to guarantee faithfulness provides
a clean separation of concerns: Reinforcement learning will still use a discount
for effectiveness, but the role of the two parameters is neatly separated. This for-
mulation offers a simpler proof, and provides better intuition: discount whenever
you have earned a reward. It also lends itself to implementation with convergent
RL algorithms—as long as they support state-dependent discounts. The discount

rate on accepting edges is multiplied by ζ instead of assigning a decaying reward
of ζi. This does not change the optimal strategies and the expected reward from
the initial state remains the same.

4 Q-Learning and Effectiveness

We next discuss the applicability of Q-learning to the faithful reward schemes
presented in Section 3. Recourse to Blackwell optimality allows us to deal also
with undiscounted rewards, even though a naive use of Q-learning may produce
incorrect results in this case.

Q-learning [38] is a well-studied model-free RL approach to compute an opti-
mal strategy for discounted rewards. Q-learning computes so-called Q-values for
every state-action pair. Intuitively, once Q-learning has converged to the fixed
point, Q(s, a) is the optimal reward the agent can get while performing action a
after starting at s. The Q-values can be initialized arbitrarily, but ideally they
should be close to the actual values. Q-learning learns over a number of episodes,
each consisting of a sequence of actions with bounded length. An episode can
terminate early if a sink-state or another non-productive state is reached. Each
episode starts at the designated initial state s0. The Q-learning process moves
from state to state of the MDP using one of its available actions and accumulates
rewards along the way. Suppose that in the i-th step, the process has reached
state si. It then either performs the currently (believed to be) optimal action
ai = maxaQi(si+1, a) (so-called exploitation option) or, with probability ε, picks
uniformly at random one of the actions available at si (so-called exploration op-
tion). Either way, the Q-value is updated as follows:

Qi+1(si, ai) = (1− αi)Qi(si, ai) + αi(ri + γ ·max
a

Qi(si+1, a)) ,

where αi ∈]0, 1[is the learning rate and γ ∈]0, 1] is the discount factor. Note the
model-freeness: this update does not depend on the set of transitions nor their
probabilities. For all other pairs s, a we have Qi+1(s, a) = Qi(s, a), i.e., they are
left unchanged. Watkins and Dayan showed the convergence of Q-learning [38].

Theorem 4 (Convergence). For λ < 1, bounded rewards |ri| ≤ B and learn-
ing rates 0 ≤ αi < 1 satisfying:

∑∞
i=0 αi = ∞ and

∑∞
i=0 α

2
i < ∞, we have that

Qi(x, a)→ Q(s, a) as i→∞ for all s, a ∈ S×A almost surely.

0 1b a

0.5

0.5

Fig. 2: Q-learning with total re-
ward may converge to a wrong
fixed point or not at all. The ac-
cepting transition is marked with
a green dot.

However, in the total reward setting that
corresponds to Q-learning with discount fac-
tor γ = 1, Q-learning may not converge, or
converge to incorrect values as shown below.

Example 1. Consider the MDP in Figure 2
with reachability rewards (Section 3.1) and as-
sume the following parameters: α = ζ = 1/2,
ε > 0, γ = 1. All Q-values are initialized to 0.
It can be checked that after taking action a at

state 0 and reaching the sink-state t (with probability 1−ζ, not depicted) would
result in setting Q(0,a) = (1−α) ·0+α ·1 = 1/2. Repeating this n times in a row
(with probability ≥ (ε/2)n) would lead to Q(0,a) = 1 − 1/2n. Taking then m
times action b (again with positive probability), would result in setting Q(0,b)
to (1 − 1/2m)(1 − 1/2n), which tends to 1 as n and m increase. Note that the
value of Q(0,b) can never decrease as its update rule is Q(0,b) = maxaQ(0, a).
Therefore, even if Q-learning converges, maxaQ(0, a) can be far away from the
actual value of state 0, which is clearly smaller than 3/4, as the dead-end node
2 with 0 reward is reached with probability > ζ/2 = 1/4. The situation is even
worse when we consider total and dense reward (Section 3.2). Following the same
learning path (but never reaching the sink-state t) would result in Q(0,b) = n/2
and Q(0,a) = (1− 1/2m)n/2, and so Q(0, a) will almost surely diverge to ∞ as
the number of episodes increases.

To solve total-reward problems using Q-learning, we exploit the concept of
Blackwell-optimal strategies. Given an MDP M, we say that a strategy µ is
Blackwell-optimal if there exists a λ0 ∈]0, 1[such that µ is λ-discount optimal
for all λ ∈]λ0, 1[. Moreover, if M has n states and all transition probabilities
are rational with numerator and denominator bounded from above by M , then
λ0 is bounded from above by 1 − ((n!)222n+3M2n2

)−1 [24,17,1]. The following
theorem enables the application of Q-learning for discounted reward problem for
total-reward when total rewards are bounded.

Theorem 5 (Blackwell-Optimality [23]). Let M be an MDP and ρ : S ×
A → R be a reward function such that for every strategy µ of M expected total
reward is finite, then every Blackwell-optimal strategy is total-reward optimal.

All of the reward schemes introducted in the previous section can be reduced
to total reward objectives with bounded expected total reward and hence Q-
learning can be applied with discount factor left as a hyperparameter.

5 Experiments

We carried out our experiments in the tool Mungojerrie [12], which reads
MDPs described in the PRISM language [21], and ω-regular automata written
in the HOA format [2,7]. Mungojerrie provides an interface for RL algorithms
akin to that of [4] and supports probabilistic model checking.

We compared four reward schemes. Reachability reward (RR) is the scheme
from [12]. Total reward (TR) is the scheme from Section 3.2. Discounted reward
(DR) is the scheme from Section 3.3, which is equivalent to that of [3]. We
will consider these methods the same in our analysis. Simple reward (SR) is a
reward mechanism which provides +1 reward on accepting edges and 0 reward
otherwise, similar to [30] restricted to Büchi objectives. Although this reward
scheme is known not to be faithful [12], we compare it to see its practical value.

For our RL algorithm, we selected Q-learning [38] due to its widespread use
and convergence guarantees. As with any RL algorithm, the performance of Q-
learning depends on the hyperparameter values. We ran a grid search on the

Table 1: Q-learning results. Times are in seconds.
Name states aut. prod. prob. RR TR DR SR

twoPairs 4 4 16 1 0.04 0.04 0.06 1.23
riskReward 4 2 8 1 0.05,0.05 0.30 0.07,0.07 0.97
deferred 41 1 41 1 0.11 0.04,0.23 0.12 1.43
grid5x5 25 3 75 1 1.56 6.97,7.34 0.46 20.69
trafficNtk 122 13 462 1 0.09,0.09 0.73 0.13,0.14 2.11
windy 123 2 240 1 3.34,3.64 29.37,35.18 1.14 18.64
windyKing 130 2 256 1 1.02 20.55,20.69 1.30 36.77
windyStoch 130 2 260 1 42.94,52.28 56.57 4.28 67.55
frozenSmall 16 3 48 0.823 0.29,0.48 0.83,1.08 0.38 8.74
frozenLarge 64 3 192 1 0.94 6.47,8.98 2.08 25.34
othergrid6 36 25 352 1 1.06,1.17 5.31,12.77 1.70 44.58

RMACC Summit supercomputer [34] across hyperparameter combinations for
all examples and methods. The examples are taken from [12]. In the grid search,
we varied ζ (equivalently, γB), the exploration rate ε, the learning rate α, the
episode number, the episode length, and whether the learning rate decayed. The
variations made to these parameters were selected by hand. Statistics for each
grid point are based on three runs. The grid search required 207,900 runs and
took over 100 days of CPU time. All methods require a sufficiently high discount
factor. We used the very high value of γ = 0.99999 for all runs. A value so close
to 1 is prone to cause, in practice, many of the problems that may occur in the
undiscounted case. However, we also experimented with lower discount factors,
and they provided very similar results.

The selection of the “best” parameters from our grid search makes use of two
criteria. Criterion 1 is based on reward maximization. Given a reward scheme, an
automaton, and an MDP, there is a maximum reward achievable. In the spirit of
the model-free application of these methods, we estimated these maxima based
on the recorded initial value in the Q-table. This can be determined without
knowledge of the structure of the MDP and without additional computation.
We then removed all sets of parameters which produced average values that
were not within 5% of the maximum. If Q-learning has converged, we know that
the value of the initial state of the Q-table is the value of the optimal strategy.
However, if Q-learning has overestimated these values, then this criterion will
select parameters that are the most prone to overestimation. Criterion 2 is based
on using full knowledge of the MDP and access to the model checker. We fixed
the strategies produced after learning completed and used the model checker to
compute the probability of satisfaction of the property under these strategies.
We then removed all sets of parameters which produced average values that were
not within 1% of the maximum probability of satisfaction of the property.

In Table 1, we report the fastest time of all parameter values that remain
after applying Criterion 1. Of these, we mark with bold red face those that fail
Criterion 2 and report the fastest time of all parameter values that remain after
applying both criteria.

0 20 40 60 80 100
Percentile

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
In

iti
al

 S
ta

te
 V

al
ue

 fr
om

 Q
-ta

bl
e

RR
TR
DR
SR

Fig. 3: Plot depicting inaccurate estimation of Q-values for TR and SR.

5.1 Inaccuracies in Estimation of Q-Values

In order to understand the performance of these reward schemes with Q-learning
under our criteria, consider the example riskReward, which has two strategies:
one leads to an accepting edge at every step with probability 0.9; the other leads
to an accepting edge every other step with probability 1. This example shows that
SR is not a faithful reward scheme [12] because the strategy that maximizes the
probability of satisfaction does not maximize the SR reward. Since the strategy
reported in Table 1 for SR is optimal for the satisfaction of the property, we
know that Q-learning did not converge to a reward-maximizing strategy for the
chosen values of the hyperparameters. From this, we can see that Criterion 1
may not rule out parameters that do not produce reward-maximizing strategies.
We believe that this is because Criterion 1 selects based on Q-values, which may
not be accurate estimates of the actual values obtained by optimal strategies.

In Figure 3, for each method we plot the values of the initial state from
the Q-table of all grid points in increasing order. Each value in the figure was
normalized such that an optimal reward maximization strategy for that method
has a value of 1. Note that TR and SR do not have their values saturate like RR
and DR. When we apply Criterion 1 to TR and SR, we remove all parameters
that do not produce Q-values close to the top of the peaks that can be seen in
the figure. As this filters out most of the runs, this offers an explanation for the
longer running times of these methods. For SR, the Q-values do not converge.
This is likely due to the fact that with a very large discount factor, SR needs
more training than the other methods to converge to larger Q-values. For TR,
we overestimate the value by up to about 3.5 times. We believe that this is due
to Q-learning’s tendency to overestimate the value of the optimal strategy.

As we discussed in Section 4, these methods rely on the contraction provided
by discounting to be correct, and we have seen in Example 1 that in the undis-
counted case the Q-value can go to infinity even in the absence of a strategy that
wins with positive probability. While the contraction provided by the discount
factor counters this effect, for a discount factor as high as the one chosen in the
experiments the contraction is relatively weak. An extremely small learning rate
would be needed to contain this effect. Additionally, the high variance reward
of TR exacerbates the positive bias present in the estimator implemented by
Q-learning. Double Q-learning [36] is a technique that mitigates this overestima-
tion by using an estimator which is negatively biased. We believe that utilizing
such techniques warrants further investigation.

In summary, Table 1 suggests that RR and DR perform similarly. The lower
reward variance of DR explains why Criterion 1 selects optimal strategies for the
satisfaction of the property more often than with RR. SR takes longer than the
other methods under our criteria. On the other hand, TR is not well suited for Q-
learning. While its denser reward may help to guide the learner, the inaccuracy
in the Q-value estimates from this method negates this benefit. However, we do
not know if these issues extend to other RL algorithms or if other algorithms
may take better advantage of the denser reward of TR.

6 Discussion and Future Work

The three concerns to be addressed when applying model-free RL to ω-regular
properties are:

1. Finding the right automata representation.

2. Translating the acceptance condition into a faithful reward scheme.

3. Computing policies that maximize expected reward with an RL technique.

In [13], we addressed the first concern by introducing Good-for-MDP automata.
This paper addresses the other two issues.

There have been two correct results for reinforcement learning of ω-regular
properties on MDPs. We have shown how to change the older of the two re-
ward schemes, [12], to allow for earlier rewards in Section 3.2, and to obtain
a biased discount scheme quite directly from there in Section 3.3. This biased
discount scheme is significantly simpler than the scheme suggested in [3], which
uses two entangled discount factors. Moreover, we have shown that the reward
scheme from [3] can be viewed as the result of using the simple biased discount
scheme from Section 3.3 embedded in a standard discounted Q-learning. We have
therefore connected the known reward structures and provided simple intuitive
explanations—in the form of a separation of concerns—for the reward structure
used in [3]. Besides offering a simpler proof and new insights, it opens up an
avenue of future work to see if other RL techniques will benefit from ζ-biased
discounted rewards without the common detour through discounting.

Acknowledgment. This work utilized resources from the University of Col-
orado Boulder Research Computing Group, which is supported by the Na-
tional Science Foundation (awards ACI-1532235 and ACI-1532236), the Uni-
versity of Colorado Boulder, and Colorado State University. This work was sup-
ported by the Engineering and Physical Sciences Research Council through grant
EP/P020909/1 and by the National Science Foundation through grant 2009022.

References

1. D. Andersson and Miltersen P. B. The complexity of solving stochastic games on
graphs. In Algorithms and Computation, pages 112–121, 2009.

2. T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Křet́ınský, D. Müller,
D. Parker, and J. Strejček. The Hanoi omega-automata format. In Computer
Aided Verification, pages 479–486, 2015. LNCS 9206.

3. A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. Control synthesis from
linear temporal logic specifications using model-free reinforcement learning. CoRR,
abs/1909.07299, 2019.

4. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. OpenAI Gym. CoRR, abs/1606.01540, 2016.

5. A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. LTL
and beyond: Formal languages for reward function specification in reinforcement
learning. In Joint Conference on Artificial Intelligence, pages 6065–6073, 2019.

6. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
J. ACM, 42(4):857–907, July 1995.

7. cpphoafparser. https://automata.tools/hoa/cpphoafparser, 2016. Accesses:
2018-09-05.

8. G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic
on finite traces. In IJCAI, pages 854–860, 2013.

9. K. Etessami, T. Wilke, and R. A. Schuller. Fair simulation relations, parity games,
and state space reduction for Büchi automata. SIAM J. Comput., 34(5):1159–1175,
2005.

10. J. Fu and U. Topcu. Probably approximately correct MDP learning and control
with temporal logic constraints. In Robotics: Science and Systems, July 2014.

11. E. M. Hahn, G. Li, S. Schewe, A. Turrini, and L. Zhang. Lazy probabilistic model
checking without determinisation. In Concurrency Theory, pages 354–367, 2015.

12. E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. Omega-
regular objectives in model-free reinforcement learning. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 395–412, 2019. LNCS 11427.

13. E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. Good-
for-MDPs automata for probabilistic analysis and reinforcement learning. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 306–323, 2020.

14. M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pappas, and I. Lee.
Reinforcement learning for temporal logic control synthesis with probabilistic sat-
isfaction guarantees. In Conference on Decision and Control, December 2019.

15. T. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In Concurrency
Theory, pages 273–287, 1997. LNCS 1243.

16. T. A. Henzinger and N. Piterman. Solving games without determinization. In
Computer Science Logic, pages 394–409, September 2006. LNCS 4207.

https://automata.tools/hoa/cpphoafparser

17. A. Hordijk and A. A. Yushkevich. Handbook of Markov Decision Processes: Meth-
ods and Applications, chapter Blackwell Optimality, pages 231–267. Springer, 2002.

18. T. R. Icarte, T. Q. Klassen, R. A. Valenzano, and S. A. McIlraith. Using reward
machines for high-level task specification and decomposition in reinforcement learn-
ing. In Conference on Machine Learning, pages 2112–2121, July 2018.

19. Alex Irpan. Deep reinforcement learning doesn’t work yet. https://www.

alexirpan.com/2018/02/14/rl-hard.html, 2018.
20. J. Křet́ınský, G. A. Pérez, and J.-F. Raskin. Learning-based mean-payoff optimiza-

tion in an unknown MDP under omega-regular constraints. In CONCUR, volume
118 of LIPIcs, pages 8:1–8:18, 2018.

21. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In CAV, pages 585–591, July 2011. LNCS 6806.

22. A. Lavaei, F. Somenzi, S. Soudjani, A. Trivedi, and M. Zamani. Formal controller
synthesis for unknown continuous-space MDPs via model-free reinforcement learn-
ing. In International Conference on Cyber-Physical Systems, April 2020.

23. M. E. Lewis. Bias optimality. In E. A. Feinberg and A. Shwartz, editors, Handbook
of Markov Decision Processes, pages 89–111. Springer, 2002.

24. T. M. Liggett and S. A. Lippman. Short notes: Stochastic games with perfect
information and time average payoff. SIAM Review, 11(4):604–607, 1969.

25. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems
Specification. Springer, 1991.

26. R. Milner. An algebraic definition of simulation between programs. Int. Joint
Conf. on Artificial Intelligence, pages 481–489, 1971.

27. A. Y. Ng, D. Harada, and S. J. Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In International Conference
on Machine Learning, pages 278–287, 1999.

28. D. Perrin and J.-É. Pin. Infinite Words: Automata, Semigroups, Logic and Games.
Elsevier, 2004.

29. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, New York, NY, USA, 1994.

30. D. Sadigh, E. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia. A learning based
approach to control synthesis of Markov decision processes for linear temporal logic
specifications. In CDC, pages 1091–1096, December 2014.

31. S. Sickert, J. Esparza, S. Jaax, and J. Křet́ınský. Limit-deterministic Büchi au-
tomata for linear temporal logic. In Computer Aided Verification, pages 312–332,
2016. LNCS 9780.

32. F. Somenzi and A. Trivedi. Reinforcement learning and formal requirements. In
Numerical Software Verification - 12th International Workshop, NSV@CAV, pages
26–41, July 2019. LNCS 11652.

33. A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-free
reinforcement learning. In International Conference on Machine Learning, ICML,
pages 881–888, 2006.

34. RMACC Summit Supercomputer. https://rmacc.org/rmaccsummit.
35. R. S. Sutton and A. G. Barto. Reinforcement Learnging: An Introduction. MIT

Press, second edition, 2018.
36. H. van Hasselt. Double Q-learning. In Advances in Neural Information Processing

Systems, pages 2613–2621, 2010.
37. M. Y. Vardi. Automatic verification of probabilistic concurrent finite state pro-

grams. In Foundations of Computer Science, pages 327–338, 1985.
38. C. J. C. H. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292,

1992.

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://rmacc.org/rmaccsummit

	Faithful and Effective Reward Schemes for Model-Free Reinforcement Learning of Omega-Regular Objectives

