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Following the classification up to isomorphism of N = 2 Poincaré Lie superalgebras in
four dimensions with arbitrary signature obtained in a companion paper, we present off-

shell vector multiplet representations and invariant Lagrangians realizing these algebras.

By dimensional reduction of five-dimensional off-shell vector multiplets we obtain two
representations in each four-dimensional signature. In Euclidean and neutral signature

these representations can be mapped to each other by a field redefinition induced by

the action of the Schur group on the space of superbrackets. In Minkowski signature
we show that the superbrackets underlying the two vector multiplet representations

belong to distinct open orbits of the Schur group and are therefore inequivalent. Our

formalism allows to answer questions about the possible relative signs between terms in
the Lagrangian systematically by relating them to the underlying space of superbrackets.

Keywords: Poincaré Lie superalgebras; extended supersymmetry; arbitrary signature.

1. Introduction

Four-dimensional N = 2 Poincaré Lie superalgebras in arbitrary space-time dimen-

sion have been classified up to isomorphism in [1]. In this second part of a two-part

series on four-dimensional supersymmetry in arbitrary signature, we present off-

shell vector multiplet representations of all inequivalent four-dimensional N = 2

supersymmetry algebras, together with the corresponding invariant Lagrangians.

We obtain these results by dimensional reduction of the five-dimensional off-shell

vector multiplets constructed in [2]. We will assume that the reader is familiar with
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the approach detailed in [1], in particular with the relation between super-admissible

bilinear forms on the complex spinor module S and Poincaré Lie superalgebras. The

structure of this article is as follows. In Section 2 we provide the necessary back-

ground on N = 2 supersymmetry algebras in five and four dimensions, as far as

not already covered in [1]. We review the concept of doubled spinors, which are

generalizations of symplectic Majorana spinors, and we show how four-dimensional

supersymmetry algebras and the maps between them are expressed in this formal-

ism. In Section 3 we review N = 2 vector multiplets in five and four dimensions.

Then we present and discuss the four-dimensional off-shell representations and La-

grangians obtained by dimensional reduction. Section 4 gives an outlook on future

research. Our conventions for Clifford algebras and γ-matrices are summarized in

Appendix A together with a collection of the key formulae needed to carry out the

dimensional reduction.

2. Spinors and Poincaré Lie superalgebras in five and four

dimensions

2.1. Super-admissible bilinear forms on S and the associated

Schur algebras

On the complex spinor module S one can always find matrices A and C which relate

the γ-matrices to the Hermitian conjugate and transposed γ-matrices, respectively,

as in A.1. The matrices A and C define on S the Dirac sesquilinear form

A(λ, χ) = λ†Aχ

and the complex Majorana bilinear form

C(λ, χ) = λTCχ .

Both forms are Spin0(t, s)-invariant, and their real and imaginary parts define four

real admissible bilinear forms Re(A), Im(A), Re(C) and Im(C). The forms A and

C are independent of the representation which we choose for the γ-matrices, up

to conventional signs or phase factors which we have fixed for convenience by im-

posing certain conditions on the γ-matrices, see Appendix A for details. The Dirac

sesquilinear form depends on the signature, while the Majorana bilinear form only

depends on the dimension.

In even dimensions we can define four additional real admissible bilinear forms

by inserting the chirality matrix γ∗ into one argument of the above four bilinear

forms. For Re(C) and Im(C) this is equivalent to replacing the charge conjuga-

tion matrix C by the second inequivalent charge conjugation matrix γ∗C, which

has opposite type, τ(γ∗C) = −τ(C). Therefore there are at most eight linearly

independent real admissible bilinear forms on S that can be built out of A,C, γ∗.

In five dimensions there is a unique real super-admissible bilinear form on S,

which can be taken to be Re(A) for t = 0, 1, 4, 5 and Im(A) for t = 2, 3 [2]. In four

dimensions the eight bilinear forms constructed above are linearly independent and
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therefore form a basis for the eight-dimensional space of real Spin0(t, s)-invariant

bilinear forms on S.

On S we can also define a matrix B, which relates the γ-matrices to the complex-

conjugated γ-matrices, (A.1),(A.2). It satisfies BB∗ = ε1, with ε ∈ {±1} depending

on the signature. Therefore it either defines a Spin0(t, s)-invariant real structure (for

ε = 1) or a Spin0(t, s)-invariant quaternionic structure (for ε = −1) on S. Defining

the complex anti-linear map

J
(ε)(α)
S (λ) = α∗B∗λ∗ ,

where α ∈ C is a phase factor, |α| = 1, we find

(J
(ε)(α)
S )2 = ε1⇔ BB∗ = ε1 .

The phase α reflects that the equations (A.2) are invariant under phase trans-

formations B 7→ αB. We have fixed this invariance by the conventional choice

B = (CA−1)T , but we will find it convenient to adjust reality conditions using the

phase factor α.

We denote by I the natural complex structure of S which acts through multi-

plication by the imaginary unit i. In the case ε = −1 the anti-linear map J (−1)(α)

defines a second complex structure on S which anticommutes with I. Therefore

I, J (−1)(α) generate an algebra isomorphic to the quaternion algebra H, and com-

mutes with the Spin0(t, s) representation. This explains why one says that J (−1)(α)

defines a quaternionic structure on S. Similarly, for ε = 1 the real structure J (+1)(α)

anticommutes with I, and therefore I and J (+1)(α) generate an algebra isomorphic

to R(2), which can be interpreted as the algebra of para-quaternions, H′ ∼= R(2),

see the appendix of [2] for details. Therefore we will say that J (+1)(α) defines a

para-quaternionic structure on S, and treating both cases in parallel we will also

say that J (ε)(α) defines an ε-quaternionic structure on S.

Also note that if we consider S as a real module, then J (ε)(α) provides it with

a complex structure for ε = −1 and with a para-complex structure for ε = 1.a To

treat both cases in parallel we will say that J (ε)(α) defines an ε-complex structure.

In five dimensions S is C-irreducible. The natural complex structure I and the

Spin0(t, s)-invariant ε-quaternionic structure J (ε)(α) already generate the full Schur

algebra

C(S) = Hε :=

H−1 := H ,

H+1 := H′ ∼= R(2) ,

as can be seen by comparison to Table 1. Note that the Schur algebra Ct,s(S) is

determined by the pair (Clt,s, Cl
0
t,s). The complex spinor module S is C-irreducible

in any odd dimension, and by comparison to the classification of Clifford algebras,

aA para-complex structure is a product structure, that is an endomorphism J of the tangent

bundle such that J2 = 1, with the additional property that the eigenspaces of J have equal

dimension at each point. See [3] for details.
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Table 1. The real Clifford algebras in five dimensions, together with their even subalgebras, the
Schur algebras C(S) and C(SR) of the complex and real spinor module, the R-symmetry groups

GR, and the relations between the complex spinor module S, real spinor module SR and real

semi-spinor modules S±
R .

Signature Clt,s Cl0(t, s) Ct,s(S) Ct,s(SR) GR S

(0, 5) 2H(2) H(2) H H SU(2) SR

(1, 4) C(4) H(2) H H SU(2) SR

(2, 3) 2R(4) R(4) H′ R SU(1, 1) SR ⊗ C

(3, 2) C(4) R(4) H′ H′ SU(1, 1) SR = S±R ⊗ C

(4, 1) 2H(2) H(2) H H SU(2) SR

(5, 0) C(4) H(2) H H SU(2) SR

all types of pairs which are possible already appear in Table 1. Therefore the Schur

algebra Ct,s(S) is equal to either H or to H′ ∼= R(2) in any odd dimension.

In four dimensions S decomposes into two C-irreducible complex semi-spinor

modules S±, which are the eigenspaces of γ∗. And there exist two C-matrices C±
of opposite type τ(C∓) = ±1, which are related though multiplication by γ∗, that

is, C± = γ∗C∓. Associated to these are two B-matrices B±, which define either

two quaternionic structures, two real structures or one quaternionic and one real

structure. It is easy to see that the two structures are of the same type if B±
commutes with γ∗ and of opposite type if B± anticommutes with γ∗. The relevant

relations between C±, B± and γ∗ have been collected in (A.4) – (A.6). We will refer

to ε-quaternionic structures which commute with γ∗ as Weyl-compatible and to ε-

quaternionic structures which anti-commute with γ∗ as Weyl-incompatible. Table

2 summarizes which invariant structures occur for a given signature. This table

Table 2. Here we list for each signature how many independent invariant real and quaternionic

structures exist on S. In all cases these structures generate, together with the natural complex

structure of S, the full Schur algebra. Each invariant real (quaternionic structure) allows to define
(symplectic) Majorana spinors. In signatures where the structures are Weyl compatible, reality
and chirality conditions can be imposed simultanously.

Signature Quat. strct. Real strct. Weyl compatible? Schur algebra

Euclidean 2 0 Yes C(S) = H⊕2

Minkowksi 1 1 No C(S) = C(2)

Neutral 0 2 Yes C(S) = R(2)⊕2 ∼= H′⊕2

together with the results of [1] implies that in Euclidean signature the N = 2

Poincaré Lie superalgebra is minimal, while in Minkowski signature one can obtain
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an N = 1 algebra based on Majorana spinors. In neutral signature Majorana and

Weyl conditions are compatible, which potentially allow an ‘N = 1/2’ algebra

based on Majorana-Weyl spinors. However such an algebra does not appear in our

classification [1], and one can check that the superbracket is completely degenerate

when restricting it to Majorana-Weyl spinors. We remark that table 2 covers all

cases which can occur in any even dimension, as can be verified by inspecting the

classification of Clifford algebras.b

2.2. Doubled Spinors

2.2.1. General considerations

As in [2] the vector multiplet representation will not use Dirac spinors (the complex

spinor module S) but doubled spinors, which are a generalisation of symplectic

Majorana spinors. This allows to disentangle the actions of the Spin group and of

the Schur group on the fermionic fields of the theory. One advantage is that the

supersymmetry variations and Lagrangians can be brought to a universal form,

where only certain signs, and, for fermions, certain factors of i, depend on the

space-time signature. The idea is to start with two copies S ⊕ S ∼= S ⊗ C2 of the

complex spinor module, from which we can recover S by imposing a Spin0(t, s)-

invariant reality condition. To specify this reality condition we define on C2 a pair

of complex anti-linear map by

J
(ε)
C2 :

 z1

z2

 7→
 εz∗2

z∗1

 , ε = ±1 .

These maps satisfy

(J
(ε)
C2 )2 = ε1 .

so that JC is a real structure for ε = 1 and a quaternionic structure for ε = −1.

Using that on S the matrix B always either defines an invariant real or an invariant

quaternionic structure, we define a Spin0(t, s)-invariant real structure on S ⊗ C2,

byc

ρ = ρ(α) = J
(ε)(α)
S ⊗ J (ε)

C2 :

λ1

λ2

 7→
 εα∗B∗λ2∗

α∗B∗λ1∗

 =: (α∗B∗λj∗Nji)i=1,2

bThe invariant structures and Schur algebras are determined by the pairs (Clt,s, Cl0t,s) and one
can check that all possible types of combinations are realized in four dimensions.
cWe use a notation which is adapted to the NW-SE convention for raising and lowering the
indices i, j = 1, 2, compare (3.3). The fact that i, j, . . . occur in anti-lexicographic ordering in

several formulae is a consequence of our NW-SE style notation and does not indicate matrix

transposition.
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where

(Nji) =

0 1

ε 0

 =

 (ηji)j,i=1,2 , for ε = 1 ,

(εji)j,i=1,2 , for ε = −1 .

The real points (S + S)ρ with respect to the real structure ρ define a real Clifford

module isomorphic to S, which is embedded into S ⊕ S as the graph of the ε-

quaternionic structure on S:

(S⊕ S)ρ ∼= {(λ1, λ2) ∈ S× S|λ2 = J
(ε)
S (λ1)} ∼= S .

Given any admissible real bilinear form β on S we can obtain a super-admissible

complex bilinear form b = β ⊗M on S ⊗ C2, by choosing M to be symmetric if

σ(β)τ(β) = 1 and antisymmetric if σ(β)τ(β) = −1.

As bilinear form on C2 we always choose either the standard symmetric complex

bilinear form gC2 or the standard antisymmetric complex bilinear form εC2 on C2.

Using the matrices

δ =

 1 0

0 1

 , ε =

 0 1

−1 0


to represent these bilinear forms, we have M(·, ·) = gC2(·,M ·), where M = δ or

M = ε.

To have an admissible complex bilinear form on S to start with, we use the one

defined by the charge conjugation matrix C, so that b ∝ C ⊗M , where we allow

a normalization factor for which a convenient value will be chosen later. In even

dimensions there are two inequivalent charge conjugation matrices C±, so that we

can define two super-admissible bilinear forms b± ∝ C±⊗M±, where M± is chosen

such that the vector-valued bilinear form b±(γµ·, ·) is symmetric. By restricting b±
to the real points with respect to the invariant real structure ρ, we obtain super-

admissible real bilinear forms b±|ρ on (S + S)ρ ∼= S.

We remark that the doubled spinor module S ⊕ S can be viewed as the com-

plexification of the complex spinor module S, as follows. Firstly, S and S⊕ S carry

by construction a representation of the complex Clifford algebra Clt+s and of the

complex spin group Spin(t + s,C), and the complex bilinear form b ∝ C ⊗M is

Spin(t + s,C) invariant. Since S carries an invariant ε-complex structure J
(ε)(α)
S ,

it is self-conjugate as a complex Spin(t, s) module, S ∼= S̄. Therefore S ⊕ S is the

complexification of S, regarded as a real module:

SC := S⊗R C ∼= S + S̄ ∼= S + S ∼= S⊗C C2 .

The doubled spinor module, equipped with a super-admissible complex bilinear

form, defines a complex Poincaré Lie superalgebra gC = so(VC) + VC + SC, where

VC = V ⊗ C. If we extend ρ in the obvious way to gC, the restriction of gC to the

real points of ρ picks a real form gρ ∼= so(V ) + V + S ⊂ gC. In [2] this observation
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was used to construct the vector multiplet theories with t+ s = 5 as real forms of

an underlying ‘holomorphic master theory.’

So far our discussion of doubled spinors has applied to all dimensions and sig-

natures. We now specialise to the dimensions t + s = 5, 4 which we consider in

this paper. In five dimensions the space of super-admissible bilinear forms is one-

dimensional [4], see [2] for a detailed account of the material reviewed in the fol-

lowing. The charge conjugation matrix C satisfies στ = −1, see Table 6, so that

C ⊗ ε, where ε = εC2 is the standard anti-symmetric complex bilinear form on C2,

is a super-admissible form on S⊗ C2.

The various signatures (t, s), t+ s = 5 can be grouped into two classes, see also

Table 1

(1) t = 0, 1, 4, 5. For these signatures the super-admissible real bilinear form on

S is ReA(t,s), where A(t,s)(ψ, φ) = ψ†A(t,s)φ is the standard Spin0-invariant

sesquilinear form. Here we use the same notation A(t,s) for the A-matrix in sig-

nature (t, s) and the corresponding sesquilinear form. The complex spinor mod-

ule S carries a quaternionic structure, and the Schur group H∗ = R>0 × SU(2)

acts as R>0, that is by rescaling on the one-dimensional space of superbrackets.

The R-symmetry group is SU(2).

(2) t = 2, 3. The super-admissible real bilinear form on S is ImA(t,s), the complex

spinor module carries a real structure, and the Schur group R>0 · SU(1, 1) acts

again by rescalings, so that the R-symmetry group is SU(1, 1).

The real structures used in [2] are ρ = J
(α)(ε)
S ⊗ J (ε)

C2 with ε = −1 for t = 0, 1, 4, 5

and with ε = 1 for t = 2, 3. By adopting the normalisation b := − 1
2C ⊗ ε and

making a suitable choices for the phases α (see the first column of Table 3), we can

arrange that the restriction b|ρ of b to (S⊕ S)ρ ∼= S is

b|ρ =

Re(A(t,s)) for t = 0, 1, 4, 5 ,

Im(A(t,s)) for t = 2, 3 .

In four dimensions we have two inequivalent charge conjugation matrices: C−,

which is equal to the five-dimensional charge conjugation matrix, C− = C, and

C+ = γ∗C−. Their invariants σ (symmetry), τ (type) and ι (isotropy) can be found

in Table 6 in Appendix A.1. We choose a representation where γ∗ is real and sym-

metric, and commutes with C±, which is possible in four dimensions, see Appendix

A.1 .

Note that both bilinear forms C± are orthogonal (ι = 1), that is C±(S±,S∓) =

0. Since γ∗ anticommutes with all γ-matrices this implies that the vector-valued

bilinear forms C∓(γµ·, ·) are isotropic, C±(γµS±,S±) = 0. Since σ(C−)τ(C−) = −1

and σ(C+)τ(C+) = 1, we can construct two super-admissible isotropic vector-valued

complex bilinear form on S ⊗ C2: (C− ⊗ ε)(γm·, ·), which is the reduction of the

five-dimensional complex bilinear form, and (C+ ⊗ δ)(γm·, ·), which does not have

a five-dimensional uplift.
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Using the formulae collected in Appendix A.2 we can dimensionally reduce the

five-dimensional reality conditions chosen in [2] to obtain the corresponding reality

conditions in four-dimensions. The resulting reality conditions are listed in Table

3.

Table 3. Relation between five-dimensional and four-dimensional reality conditions through di-

mensional reduction.

Signature Reality Condition Reduction Reality Condition

(0, 5) (λi)∗ = Bλjεji (0, 5)→ (0, 4) (λi)∗ = B−λ
jεji

(1, 4) (λi)∗ = −Bλjεji (1, 4)→ (0, 4) (λi)∗ = −iB+λ
jεji

(1, 4)→ (1, 3) (λi)∗ = −B−λjεji
(2, 3) (λi)∗ = iBλjηji (2, 3)→ (1, 3) (λi)∗ = B+λ

jηji

(2, 3)→ (2, 2) (λi)∗ = iB−λ
jηji

(3, 2) (λi)∗ = −iBλjηji (3, 2)→ (2, 2) (λi)∗ = B+λ
jηji

(3, 2)→ (3, 1) (λi)∗ = −iB−λjηji
(4, 1) (λi)∗ = Bλjεji (4, 1)→ (3, 1) (λi)∗ = −iB+λ

jεji

(4, 1)→ (4, 0) (λi)∗ = B−λ
jεji

(5, 0) (λi)∗ = −Bλjεji (5, 0)→ (4, 0) (λi)∗ = −iB+λ
jεji

2.2.2. Doubled spinor formulation for signature (0, 4)

We have shown in [1] that in Euclidean signature all N = 2 Poincaré Lie superal-

gebras are isomorphic to each other. Starting in five dimensions, we can obtain two

theories through the reductions (0, 5) → (0, 4) and (1, 4) → (0, 4), which we will

want to relate explicitly by a field redefinition later. Therefore we now investigate

how superbrackets formulated using doubled spinors are related to one another in

signature (0, 4).

In four dimensions, there are two independent charge conjugation matrices C±
which define complex bilinear forms, and two independent matrices B± which define

reality conditions. In signature (0, 4) both B± define quaternionic structures, that

is, we can define two types of symplectic Majorana spinors. Combining these choices

we can define the following four super-admissible real bilinear form on S:

GR = R>0 × SU(2)


C− ⊗ ε, (λi)∗ = αB−λ

jεji ← (0, �5)

C− ⊗ ε, (ψi)∗ = βB+ψ
jεji ← (�1, 4)

C+ ⊗ δ, (φi)∗ = γB−φ
jεji

C+ ⊗ δ, (ξi)∗ = δB+ξ
jεji

(2.1)
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Here α, β, γ, δ are phase factors. Note that the symbols β, δ were used previously

for bilinear forms, but it should be clear from context what is meant. (0, �5) is a

shorthand notation for the reduction (0, 5) → (0, 4). The bilinear forms based on

C+ cannot be obtained directly from dimensional reduction. In this section we will

show that one can independently map the two complex bilinear forms and the two

reality conditions to one another, and thus obtain explicit maps between all four

real superbrackets within the doubled spinor formalism.

Mapping reality conditions, preserving the bilinear form

Let λi be a doubled spinor subject to a reality condition of the form

(λi)∗ = αB−λ
jMji , (2.2)

where M is a two-by-two matrix.

We would like to find a linear transformation (λi) 7→ (ψi), such that ψi satisfy

the reality condition

(ψi)∗ = βB+ψ
jMji . (2.3)

In signature (0, 4) B± are related by γ∗B− = B−γ∗ = B+.

We make the following ansatz:

λi =
1√
2

(a1 + bγ∗)ψ
i ⇔ ψi =

1√
2

(a∗1 + b∗γ∗)λ
i , (2.4)

where a, b ∈ C satisfy |a|2 + |b|2 = 2 and ab∗ + ba∗ = 0.d Then we compute:

(ψi)∗ =
1√
2

(a1 + bγ∗)(λ
i)∗ =

1√
2

(a1 + bγ∗)αB−λ
jMji

=
1√
2
αB−(a1 + bγ∗)λ

jMji =
1√
2
αB+(aγ∗ + b1)λjMji .

Comparing to

(ψi)∗ = βB+ψ
jMji =

1√
2
βB+(a∗1 + b∗γ∗)λjMji

we obtain

αb = βa∗ , αa = βb∗ ,

which implies |a| = |b|. The condition ab∗+ ba∗ = 0 can always be solved by taking

one of the coefficients to be real, the other purely imaginary. Since |a|2 + |b|2 = 2,

one solution is given by a = 1, b = β
α . In table 3 the phase factors of the reality

conditions in signature (0, 4) are related by β = −iα so that the reality conditions

can be mapped by setting a = 1, b = −i:

λi =
1√
2

(1− iγ∗)ψi ⇔ ψi =
1√
2

(1 + iγ∗)λ
i . (2.5)

d The operator a1 + bγ∗ is invertible for a 6= ±b.
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Since a1 + bγ∗ commutes with γ∗, the chirality of spinors is preserved under the

transformation. To see how expressing λi in terms of ψi acts on the complex bilinear

forms, compute

(γmλi)TC±χ
jMji =

1

2
(γm(a1 + bγ∗)ψ

i)TC±(a+ bγ∗)Ω
jMji

=
1

2
(γmψi)TC±(a1− bγ∗)(a1 + bγ∗)Ω

jMji =
1

2
(a2 − b2)(γmψi)TC±ΩjMji .

Here we used that γ∗ is symmetric and γ∗C± = C±γ∗, as well as γ∗γ
m = −γmγ∗.

Thus the four super-admissible bilinear forms are invariant up to a factor, and

strictly invariant for the choice a = 1, b = −i. Thus we can map the two reality

conditions to each other while preserving any of the two super-admissible complex

bilinear forms.

Mapping bilinear forms, preserving reality conditions

Next we look for a map relating the two complex bilinear forms C−⊗ ε and C+⊗ δ
to one another. For this it is helpful to use the natural embedding S± ⊂ S and to

use a notation employing ‘twice-doubled spinors’:

λI = [λi+, λ
i
−] = [λ1+, λ

2
+, λ

1
−, λ

2
−] ∈ S+ ⊕ S+ ⊕ S− ⊕ S− ⊂ S⊕ S⊕ S⊕ S ∼= S⊗ C4 ,

where I = 1, 2, 3, 4 is an index for the extended internal space C4. We can now use

a concise block-matrix type notation for the bilinear form C− ⊗ ε:

(C− ⊗ ε)(γmλ, χ) = (γmλi+)TC−χ
j
−εji + (γmλi−)TC−χ

j
+εji

=
[
(γmλi+)T , (γmλi−)T

]
C−

 0 −εij
−εij 0

χj+
χj−

 .

Matrices and vectors with respect to the internal space C4 of the twice-doubled

spinor module are indicated by the use of square brackets. We use a 2 × 2 block

matrix solution, with index notation for two-component sub-vectors and two-by-two

sub-matrices.

Using that C−λ± = ±C−γ∗λ± = ±C+λ± we can rewrite C− ⊗ ε in terms of

C+:

(C− ⊗ ε)(γmλ, χ) =
[
(γmλi+)T , (γmλi−)T

]
C+

 0 εij

−εij 0

χj+
χj−

 .

Expressing the complex bilinear form C+ ⊗ δ in terms of twice-doubled spinors we

find

(C+ ⊗ δ)(γmΨ,Ω) = (γmΨi
+)TC+Ωj−δji + (γmΨi

−)TC+Ωj+δji

=
[
(γmΨi

+)T , (γmΨi
−)T

]
C+

 0 δij

δij 0

Ωj+

Ωj−

 .
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To relate the two bilinear forms we need a linear transformation λI = SIJΨJ

between twice-doubled spinors such that

ST

 0 ε

−ε 0

S =

 0 1

1 0

 .

One solution is given by

S =

1 0

0 −ε

 ,
λi+ = Ψi

+

λi− = −εijΨj
− = Ψj

−εji ⇔ Ψi
− = −λj−εji .

(2.6)

Note that when using twice-doubled spinors, we only need to consider linear trans-

formations which act on the extended internal index I, but not on spinor indices.

This disentangling of spinor and internal indices with respect to the action of the

Schur group is an important advantage of the twice-doubled notation. It reflects

that while the Schur group only acts on internal space of the doubled spinor formal-

ism in odd dimensions, it can act differently on the chiral components of a spinor

in even dimension. This is taken care of in the twice-doubled notation by doubling

the auxiliary internal space.

The map defined by (2.6) works for any signature, but whether it preserves

reality conditions depends on the signature. In signature (0, 4) γ∗ commutes with

B±, and therefore reality conditions can be imposed consistently on the symplectic

Majorana-Weyl spinors λI±. We should therefore expect that any of the two real-

ity conditions is preserved. To verify this note first that S is block-diagonal and

manifestly preserves chirality. It is also manifest that λi+ and Ψi
+ satisfy the same

reality condition. Now assume that (λi−)∗ = αB∓λ
j
−εji. Then

(Ψi
−)∗ = −(λj−)∗εji = −αB∓λki εkjεji = αB∓λ

i
− = αB∓Ψj

−εji ,

and we see that the reality condition is preserved. Thus the map defined by S

interchanges the complex vector-valued bilinear forms while preserving any of the

two reality conditions in signature (0, 4).

The following diagram summarizes the situation. We can independently change

the reality condition by (2.5) and the complex bilinear form by (2.6). These two

operations are indicated by ‘RC’ and ‘Bil’ respectively.

(C− ⊗ ε, (ψi)∗ = βB+ψ
jεji) (C− ⊗ ε, (λi)∗ = αB−λ

jεji)

(C+ ⊗ δ, (ζi)∗ = δB+ζ
jεji) (C+ ⊗ δ, (φi)∗ = γB−φ

jεji)

Bil

RC

RC

Bil

2.2.3. Doubled spinor formulation for signature (1, 3)

It was shown in [1] that there in Minkowski signature there are two non-isomorphic

supersymmetry algebras distinguishable by their R-symmetry groups, which are
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U(2) and U(1, 1) respectively. Moreover, by comparing four- and five-dimensional

R-symmetry groups, we know that the first case can be realized through reduction

from (1, 4), while the second arises by reduction from (2, 3).

On the complex spinor module S the B-matrix B− induced by dimensional re-

duction defines a quaternionic structure, while B+ defines a real structure. There-

fore theories can be formulated using either symplectic Majorana spinors or Majo-

rana spinors. This leads us to consider the following three reality conditions:

(λi)∗ = αB−λ
jεji , (2.7)

(Ψi)∗ = βB+Ψi = βB+Ψjδji , (2.8)

(ϕi)∗ = γB+ϕ
jηji . (2.9)

The first and second condition are the standard symplectic Majorana and stan-

dard Majorana condition, respectively. The third condition is a Majorana condition

which couples a pair of spinors through the matrix

η = (ηij) =

 0 1

1 0

 .

Upon diagonalization this becomes a ‘twisted’ Majorana condition

(φi)∗ = γB+φ
jη′ij , η′ = (η′ij) =

 1 0

0 −1

 (2.10)

which differs from the standard Majorana condition by a relative sign. Such reality

conditions have appeared in [5], where they were used to define the ‘twisted’ super-

symmetry algebras of type-II∗ string theories. In the terminology of [5] the reality

conditions (2.8) and (2.9), (2.10) are referred to as O(2) Majorana and O(1, 1) Ma-

jorana, respectively. In our approach it is crucial that the matrices entering into

the definition of the (complexified) superbracket and into the reality condition are

chosen independently. Since the R-symmetry group is an invariance group of the

super-bracket rather than the reality condition, we will call (2.8) the standard or

diagonal Majorana condition and (2.9) the twisted Majorana condition. The twisted

Majorana condition was used in [2] to formulate five-dimensional vector multiplets

in signatures (2, 3) and (3, 2).

From Section 2.1 we know that in signature (1, 3) reality conditions are not

compatible with chirality, since complex conjugation flips the chirality of a spinor.

Therefore chiral projections of reality conditions take the form

(λi±)∗ = αB−λ
j
∓Mji , (λi±)∗ = αB+λ

j
∓Mji ,

with Mji ∈ {δji, ηji, η′ji, εji}. In order to relate reality conditions to one another it

is useful to note that B±γ∗ = B∓ implies

B+λ
i
+ = B−λ

i
+ , B+λ

i
− = −B−λi− . (2.11)
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Combining the three distinct reality conditions with the two choices for the complex

superbrackets we obtain six real superalgebras. We will now show how these fit into

the two equivalence classes found in [1].

The standard N = 2 superalgebra, GR ∼= U(2)

By dimensional reduction from five dimensions, we obtain a representation of the

standard N = 2 algebra in terms of symplectic Majorana spinors. By comparison

to Table 3 we see that the reduction (1, 4) → (1, 3) corresponds to the following

combination of a bilinear form with a reality condition:(
C− ⊗ ε, (λi)∗ = αB−λ

jεji

)
, with α = −1 .

In signature (1, 3) Majorana spinors are more commonly used. To rewrite symplectic

Majorana spinors in terms of Majorana spinors we adapt the map given in the

appendix of [3]:e

λ1 =
1√
2

(Ψ1−iΨ2) , λ2 =
β√
2α
B∗−B+(Ψ1+iΨ2) = − β√

2α
γ∗(Ψ

1+iΨ2) , (2.12)

where we used that (−1)tγ∗B± = B±γ∗ = B∓. It is straightforward to check that

(Ψi)∗ = βB+Ψi, so that this formula exchanges the two reality conditions, and

simultaneously exchanges the vector-valued bilinear forms, up to a phase factor:

[C− ⊗ ε](γµλ, χ) =
β

α
[C+ ⊗ δ](γµΨ,Ω) . (2.13)

Of course β
α must be real, since the restrictions of both vector-valued bilinear forms

to their respective real points are assumed to be real-valued. By choosing α = β we

can adjust the phase factor to unity.

Alternatively, we can work with twice-doubled spinors and use the map Bil

defined by (2.6) which exchanges the bilinear forms C− ⊗ ε and C+ ⊗ δ. In sig-

nature (1, 3) this map acts non-trivially on the reality conditions, since complex

conjugation anti-commutes with chiral projection.

If λi are symplectic Majorana spinors, then their chiral projections satisfy

(λi±)∗ = αB−λ
j
∓εji .

Using the component form (2.6) of the map Bil we compute

(Ψi
+)∗ = (λi+)∗ = αB−λ

j
−εji = −αB−Ψj

− = αB+Ψi
− ,

(Ψi
−)∗ = −(λj−)∗εji = −αB−λkεkjεji = αB−λ

i
+ = αB−Ψi

+ = αB+Ψi
+ .

Thus the map Bil exchanges symplectic Majorana and Majorana spinors in signa-

ture (1, 3).

eNote that there is a typographic mistake in formula (A.13) of [3].
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Since we will show in the next section that the other four combinations of com-

plex bilinear forms with reality conditions correspond to the second, non-equivalent

N = 2 superalgebra, we can summarize this section as follows:

GR = U(2)

{
C− ⊗ ε, (λi)∗ = αB−λ

jεji ← (1, �4) ,

C+ ⊗ δ, (Ψi)∗ = βB+Ψi .
(2.14)

Here (1, �4) is a short-hand notation to indicate the reduction (1, 4) → (1, 3). The

second line is the most commonly used formulation of the standard N = 2 super-

symmetry algebra in terms of Majorana spinors. For comparison, we will give a

formulation of the twisted N = 2 supersymmetry algebra in terms in Majorana

spinors in (2.17).

The twisted N = 2 supersymmetry algebra, GR ∼= U(1, 1)

We now turn to the second family of N = 2 algebras, which have R-symmetry group

U(1, 1). This algebra can be realized by reduction from five dimensions with signa-

ture (2, 3), which can be related to the three remaining combinations of complex

bilinear forms and reality conditions:

GR = U(1, 1)


C− ⊗ ε, (λi)∗ = αB+λ

jηji ← (�2, 3) ,

C− ⊗ ε, (Ψi)∗ = βB+Ψi = βB+Ψjδji ,

C+ ⊗ δ, (ϕi)∗ = γB+ϕ
jηji ,

C+ ⊗ δ, (Ωi)∗ = δB−Ωjεji ,

(2.15)

where α, β, γ, δ are phase factors. Transformations which relate these four combina-

tions can easily be found using the twice-doubled notation. Since the computations

are similar to previous computations, we only give a summary and add some ex-

planatory comments. The map defined by the matrix S in (2.6) exchanges the

two bilinear forms. While it preserves reality conditions in Euclidean signature, it

changes them in Minkowski signature. Specifically, if we use S to relate ΨI to ΩI ,

then S maps the standard Majorana condition to the symplectic Majorana condi-

tion. And if we apply S to λI , it maps the symplectic Majorana condition to the

twisted Majorana condition, but with the off-diagonal matrix (ηij) replaced by its

diagonalized form (η′ij). This can be corrected for by an additional linear trans-

formations (represented by the matrix F defined below) which brings η′ij back to

the off-diagonal form. The resulting transformations, which exchange bilinear forms

are:

λI = T IJϕ
J , (T IJ) =

1√
2


1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1

 , ΩI = SIJΨJ , (SIJ) =


1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0

 .
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Note that

T = T−1 = FS−1 = SF−1 = SF , where (F IJ) =
1√
2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 (2.16)

is the matrix which exchanges ηij and η′ij .

To relate all four real bilinear forms to each other, we also need transformations

which preserve the complex bilinear forms but exchange the reality conditions.

Finding one such transformations is sufficient, because then all further relations

between the four algebras are determined by consistency. Picking ϕI and ΩI for

concreteness, it is easy to verify that the transformation

ϕI = U IJΩJ , (U IJ) =


1 0 0 0

0 i 0 0

0 0 1 0

0 0 0 −i


preserves C+ ⊗ δ and maps the respective reality conditions to one another.

The transformation relating λI and ΨI is then

ΨI = V IJλ
J , V = S−1U−1T−1 =

1√
2


1 1 0 0

−i i 0 0

0 0 i i

0 0 1 −1

 .

The relations between the four real superbrackets are summarized in the following

commuting diagram

(C− ⊗ ε, (λi)∗ = αB+λ
jεji)

V // (C− ⊗ ε, (Ψi)∗ = βB+Ψj)

S

��
(C+ ⊗ δ, (ϕi)∗ = γB+ϕ

jηji)

T

OO

(C+ ⊗ δ, (Ωi)∗ = δB−Ωjεji)
U

oo

To conclude, we mention a further rewriting which brings the supersymmetry alge-

bra to the same form that is used for the twisted supersymmetry algebras underly-

ing type-II∗ string theory [6]. We have mentioned that instead of the off-diagonal

symmetric matrix (ηij) we can use its diagonalized form (η′ij) = diag(1,−1). The

supersymmetry algebra is then given by the complex bilinear form C+⊗δ, together

with a reality condition of the form (ϕi)∗ = αB+ϕ
jη′ji. If we redefine ϕ2 7→ iϕ2

while keeping ϕ1 the same, we obtain the pair

(C+ ⊗ η′, (ϕi)∗ = γB+ϕ
i) , (2.17)
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where the Majorana condition is standard, while the complex bilinear form is C+⊗
η′. This is the form in which twisted supersymmetry algebras in ten dimensions

were defined in [6].

2.2.4. Doubled spinor formulation for signature (2, 2)

It was shown in [1] that in neutral signature the Schur group acts with a single open

orbit, corresponding to a unique N = 2 superalgebra with connected R-symmetry

group GR ∼= R>0 × SO0(1, 2). In signature (2, 2) both B− and B+ define a real

structure, implying that we there are different types of Majorana spinors, but no

symplectic Majorana spinors. As discussed in Section 2.2.3 we can impose either

the standard or the twisted Majorana condition on pairs of spinors. Together with

the choice of a complex superbracket on the doubled spinor module, we have eight

different real superbrackets, corresponding to the following combinations between

complex superbrackets and reality conditions:

GR = R>0 × SL(2,R)



C− ⊗ ε, (λi)∗ = α1B−λ
jηji ← (2, �3)

C− ⊗ ε, (ψi)∗ = β1B+ψ
jηji ← (�3, 2)

C+ ⊗ δ, (φi)∗ = γ1B−φ
jηji

C+ ⊗ δ, (ξi)∗ = δ1B+ξ
jηji

C+ ⊗ δ, (Λi)∗ = α2B−Λi

C+ ⊗ δ, (Ψi)∗ = β2B+Ψi

C− ⊗ ε, (Φi)∗ = γ2B−Φi

C− ⊗ ε, (Ξi)∗ = δ2B+Ξi

(2.18)

The two theories obtained by dimensional reduction have the vector-valued bi-

linear form C−⊗ ε and the off-diagonal Majorana condition with either B− or B+,

see table 3. Explicit maps between the eight superbrackets can be worked out using

the same methods as for the other signatures, but we will not need to specify these

maps explicitly for the following.

3. Four-dimensional N = 2 supersymmetric vector multiplets and

their Lagrangians

3.1. General considerations

We will now present the four-dimensional off-shell supersymmetry transforma-

tions and Lagrangians which are obtained by dimensional reduction of the five-

dimensional supersymmetry transformations and Lagrangians constructed in [2].

Since the actual computational steps are essentially the same as in [3], where the

reductions (1, 4)→ (1, 3) and (1, 4)→ (0, 4) were carried out, we will only state the

final results. All details required to replicate these results can be found in [3,2,1]

and in the preceding sections and appendices of this paper. Compared to [3], one
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has to manage various factors of −1 and i, which is taken care of by our conventions

for dimensionally reducing Clifford algebras and reality conditions.

To make the paper self-contained, we still need to review the relevant properties

of five- and four-dimensional vector multiplets. The field content of a theory of nV
five-dimensional off-shell vector multiplets is

(σI , λiI , AIµ, Y
I
ij) ,

where I = 1, . . . , nV , i = 1, 2. The fields σI are real scalar fields. All couplings in

the five-dimensional Lagrangian are encoded in a real function, the Hesse potential

F(σI) (sometimes also called the prepotential). The scalar and vector coupling

matrices are proportional to the Hessian FIJ = ∂2IJF of the function F . The

theory also contains a Chern-Simons term, with couplings proportional to the third

derivatives FIJK of F . Since gauge invariance (up to boundary terms) requires

FIJK to be constant, the function F must be a cubic polynomial in σI .f The

resulting geometry is called affine special real geometry, see the end of Section 4 of

[3] for the precise definition. In short, an affine special real manifold is a pseudo-

Riemannian manifold equipped with a flat torsion-free connection ∇, such that the

metric can be expressed as the Hessian of a cubic real polynomial when using ∇-

affine coordinates. The fields λiI , i = 1, 2, are pairs of spinors, subject to either a

symplectic Majorana condition or a twisted Majorana condition:

(λi)∗ =

αt,sBλ
jεji , t = 0, 1, 4, 5 ,

αt,sBλ
jηji , t = 2, 3 .

.

The unit norm complex coefficients αt,s are chosen according to Table 3 in [2], and

have been listed in Table 3. With this convention the brackets on S and S ⊗ C2

have both standard form. The fields AIµ, µ = 1, . . . , 5 are vector fields, and Yij
are auxiliary fields, which form a symmetric tensor under the action of the R-

symmetry group, which is SU(2) for t = 0, 1, 4, 5 and SU(1, 1) for t = 2, 3. The

auxiliary fields are subject to the following R-symmetry invariant reality condition,

which is induced by the reality condition imposed on the spinors:

(Y ij)∗ =

Y klεkiεlj , t = 0, 1, 4, 5 ,

Y klηkiηlj , t = 2, 3 .

All together, a vector multiplet has 8 + 8 off-shell degrees of freedom, which reduce

to 4 + 4 on-shell degrees of freedom upon imposing the equations of motion. We

refer to [2] for further details.

Starting from the six possible signatures (t, s), t + s = 5 in five dimensions,

there are ten different reductions to the five signatures (t′, s′), t′ + s′ = 4 in four

dimensions. The procedure of reduction is standard and straightforward. We use

fTo have standard kinetic terms in signature (1, 4) one must impose in addition that FIJ is positive
definite.
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the notation and conventions of [3], which allow us to present the final expressions

in a concise form. When reducing over the direction labeled by the index ∗, the

five-dimensional vector fields AIµ decompose into four-dimensional vector fields AIm
and scalars bI = AI∗. In the reduction (1, 4) → (1, 3) the five-dimensional scalars

σI combine with the scalars bI = AI∗ into complex scalars XI = σI + ibI . The

scalar manifold is an affine special Kähler manifold, as required by global N =

2 supersymmetry. For time-like reductions (1, 4) → (0, 4), the kinetic terms of

the scalars σI and bI come with a relative sign and cannot be combined into a

complex scalar. As shown in [3] the scalar geometry of Euclidean four-dimensional

rigid vector multiplets is affine special para-Kähler, that is the complex structure

is replaced by a para-complex structure. One can introduce para-complex scalar

fields XI = σI + ebI , where the para-complex unit e satisfies ē = −e and e2 = 1.

More generally, the special geometry of rigid and local vector and hypermultiplets

in Euclidean signature involves the para-complex analogues of the familiar special

Kähler, hyper-Kähler and quaternionic Kähler geometries. We refer to [3,7,8,9] for

details.

When carrying out the ten possible reductions from five to four dimensions we

find that the target space geometry only depends on the four-dimensional signature,

and not on the five-dimensional parent theory. In Lorentz signature the target space

is affine special Kähler, in Euclidean and neutral signature it is affine special para-

Kähler. The relative signs between the kinetic terms of σI and bI are listed in Table

5, while the types of target space geometries are listed in Table 4. These results are

consistent with [10].

Before displaying the supersymmetry transformations and Lagrangians, we ex-

plain the ε-complex notation introduced in [3,8]. Depending on context a ‘bar’ over

a scalar X denotes complex or para-complex conjugation:

XI = σI + ibI ⇒ X̄I = σI − ibI , XI = σI + ebI ⇒ X̄I = σI − ebI .

When referring to both the complex and para-complex case simultaneously, we use

the term ε-complex, where ε = −1 means complex, and ε = 1 means para-complex,

and we define iε = i, e, respectively. The field content of a four-dimensional vector

multiplet is

(XI , λiI , AIm, Y
I
ij) ,

where XI are ε-complex scalars, λiI are pairs of spinors subject to a reality con-

dition, AIm, m = 1, 2, 3, 4 are vector fields, and Y Iij are auxiliary symmetric ten-

sor fields, subject to the reality condition induced by the one imposed on the

spinors. Since we construct the four-dimensional theories by the reduction of five-

dimensional theories, the reality conditions of λiI and Y Iij are inherited from the

five-dimensional theory, see Table 3. Note however that because the space of super-

brackets is four-dimensional in four dimensions, we can change the superbracket by

field redefinitions after the dimensional reduction. In the doubled formalism this

changes the reality conditions imposed on λiI and Yij .
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In four dimensions the supersymmetry transformations and the Lagrangian can

be organised into ε-holomorphic and ε-anti-holomorphic terms, which are paired

with chiral projections of the spinors. To write expressions uniformly, it is nec-

essary to modify the chiral projection in the para-complex case such that it in-

cludes a factor e. In order to see explicitly why this is necessary, recall that since

γ∗B± = (−1)tB±γ∗ in four dimensions, complex conjugation acting on spinors pre-

serves chirality in the signatures t = 0, 2, 4 with para-complex scalar geometry, but

exchanges chiralities in the signatures t = 1, 3 with complex scalar geometry,

(λi±)∗ = α

Bλj±Mji , t = 0, 2, 4 ,

Bλj∓Mji , t = 1, 3 ,

where λi± = 1
2 (1±γ∗)λi. Following [3] we therefore define modified chiral projectors:

Π± =
1

2
(1± Γ∗) , Γ∗ =

 eγ∗ , t = 0, 2, 4 ,

γ∗ , t = 1, 3 ,

and correspondingly λi± := 1
2 (1 ± Γ∗)λ

i. Since e2 = 1, the operators Π± are still

projection operators. If we define the conjugation (λiI± )∗ of the chiral projection

of a spinor to include para-complex conjugation, chirality is flipped under ∗ in all

signatures:

(λiI±)∗ = αBλjI∓Mji .

Note that

γ∗λ
i
± = ±eλi± ⇔ Γ∗λ

i
± = ±λi± . (3.1)

We also modify the definition of self-dual and anti-self-dual field strength [3]:

F I±|mn :=
1

2

(
F Imn ±

1

iε
F̃ Imn

)
where

F̃ Imn =
1

2
εmnpqF

pq

is the Hodge dual. These modified self-dual and anti-self-dual field strengths satisfy:

(F I±|mn)∗ = F I∓|mn ,

where ∗ is ε-complex conjugation on the tangent space of the scalar manifold.

Formulas in Euclidean and neutral signature include both factors of i and of e.

To avoid confusion, we point out that i corresponds to the action of the complex

number on the spinor module, while e corresponds to the action of the para-complex

numbers on the para-complexified tangent bundle of the scalar manifold. We refer

to [3] for details.

In special ε-Kähler geometry, all couplings are encoded in a single function

F(XI), which is ε-holomorphic in the ε-complex scalars XI . When obtaining a
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four-dimensional vector multiplet theory by dimensional reduction, the prepotential

is given by the extension of the cubi Hesse potential F(σI) from real to ε-complex

values, F(XI) = F(σI + iεb
I). Without a proportionality factor between Hesse

potential and prepotential we obtain a parametrization known as ‘old conventions’

in the literature. The parametrization according to the ‘new conventions’ is obtained

by setting F (new) = 1
2iε
F (old). We will use the old conventions to display our results.

As the Hesse potential is a cubic polynomial, so is any prepotential obtained by

dimensional reduction. However, in four dimensions any ε-holomorphic prepotential

defines a valid vector multiplet theory as long as the scalar and vector coupling

matrices NIJ , which in the old conventions are given by NIJ = Re(FIJ) are non-

degenerate.g Since the only term involving the fourth derivative FIJKL is a four-

fermion term, one can take the supersymmetry variations and Lagrangians obtained

by dimensional reduction, allow F to be a general ε-holomorphic function, and

obtain the four-fermion term by checking which terms proportional to FIJKL are

generated by supersymmetry, see [3] for details. We will not work out the four-

fermion terms in this paper, but write the Lagrangian in a form which remains valid

if the prepotential is a general ε-holomorphic function. In particular, while FIJK
is a real constant when obtained from dimensional reduction, we will distinguish

between FIJK and F̄IJK when organising terms into ε-holomorphic and ε-anti-

holomorphic components.

In the following sections we present the supersymmetry transformations and

Lagrangians for the ten different reductions from five- to four-dimensional vector

multiplet theories. Using the ε-complex notation, the ten different reductions can be

combined into only four ‘types’ of supersymmetry transformations and Lagrangians.

Table 4 lists for each reduction to which type it corresponds, together with the

type of scalar geometry (which is completely determined by the four-dimensional

signature, but listed for convenience).

gIn new conventions the scalar and vector coupling matrices are given by NIJ = iε(Fnew
IJ −F̄

new
IJ ).

To have standard kinetic terms for the standard vector multiplet theory in signature (1, 3) one

must then impose that ImFnew
IJ is negative definite.
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Table 4. The ten possible reductions of five-dimensional theories organise into four types. We also
display the target space geometry.

Reduction Type Target geometry

(0, 5)→ (0, 4) Type 2 special para-Kähler

(1, 4)→ (0, 4) Type 1 special para-Kähler

(1, 4)→ (1, 3) Type 1 special Kähler

(2, 3)→ (1, 3) Type 3 special Kähler

(2, 3)→ (2, 2) Type 3 special para-Kähler

(3, 2)→ (2, 2) Type 4 special para-Kähler

(3, 2)→ (3, 1) Type 4 special Kähler

(4, 1)→ (3, 1) Type 2 special Kähler

(4, 1)→ (4, 0) Type 2 special para-Kähler

(5, 0)→ (4, 0) Type 1 special para-Kähler

3.2. Type 1: (1, 4) 7→ (0, 4) or (1, 3), and (5, 0) 7→ (4, 0)

Representations

We start with the supersymmetry representations, which are off-shell and thus

independent of the specification of a Lagrangian.

δXI = iε̄+λ
I
+ , δX̄I = iε̄−λ

I
− ,

δAIm =
1

2

(
ε̄+γmλ

I
− + ε̄−γmλ

I
+

)
,

δY Iij = −1

2

(
ε̄+(i�∂λ

I
−j) + ε̄−(i�∂λ

I
+j)

)
, (3.2)

δλIi+ = −1

4
γmnF I−mnε

i
+ −

i

2
�∂X

Iεi− − Y Iijε+j ,

δλIi− = −1

4
γmnF I+mnε

i
− −

i

2
�∂X̄

Iεi+ − Y Iijε−j .

The supersymmetry variation parameters are doubled spinors denoted ε = (εi) and

are subject to the same reality conditions as the doubled spinors λ = (λi), which are

listed in table 3. For all theories obtained by dimensional reduction the underlying

complex superbracket is defined by the complex bilinear form C−⊗ε, and therefore

indices i, j = 1, 2 are raised and lowered using εij and εij , irrespective of the reality

condition, in the same way as in [2], namely

λi = εijλj , λi = λjεji , εikεkj = −δij , (3.3)

which conforms with the NW-SE convention. We use the notation �∂ = γm∂m.

With regard to the splitting into ε-holomorphic and ε-anti-holomorphic parts it

is important to keep in mind the following notational conventions: the operation ·̄
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denotes ε-complex conjugation for scalars XI , but, as before, Majorana conjugation

based on the charge conjugation matrix C− for spinors λI . The chiral projectors

for spinors include a factor e for those signatures where the target geometry is

para-complex. The real structure relating ε-holomorphic and ε-anti-holomorphic

expressions is the combined complex/para-complex conjugation ∗, which acts on

both the target space and the spinor module. Spinors are Grassmann-valued, and

we use a convention where complex conjugation does not reverse the order of factors

in monomials.h The self-dual and anti-self-dual projections of tensors are defined

using projections which include a factor e for signatures where the target space

geometry is para-complex. Note that (3.2) agrees with (5.64) of [3], which is the

original reference for the reductions (1, 4) 7→ (0, 4) and (1, 4) 7→ (1, 3).

Lagrangians

The following Lagrangians, obtained by dimensional reduction, are by construction

invariant under the supersymmetry transformations given in the previous section.

With regard to the overall sign of the Lagrangian, we have adopted the convention

that the sign of the coefficient of the Maxwell term is always negative. This is

motivated by the fact that in Lorentz signature this choice of sign corresponds to

positive kinetic energy of the Maxwell field, irrespective of whether we choose the

mostly plus or the mostly minus convention.

L =− 1

4

(
F I−mnF

Jmn
− FIJ(X) + F I+mnF

Jmn
+ F̄IJ(X̄)

)
− 1

2
∂mX

I∂mX̄JNIJ(X, X̄) + Y IijY JijNIJ(X, X̄)

− 1

2

(
λ̄I+�∂λ

J
− + λ̄I−�∂λ

J
+

)
NIJ(X, X̄) (3.4)

− 1

4

(
λ̄I−�∂FIJ(X)λJ+ + λ̄I+�∂F̄IJ(X̄)λJ−

)
− i

8

(
λ̄I+γ

mnF J−mnλ
K
+FIJK + λ̄I−γ

mnF J+mnλ
K
− F̄IJK

)
− i

2

(
λ̄Ii+λ

Jj
+ Y Kij FIJK + λ̄Ii−λ

Jj
− Y

K
ij F̄IJK

)
.

Note that this Lagrangian agrees with (5.70) of [3].i Also note that the fermions are

symplectic Majorana spinors, while in signature (1, 3) one would normally write the

theory in terms of Majorana spinors. This can be done using the isomorphism found

in Section 2.2.3. In fact it was checked in [3] that upon rewriting the theory in terms

hIf one converts our expressions to the convention where complex conjugation reverses the order
of Grassmann variables, this leads to additional factors of (powers of) i.
iWe remark that Ȳ Iij in (5.70) of [3] should read Y Iij , that is, the ‘bar’ is superfluous. This is easily

seen by checking that (λ̄Ii−λ
Jj
− Y Kij )∗ = −λ̄Ii+λ

Jj
+ Y Kij .
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of Majorana spinors one obtains supersymmetry transformations and Lagrangians

which are consistent with the literature.

3.3. Type 2: (0, 5) → (0, 4) and (4, 1) → (3, 1) or (4, 0)

From here on we just list the representations and Lagrangians without comment.

The discussion is continued further below.

Representations

δXI = ε̄+λ
I
+ , δX̄I = ε̄−λ

I
− ,

δAIm =
1

2

(
ε̄+γmλ

I
− + ε̄−γmλ

I
+

)
,

δY Iij = −1

2

(
ε̄+(i�∂λ

I
−j) + ε̄−(i�∂λ

I
+j)

)
, (3.5)

δλIi+ = −1

4
γmnF I−mnε

i
+ +

1

2
�∂X

Iεi− − Y Iijε+j ,

δλIi− = −1

4
γmnF I+mnε

i
− +

1

2
�∂X̄

Iεi+ − Y Iijε−j .

Lagrangians

L =− 1

4

(
F I−mnF

Jmn
− FIJ(X) + F I+mnF

Jmn
+ F̄IJ(X̄)

)
+

1

2
∂mX

I∂mX̄JNIJ(X, X̄) + Y IijY JijNIJ(X, X̄)

− 1

2

(
λ̄I+�∂λ

J
− + λ̄I−�∂λ

J
+

)
NIJ(X, X̄) (3.6)

− 1

4

(
λ̄I−�∂FIJ(X)λJ+ + λ̄I+�∂F̄IJ(X̄)λJ−

)
− 1

8

(
λ̄I+γ

mnF J−mnλ
K
+FIJK + λ̄I−γ

mnF J+mnλ
K
− F̄IJK

)
− 1

2

(
λ̄Ii+λ

Jj
+ Y Kij FIJK + λ̄Ii−λ

Jj
− Y

K
ij F̄IJK

)
.
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3.4. Type 3: (2, 3) → (1, 3) or (2, 2).

Representations

δXI = ε̄+λ
I
+ , δX̄I = ε̄−λ

I
− ,

δAIm =
1

2

(
ε̄+γmλ

I
− + ε̄−γmλ

I
+

)
,

δY Iij = − i
2

(
ε̄+(i�∂λ

I
−j) + ε̄−(i�∂λ

I
+j)

)
, (3.7)

δλIi+ = −1

4
γmnF I−mnε

i
+ +

1

2
�∂X

Iεi− + iY Iijε+j ,

δλIi− = −1

4
γmnF I+mnε

i
− +

1

2
�∂X̄

Iεi+ + iY Iijε−j .

Lagrangians

L =− 1

4

(
F I−mnF

Jmn
− FIJ(X) + F I+mnF

Jmn
+ F̄IJ(X̄)

)
+

1

2
∂mX

I∂mX̄JNIJ(X, X̄)− Y IijY JijNIJ(X, X̄)

− 1

2

(
λ̄I+�∂λ

J
− + λ̄I−�∂λ

J
+

)
NIJ(X, X̄) (3.8)

− 1

4

(
λ̄I−�∂FIJ(X)λJ+ + λ̄I+�∂F̄IJ(X̄)λJ−

)
− 1

8

(
λ̄I+γ

mnF J−mnλ
K
+FIJK + λ̄I−γ

mnF J+mnλ
K
− F̄IJK

)
+
i

2

(
λ̄Ii+λ

Jj
+ Y Kij FIJK + λ̄Ii−λ

Jj
− Y

K
ij F̄IJK

)
.

3.5. Type 4: (3, 2) → (3, 1) or (2, 2)

Representations

δXI = iε̄+λ
I
+ , δX̄I = iε̄−λ

I
− ,

δAIm =
1

2

(
ε̄+γmλ

I
− + ε̄−γmλ

I
+

)
,

δY Iij = − i
2

(
ε̄+(i�∂λ

I
−j) + ε̄−(i�∂λ

I
+j)

)
, (3.9)

δλIi+ = −1

4
γmnF I−mnε

i
+ −

i

2
�∂X

Iεi− + iY Iijε+j ,

δλIi− = −1

4
γmnF I+mnε

i
− −

i

2
�∂X̄

Iεi+ + iY Iijε−j .
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Lagrangians

L =− 1

4

(
F I−mnF

Jmn
− FIJ(X) + F I+mnF

Jmn
+ F̄IJ(X̄)

)
− 1

2
∂mX

I∂mX̄JNIJ(X, X̄)− Y IijY JijNIJ(X, X̄)

− 1

2

(
λ̄I+�∂λ

J
− + λ̄I−�∂λ

J
+

)
NIJ(X, X̄) (3.10)

− 1

4

(
λ̄I−�∂FIJ(X)λJ+ + λ̄I+�∂F̄IJ(X̄)λJ−

)
− i

8

(
λ̄I+γ

mnF J−mnλ
K
+FIJK + λ̄I−γ

mnF J+mnλ
K
− F̄IJK

)
− 1

2

(
λ̄Ii+λ

Jj
+ Y Kij FIJK + λ̄Ii−λ

Jj
− Y

K
ij F̄IJK

)
.

3.6. (In-)Equivalent theories and the relative signs of scalar and

vector kinetic terms

We now continue our discussion of the properties of the ten vector multiplet rep-

resentations and Lagrangians that we have obtained in the five distinct signatures.

From the classification of four-dimensional N = 2 Poincaré Lie superalgebras [1],

combined with our knowledge of R-symmetry groups, we already know in which

cases the two theories in any given signature must be equivalent.

Thanks to the use of ε-complex notation and of doubled spinors the 10 sets of

supersymmetry transformations and Lagrangians take exactly the same form and

only differ by relative signs and factors of i between terms. We focus on the bosonic

terms in the following. The relative signs between the kinetic terms of the scalars

σI = ReXI and bI = ImXI have already been discussed. They are related to

whether the target geometry is complex or para-complex, which in turn depends on

the signature, or more precisely on the Abelian factor of the R-symmetry group [3],

which is U(1) for complex and SO(1, 1) for para-complex target geometry. We now

turn to the relative sign between the scalar and the vector term (Maxwell term)

F 2 ∝ NIJF
I
mnF

J|mn. All relevant signs have been listed in Table 5. As already

mentioned our convention for the overall sign is that the vector term always comes

with a negative sign. The signature of NIJ depends on the choice of the prepotential

and the range of the scalar fields. We focus on the model-independent overall sign

between scalar and vector terms.

3.6.1. Euclidean signature

The Euclidean signatures (0, 4) and (4, 0) are equivalent. We discuss the case (0, 4)

for definiteness. The target space geometry is para-Kähler, and the relative sign

between scalar and vector terms is different for the reductions (0, 5) → (0, 4) and

(1, 4)→ (0, 4). Since we have shown in [1] that the Euclidean N = 2 supersymmetry

algebra is unique up to isomorphism, we expect that the two sets of supersymmetry
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Table 5. Relative signs between vector kinetic terms and scalar kinetic terms for the ten possible
dimensional reductions.

Reduction F 2 (∂σ)2 (∂b)2

(0, 5)→ (0, 4) − + −
(1, 4)→ (0, 4) − − +

(1, 4)→ (1, 3) − − −
(2, 3)→ (1, 3) − + +

(2, 3)→ (2, 2) − + −
(3, 2)→ (2, 2) − − +

(3, 2)→ (3, 1) − − −
(4, 1)→ (3, 1) − + +

(4, 1)→ (4, 0) − + −
(5, 0)→ (4, 0) − − +

transformations and Lagrangians are related by a field redefinition, which we will

now identify explicitly. The relation between the two supersymmetry algebras in

the doubled spinor formulation was found in Section 2.2.2, see formula (2.4). In the

following we denote the spinors resulting from the Type 2 reduction (0, 5)→ (0, 4)

by λi and the spinors resulting from the Type 1 reduction (1, 4) → (0, 4) by λ̃i.

Then (2.5) becomes

λi =
1√
2

(1− iγ∗) λ̃i =
1√
2

(1− ieΓ∗) λ̃i , (3.11)

where we expressed the standard chirality matrix γ∗ in terms of the matrix Γ∗ = eγ∗,

which we use in the para-holomorphic formalism. The inverse transformation is

λ̃i =
1√
2

(1 + iγ∗)λ
i =

1√
2

(1 + ieΓ∗)λ
i .

The chiral projections are related by:

λi± =
1√
2

(1± ie)λ̃i± .

Note that the positive and negative chirality terms transform with a relative sign.

We will also need the relations between the following spinor bilinears:

ε̄λ = −i¯̃εγ∗λ̃ = −ie¯̃εΓ∗λ̃ ⇒ ε̄±λ± = ∓ie¯̃ε±λ̃± ,
ε̄γmλ = ¯̃εγmλ̃ ⇒ ε̄±λ∓ = ¯̃ε±λ̃∓ ,

ε̄γmnλ = −i¯̃εγmnγ∗λ̃ = −ie¯̃εγmnΓ∗λ̃ ⇒ ε̄±γ
mnλ± = ∓ie¯̃ε±γmnλ̃± .

Note that the vector bilinear remains the same, as it must since the vector bilinear

defines the complex supersymmetry algebra, which remains unchanged. The scalar
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and tensor bilinear transform non-trivially, and with a relative sign between terms

of positive and negative chirality.

Substituting (3.11) into the supersymmetry transformations (3.5), and using

the above relations, we obtain

δXI = −ie¯̃ε+λ̃
I
+ , δX̄I = ie¯̃ε−λ̃

I
− ,

δAIm =
1

2

(
¯̃ε+γmλ̃

I
− + ¯̃ε−γmλ̃

I
+

)
,

δY Iij = −1

2

(
¯̃ε+(i�∂λ̃

I
−j) + ¯̃ε−(i�∂λ̃

I
+j)

)
, (3.12)

δλ̃Ii+ = −1

4
γmnF I−mnε̃

i
++ie

1

2
�∂X

I ε̃i− − Y Iij ε̃+j ,

δλ̃Ii− = −1

4
γmnF I+mnε̃

i
−−ie

1

2
�∂X̄

I ε̃i+ − Y Iij ε̃−j ,

where changes of relative factors have been indicated in boldface. Comparing to the

supersymmetry variations (3.2) for the reduction (1, 4) → (0, 4) we see that they

agree up to factors of e which can be aborbed by setting X̃I = −eXI . Thus we have

identified a field redefinition which maps the two vector multiplets to each other.

Turning our attention to the Lagrangian we find that applying (3.11) to (3.6) gives

L =− 1

4

(
F I−mnF

Jmn
− FIJ(X) + F I+mnF

Jmn
+ F̄IJ(X̄)

)
+

1

2
∂mX

I∂mX̄JNIJ(X, X̄) + Y IijY JijNIJ(X, X̄)

− 1

2

(¯̃
λI+�∂λ̃

J
− +

¯̃
λI−�∂λ̃

J
+

)
NIJ(X, X̄) (3.13)

− 1

4

(¯̃
λI−�∂FIJ(X)λ̃J+ +

¯̃
λI+�∂F̄IJ(X̄)λ̃J−

)
− 1

8

(
−ie

¯̃
λI+γ

mnF J−mnλ̃
K
+FIJK+ie

¯̃
λI−γ

mnF J+mnλ̃
K
− F̄IJK

)
− 1

2

(
−ie

¯̃
λIi+ λ̃

Jj
+ Y Kij FIJK+ie

¯̃
λIi− λ̃

Jj
− Y

K
ij F̄IJK

)
This has to match with (3.4) upon setting X̃I = −eXI . To see that this is in-

deed true we simply note that the prepotential is a para-holomorphic function and

transforms as a scalar: F̃(X̃) = F(X), which implies that para-holomorphic deriva-

tives transform as F̃I = −eFI , F̃IJ = FIJ , F̃IJK = −eFIJK , . . . and anti-para-

holomorphic derivatives transform as ¯̃FI = eF̄I , ¯̃FIJ = F̄IJ , ¯̃FIJK = eF̄IJK , . . . .
Note that the second derivatives of F , and therefore the tensor NIJ which enters

into defining the scalar metric, do not change. The only bosonic term affected by

the transformation is the scalar sigma model term, where the overall sign flips:

∂mX
I∂mXJNIJ = (−e)(−ē)∂mX̃I∂m ¯̃XJNIJ = −∂mX̃I∂m ¯̃XJNIJ ,

where we used that eē = −e2 = −1j. Thus changing the vector multiplet represen-

jThis conclusion remains, of course, unchanged when using real instead of para-complex coordi-

nates. See [3] for a discussion of so-called adapted real coordinates.



June 26, 2020 15:0 WSPC/INSTRUCTION FILE
All˙Sign˙4d˙Part2˙revised

28 V. Cortés, L. Gall and T. Mohaupt

tation from one Euclidean N = 2 superalgebra to a different, but isomorphic one

flips the relative sign between scalar and vector terms.

We remark that our transformation is different from the one advocated in [11],

which is a duality-like rotation of the field equations combined with multiplying the

vector (XI , FI) by e. This transformation flips the sign of the vector term, while

the extra factor e has the effect of keeping the sign of the scalar term the same.

While the net effect on the bosonic Lagrangian differs from our transformation

only by an overall sign, their transformation is non-local, and was interpreted as

a strong-weak coupling duality. In contrast, our transformation is local, works for

the off-shell representation and the Lagrangian, includes fermionic terms, and is

induced by an isomorphism between two Euclidean N = 2 superalgebras that arise

from dimensionally reducing five-dimensional supersymmetry algebras.

When listing our Lagrangians we have fixed the overall sign of the Lagrangian

by the convention that the sign of the vector term is always negative, so that rela-

tive signs show up in front of the scalar term. The two four-dimensional Euclidean

supergravity theories discussed in [11] by the sign of the vector term, while the

scalar and Einstein-Hilbert term have the same sign. While the full treatment of

supergravity in the superconformal approach requires working out the Weyl mul-

tiplet in arbitrary signature, we remark that the Einstein-Hilbert term will have a

prefactor −e(XIF̄I − FIX̄I), which is then fixed to a constant value by imposing

the so-called D-gauge. This term changes sign under the redefinition X̃I = −eXI ,

thus giving rise to the same pattern of relative signs as in [11].

3.6.2. Neutral signature

Neutral signature can be realized by the reductions (2, 3) → (2, 2) and (3, 2) →
(2, 2), which are of Type 3 and of Type 4, respectively. Since the five-dimensional

theories are related by going from a mostly plus to a mostly minus convention for

the metric, we expect them to be equivalent. In fact, we have proved in [1] that

there is a unique neutral signature N = 2 superalgebra up to isomorphism, and

therefore both theories must be related by a field redefinition, which can be worked

out using the same methods as for Euclidean signature.

3.6.3. Minkowski signature

Here we have to consider the reductions (1, 4) → (1, 3), (2, 3) → (1, 3) and

(4, 1)→ (3, 1), (3, 2)→ (3, 1). The four-dimensional signatures (1, 3) and (3, 1) are

related by going from a mostly plus to a mostly minus convention from the metric,

and from [1] we know that there are two classes of non-isomorphic N = 2 superal-

gebras: the standard one with compact R-symmetry U(2) and the twisted (or type-

*) one with non-compact R-symmetry group U(1, 1). Since the five-dimensional

theories in signature (1, 3), (3, 1) have R-symmetry SU(2), while those in signa-

ture (2, 3), (3, 2) have R-symmetry SU(1, 1), we see that while reductions from
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Minkowski signature to Minkowski signature give (of course) a realization of the

standard supersymmetry algebra, we can obtain the twisted Minkowski signature

supersymmetry algebra by reducing five-dimensional theories with two time-like

directions. Looking at the respective Lagrangians we see that this time the relative

sign between scalar and vector terms immediately distinguishes both cases. Since

in Minkowski signature these signs are tied to the kinetic energy of scalar and vec-

tor fields being positive or negative, it is clear that they have invariant physical

meaning. In contrast, in Euclidean and neutral signature we have seen that these

signs can be changed by local field redefinitions relating representations of distinct

but isomorphic supersymmetry algebras.

In [10] the bosonic Lagrangians and Killing spinor equations of two N = 2

Lorentzian supergravity theories differing by the sign of the vector term relative

to the scalar term and also relative to the Einstein-Hilbert term were obtained

by dimensional reduction of five dimensional supergravity with one or two time-

like dimensions. This is consistent with our results, and we expect that the theory

with inverted sign for the vector term realizes the N = 2 supersymmetry algebra

with R-symmetry group U(1, 1). In particular, we expect that upon coupling to su-

pergravity the Einstein Hilbert term will have the same sign relative to the vector

term as the scalar term, because within the superconformal formalism the Einstein-

Hilbert term arises from a term of the form DmX
IDmX̄JNIJ(X, X̄), where Dm

is the covariant derivative with respect to superconformal transformations. Since

the Einstein-Hilbert term also obtains a contribution from the superconformal hy-

permultiplet sector, a full derivation will require reformulating hypermultiplets and

the Weyl multiplet in arbitrary signature, which we leave to future work.

4. Outlook

In this paper we have provided off-shell vector multiplet representations and La-

grangians for the four-dimensional N = 2 supersymmetry algebras classified in

[1]. We have shown that the relative sign between scalar and vector terms is con-

ventional in Euclidean and neutral signature, but discriminates between the two

inequivalent supersymmetry algebras in Lorentz signature. Since the vector spaces

of superbrackets have been constructed in [4] for all dimensions and signatures,

carrying out a full classification appears feasible along the lines of [1] and the

present paper. This would then also include the case of signature (1, 1), which was

excluded from Theorem 1 in [1]. Such a classification should also list the correspond-

ing R-symmetry groups and BPS extensions, the latter based on the results of [12].

Moreover, it is desirable to more directly relate the formalism used in [4,12] to the

language used in the physics literature. This would include a description of the basis

of super-admissible forms using the matrices A,B,C and relating spinor modules to

doubled spinor modules, as we have done in this paper for four-dimensional N = 2

supersymmetry algebras.

Part of this programme will be addressed in an upcoming paper [13] which will
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develop an extension of the doubled spinor formalism to provide realizations of

N -extended supersymmetry algebras in arbitrary dimension and signature, and for

any N , with explicit separation of the actions of the Lorentz and of the R-symmetry

group, thus making R-symmetry manifest. Regarding physical applications, further

steps will include hypermultiplets, and Weyl multiplets, thus facilitating the cou-

pling to supergravity. So far off-shell formulations of five- and four-dimensional

N = 2 supergravity within the superconformal approach are available in signature

(1, 3),(1, 4) and (0, 4) [14,15,16]. This formalism allows one to include higher curva-

ture terms through explicit dependence of the prepotential on the Weyl multiplet.

Following the strategy of [2] and of the present paper, it should be possible to extend

existing results to arbitrary signature. This would allow one to extend the study of

BPS solutions with higher derivative terms to arbitrary signature. In the past years

there has been work on the classification of four-dimensional BPS solutions both

in Euclidean signature, see for example [17], [18], and in neutral signature, see for

example [19,20], and as well on so-called phantom solutions of Lorentzian signature

theories with flipped gauge kinetic terms [21,22,23].

More generally, we expect that further developing the approach used in [2,1]

and in the present paper will be useful for exploring the extended network of string

and M-theories across dimensions and signatures. In particular it should provide a

new perspective on generalized Killing spinor equations and non-standard super-

gravity theories, which have been discussed under names such as ‘fake-/pseudo-

Killing spinor equations’ and ‘fake-/pseudo-supergravity,’ following [24,25,26], see

also [27] for an overview and more references. It seems clear that fake-/pseudo-

supersymmetry is related to existence of de Sitter and type-* superalgebras, non-

compact R-symmetries and their gaugings, and time-like T-duality [6,28,29], the

common feature being the analytic continuation of ‘conventional’ theories and

Killing spinor equations. Therefore a more unified picture requires a systematic

way of dealing with complexification and reality conditions. In [30,31] it was shown

that all maximal supergravities in ten and eleven dimensions arise from contrac-

tions of different real forms of a complex ortho-symplectic Lie superalgebra. Our

approach is similar in spirit but instead of ortho-symplectic Lie superalgberas it

works directly with Poincaré Lie superalgebras, it allows one to study the space of

all possible superbrackets, and it provides a new way of dealing with complexifica-

tion and reality conditions through the doubled spinor formalism.
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Appendix A. Clifford algebras

A.1. Conventions for γ-matrices

The real Clifford algebra Clt,s is represented by matrices γµ, µ = 1, . . . t + s = n

satisfying

{γµ, γν} = 2ηµν1 , (ηµν) = diag(−1, . . . ,−1, 1, . . . 1) .

This is the same convention as in [3,2], which differs from [32] by a relative sign in

the defining relation of the Clifford algebra, and a relative sign in the definition of

ηµν . The net effect is that Clt,s refers to the same real associative algebra.

The γ-matrices are chosen such that they are either Hermitian or anti-Hermitian

matrices:

(γµ)† =

−γµ , µ = 1, . . . t,

γµ , µ = t+ 1, . . . t+ s .

We will refer to the anti-Hermitian γ-matrices as time-like and to the Hermitian

γ-matrices as space-like, though for physics purposes we take min{t, s} to be the

number of dimensions interpreted as time. This reflects that we conventionally

prefer the ‘mostly plus’ convention for Minkowski signature.

There exist matrices A,B,C which relate the γ-matrices to the Hermitian con-

jugate, complex conjugate and transposed matrices [33,3]:

(γµ)† = (−1)tAγµA−1 ,

(γµ)∗ = (−1)tτBγµB−1 , (A.1)

(γµ)T = τCγµC−1 ,

where σ, τ ∈ {±1}. The parameters σ, τ are related to the parameters ε, η used

in [33] by σ = −ε and τ = −η. Note that σ = σ(C) and τ = τ(C) are the

symmetry and type of the Spin0(t, s)-invariant complex bilinear form (‘Majorana

bilinear form’)

C(λ, χ) = λTCχ

on S defined by the charge conjugation matrix C. We choose a representation where

C is Hermitian and unitary, which is always possible [33]:

C−1 = C† = C .

The matrix A defines the Spin0(t, s)-invariant sesquilinear form (‘Dirac

sesquilinear form’)

A(λ, χ) = λ†Aχ
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on S. The matrix A is chosen to be the product of all time-like γ-matrices, with

index in the lower position:

A = γ1 · · · γt ,

where γµ = ηµνγ
ν . For signature (0, n) we take A = 1. We note that

A† = (−1)t(t+1)/2A = A−1 = (−1)tγt · · · γ1 .

We choose the matrix B as B := (CA−1)T . It satisfies

BB† = 1 , BB∗ = ±1 (A.2)

and therefore defines either a real structure or a quaternionic structure on the

complex spinor module S.k

The volume element ω = γ1 · · · γt+s of the real Clifford algebra Clt,s satisfies

ω2 =

 (−1)t1 , for t+ s = 1, 4 mod 4 ,

(−1)t+1
1 , for t+ s = 2, 3 mod 4 ,

and γµω = ωγµ(−1)t+s+1 . (A.3)

One can therefore define a matrix γ∗ with γ2∗ = 1 by setting γ∗ = ±ω or γ∗ = ±iω,

depending on (A.3).

In odd dimensions, S is irreducible and γ∗ commutes with all γ-matrices, there-

fore γ∗ ∝ 1. In this case γ∗ distinguishes the two inequivalent representations of

the complex Clifford algebra Clt,s. From the physics point of view the choice of a

representation is conventional because both Clifford representations induce equiv-

alent representations of Spin(t, s). In even dimensions γ∗ anticommutes with all

γ-matrices. The complex spinor module S is reducible and decomposes into com-

plex semi-spinor modules S±, which are irreducible Clt+s-modules with projection

operators

Π± =
1

2
(1± γ∗) : S→ S± .

The chirality matrix γ∗ generalises the ‘γ5’-matrix of four-dimensional Minkowski

space to arbitrary dimension and signature.

In odd dimensions, the charge conjugation matrix C is unique up to equivalence,

while in four dimensions there are always two inequivalent charge conjugation ma-

trices C± which are distinguished by their type τ . Following physicist conventions

[33] we use the notation C± = C∓τ , i.e. τ(C±) = ∓τ . The existence of at least two

inequivalent charge conjugation matrices follows from the observation that if C is

a charge conjugation matrix, so is γ∗C, which has the opposite value of τ . In five

dimension the charge conjugation matrix C has invariants σ = −1 and τ = +1. In

four dimensions we choose C− := C, with σ− = σ = −1 and τ− = τ = +1 and

C+ = γ∗C− with σ+ = −1 and τ+ = −τ = −1 as the two inequivalent charge

conjugation matrices.

kWe note that if we multiply B by a phase α ∈ C, |α| = 1, the matrix Bα = αB still satisfies

(A.2), and defines a real or quaternionic structure.
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Since we have two inequivalent charge conjugation matrices C± in even dimen-

sions, we also have two inequivalent ‘B-matrices’, B± := (C±A
−1)T . The matrices

C± and B± are related to each other through multiplication by γ∗. To obtain explicit

relations, we use that in dimensions divisible by four we can choose a representation

where C± commute with γ∗, and where γ∗ is real and symmetric [33]. In such a

representation it is straightforward to verify the following relations:l

C±γ∗ = γ∗C± = C∓ , C
T
±γ∗ = σ+σ−C

T
∓ , (A.4)

B±γ∗ = σ+σ−B∓ , γ∗B± = (−1)tσ+σ−B∓ ⇒ γ∗B± = (−1)tB±γ∗ , (A.5)

B∗±γ∗ = B∗∓ , γ∗B
∗
± = (−1)tB∗∓ . (A.6)

We remark that in a representation where γ∗ commutes with C± it is manifest

that C± commutes with the projectors Π± = 1
2 (1± γ∗) onto the complex semi-

spinor modules and therefore has isotropy ι± = 1. For reference we summarise the

invariants of the five-dimensional charge conjugation matrix C and of the four-

dimensional charge conjugation matrices C± in Table 6.

σ τ

C − +
,

σ τ ι

C− − + +

C+ − − +

Table 6. Invariants of five- and four-dimensional charge conjugation matrices.

A.2. Dimensional reduction of the matrices A, B and C

Here we summarize how the dimensional reduction of γ-matrices and fermionic

terms has been carried out and list the relations for the matrices A,B,C explicitly.

Let Γi, i = 1, . . . , 5 be Hermitian matrices generating an irreducible representation

of Cl0,5 with Γ1 · · ·Γ5 = 1. To obtain matrix generators for Cl1,4 we replace Γ1

by Γ′1 = −iΓ1 and proceed accordingly for other signatures. Spacelike dimensional

reductions are carried out along the direction labeled by i = 5. For example matrix

generators for signature (0, 4) are γi = Γi, for i = 1, . . . , 4, while the extra generator

becomes the chirality matrix, γ∗ = Γ5. Timelike dimensional reductions are carried

out along the direction labeled by i = 1. For example for the reduction (1, 4) →
(0, 4) we take γi = Γi+1, i = 1, . . . , 4, and the chirality matrix is γ∗ = iΓ′1 = Γ1 =

γ1 · · · γ4.

For any reduction from 5 to 4 dimensions we take the four-dimensional charge

conjugation matrix C− to be equal to the five-dimensional charge conjugation ma-

lIn even dimensions not divisible by four there are similar relations which differ from those given

here at most by signs. In this paper we only need explicit expressions in four dimensions.
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trix C:

C = C− .

We choose a representation where C± = γ∗C∓ = C∓γ∗,

The relation between A-matrices is:m

A(t,s) = Γ′1 · · ·Γ′t = A(t,s−1) = Γ′1A
(t−1,s) ,

which implies

(A(t,s))−1 = (−1)tΓ′t · · ·Γ′1 = (A(t,s−1))−1 = (−1)tΓ′1(A(t−1,s))−1 .

In four dimensions we have two B-matrices. Using that σ− = σ+ = −1 we have

γ∗B± = (−1)tB∓ and B±γ∗ = B∓. We choose γ∗ = Γ5 for space-like and γ∗ = iΓ′1
for time-like reductions. Then the space-like reduction of the five-dimensional B-

matrix is B−,

B(t,s) = (C(A(t,s))−1)T = (C−(A(t,s))−1)T = B
(t,s−1)
− ,

while the time-like reduction of the five-dimensional B-matrix is proportional to

B+:

B(t,s) = (C−(−1)tΓ′1A
(t−1,s))T = −i(−1)t(C−γ∗A

(t−1,s))T

= −i(−1)t(C+A
(t−1,s))T = −(−1)tiB

(t−1,s)
+ .
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