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Abstract

Particle Image Velocimetry is commonly used to compute velocity fields in
several areas including fluid mechanics, hydraulics and geophysics. However,
acquired images often contain deformations caused either by camera lenses or
placement. In this work the most popular digital transformation methods used
to remove / reduce these deformations are benchmarked and suggestions tailor-
ing specific transformations to different types of deformations are made. This
article also shows the reduction of the error associated to the first and second
order statistics, in the case of two-dimensional Particle Image Velocimetry, when
the transformation techniques are applied to the computed velocity fields, and
not the raw images, a common option in available commercial software.
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1. Introduction

In recent years an increased offer of inexpensive digital image sensors and the
access to computational power has revolutionised science and technology. As a
result, the use of image based techniques such as Particle Image Velocimetry
(PIV) [1] in hydraulics [12], fluid mechanics [10] and geophysics [13] have become
standard. The need for small image sensors, large field of views, and the occur-
rence of facilities-related optical distortions can lead to important deformations
of the acquired images. Due to complex interactions of turbulent scales and the
high accuracy required to quantify the dynamics of small-scale turbulence, any
minor deformations in sensed images can lead to errors in the computed velocity
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signals. Numerous previous works have have discussed and suggested strategies
to correct the errors associated to two- (2D) and three-dimensional (3D) PIV
measurements [25, 19, 11], however to the authors knowledge, there have been
no previous contributions suggesting when, what and how image transformation
techniques should be used to reduce camera deformations from PIV data. The
correct selection of these transformation techniques is imperative, as different
applications can cause different deformations, for which different transformation
techniques are better suited. For example if a large image is being captured (e.g.
[13]) large barrel deformations are created. Alternatively, when obtaining im-
ages for stereo/tomographic PIV or 3D Particle Tracking Velocimetry (PTV)
([25, 20]) different camera perspectives are required, leading to skew and per-
spective deformations. The correct choice and accuracy of these techniques is
particularly important for certain applications of Tomographic PIV, where the
raw images are used to self-calibrate the calculations and determine extremely
small gradients [26]. Each image transformation technique works by the same
premise, control points with known reference points, obtained from calibration
targets, are used to create local transformation functions [6, 23, 14], global trans-
formation functions,[7, 5], or locally weighted global transformations functions
[8]. Whilst these methods offer reductions in error the range of the applicabil-
ity of these techniques is yet to be determined, similarly there have been no
investigations into the optimum number of control points for each method. Fur-
thermore, in the case of 2D PIV, there is no general consensus as to whether
the transformations should be applied to the raw sensed images or to computed
the PIV velocity fields [27, 18, 4]; state-of-the-art commercial software normally
apply the transforms to the raw images.

The present effort begins to tackle when, what and how images transforma-
tion techniques should be applied to reduce error. Whilst it is accepted that in
methods such as stereo/tomographic-PIV or 3D-PTV applying these methods
in 3D is also extremely important especially when there are changes in refractive
index of a medium, for simplicity the main focus of the present study is on 2D,
single camera based methods. To achieve this, a benchmark of the effectiveness
of six variants of popular transformation techniques is undertaken to determine
the optimal number calibration points. After this, the errors caused on the first
and second order statistics, by transformation of either, the raw images or the
estimated velocity components, is presented.

2. Geometrical transform techniques

In this section, the benchmarked transformation techniques are briefly out-
lined. Imaged control points are fitted to known co-ordinates via: a local trans-
formation; a global transformation; or locally weighted global transformation.
All of the transformations methods are applied individually to each image, i.e to
an intensity field I(x, y) where x = 1, 2, 3, . . . , X and y = 1, 2, 3, . . . , Y are the
spatial co-ordinates. The centroid position of the control points on the images
are termed {x̂i, ŷi} where i = 1, 2, 3, . . . C and C is the total number of control
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points. These points are determined from the centroid of points on a calibration
grid with known control point locations {ui, vi}.

2.1. Piecewise Linear transformation

The piecewise linear transformation is the simplest of the methods studied
here. This method works by the triangulation of the two closest points to each
ith control point. The images are transformed using an affine transform via two
local continuous functions fi(x̂, ŷ) and gi(x̂, ŷ):

ũ = fi(x̃, ỹ) = a0x̃+ a1ỹ + a2 (1)

ṽ = gi(x̃, ỹ) = b0x̃+ b1ỹ + b2 (2)

where ·̃ represents the three triangulated points and {a0, a1, a2, b0, b1 & b2} are
simply solved using a system of linear equations. As discussed by Goshtasby
[9], if the local deformations are large, the gradients on two sides of a boundary
greatly differ resulting in inaccurate transformations. Similarly, increasing the
number of control points can increase the accuracy of the method, but reduce
the computational efficiency. When applying this method in 3D, as shown by
Calluaud and David [3], this method can also be used dewarp the out of plane
co-ordinates and is often termed the pin-hole method.

2.2. Polynomial transformations

The polynomial transform is a global transformation method. This method
uses all of the control points in the sensed image to created a single continuous
nth degree polynomial transform f(x̂, ŷ) from two bi-variate functions:

u = f(x̂, ŷ) =

n∑
k=0

l∑
l=0

Pklx̂
kŷk−l (3)

v = g(x̂, ŷ) =

n∑
k=0

l∑
l=0

Qklx̂
kŷk−l (4)

where P and Q are coefficients. To solve for the (d + 1)2 coefficients at least
(d + 1)2 independent pairs of points are required. Nack [17] and Van Wie
and Stein [24] found that second or third order polynomials are sufficient for
many applications, although Brown [2] and Zitova and Flusser [28] also note
that too few points can create ill-fitting polynomials and too many can cause
the polynomial to have large unexpected undulations.

2.3. Local weighted mean transformation

The local weighted mean transform devised by Maude [15] and McLain [16]
uses localised second order polynomial transforms, Si(x̂, ŷ) (see previous) and
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weight functions Wi, based on a neighbourhood of Z closest points around each
ith point, to create a global continuous smooth transform function:

Wi(x̌, y̌) =

{
1− 3R2 + 2R3, 0 ≤ R ≤ 1

0, R > 1
(5)

and
R = [(x̌− x̂i)2 + (y̌ − ŷi)2)]

1
2 /Rn (6)

where ·̌ represents the points in the local neighbourhood and Rn is the closest
point to the ith point in the local neighbourhood. By applying this weight
function to each of the local polynomials it is possible to create a continuous
smooth function:

f(x̂, ŷ) =

∑C
i=1W (Ri)Si(x̌i, y̌i)∑C

i=1W (Ri)
(7)

Goshtasby [9] states this method is best suited to images with sharp geometric
differences as the large number of small systems of equations better encode the
image complexities, however, as a consequence the computational expense of
the method is far greater.

3. Experimental setup

In the first set of experiments three different images are chosen to determine
the optimal number of control points. The first image selected is the commonly
used image processing ‘Lena’ image (Fig. 1a). The second is a synthetic PIV
image generated using PIVLab [22] of a vortex ring, containing 10,000 synthetic
PIV seed points with a mean pixel size of 3px (Fig. 1b). The third image is
the streamwise component of the velocity field of the second set, calculated us-
ing PIVLab [22] using a double pass interrogation window ranging from 16px
to 8px, with an overlap of 50% (Fig. 1c). Each image has spatial dimensions
X=512 & Y=512. Due to the PIV calculations reducing the size of the image
the original image (Fig 1b), the velocity field (Fig 1c) is resized using a nearest
neighbour interpolation scheme to match the original data size. Four different
synthetic deformations are applied to the images: (i) radial based barrel defor-
mations (B); (ii) linear based perspective deformations (P); (iii) linear based
skewing deformations (S) and (iv) a combination of all the above (BPS) (see
Fig. 2). Each of these deformations are varied linearly with thirty scale factors
and thirty different square grids of control points ranging from C={2-32}. B
is linearly varied with a scale factor of 0-0.5 based on the central displacement
as a function of the width of the image, P is linearly varied with a scale factor
of 0-1.5 based on the width of the image, S is linear scaled with a scale fac-
tor of 0-1.5 based on the width of the image. BPS is implemented such that
P=0.3, S=0.3 and B is varied from 0-0.5. In all of the cases a scale factor
of 0 denotes no error. To remove / reduce the errors associated with these
deformations six variants of the image transformations techniques are bench-
marked: (i) Piecewise Linear (PWL); (ii) second order polynomial (POLY2);
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(iii) third order polynomial (POLY3); (iv) fourth order polynomial (POLY4);
(v) Local-weighted mean based on a neighbourhood Z= 12 (LWM12); and (vi)
Local-weighted mean based on a neighbourhood Z= 24 (LWM24).

In the second set of experiments a sequence of PIV images are to used to
investigate and quantify the effect on the first and second order statistics when
the transformations are applied to either the raw images or the estimated veloc-
ity field. Here the first order statistics are defined as the two-dimensional, time
averaged, streamwise flow and the second order statistics as the two-dimensional
streamwise standard deviations. To quantify these effects eight combinations of
B and P are applied to two hundred experimental images of a jet obtained from
the PIV Challenge [21] with scale factors {0,0.25,0.5} and {0,0.5,1} respectively.
All six variants of the transformations are applied either on the synthetically
deformed raw images or on the computed velocity fields obtained from the raw
synthetically deformed images. The PIV calculations are computed using a
multi-pass interrogation window ranging from 32-16 px with an overlap of 50%.
The total size of the raw images are 512×512 px.

To determine the error associated to the synthetically deformed images a
framework for error quantification is required. Following [11] the relative errors
εDEF & εTRN for the deformed image (IDEF) and for the transformed image
(ITRN) are computed via:

εDEF =

√√√√ 1

XY

X∑
x=1

Y∑
y=1

(I− IDEF)2

I2
, εTRN =

√√√√ 1

XY

X∑
x=1

Y∑
y=1

(I− ITRN)2

I2
,

(8)
where each spatial location in I(x, y) represents either the intensity of the

pixel in the first set of experiments or the first or second order statistics in the
second set of experiments. In all cases a measure of removed error E(%) is
defined as:

E(%) = 1− εTRN

εDEF
(9)

If the value of E = 0 no error has been removed, if E < 0 more error is
produced, and E > 0 is the percentage error reduced.

Figure 1: Benchmarking images: (a) ‘Lena’ image, (b) Synthetic image (c) computed stream-
wise velocity component from (b)
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Figure 2: Examples of deformations applied to ‘Lena’ image. (a & f) Original image, (b & g)
barrel transformed scale factor 1.1, (c & h) perspective deformation scale factor 0.8, (d & i)
skew deformation scale 0.6, (e & j) combination of all previous.
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Figure 3: The percentage error εDEF induced in each image when the deformations are applied.
Where ◦ relates to the ‘Lena’ image, × relates to the raw PIV image and 2 relates to the PIV
velocity field.

4. Results

4.1. Single Images

Figure 3 shows the percentage error (εTRA) imposed in each image when
synthetic deformations are applied by varying scale factors (here expressed as
a percentage). The results show that the raw PIV data is most sensitive to
deformations. The increase in error is likely explained by the intense gradients
associated with the raw PIV images. As shown in Fig. 4 the effectiveness of
the percentage error reduction is inversely proportional to the amount of error
created by the synthetic deformations εDEF (as summarised in Fig. 3). The
percentage reduction of error is far less in the raw PIV case, this might suggest
that more accurate PIV results could be obtained when transforming the PIV
vector fields and not the raw PIV images. When B is applied, quite clearly
POLY2 is least effective in removing large distortions, although unlike the other
methods the effectiveness of POLY2 is increased with a lesser number of control
points. The higher order polynomials (POLY3 & POLY4) yield almost identical
results, unlike POLY2 the reduction ability of the methods increase with more
control points, although this converges at C∼15. In all of the polynomial cases
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Figure 4: Results of different image transformation techniques applied to different scale factors
of barrel deformation (B) and different number of control points (C × C). Each row relates
to each of the three different images. The colour bar in each case represents the percentage
of removed error (E%)
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Figure 5: Results of different image transformation techniques applied to different scale factors
of perspective deformation (P) and different number of control points (C × C). Each row
relates to each of the three different images. The colour bar in each case represents the
percentage of removed error (E%)
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Figure 6: Results of different image transformation techniques applied to different scale factors
of skew deformation (S) and different number of control points (C × C). Each row relates to
each of the three different images. The colour map in each case represents the percentage of
removed error (E%)
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Figure 7: Results of different image transformation techniques applied to different scale factors
of barrel deformation (B) combined with perspective deformation of scale factor (P=0.3) and
skew deformation of scale factor (S=0.3) against different number of control points (C × C).
Each row relates to each of the three different images. The colour map in each case represents
the percentage of removed error (E%)
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it is observed for extreme scale factors (POLY2 ≥ 0.25, POLY3 & POLY4 ≥
0.30) the transformation methods actually create more error than they reduced.
As expected for the PWL method increasing C increases the accuracy of the
method, however, little differences are again noted with a C≥15. Out of all of
the methods LWM12 & LWM24 prove the most accurate with little difference
between them, although with a C≥15 their accuracy slightly reduces.

As shown in Fig. 5 P deformations are much more accurate even for scale
factors which induce a similar εDEF as in B (see Fig. 3). All of the methods yield
very similar results for each case, although C∼10 is required for the PWL to
achieve this accuracy. For the raw PIV images again all of the methods are least
efficient which is likely to be associated to the high gradients in the images. In
this case the LWM12 & LWM24 are least accurate when large scale factors of the
deformations are applied. As shown in Fig. 6 the results are almost identical
to those shown in Fig. 5, although for this case all the methods remove the
most error even-though the average εDEF associated to this deformation is the
greatest (see Fig. 3). The results for BPS, shown in Fig. 7, are very similar to
those shown in Fig. 4, although no error is induced by any of the deformations.
Similar to Fig. 4 LWM12 & LWM24 are most accurate and least sensitive to
the increasing scale factor of the barrel deformations.

4.2. Image sequences

In Tables 1 & 2 the reduction of error obtained by applying all six variants
of the transformation methods to eight combinations of scale factors of the
synthetic B and P deformations are presented. As a consequence of the single
image results highlighting an optimum value of C∼15, this grid size is chosen.
From the results it is clear that there are benefits transforming the PIV vector
field and not the raw PIV images. This is particularly highlighted for the first
order statistics. On average POLY3 achieves marginally favourable results. The
benefits of applying the transformations methods to the PIV vector fields can
be explained by Figs. 8 & 9 obtained using B = 0.25 & P = 0.75, as shown from
in figures, particularly Fig. 8, when the transformations are applied to the raw
PIV images visible radial distortions are present in the centre of the velocity
fields. Similarly, as shown in Fig. 9 when the transformations are applied to
the raw images outlier points are created, which are likely to induce a source or
error.

5. Summary & Conclusions

In the present work the use of six variants of digital image transformation
techniques for the removal of image deformations are benchmarked. By applying
barrel, perspective and skew deformations with varying scale factors, it is found
when images are radially deformed locally weighted global transformations using
15 × 15 control points are most effective in reducing error. When the images are
linearly deformed either by a skew or perspective deformation, third and fourth
order polynomial based transforms are more robust. This robust behaviour does
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Figure 8: Time averaged streamwise velocity field. Top row shows the original and syntheti-
cally deformed images. Middle row shows results obtained from computing PIV vector fields
from transformed raw images. Bottom row shows results obtained from transforming PIV
vector fields.
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Figure 9: Temporal streamwise standard deviations. Top row shows the original and synthet-
ically deformed images. Middle row shows results obtained from computing PIV vector fields
from transformed raw images. Bottom row shows results obtained from transforming PIV
vector fields.
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Scale Factor RAW First Order (E%)
B P εDEF PWL POLY2 POLY3 POLY4 LWM12 LWM24

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.75 83.36 31.83 25.53 32.64 32.48 32.18 32.53
0.00 1.50 90.47 16.15 6.03 17.15 17.03 16.65 17.02
0.25 0.00 77.03 41.16 36.31 41.77 41.65 41.51 41.71
0.25 0.75 83.36 31.83 25.53 32.64 32.48 32.18 32.53
0.25 1.50 90.47 16.15 6.03 17.15 17.03 16.65 17.02
0.50 0.00 77.03 41.16 36.31 41.77 41.65 41.51 41.71
0.50 0.75 83.36 31.83 25.53 32.64 32.48 32.18 32.53
0.50 1.50 90.47 16.15 6.03 17.15 17.03 16.65 17.02

Scale Factor RAW Second Order (E%)
B P εDEF PWL POLY2 POLY3 POLY4 LWM12 LWM24

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.75 26.01 41.05 36.03 42.16 42.02 41.73 42.04
0.00 1.50 18.62 25.26 15.83 26.58 26.48 26.28 26.63
0.25 0.00 32.57 49.71 46.16 50.48 50.32 50.35 50.50
0.25 0.75 26.01 41.05 36.03 42.16 42.02 41.73 42.04
0.25 1.50 18.62 25.26 15.83 26.58 26.48 26.28 26.63
0.50 0.00 32.57 49.71 46.16 50.48 50.32 50.35 50.50
0.50 0.75 26.01 41.05 36.03 42.16 42.02 41.73 42.04
0.50 1.50 18.62 25.26 15.83 26.58 26.48 26.28 26.63

Table 1: Tables summarising error (E%) associated to the first and second order statistics
obtained from performing PIV calculations on transformed images

not increase or decrease in accuracy for when more than 15 × 15 control points
are used. Furthermore by applying synthetic combinations of deformations to
a raw PIV image sequence it is found that the accuracy of first and second
order statistics increased when the image transformations are applied to the
computed vector fields rather than the raw images. This is likely explained
by the PIV calculations smoothening out the sharp gradients associated to the
image. In conclusion, if only radial deformations are present and or are large
such, as in applications where a large image is sensed from a small sensor with
a wide angle lens, a locally weighted method is suggested. If there are linear
deformations and radial deformations are small, such as in the case of stereo
and tomographic PIV, a high order polynomial method is suggested. In all
cases it is suggested that a calibration plate with ≥ 15 × 15 control points is
used. If a locally weighted method is used, no more than ≤ 20 × 20 controls
points should be used. These results demonstrate the choice and application
of image transformations technique can have significant impacts of the quality
of and accuracy of the computed PIV vector fields. This accuracy is extremely
important for tomographic and time-resolved PIV. Whilst the present work does
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Scale Factor PIV First Order (E%)
B P εDEF PWL POLY2 POLY3 POLY4 LWM12 LWM24

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.75 83.36 46.37 42.70 46.44 46.39 46.40 46.40
0.00 1.50 90.47 34.78 28.41 34.83 34.82 34.86 34.84
0.25 0.00 77.03 53.27 50.80 53.38 53.30 53.29 53.29
0.25 0.75 83.36 46.37 42.70 46.44 46.39 46.40 46.40
0.25 1.50 90.47 34.78 28.41 34.83 34.82 34.86 34.84
0.50 0.00 77.03 53.27 50.80 53.38 53.30 53.29 53.29
0.50 0.75 83.36 46.37 42.70 46.44 46.39 46.40 46.40
0.50 1.50 90.47 34.78 28.41 34.83 34.82 34.86 34.84

Scale Factor PIV Second Order (E%)
B P εDEF PWL POLY2 POLY3 POLY4 LWM12 LWM24

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.75 26.01 49.28 47.85 49.30 49.25 49.28 49.26
0.00 1.50 18.62 36.65 32.89 36.65 36.60 36.70 36.64
0.25 0.00 32.57 55.92 55.28 55.99 55.92 55.90 55.91
0.25 0.75 26.01 49.28 47.85 49.30 49.25 49.28 49.26
0.25 1.50 18.62 36.65 32.89 36.65 36.60 36.70 36.64
0.50 0.00 32.57 55.92 55.28 55.99 55.92 55.90 55.91
0.50 0.75 26.01 49.28 47.85 49.30 49.25 49.28 49.26
0.50 1.50 18.62 36.65 32.89 36.65 36.60 36.70 36.64

Table 2: Tables summarising error (E%) associated to the first and second order statistics
obtained from transforming PIV vector fields.

not fully answer, when, what and how images transformation techniques should
be used to remove error in PIV data, it offers a guide for PIV users and provides
evidence of the importance of a thorough selection of calibration methods.
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