Biotremology in arthropods



Cividini, Sofia ORCID: 0000-0003-2705-9224 and Montesanto, Giuseppe
(2020) Biotremology in arthropods. LEARNING & BEHAVIOR, 48 (3). pp. 281-300.

This is the latest version of this item.

Access the full-text of this item by clicking on the Open Access link.
[img] Text
Cividini-Montesanto2020_Article_BiotremologyInArthropods.pdf - Published version

Download (3MB) | Preview

Abstract

Effective communication is essential in animal life to allow fundamental behavioral processes and survival. Communicating by surface-borne vibrations is likely the most ancient mode of getting and exchanging information in both invertebrates and vertebrates. In this review, we concentrate on the use of vibrational communication in arthropods as a form of intraspecific and interspecific signaling, with a focus on the newest discoveries from our research group in terrestrial isopods (Crustacea: Isopoda: Oniscidea), a taxon never investigated before in this context. After getting little attention in the past, biotremology is now an emerging field of study in animal communication, and it is receiving increased interest from the scientific community dealing with these behavioral processes. In what follows, we illustrate the general principles and mechanisms on which biotremology is based, using definitions, examples, and insights from the literature in arthropods. Vibrational communication in arthropods has mainly been studied in insects and arachnids. For these taxa, much evidence of its use as a source of information from the surrounding environment exists, as well as its involvement in many behavioral roles, such as courtship and mating, conspecific recognition, competition, foraging, parental care, and danger perception. Recently, and for the first time, communication through surface-borne waves has been studied in terrestrial isopods, using a common Mediterranean species of the Armadillidae family as a pilot species, Armadillo officinalis Duméril, 1816. Mainly, for this species, we describe typical behavioral processes, such as turn alternation, aggregation, and stridulation, where vibrational communication appears to be involved.

Item Type: Article
Uncontrolled Keywords: Animal communication, Behavioral processes, Substrate-borne signals, Vibrational communication, Insects, Armadillo officinalis
Depositing User: Symplectic Admin
Date Deposited: 29 Jul 2020 13:47
Last Modified: 18 Jan 2023 23:39
DOI: 10.3758/s13420-020-00428-3
Open Access URL: https://link.springer.com/article/10.3758/s13420-0...
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3095129

Available Versions of this Item