
A fast approximate skeleton with guarantees for
any cloud of points in a Euclidean space

Yury Elkin, Di Liu, Vitaliy Kurlin

Abstract The tree reconstruction problem is to find an embedded straight-line tree
that approximates a given cloud of unorganized points in Rm up to a certain error. A
practical solution to this problem will accelerate a discovery of new colloidal prod-
ucts with desired physical properties such as viscosity. We define the Approximate
Skeleton of any finite point cloud C in a Euclidean space with theoretical guaran-
tees. The Approximate Skeleton ASk(C) always belongs to a given offset of C, i.e.
the maximum distance from C to ASk(C) can be a given maximum error. The num-
ber of vertices in the Approximate Skeleton is close to the minimum number in an
optimal tree by factor 2. The new Approximate Skeleton of any unorganized point
cloud C is computed in a near linear time in the number of points in C. Finally, the
Approximate Skeleton outperforms past skeletonization algorithms on the size and
accuracy of reconstruction for a large dataset of real micelles and random clouds.

1 Introduction: reconstructions from unorganized clouds

Potential molecules for new colloidal products are tested by simulations that pro-
duce unorganized finite clouds of points (one point per molecule in Fig. 1). Molecules
tend to form clusters (called micelles) whose shapes (degrees of branching, edge-
lengths) affect physical properties of colloidal products, e.g. their viscosity.

These 3D micelles can have complicated branched shapes as in Fig. 7 and are
visually analyzed by human experts who struggle to make reliable measurements
quickly. To substantially speed-up the discovery of new molecules, we propose a
new Approximate Skeleton ASk(C) to solve the following problem.
The tree reconstruction problem. Given a point cloud C ⊂ Rm and an error ε ,
design a fast algorithm to build a straight-line tree T ⊂ Rm (see Definition 1) that
has a minimum number of vertices and whose ε-offset (neighborhood) covers C.

Materials Innovation Factory and Computer Science department, University of Liverpool, Liver-
pool L69 3BX, UK. e-mail: vitaliy.kurlin@gmail.com,http://kurlin.org

1

ar
X

iv
:2

00
7.

08
90

0v
1

 [
cs

.C
G

]
 1

7
Ju

l 2
02

0

2 Yury Elkin, Di Liu, Vitaliy Kurlin

The first (combinatorial) guarantee is for the number of vertices in ASk(C),
which is close to the minimum number in an optimal tree for a given approximation
error by factor 2, see Theorem 8. The second (geometric) guarantee about a near
linear time for building ASk(C) is the number of points n in C, see Corollary 9.

Fig. 1 Left: point clouds C from real micelles. Right: Approximate Skeletons ASk(C).

To automatically characterize branching shapes of micelles (clusters of molecules
in colloids), an Approximate Skeleton ASk(C) allows us to compute
• the topological type of any unorganized cloud C, e.g. count all non-trivial vertices
of ASk(C)⊂ Rm whose degree is 1 (endpoints) or more than 2 (branching);
• the geometric characteristics of C, e.g. edge-lengths of ASk(C);
• the error of approximating a cloud C by its skeleton ASk(C), see Table 10.

Here is the pipeline of the Approximate Skeleton ASk(C).
Stage 1 in section 3: for a cloud C⊂Rm, we build an initial tree core(C), which has
a small number of branching vertices within a Minimum Spanning Tree of C.
Stage 2 in section 4: replace polygonal paths of core(C) by approximate paths with
much fewer vertices to get ASk(C) in a near linear time within a given error.

Fig. 2 Pipeline to compute an Approximate Skeleton ASk(C) : MST(C) is classical, the new sub-
tree core(C)⊂MST(C) is introduced in Definition 6 in section 3, final ASk(C) is built in section 4
.

The key novelty and contributions to the data skeletonization are the following.
• Theorem 8 guarantees a small number of vertices in the Approximate Skeleton
ASk(C) close to the minimum by factor 2 in an optimal tree within a given error.
• Corollary 9 guarantees a near linear time to compute ASk(C) within an error.

A fast approximate skeleton for any cloud 3

2 Basic definitions and a review of the related past work

Definition 1 (a straight-line graph, ε-approximation) A straight-line graph G ⊂
Rm (briefly, a graph) consists of vertices at points q1, . . . ,qk ∈ Rm and undirected
straight-line edges connecting pairs qi,q j, i 6= j, in such a way that any edges meet
only at their common vertex. Let d be the Euclidean distance. For ε > 0, a cloud
C ⊂ Rm is ε-approximated by a graph G if C is within the ε-offset that is the union
of ε-balls at all points of G, i.e. Gε = {p ∈ Rm | d(p,q)≤ ε for some q ∈ G}.

Past algorithms without guarantees. Singh et al. [25] approximated a cloud C ⊂
Rm by a subgraph of a Delaunay triangulation, which requires O(ndm/2e) time for n
points of C and the three thresholds: a minimum number K of edges in a cycle and
δmin,δmax for inserting/merging 2nd order Voronoi regions. Similar parameters are
need for principal curves [17], which were later extended to iteratively computed
elastic maps [15]. Since it is often hard to estimate a rate of convergence for iterative
algorithms, we discuss below non-iterative methods with theoretical guarantees.

The metric graph reconstruction (MGR) takes as an input a large metric graph
Y , which is an abstract graph with weighted edges and outputs a smaller abstract
metric graph X̂ . The distance between any points of a metric graph is defined as
the length of a shortest path these points. If Y is a good ε-approximation to an
unknown graph X , then M. Aanjaneya et al. [1, Theorem 5] proved the existence of
a homeomorphism X → X̂ that distorts the metrics on X and X̂ with a multiplicative
factor 1+ cε for c > 30

b , where b > 14.5ε is the length of a shortest edge of X .
The authors of the Reeb graph skeletonization [13, page 3] have checked that for
the MGR algorithm from [1] “it is often hard to find suitable parameters in practice,
and such local decisions tend to be less reliable when the input data are not as nice
(such as a ‘fat’ junction region)”, see this junction in the 2nd picture of Fig. 1.

Definition 2 (a Reeb graph) Given a topological space K ⊂ Rm (or) with a func-
tion f : K→ R, the Reeb graph R f (K) is obtained from K by collapsing each con-
nected components of every level set of f to a single point, so the Reeb graph R f (K)
is the quotient of K by the equivalence relation a∼ b if and only if f (a) = t = f (b)
and the points a,b ∈ K are in the same connected component of f−1(t)⊂ K.

Skeletonization via Reeb-type graphs. The Vietoris-Rips complex VR(C;α) on a
cloud C consists of all simplices spanned by points whose pairwise distances are
at most α . Starting from a noisy sample C of an unknown graph G with a scale
parameter, X. Ge et al. [13, Theorem 3.1] proved that the Reeb graph of VR(C;α)
has a correct homotopy type if there is a triangulated space K with a continuous
deformation h : K→G that ε-approximates the metrics of K,G. The homotopy type
of a graph is the equivalence class of graphs under deformations when any edge
(with distinct endpoints) can be collapsed to a point.

The graph reconstruction by discrete Morse theory (DMT). T. Dey et al. [8]
substantially improved the discrete Morse-based framework [6] and proved new ho-
motopy guarantees when an input is a density function ρ : K→ R, which ‘concen-
trates’ around a hidden geometric graph G. The key advantage of this approach is

4 Yury Elkin, Di Liu, Vitaliy Kurlin

the unbounded noise model that allows outliers far away from the underlying graph
G, which has found practical applications to map reconstructions [7, 26].

Since the molecules of a micelle form an unorganized cloud of points (with large
bounded noise) around hidden tree structures, the Tree Reconstruction problem in
section 1 essentially differs from the above approaches. An initial unorganized cloud
of points is not an abstract metric graph (as in the metric graph reconstruction prob-
lem) and not a simplicial complex with scalar values at vertices (as in the discrete
Morse theory approach), so extra pre-processing was needed in section 5.

The α-Reeb graph G by F. Chazal et al. [5] solves the metric graph reconstruction
problem, where the input is not an unorganized cloud, but a large metric graph X
that should be approximated by a smaller graph X̂ . For a base point p∈ X , the image
of the distance function d(p,∗) : X →R is covered by intervals I j having a length α

and 50% overlap. Every connected component of f−1(I j)⊂ X defines a node in the
α-Reeb graph G. Two nodes are linked if the corresponding components overlap.
Informally, α controls the size of a subset of X that maps to a single vertex of G.
Theorem 4.9 in [5] says that if X is ε-close to an unknown graph with edges of mini-
mum length 8ε , the output G is 34(β (G)+1)ε-close to X in the Gromov-Hausdorff
distance between spaces, not within one space, where β (G) is the first Betti number
of G. The algorithm has the fast time O(n logn) for n points in X . Similarly to Reeb
graphs, α-Reeb graphs are abstract without an intrinsic embedding into the space of
the cloud C and can have self-intersections even for X ⊂ R2.

The Mapper [24] extends any clustering algorithm and outputs a network of in-
terlinked clusters and needs a user-defined function f : C→ R, which helps to link
different clusters of a cloud C. Another parameter is a covering of the image of f
by a given number k of intervals I j (often with 50% overlap). Each of k subclouds
f−1(I j) ⊂ C is clustered. Every cluster defines a node in the Mapper graph. Two
nodes are linked if the corresponding clusters overlap. M. Carriére et al. [4] have
proved first theoretical guarantees for the Mapper output.

More recent persistence-based algorithms for graph reconstruction [16, 18, 19]
and image segmentation [10,11,20,21] essentially find most persistent cycles hidden
in a cloud, hence go beyond the tree reconstruction problem in section 1.

Straightening polygonal curves is a key ingredient in many skeletonization algo-
rithms. Douglas-Peucker’s heuristic [9] approximates a long zigzag line by a simpler
line with fewer vertices, see section 4. The elegant algorithm by P. Agarwal et al. [2]
guarantees a near linear time and a small number of vertices in a final polygonal ap-
proximation when used with the Frechet distance between curves in R2. For the
Hausdorff distance and higher dimensions, there is no near linear time straightening
with guarantees on the size of a skeleton to our best knowledge.

Definition 3 (MST(C)) For a cloud C ⊂ Rm, a Minimum Spanning Tree MST(C)
is a connected graph that has (1) the vertex set C, (2) no cycles, and (3) a minimum
total length, where lengths of edges are measured in the Euclidean distance.

A fast approximate skeleton for any cloud 5

If all distances between points of C are distinct, then MST(C) is unique. We write
a Minimum Spanning Tree, similarly an Approximate Skeleton, to cover all cases.

Theorem 4 [22, Theorem 5.1] For any cloud C ⊂ Rm of n points, a Minimum
Spanning Tree MST(C) can be computed in time O(max{c6,c2

pc2
l)}c10n lognα(n)),

where α(n) is the inverse Ackermann function; c,cp,cl are defined in Appendix A.

3 A new tree core(C) defined for any point cloud C ⊂ Rm

This section introduces an important subtree core(C) ⊂MST(C), which has many
fewer non-trivial vertices than a usually ‘hairy’ MST(C) from Definition 3.

A tree core(C) might still have too many zigzags and will be replaced by a bet-
ter tree ASk(C) with fewer vertices in section 4. A vertex of a degree k 6= 2 is
called (topologically) non-trivial, because any vertex of degree 2 can be potentially
removed by straightening algorithms in section 4. Since MST(C) contains many
non-trivial vertices, the next hard step is to identify those few vertices of MST(C)
that represent ‘true’ vertices of a tree T , which we try to reconstruct from C.

Fig. 3 Left. One vertex (large red dot at the bottom) of MST(C) has a high depth by Definition 5
and is connected by longest paths to 3 vertices of degree 1. The other vertices have at most 2
disjoint long paths within MST(C). Right. The red monotone paths of core(C) and subclouds
from Algorithm 2 are shown disjointly.

Definition 5 introduces the depth characterizing how deep a vertex sits within
MST(C). At a deep vertex of a degree k ≥ 3 at least 3 sufficiently long paths (with-
out common edges) should meet, see the 3 red long paths in Fig. 3. The previous
procedural approach by M. Aanjaneya et al. [1, Fig. 1b] to detect branching points
in a shape of C used more parameters than a single branching factor β below.

Definition 5 (deep vertices) For a cloud C ⊂ Rm and a vertex v ∈ MST(C) of a
degree k ≥ 3, let B1, . . . ,Bk ⊂ MST(C) be the branches (subtrees) joined at the
vertex v. Let li be the length of a longest path within the branch Bi from v to another
vertex, i = 1, . . . ,k. Assuming that l1 ≥ l2 ≥ . . . , set depth(v) = min{l1, l2, l3}. Let
l(C) be the average edge-length of MST(C). For a branching factor β > 0, the
vertices of MST(C) whose depths are larger than β l(C) are called deep.

6 Yury Elkin, Di Liu, Vitaliy Kurlin

Taking the minimum depth(v) = min{l1, l2, l3} above guarantees that vertices
in any short branches of MST(C) are not deep, hence deep vertices can not form
small cliques. The experiments on real micelles in section 5 justify that Definition 5
separates deep vertices from other shallow vertices for a long range of the factor β .

Fig. 4 Left: black MST(C) for the two clouds C in Fig. 1. Right: red core(C) in Definition 6.

Definition 6 introduces a subtree core(C), which non-essentially depends on the
branching factor β and better approximates a cloud C than MST(C), see Fig. 3.

Definition 6 (core(C)) In Definition 5, if we remove all deep vertices v1, . . . ,vm,
MST(C) splits into several subtrees. If the closure of such a subtree S has two deep
vertices vi,v j, they are joined by a unique path Pi j ⊂ S. If S has one deep vertex vi,
take a longest path Pi ⊂ S from vi to another vertex v′i ∈ S. We ignore Pi if its length
is less than β l(C), where β is the branching factor from Definition 5. All the vertices
vi,v′i and the paths Pi j,Pi between them form the subtree core(C)⊂MST(C).

If the closure of a subtree S above has k ≥ 3 deep vertices v1,v2,v3, then S
contains a vertex v with at least 3 paths to v1,v2,v3. Then depth(v) > depth(vi),
i = 1,2,3, so v is also deep and S should be split by removing v. Hence k ≤ 2.

In Fig. 3 the two black edges at the red deep vertex v of degree 5 are too short,
hence ignored in Definition 6. The tree core(C) consists of only 3 red long paths
meeting at v. Here are the steps of Stage 1 for the Approximate Skeleton ASk(C).
Step 1a. If needed, split a cloud C in clusters to approximate them below.
Step 1b. If C is one cluster, find MST(C) by the fast algorithm from Theorem 4.
Step 1c. Find the depths of vertices in MST(C) by Algorithm 1 in Appendix A.
Step 1d. Identify all deep vertices of MST(C) by their depth(v) = min{l1, l2, l3}.
Step 1e. The subtree core(C) ⊂MST(C) is formed by all the paths Pi and Pi j from
Definition 6 that have lengths more than β l(C), where β is a given branching factor.

A fast approximate skeleton for any cloud 7

4 ASk(C): Approximate Skeleton of a cloud C ⊂ Rm

The tree core(C) from Definition 6 has only few non-trivial vertices, but contains
noisy zigzags with too many trivial vertices of degree 2. This section discusses how
to straighten these zigzags and decrease the total number of vertices.

We have tried Douglas-Peucker’s heuristic [9], which was rather unstable and
produced large zigzags on curved micelles in Fig. 1. The worst complexity is O(n2)
in the number n of points for d > 2. A final approximation can have a size Ω(n)
even in R2. Another problem with [9] are potential self-intersections even in R2,
which are caused by large zigzags that approximate non-monotone curves [27].

The problem of straightening polygonal paths in a tree core(C) is harder than the
curve simplification, because the input is a cloud of unorganized points. So a final
approximation should take into account the points of a cloud C outside core(C).

Definition 7 Let L ⊂ Rm be a straight line. An ordered cloud C = {p1, . . . , pn} ⊂
Rm is called monotone with respect to L if the order of points is preserved by the
orthogonal projection of C to L.

Since there are many paths of core(C) to straighten, we split the cloud C into
monotone subclouds as formalized in Algorithm 2 in Appendix A. Since monotone
subpaths can be quickly found only in R2 [23], Theorem 8 below will assume that
each subpath P between non-trivial vertices of core(C) is monotone by Definition 7
with respect to the straight line connecting the endpoints of P.

All results in this section are proved in Appendix A. Here are the Stage 2 steps.

Step 2a. Split every polygonal path between non-trivial vertices (of degrees k 6= 2)
in the subtree core(C)⊂MST(C) into monotone subpaths by Algorithm 2.
Step 2b. Each monotone subpath of core(C) with endpoints (say) p1, pn has the
subcloud C′ approximated by a polygonal path via points of C′ by Steps 2c–2f.
Step 2c. For each subcloud C′ = 〈p1, . . . , pn〉 of points ordered by their orthogonal
projections to [p1, pn], start from ind(1) = 1 and find the next index ind(i) for i =
2, . . . ,m by repeating Steps 2d–2e, which is possible by Lemma 12 in Appendix A.
Step 2d (exponential). Find the smallest index j such that d([pind(i−1)pl],C′) > ε

for l = ind(i− 1) + 2 j+1, j = 0,1,2 . . . For every index l, compute the distance
d([pind(i−1)pl],C′) orthogonally to the line segment [p1 pn] as in Definition 11.

Step 2e (binary). Search for the maximum ind(i) between ind(i−1)+2 j and ind(i−
1)+2 j+1 such that d([pind(i−1)pind(i)],C′)≤ ε by dividing the range in 2 halves.
Step 2f. The found indices ind(i) specify a polygonal path ε-approximating each
monotone subcloud from Step 2b. Combine all these paths into a full skeleton.
Step 2g. Any edges of a length more than β l(C) from Definition 5 are temporarily
removed from the skeleton. Each remaining connected component with only short
edges is collapsed to its center of mass. The resulting vertices are connected accord-
ing to the temporarily removed edges to get the Approximate Skeleton ASk(C).

8 Yury Elkin, Di Liu, Vitaliy Kurlin

For a cloud C ⊂ Rm, mark the endpoints of all monotone subpaths in core(C)
obtained by Algorithm 2. Consider all skeletons S ⊂ Rm that have fixed vertices at
the marked points of C such that any polygonal path between fixed vertices (say u,v)
is monotone under the orthogonal projection to the line segment [u,v].
The approximation problem for an error ε > 0 is to minimize the total number
of vertices in a straight-line graph S ⊂ Rm whose each monotone path should ε-
approximate the corresponding subcloud of C by the distance in Definition 11.

Theorem 8 Let k be the minimum number of vertices over all graphs ε-approximating
a given cloud C ⊂ Rm. Then ASk(C) lies in C2ε and has at most k vertices.

Theorem 8 estimates the number of vertices of ASk(C) when the geometric error
is 2ε . In practice, the tree core(C) has an initial approximation error for a given
cloud C, because many points of C may not be vertices of core(C)⊂MST(C).

We measure the initial error d(core(C),C) by Definition 11 and take the max-
imum of d([viv j],C) over monotone paths of core(C) computed in Algorithm 2.
Stage 2 approximates C by a graph simpler than core(C), but keeps the approxima-
tion error small. The error ε in Corollary 9 is γ×d(core(C),C), where γ is an error
factor that takes values in the interval [1.1,1.5] for the experiments in section 5.

Corollary 9 For any n points C ⊂ Rm and any error factor γ > 1, an Approximate
Skeleton ASk(C) ⊂ Rm within the γd(core(C),C)-offset of the cloud C (as in Defi-
nition 1) can be computed in time O(max{c6,c2

pc2
l)}c10n lognα(n)), where α(n) is

the inverse Ackermann function, the constants c,cp,cl are defined in Appendix A.

5 Comparisons of 5 algorithms on real and synthetic data

This section experimentally compares the Approximate Skeleton ASk(C) with those
four skeletonization algorithms from section 2 that have theoretical guarantees and
accept any cloud C of points: Mapper [24], Metric Graph Reconstruction MGR [1],
α-Reeb graphs [5] and most recent discrete Morse theory (DMT) algorithm [8].

The Mapper [24] is very flexible in the sense that its parameters might be manu-
ally tuned for given data over numerous clustering algorithms. Having tried several
possibilities, we have settled on the following choices from the original work [24].
1) Convert a cloud C into a connected neighborhood graph N(C) with Euclidean
edge-lengths by using a distance threshold. The filter function is the distance func-
tion in N(C) from a root that is the furthest point from a random point in C.
2) The image of the filter function is covered by 10 intervals with the 50% overlap
so that C splits into 10 subclouds when filter values are in one of the 10 intervals.
3) Each subcloud C′ is clustered by the single-linkage clustering with the threshold
τ×the average edge-length of MST(C′), where values of the factor τ are given in
Table 10. The final Mapper graph has a single node representing each cluster.

A fast approximate skeleton for any cloud 9

The authors of the DMT algorithm by T. Dey et al. [8] have kindly made
their code available at https://github.com/wangjiayuan007/graph recon DM. Start-
ing from an unorganized cloud of points, e.g. centers of molecules of a micelle, we
generated scalar values at nodes of a regular grid required for the DMT algorithm.
1) We subdivide the axis-aligned bounding box of a cloud C ⊂R3 into small boxes:
minimum 20 rectangular boxes (as close to cubic as possible) along each side.
2) The scalar values are found from the Kernel Density Estimate KDE(p) =
∑

q∈C
exp(−d(p,q)) at every grid node p. The computed values are passed to the DMT

with a parameter δ that regulates how small density values are replaced by 0.
The MGR algorithm has required much more efforts, because the original code

was lost as confirmed by the main author of [1]. Since the algorithm was well-
explained, we have implemented MGR ourselves and confirmed the earlier claim
that “it is often hard to find suitable parameters” [13, page 3]. Trying many values
of the key parameter r gave the zero success rate on the homeomorphism type.

Hence we have improved MGR by splitting this parameter into two: the first
r1 = 15 (values used in all experiments) was used for detecting vertex points, the
second r2 (three values 1,1.5,2 in Table 10 experiments) was used for clustering
points of different types. Only after using these different values, we have managed
to push the success rates of MGR closer to 50% on the homeomorphism type.

The α-Reeb graph has the essential parameter α whose values 20,25,30 were
tried in all experiments. ASk(C) has little dependence on the branching factor β ,
e.g. all values [20,50] produced almost identical results in Table 10 and Fig. 9.

Since three output graphs (Mapper, α-Reeb and MGR) are abstract, to compute
any geometric error of approximation, we map them to R3 by sending every node v
of G to the average point (center of mass) of the cluster (for Mapper and MGR) or
subgraph (for α-Reeb) corresponding to v. Each link between nodes is mapped as a
line segment between the corresponding points in R3.

Figures 5–8 show clouds and outputs of 5 algorithms. Since real micelles have
irregular shapes in R3, their 2D projections may contain intersections of edges.

Table 10 shows the average results of the three algorithms on the dataset of more
than 100 real micelles (clouds of about 300 molecules) whose endpoints and home-
omorphism types were manually detected. A homeomorphism is a 1-1 continuous
map with a continuous inverse, so a homeomorphism type is a stronger shape de-
scriptor than a homotopy type, which counts only linearly independent cycles.

The most important error measure for the tree reconstruction problem in sec-
tion 1 is the success rate for detecting a correct homeomorphism type. Indeed, an
incorrect graph can be perfect on other errors, e.g. MST(C) is extremely fast, has
the zero geometric error (for many distances between a cloud and a reconstructed
graph) and even has a correct homotopy type (no cycles) for any underlying tree T .

Hence the key results are in the middle column of Table 10 and the top right pic-
ture of Fig. 9. We included the success rate on the number of endpoints (degree 1

10 Yury Elkin, Di Liu, Vitaliy Kurlin

Fig. 5 1st: a cylindrical micelle with no branching vertices. 2nd: Mapper, 3rd: α-Reeb, 4th: MGR,
5th: DMT, 6th: new ASk(C).

Fig. 6 1st: a branched micelle with exactly one degree 3 vertex, 2nd: Mapper, 3rd: α-Reeb, 4th:
MGR, 5th: DMT, 6th: new ASk(C).

Fig. 7 1st: ‘Christmas tree’ micelle with several degree 3 vertices). 2nd: Mapper, 3rd: α-Reeb,
4th: MGR, 5th: DMT, 6th: new ASk(C). All intersections come only from planar projections.

vertices) as a weaker topological error. As MST(C) shows above, only if an algo-
rithm performs well on a topological reconstruction, it makes sense to evaluate the
performance on other measures such as geometric distances and time.

Table 10 shows that the Mapper, MGR and DMT essentially depend on their
parameters, because the success rates, run time and distance error significantly vary

A fast approximate skeleton for any cloud 11

Fig. 8 1st: a random point sample around an 8-star in R3, 2nd: Mapper, 3rd: α-Reeb, 4th: MGR,
5th: DMT, 6th: new ASk(C).

Table 10 Columns 3-4 contain success rates for detecting the correct number of endpoints and a
homeomorphism type of a graph over more than 100 real micelles. Column 5 contains the maxi-
mum Euclidean distance from points of a given cloud C to the reconstructed graph G⊂ R3.

algorithm parameters endpoints success homeomorphism success time, ms max distance from C

Mapper τ = 1.25 54.21% 54.21% 18 4.59
Mapper τ = 1.75 66.36% 66.36% 18 4.62
Mapper τ = 2.25 68.20% 68.20% 19 4.67

MGR r2 = 1 48.60% 45.79% 25010 5.95
MGR r2 = 1.5 40.19% 40.19% 17410 5.51
MGR r2 = 2 29.91% 29.91% 25480 3.46

α-Reeb α = 20 98.13% 98.13% 367 10.49
α-Reeb α = 25 97.20% 97.20% 375 12.50
α-Reeb α = 30 98.13% 98.13% 373 14.19

DMT δ = 0.1 48.60% 45.79% 6290 5.95
DMT δ = 0.2 40.19% 40.19% 6192 5.51
DMT δ = 0.3 29.91% 29.91% 6410 3.46

ASk(C) β = 20 98.13% 98.13% 42 5.16
ASk(C) β = 30 98.13% 98.13% 42 5.16
ASk(C) β = 40 97.20% 97.20% 42 5.31

when the parameters are only slightly changed. The α-Reeb and ASk were stable,
because Table 10 contains almost identical success rates for different parameters.

12 Yury Elkin, Di Liu, Vitaliy Kurlin

Fig. 9 For N = 3, . . . ,8, each dot represents the average over 100 noisy samples around a random
N-star graph in R3 and 3 parameters as in Table 10. Mapper: green and long-dashed, MGR: orange
and sparsely dotted, α-Reeb: red and densely dotted, DMT: olive and short-dashed, ASk(C): blue
and solid. Top left: the success rate in percentages for detecting a correct number of endpoints. Top
right: the success rate in percentages for detecting the homeomorphism type. Bottom left (loga-
rithmic scale): average run times in milliseconds. Bottom right: the max distance from a cloud C
to reconstructed graphs. The exact numbers are in the txt files in the supplementary materials.

Both algorithms achieved best results on the most important measure of the
homeomorphism success rate, though the top right picture in Fig. 9 highlights
ASk(C) and MGR as the best for homeomorphism. In comparison with α-Reeb
and MGR, the Approximate Skeleton ASk(C) is much faster and achieves similar
distance errors, see the relevant results in both Table 10 and Fig. 9.

In addition to the comparison on more than 100 micelles, we have tested the
algorithms on the much larger dataset of synthetic clouds generated as follows.
1) An N-star in R3 has one vertex at 0 ∈ R3 and straight edges of length 100 to N
endpointsin random directions with a minimum angle

π

4
between edges.

2) For N = 3, . . . ,8 and every of 100 random N-stars T , we found a minimum axis-
aligned box containing T , enlarged this box by the noise bound of 10%.
3) We uniformly chose a random point p in the resulting box and checked if p is at a
distance at most 10 (=10% of edge-lengths) from T . If successful, 500N such points
form a noisy sample of the ground truth N-star T ⊂ R3.

A fast approximate skeleton for any cloud 13

Fig. 9 shows 4 plots for the 4 error measures of 5 algorithms, which were av-
eraged over 3 values of essential parameters as in Table 10. The Mapper threshold
factor for single-edge clustering was τ ∈ {1.25,1.75,2.25}. The α-Reeb scale was
α ∈ {20,25,30}. The branching factor of ASk(C) was β ∈ {20,30,40}.

For the correct number of endpoints, the new skeleton ASk(C) achieves 100%
results on the synthetic clouds, because Definition 5 provides a very stable concept
of a deep vertex not critically depending on a branching factor β . For the homeo-
morphism type, the minimum success of ASk(C) is 96%, because all short branches
of MST(C) are removed to get core(C) homeomorphic to an underlying tree.

For the random point sample of the 8-star graph in Fig. 8, the 2nd, 3rd and 5th
graphs have several branched vertices instead of one. The 5th graph has several
zigzags, which would be straightened in core(C). The 4th graph has a triangular
cycle because of incorrectly detected overlaps of clusters corresponding to vertices.

6 Conclusions and a discussion of the Approximate Skeleton

Though the current implementation was tested in R3, all steps and results work in
any Rm. Here is the summary of the key contributions to data skeletonization.
• The detection of deep (branched) vertices in Definition 5 uses a global structure of
longest paths within MST(C), hence is more stable under a change of parameters.

• To improve the Metric Graph Reconstruction by M. Aanjaneya et al. [1], we have
split one parameter r (used for detecting vertex points and also for clustering later)
into two separate parameters (with default values) r1 = 15, r2 ∈ [1,2], which led to
more successful (20-40% rates instead of 0%) reconstructions in Table 10.

• Theorem 8 proves the first size guarantees (on a small number of vertices) for the
Approximate Skeleton ASk(C), while all past methods from section 2 considered
topological (mostly homotopy type) or metric properties of reconstructed graphs.

• Corollary 9 says that the Approximate Skeleton ASk(C) can be quickly computed
within a given error as required in the Tree Reconstruction Problem from section 1.

Because of the page limit the last author couldn’t include one more result on
ASk(C) with realistic conditions on an underlying tree T ⊂Rm and its noisy sample
C to guarantee that MST(C) and ASk(C) are homeomorphic to T . This is the first
advance after Giesen’s guarantees for shortest paths through sample points [14] in
1999. The C++ code of ASk(C) is at https://github.com/YuryUoL/AsKAlgorithm.

In comparison with the past methods in section 2, ASk(C) starts from the most
challenging input (an unorganized cloud of points C ⊂ Rm without any extra struc-
ture such a metric graph or a regular grid or a mesh), outputs an embedded graph
in Rm and provides two guarantees: combinatorial in Theorem 8 and geometric in
Corollary 9 and topological. Appendix A has all missed proofs. Appendix B in-
cludes more experiments. We thank all reviewers for their helpful suggestions.

14 Yury Elkin, Di Liu, Vitaliy Kurlin

References

1. Aanjaneya, M., Chazal, F., Chen, D., Glisse, M., Guibas, L., Morozov, D.: Metric graph re-
construction from noisy data. Int. J. Comp. Geometry Appl. 22, 305–325 (2012)

2. Agarwal, P., Har-Peled, S., Mustafa, N., Wang, Y.: Near-linear time approximation algorithms
for curve simplification. Algorithmica 42(3-4), 203–219 (2005)

3. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Proceedings
of ICML, pp. 97–104 (2006)

4. Carriere, M., Oudot, S.: Structure and stability of the one-dimensional mapper. Foundations
of Computational Mathematics pp. 1–64 (2017)

5. Chazal, F., Huang, R., Sun, J.: Gromov-hausdorff approximation of filament structure using
reeb-type graph. Discrete Computational Geometry 53, 621–649 (2015)

6. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital
images using discrete morse theory. Trans. PAMI 37(3), 654–666 (2015)

7. Dey, T.K., Wang, J., Wang, Y.: Improved road network reconstruction using discrete morse
theory. In: Proceedings of the 25th ACM SIGSPATIAL, p. 58 (2017)

8. Dey, T.K., Wang, J., Wang, Y.: Graph reconstruction by discrete morse theory.
arXiv:1803.05093 (2018)

9. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973)

10. Forsythe, J., Kurlin, V.: Convex constrained meshes for superpixel segmentations of images.
Journal of Electronic Imaging 26(6)(061609) (2017)

11. Forsythe, J., Kurlin, V., Fitzgibbon, A.: Resolution-independent superpixels based on convex
constrained meshes without small angles. In: LNCS, Proceedings of ISVC 2016, vol. 10072,
pp. 223–233 (2016)

12. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network optimization
algorithms. Journal of the ACM 34(3), 596–615 (1987)

13. Ge, X., Safa, I., Belkin, M., Wang, Y.: Data skeletonization via reeb graphs. In: Proceedings
of Neural Information Processing Systems, pp. 837–845 (2011)

14. Giesen, J.: Curve reconstruction, the traveling salesman problem and menger’s theorem on
length. In: Proceedings of SoCG, pp. 207–216 (1999)

15. Gorban, A., Zinovyev, A.: Principal graphs and manifolds. In: Handbook of Research on
Machine Learning Applications and Trends, pp. 28–59 (2009)

16. Kalisnik, S., Kurlin, V., Lesnik, D.: A higher-dimensional homologically persistent skeleton.
Advances in Applied Mathematics 102, 113–142 (2019)

17. Kégl, B., Krzyzak, A.: Piecewise linear skeletonization using principal curves. Trans. Pattern
Analysis Machine Intelligence 24, 59–74 (2002)

18. Kurlin, V.: A homologically persistent skeleton is a fast and robust descriptor of interest points
in 2d images. In: Proceedings of CAIP, vol. 9256, pp. 606–617 (2015)

19. Kurlin, V.: A one-dimensional homologically persistent skeleton of an unstructured point
cloud in any metric space. Computer Graphics Forum 34(5), 253–262 (2015)

20. Kurlin, V., Harvey, D.: Superpixels optimized by color and shape 10746, 297–311 (2018)
21. Kurlin, V., Muszynski, G.: Persistence-based resolution-independent meshes of superpixels.

Pattern Recognition Letters pp. 300–306 (2020)
22. March, W., Ram, P., Gray, A.: Fast euclidean minimum spanning tree: algorithm, analysis, and

applications. In: Proceedings of SIGKDD, pp. 603–612 (2010)
23. Shin, H., Kim, D.S.: Optimal direction for monotone chain decomposition. In: International

Conference on Computational Science and Its Applications, pp. 583–591 (2004)
24. Singh, G., Memoli, F., Carlsson, G.: Topological methods for the analysis of high dimensional

data and 3d object recognition. In: Symp. Point-Based Graphics, pp. 91–100 (2007)
25. Singh, R., Cherkassky, V., Papanikolopoulos, N.: Self-organizing maps for the skeletonization

of sparse shapes. IEEE Tran. Neural Networks 11, 241–248 (2000)
26. Wang, S., Wang, Y., Li, Y.: Efficient map reconstruction and augmentation via topological

methods. In: Proceedings of the 23rd SIGSPATIAL, p. 25 (2015)
27. Wu, S.T., da Silva, A., Márquez, M.: The Douglas-Peucker algorithm: sufficiency conditions

for non-self-intersections. J. Brazilian Computer Society 9(3), 67–84 (2004)

A fast approximate skeleton for any cloud 15

7 Appendix A: proofs of all the statements from section 4

The proof of Corollary 9 below uses Algorithm 1 for depths of vertices in MST(C)
from Definition 5. The depth is trivial (equal to 0) for any degree 1 vertex. For any
other vertex v, the depth can be recursively computed from lengths of edges at v
and depths of neighbors of v. Imagine a water flow simultaneously starting from all
degree 1 vertices of MST(C) and moving towards internal vertices inside MST(C).
At every vertex v of degree k ≥ 3, the flow waits until v is reached from k− 1
directions (edges at v), then the flow moves further in the remaining k-th direction.

Definition 11 introduces a new distance between a cloud C⊂Rm and a polygonal
line. Recall that d is the Euclidean distance in Rm. We assume that the points C =
〈p1, . . . , pn〉 ⊂ Rm are ordered by their orthogonal projections to the line [p1 pn].

Definition 11 For 1 ≤ i < s < j ≤ n, let H(ps) ⊂ Rm be the hyperspace that
is orthogonal to [p1 pn] and passes through ps. The distance between ps and
[pi p j] is measured orthogonally to [p1 pn] as d(ps, [pi p j]) = d(ps,H(ps)∩ [pi p j]),
see Fig. 10. Consider the distance d([pi p j],C) = max

i<s< j
d(ps,H(ps)∩ [pi p j]). For

1 ≤ ind(1) < · · · < ind(k) ≤ n, the distance between C and the polygonal line
P = 〈pind(1), . . . , pind(k)〉 is defined as d(P,C) = max

2≤i≤k
d([pind(i−1),ind(i)],C).

Input: the initial tree T = MST(C)
Initialize Minimal Binary Heap H of (vertex,depth)
For all deg 1 vertices v ∈ T , add (v,0) to H;
while H is not empty do

(v,d) = H.pop(); // take the vertex v of a min depth
set u = the only neighbor of v in T ;
dnew = d + edge-length of (u,v);
Remove the edge uv from T , but keep u,v ∈ T ;
Add (v,dnew) to front of the list Neighbors(u);
if deg(u) = 0 in T then

Set f lag[u] = true;
else if deg(v) = 1 then

Add the pair (u,dnew) to the heap H
end if

end while
Initialize a vector[] depths; // a future output
for all deg(v)> 2 vertices v ∈MST(C) do

if f lag[v] = true then
Set depths[v] = 3rd element of Neighbors(v);

else
Set depths[v] = 2nd element of Neighbors(v);

end if
end for

Algorithm 1: Computing depths of vertices from Definition 5 in Step 1c by ‘si-
multaneous flows’ moving from endpoints.

16 Yury Elkin, Di Liu, Vitaliy Kurlin

Fig. 10 The distance from pm to [pi p j] in Definition 11 is measured orthogonally to [p1 pn].

Lemma 12 below justifies the steps of Stage 2 in section 4, which outputs the
Approximate Skeleton ASk(C) starting from core(C) obtained in Stage 1 at the end
of section 3.

Lemma 12 Let C = 〈p1, . . . , pn〉 be points ordered according to their orthogonal
projections to [p1, pn]. For ε > 0, one can find indices 1= ind(1)< · · ·< ind(m) = n
in time O(n logn) so that the estimates below for the distances in Definition 11 hold:

(a) d([pind(i−1)pk],C)≤ ε for ind(i−1)< k ≤ ind(i),
(b) d([pind(i−1)pind(i)+1],C)> ε for any 1 < i < m .

The following lemma is needed for Theorem 8 and is conveniently illustrated in
Fig. 10 below. Recall that the distances from Definition 11 are computed orthogo-
nally to the straight segment [p1, pn] passing through the endpoints of a monotone
point cloud C.

Lemma 13 Let C = 〈p1, . . . , pn〉 be points ordered according to their orthogonal
projections to [p1 pn]. Then d([pk pl],C)≤ 2d([pi p j],C) for any indices i≤ k < l≤ j.

Proof. For any k < m < l, let H(pm) ⊂ Rm be the hyperspace that is orthogonal to
[p1 pn] and passes through pm. Consider the intersection points qm = H(pm)∩ [pi p j]
and rm = H(pm)∩ [pk pl]. Let ε = d([pi p j],C), then d(pm,qm) = d(pm, [pi p j]) ≤
ε . Since the points pk and pl are ε-close to the segment [pi p j], the intermediate
point rm ∈ [pk pl] is also ε-close to [pi p j], i.e. d(rm,qm) = d(rm, [pi p j]) ≤ ε . The
triangle inequality implies that d(pm,rm)≤ d(pm,qm)+d(qm,rm)≤ 2ε . Taking the
maximum over k < m < l, we get d([pk pl],C)≤ 2ε . ut

Proof of Lemma 12. Assuming that indices 1= ind(1)< · · ·< ind(i−1) were found,
we search for the next index ind(i) as follows. Search exponentially by trying indices
k = ind(i−1)+2 j for j = 0,1, . . . while d([pind(i−1)pk],C)≤ ε .

Each evaluation of the distance d([pind(i−1)pk],C) requires O(k− ind(i−1)) time,
because we need to compare k− ind(i− 1)− 1 distances to [pind(i−1)pk] (orthogo-
nally to [p1 pn]) from every point of C between pind(i−1) and pk.

A fast approximate skeleton for any cloud 17

Input: unordered set of points s and line l
Output: Sequence of vertices that form monotone paths k and t containing ordering of points s.
Define t to be ordering of s obtained from projecting s to l orthogonaly.
Define q to be the map from points s to their indices in t.
Define k to be queue and add first point of s to k.
Define a to be the first point of s.
while Point a is not the last point of t do

Let point b be the next point from a in ordering t
while Point b is not the last point of t and k[a]< k[b] do

Set a to be b.
Set b to be the next point from b in ordering t.

end while
Add b to k.
if b is the last point in ordering t then

Exit the program.
end if
while Point b is not the last point of t and k[b]< k[a] do

Set a to be b.
Set b to be the next point from b in ordering t.

end while
Add b to k.

end while
Algorithm 2: monotone subclouds of C. For each point p in a given cloud C⊂Rm,
find approximately its closest edge of core(C). Then any edge e⊂ core(C) has the
edge-cloud C(e) ⊂C of points that are closer to e than to other edges of core(C).
For every polygonal path v1, . . . ,vk between non-trivial vertices v1,vk ∈ core(C)
define cloud Y =∪k−1

i=1 C((vi,vi+1)) and straight line L spanned by points v1 and vk.
Run the algorithm above with parameters (Y,L).

After finding k= ind(i−1)+2 j and l = ind(i−1)+2 j+1 such that d([pind(i−1)pk],C)≤
ε and d([pind(i−1)pl],C) > ε , we start a binary search for ind(i) in the range [k, l)
each time choosing one half of the current range until both conditions (a)-(b) hold.

Finding the next index ind(i) requires O(logn) computations for the distance
d([pk pl],C), where l− k ≤ ind(i)− ind(i− 1), hence O((ind(i)− ind(i− 1)) logn)
time overall. Taking the sum over all i = 2, . . . ,m, the total time is O(n logn). ut

Proof of Theorem 8. Since endpoints of all monotone polygonal paths of core(C)
are fixed in minimization problem before Theorem 8, we separately consider every
corresponding monotone subcloud C′ of points (say) p1, . . . , pn ordered by their
orthogonal projections to the line through the line segment [p1 pn]. Let 1 = opt(1)<
· · ·< opt(k) = n be indices of an optimal ε-approximation (polygonal path) Q to C′.
In the notations of Lemma 12 for the approximation error 2ε we will prove below
that opt(i) ≤ ind(i) by induction on i. Then n = opt(k) ≤ ind(k) and the size m of
the list 1 = ind(1)< · · ·< ind(m) = n, which is found in Lemma 12, is at most k as
required. Taking the sum of upper bounds over all monotone paths of core(C), we
conclude that the 2ε-Approximate Skeleton ASk(C) has the total number of vertices
not greater than that that number for an ε-optimal skeleton S.

18 Yury Elkin, Di Liu, Vitaliy Kurlin

The base i = 1 means that opt(1) = 1 = ind(1), i.e. both paths start from the
point p1. In the inductive step assume that opt(i− 1) ≤ ind(i− 1). If opt(i) ≤
ind(i− 1), then opt(i) ≤ ind(i) and the inductive step is complete. The remain-
ing case is ind(i− 1) < opt(i). Since Q is an ε-approximation to C′, we have
d([popt(i−1)popt(i)],C) ≤ ε . Lemma 13 implies that d([pind(i−1)pl],C) ≤ 2ε for any
index l such that ind(i− 1) < l ≤ opt(i). Lemma 12(b) for the approximation 2ε

says that d([pind(i−1)pind(i)+1],C)> 2ε , hence opt(i)≤ ind(i). ut

Definition 14 (expanion constants) Let C ⊂ Rm be a cloud and B̄(p;r) = {q ∈
Rm | d(p,q) ≤ r} be the closed ball with the center p and radius r. The expansion
constant ce is the smallest real number c≥ 2 such that ∀x : |B̄(x,2r)|< c|B̄(x,r)|. Let
cs be the similarly defined constant for the metric space of line segments of MST(C),
then set c = max{ce,cs}. Other constants cp,cl are similarly defined in [3].

Proof of Corollary 9. The distance from Definition 11 measured orthogonally to
the straight line through fixed endpoints [p1 pn] is not smaller than the Hausdorff
distance used for ε-offsets in Definition 1. Hence the algorithm from Lemma 12
produces required ε-approximations in the sense of Definition 1. The current im-
plementation uses the single-edge clustering based on MST(C), so Step 1a runs
in O(n) time. The total time is dominated by Step 1b computing MST(C) in time
O(max{c6

e ,c
2
pc2

l)}c10
e n lognα(n)), where α(n) is the inverse Ackermann function.

Algorithm 1 in Step 1c has the pseudo-code above and maintains a binary tree on
O(n) vertices, which requires O(n logn) time. Selecting deep vertices in Step 1d and
finding longest paths in Step 1e within subtrees of MST(C) needs O(n logn) time by
classical algorithms [12]. Step 2a to split C into subclouds is implemented by cover
trees for line segments of core(C)⊂MST(C) in time O(c16

s n logn) as proved in [3].
By Lemma 12 Steps 2b-2g for approximating any subcloud of ni points by a polyg-
onal path runs in O(ni logni) time. Hence the total time at Stage 2 for computing
ASk(C) over the cloud C of n points is O(max{c6,c2

pc2
l)}c10n lognα(n)). ut

8 Appendix B: more qualitative comparisons of 3 algorithms

Fig. 12–15 show example outputs of 3 algorithms on real and randomly generated
clouds in R3. In almost all cases the Mapper and α-Reeb graphs contain superfluous
short edges, which affect the homeomorphism types.

The error factor γ from Corollary 9 affects the quality of approximation. Fig. 11
shows that higher values of γ lead to more straightened curves.

A fast approximate skeleton for any cloud 19

Fig. 11 Left: ASk(C) for the branching factor γ = 1.2. Middle: γ = 1.4, Right: γ = 1.6.

Fig. 12 1st: a sample around a 4-star in R3, 2nd: Mapper, 3rd: α-Reeb, 4th: ASk(C).

Fig. 13 1st: a sample around a 5-star in R3, 2nd: Mapper, 3rd: α-Reeb, 4th: ASk(C).

Fig. 14 1st: a sample around a 6-star in R3, 2nd: Mapper, 3rd: α-Reeb, 4th: ASk(C).

Fig. 15 1st: a sample around a 7-star in R3, 2nd: Mapper, 3rd: α-Reeb, 4th: ASk(C).

Fig. 16 Explaining 1.87% failures of ASk(C) in Table 10: two micelles C with short edges.

