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Abstract
The lubrication of hydrodynamic journal bearings using shear thinning fluids is investigated analytically by comparing
three different constitutive models. Whilst journal bearings have been in use for a long time, they are still fundamental
components of the most advanced mechanical systems, and will remain so for a long time to come. In particular,
the modified Reynolds equations for the power-law (Ostwald-de Waele), the Carreau and the Cross models were
derived based on the perturbation method. The three models were used to calculate the pressure distribution and
the load carrying capacity, and their results were compared and discussed. It is shown that at high shear rates (i.e.,
high shaft speeds) the Carreau and Cross models, which better describe the rheology of shear-thinning fluids, yield
higher magnitudes of the pressure than the power-law model, while at low shear rates the three models are in better
agreement.
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Introduction

Journal bearings have been used for hundreds of years,
since early engineering applications in mills and printing
presses (1). Nowadays journal bearings are still used in
many advanced applications such as turbomachinery, aircraft
engines, machine tools and automotive applications (2).
The shaft supporting system is very important for the
performance of industrial rotary machines. Hydrodynamic
bearings are able to carry the load under severe conditions,
providing stabilizing support for the rotating shaft when
subjected to unexpected dynamic forces. In addition, slider
bearings have a very long service life (3). The operating
conditions of journal bearings are often extreme; for
instance, in cars journal bearings operate under the varying
load conditions of the crankshaft and the high temperature
of the engine for thousands of miles. While all applications
require maximum durability and efficiency, in critical
applications such as power plants the journal bearings of
steam turbines must have 100 percent reliability (4).

Currently, hydrodynamic bearings are exposed to severe
operational conditions such as heavy load and high speeds,
leading to increasing temperatures of the lubricating film
as a result of viscous friction. It is well known that the
rise in lubricant temperature leads to decreased viscosity,
thus it is necessary to improve the lubricants viscosity
index by adding high-molecular weight polymers to prevent
viscosity change with temperature. These additives make
the lubricant behave as non-Newtonian shear-thinning fluids
(5). Similarly, non-Newtonian behavior is also observed
in lubricants laden with dirt particles and debris (6). The
original Reynolds equation, which describes the pressure
distribution in the lubricating film, assumes the lubricant
is a Newtonian fluid, therefore it cannot be used when the
lubricant exhibits non-Newtonian characteristics (4). Whilst

the equation could be coupled with one of the shear-thinning
constitutive models updating at each step the viscosity
distribution in the journal bearing gap, this approach is
computationally expensive and, depending on the fluid
constitutive equation, convergence may be very slow or
even show stability issues. Consequently, it is preferable
to derive a modified Reynolds equation for non-Newtonian
lubricants. Non-Newtonian lubricants are represented by a
variety of constitutive models, some of which consist of
purely empirical relationships obtained by data fitting, while
others are derived from some theoretical basis (7). The
simplest type of non-Newtonian flow behaviour occurs when
the viscosity coefficient is a monomial function of the shear
velocity gradient (power law, or Ostwald-De Waele model):

η = Kγ̇n−1 (1)

where the consistency coefficient, K, and the power-
law index, n, are empirical constants. The power-law
index is indicative of the shear-thinning (n < 1) or shear-
thickening (n > 1) behaviour of the fluid, whereas for n =
1 the Newtonian behaviour is retrieved. The consistency
coefficient K represents the fluid viscosity when the shear
rate, γ̇, is low, and it is equal to Newtonian viscosity
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for (n = 1) (8). Many lubricants such as silicone and
polymer solutions can be modelled by a power law (9).
The Ostwald-De Waele equation implies that viscosity will
change indefinitely for any values of the shear rate. In other
words, in the case of shear-thinning fluid (n < 1) viscosity
tends to grow unlimited for (γ̇ → 0), and to vanish for (γ̇ →
∞); in these limits, the power law model fails to describe the
behaviour of real fluids accurately. When the fluid behavior
has a significant deviation at high and low shear strain from
power law model, it is necessary to take into account the
viscosities at very low and very high shear strain, such as
in the Cross model (10):

η − η∞
ηo − η∞

=
1

[1 + (λγ̇)2]
1−n
2

(2)

and the Bird-Carreau-Yasuda model (11; 12; 13; 14), which
was initially developed to describe shear-thinning observed
in many viscoelastic (i.e. time-dependent) flows:

η − η∞
ηo − η∞

=
1

[1 + (λγ̇)2]n
(3)

where ηo is the viscosity at low shear rate, η∞ is the viscosity
at high shear rate, n is a fitting parameter with a default value
n = 2, and λ is equal to the Cross time constant. The Carreau
model is more realistic as it takes into account the viscosity
at minimum and maximum strain rate, while in power law
equation the viscosity can change for any value of strain rate
(8); , when λ = 0 then the Newtonian behavior is retrieved, if
(η >> η∞) and (η << ηo), then Eq. (3) is reduced to power
law model. (7).

In this paper, the derivation of modified Reynolds equation
obtained for the simple power law model is revisited and
extended for the Carreau-Yasuda and the Cross models.
Then, the modified Reynolds equation for the three models
is solved to obtain the pressure distribution and the load
carrying capacity for a model journal bearing.

Problem formulation
In this section the derivation of modified Reynolds equation
for power law fluids is reviewed, then the derivation is
extended for Carreau and Cross models. The journal bearing
layout is shown in Fig. (1), where y is the axis along the film
thickness, z is the coordinate across the film, r is the journal
bearings bore radius, and (x = rθ) is the circumferential
direction.

The velocities in the x and y directions are u and v
respectively. The local film thickness, h, is a function of the
angle, θ, and it can be found from (15):

h(θ) = c(1− ε cosθ) (4)

where c is the mean film thickness (i.e. the radial clearance
between the shaft and the journal bearing), and ε is the
eccentricity ratio, which is the ratio between the shaft
eccentricity e and the mean film thickness c.

Modified Reynolds equation for Power Law
fluids
Dien and Elrod (16) derived a modified Reynolds equation
for lubrication with non-Newtonian power law fluids in
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Figure 1. Journal bearing layout

journal bearings by using regular perturbation method
to express the velocity field and pressure. They used a
simplified momentum equation, which is applicable for
laminar flow neglecting the inertial force of the fluid. In
the lubrication theory the velocity derivative components are
responsible for all the shear deformation of the fluid, so that
the linear momentum conservation equations can be written
as:

∂

∂z
η
∂u

∂z
=
∂p

∂x
(5)

∂

∂z
η
∂v

∂z
=
∂p

∂y
(6)

where p is the pressure. In generalized Newtonian flows,
which include the shear-thinning behaviour, viscosity is
dependent only on the second invariant of strain rate tensor
(8). Then, the constitutive equation writes:

η = η(I) (7)

where the second invariant of strain tensor, I , is given by:

I =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

(8)

In Newtonian fluids, velocities and their derivatives
changes linearly with pressure gradient, while in non-
Newtonian fluids it assumed that the strain rate is generated
by surface velocity. Thus this approximation is more accurate
for Couette-dominated non-Newtonian fluids. The pressure
gradient is expressed as follow:

∇p = δ∇p̄ (9)

where δ is small non-dimensional amplitude and p̄ is
the reference pressure used for expansion. By using regular
perturbation, the dependent variables can be expanded in the
terms of δ . The expansion needs to be accurate to first order,
then (δ2 = 0), then the velocity terms are as follows:

u = uo + δu1 (10)

v = vo + δv1 (11)
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where uo and vo are the zero-order velocities in x and y
directions respectively, while u1 and v1 are the first-order
velocities in x and y directions respectively.

By substituting Eq.(10) and Eq.(11) into Eq.(8) the second
invariant can be rewritten as:

I = Io + δI1 (12)

where Io and I1 are zero-order and first-order strain
tensors respectively. Replacing Eq.(12) in Eq.(7), and using
the Taylor series expansion up to first order, viscosity can be
written as:

η = η(Io + δI1 + ....) = η(Io) + δ

(
∂η

∂I

)
I=Io

I1 (13)

where:

η̄o = η(Io), η̄1 =

(
∂η

∂I

)
I=Io

I1 (14)

where η̄o and η̄1 are the zero-order shear rate and first-
order shear rate viscosities respectively. The zero-order
differential equations are found by substituting the zero-
order terms from Eq.(10) and Eq.(11) into Eq.(5) and Eq.(6)
then:

∂

∂z
η̄o
∂uo
∂z

= 0 (15)

∂

∂z
η̄o
∂vo
∂z

= 0 (16)

Integrating the zero-order equations result:

η̄o
∂u0

∂z
= C1 (17)

η̄o
∂v0

∂z
= B1 (18)

whereC1 andB1 are arbitrary integral constants. Squaring
Eq.(17) and Eq.(18), then adding them together yields:

η̄o
2

[(∂uo
∂z

)2
+
(∂v0

∂z

)2]
= η̄oIo = C1 +B1 (19)

As η̄0 is dependent only on Io, then it concluded from
Eq.(19) that η̄o and Io are constants. To find the zero-order
velocities, the equations Eq.(17) and (18) are integrated
and the following boundary conditions for journal bearing
velocities are applied (16):

u = 0 at z = 0 , u = U at z = h (20)
v = 0 at z = 0 , v = V at z = h

where U and V are the surface velocities in x and y
directions respectively. Then the zero-order velocities are
found:

uo = U
z

h
(21)

vo = V
z

h
(22)

To find the first order-velocities, the viscosity Eq.(13)
and the velocities Eq.(10) and Eq.(11) up to the first-order
replaced into Eq.(5) and Eq.(6):

∂

∂z
η̄o
∂u1

∂z
+

∂

∂z
η̄1
∂uo
∂z

=
∂p̄

∂x
(23)

∂

∂z
η̄o
∂v1

∂z
+

∂

∂z
η̄1
∂vo
∂z

=
∂p̄

∂y
(24)

Replacing Eq.(21) and Eq.(22) into Eq.(23) and Eq.(24)
results:

∂2u1

∂z2
=

1

η̄o

∂p̄

∂x
− U

h

(
U

h

∂p̄

∂x
+
V

h

∂p̄

∂y

)
2∂η∂I

η̄o2
(
1 + ∂ ln η

∂ ln(I
1
2 )

)
(25)

∂2v1

∂z2
=

1

η̄o

∂p̄

∂y
− V

h

(
U

h

∂p̄

∂x
+
V

h

∂p̄

∂y

)
2∂η∂I

η̄o2
(
1 + ∂ ln η

∂ ln(I
1
2 )

)
(26)

Integrating Eq.(25) and Eq.(26) twice and applying the
boundary conditions, the first-order velocities are found as
follow:

u1 =
z(z − h)

2

∂2u1

∂z2
(27)

and

v1 =
z(z − h)

2

∂2v1

∂z2
(28)

The velocities u and v are found by substituting zero-order
velocities Eq.(21) and Eq.(22), and first-order velocities
Eq.(27) and Eq.(28) into Eq.(10) and Eq.(11). To find the
mass flux, ṁ, the velocities are integrated as follow :

ṁx =

∫ h

0

ρ

(
U
z

h
+ δ

(z2 − zh)

2

∂2u1

∂z2

)
.dz (29)

similarly, for y-direction:

ṁy =

∫ h

0

ρ

(
V
z

h
+ δ

(z2 − zh)

2

∂2v1

∂z2

)
.dz (30)

where ρ is the fluids’ density while ṁx and ṁy are the
mass flux in x and y directions respectively. Replacing ∂2u1

∂z2

and ∂2v1
∂z2 by using Eq.(25) and (26), then adding the mass

flux in both directions, the total mass flux is found:

ṁ =
ρUh

2
+
ρV h

2
− δ
(
ρh3

12η̄o

)
[(

∂p̄

∂x
− U

h

(
U

h

∂p̄

∂x
+
V

h

∂p̄

∂y

)
2∂η∂I(

η̄o + 2∂η∂I Io
))

+

(
∂p̄

∂y
− V

h

(
U

h

∂p̄

∂x
+
V

h

∂p̄

∂y

)
2∂η∂I(

η̄o + 2∂η∂I Io
))] (31)
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By using the following vector expressions:

S = U + V (32)

and

ŝ =
U + V√
U2 + V 2

(33)

where ŝ is direction vector for the velocity and S is
the surface velocity magnitude Eq.(31) is simplified to the
following form:

ṁ =
ρSh

2
− ρh3

12η̄o

[
∇p− ŝ

(
ŝ.∇p)

(
1

1 + ∂ ln I1/2

∂ ln η

)]
(34)

The term ∂ ln I1/2

∂ ln η in Eq.(34) represents the slope of the flow
curve, viscosity as a function of the shear rate, when plotted
in logarithmic scale. This term is convenient for power law
fluids. As the line has obvious slope as shown in Fig.(2),
but for Carreau and Cross models the relationship between
(log I vs. log η) cannot be represented by this term as the
curve has two plateaus as shown in Fig. (2). So, for the two
latter models this term must be replaced in order to take
into account the viscosities at both lower and higher extreme
viscosities limits.
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Figure 2. Log(η) vs. log (γ̇) for (10W50) oil modelled by: Power
law., Carreau and Cross.

For power-law fluids, this term can be easily calculated as:

∂ ln I
1
2

∂ ln η
=

1

n− 1
(35)

Replacing Eq.(35) into Eq.(34), the mass flux in x-
direction is found as:

∂ṁ

∂x
=

∂

∂x

ρUh

2
− ∂

∂x

(
ρh3

12η̄o

)
1

n

∂p

∂x
(36)

and in y-direction, setting (V = 0) since the journal
bearing rotates in circumferential direction only:

∂ṁ

∂y
= − ∂

∂y

(
ρh3

12η̄o

)
∂p

∂y
= 0 (37)

By equating the total mass flux (in the x and in the
y direction) to zero, the modified Reynolds equation for
lubrication of journal bearings with power law fluids is
obtained:

∂

∂x

[
ρh3

12η̄o

1

n

∂p

∂x

]
+

∂

∂y

[
ρh3

12η̄o

∂p

∂y

]
=

∂

∂x

(
ρUh

2

)
(38)

The η̄o is a function of Io, taking into account that the
velocity in y-direction is equal to zero, then from Eq.(1) and
Eq.(21):

η̄o = K

(
U

h

)n−1

(39)

Substituting Eq.(39) into Eq.(38) assuming constant
density, and replacing x = rθ, the modified Reynolds
equation for power law fluids can be written as:

1

r2

∂

∂θ

[
h2+n

n

∂p

∂θ

]
+

∂

∂y

[
h2+n ∂p

∂y

]
=

6KUn

r

∂h

∂x
(40)

Modified Reynolds equation for Carreau and
Cross models
For the Carreau and the Cross models, a modification in
Eq.(34) is done by using the identities (d ln I

1
2 = dI

2I ) and
(d ln η = dη

η ), resulting:

ṁ =
ρSh

2
− ρh3

12η̄o

[
∇p− ŝ

(
ŝ.∇p)

(
2∂η∂I

η̄o
Io

+ 2∂η∂I

)]
(41)

By equating the total mass flux (in the x and the y
direction) to zero:

∂ṁx

∂x
+
∂ṁy

∂y
= 0 (42)

From Eq.(41), one obtains in the x direction:

∂ṁ

∂x
=

∂

∂x

ρUh

2
− ∂

∂x

(
ρh3

12η̄o

)
1

n

∂p

∂x
(43)

and in the y-direction:

∂ṁ

∂y
=

∂

∂y

ρV h

2
− ∂

∂y

(
ρh3

12η̄o

)
∂p

∂y
(44)

Substituting Eq.(43) and Eq.(44) into Eq.(42), and
replacing (x = rθ) and (V = 0) ,the modified Reynolds
equation for the Carreau and the Cross models can be
obtained as:

1

r2

∂

∂θ

[
h3

12η

∂p

∂θ

]
+

∂

∂y

[
h3

12η̄o

∂p

∂y

]
=
U

2r

∂h

∂θ
(45)

where η and η̄o are the viscosity and the zero-order shear rate
viscosity, respectively, defined as follows:

η̄o = η(I)I=Io (46)
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η = η̄o + 2Io

(
∂η

∂I

)
I=Io

(47)

For the Carreau model (Eq. 3), viscosity can be expressed
as:

η = η∞ + (ηo − η∞)(1 + λ2γ̇2)
n−1
2 (48)

Since γ̇2 = I
1
2 , and the zero-order velocities are found in

Eq.(21) and Eq.(22), substituting these velocities into Eq.(8),
and setting the velocity in y-direction equal to zero yields:

I
1
2
o =

U

h
(49)

Then, for the Carreau model η̄o and η can be found by
substituting Eq. (49) into Eq.(48) and using Eq.(46) and
Eq.(47) yields:

η̄o = η∞ + (ηo − η∞)

[
1 +

(
λ
U

h

)2]n−1
2

(50)

η = η∞ + (ηo − η∞)

[
1 + λ2 U

h

]n−1
2

+

2
U

h
λ2

(
n− 1

2

)
(ηo − η∞)

[
1 + λ2U

h

]n−3
2

(51)

By substituting Eq.(50) and Eq.(51) into Eq.(45), the
modified Reynolds equation for the Carreau model can be
obtained. Finally, for the Cross model the viscosity in Eq.(2)
can be expressed as:

η = η∞ + (ηo − η∞)
[
1 +

(
λγ̇
)n]−1

(52)

Then,

η̄o = η∞ + (ηo − η∞)

[
1 +

(
λ
U

h

)n]−1

(53)

η = η∞ + (ηo − η∞)

[
1 +

(
λ
U

h

)n]−1

+

2
U

h

(η∞ − ηo)
2

nλn (Uh )
n−2
2[

1 + λn(Uh )
n
2

]2 (54)

The modified Reynolds equation for the Cross model is
obtained by substituting Eq.(53) and Eq.(54) into Eq.(45).

Results and discussion
The full modified Reynolds equation was solved numerically
using the finite difference method (FDM), where the
differential terms in the Reynolds equation were replaced by
linear approximations of the function values at grid nodes on
the bearing surface. The Reynolds boundary conditions for
cavitation were used to obtain the equation solution, which
states that(15):

p = 0 at θ = 0 (55)

p = 0,
∂p

∂θ
= 0 at θ = θ∗

p = 0 at y = 0, L

where, L, is the journal bearings length and, θ∗, is the
angle when the pressure starts to be negative.

The pressure is positive in the region (0 < θ < θ∗) and
zero in (θ∗ < θ < 2π). The θ∗ can be found by iteration.
In order to compare the solutions obtained using the three
models (Power law, Carreau-Yasuda and Cross), the bearing
dimensions were obtained from a manufacturer’s catalogue
(17) as follows:

Radius = 0.050 m
Radial Clearance = 30 µm
Length = 0.100 m

The calculation was carried out using the SAE 10W50
oil properties. This oil behaves as a shear-thinning non-
Newtonian fluid, and it can be modelled with any of the
three constitutive equations considered in the present work
using the parameters listed in Table 1, which were obtained
by curve fitting (18).

Table 1. 10W50 oil parameters for non-Newtonian models

Carreau Cross Power law
ηo=0.02 ηo=0.02 K=0.2
η∞=0.01 η∞=0.01 n=0.812
λ=3e-6 λ =1e-6
n=0.341 n=1

Using these parameters, the modified Reynolds equations
Eq.(40) and Eq.(45) were solved numerically with a
MATLAB code to obtain the pressure distribution and the
load carrying capacity. The calculation was repeated several
times for different shaft speeds and shaft eccentricity ratios.

The maximum pressure in the journal bearing is shown
in Fig.(3). This plot shows that at low speeds the
maximum pressures generated in the journal bearing are
almost identical for the three models considered. However,
increasing the speed and the eccentricity ratio the Carreau
and the Cross models yield higher pressures with respect to
the power law model. For instance, the pressure distribution
in the journal bearing for ε = 0.9 and length to diameter ratio
(L/D = 1) at 10,000 rpm is shown in Fig.(4). The pressure
distribution for the Carreau and the Cross models are
almost identical while the power law model yields a lower
pressure distribution, because at higher rotational speeds
and eccentricity ratios the shear rate is very high therefore
the Carreau and the Cross models behave as Newtonian
fluids with constant viscosity equal to (η∞), while the power
law model continues to behave as a non-Newtonian shear-
thinning fluid, therefore its viscosity decreases as the shear
rate is increased.
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Figure 3. Maximum generated pressures for journal bearing
modelled by Power Law, Carreau and Cross models for different
shaft speeds (N) and eccentric ratios: (a) N=3000 rpm (b)
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speed =10,000 rpm and L/D=1)

Since the load carrying capacity for journal bearings is
the integration of the generated pressure over the bearing
surface area, then its values follows similar trends to those
shown in Fig.(3). Consequently, the load carrying capacity
of the journal bearing is also underestimated by the power
law model at high shear rates, as shown in Fig.(5).

Conclusions

The modified Reynolds equation accounting for the non-
Newtonian shear-thinning flow behaviour was studied for
three well-known constitutive models: the power law
(Ostwald-de Waele), the Carreaus-Yasuda, and the Cross
model, using the perturbation method. The resulting
modified Reynolds equations were solved numerically using
the finite difference method.

Results showed that non-Newtonian shear-thinning lubri-
cants cannot be modelled accurately by the power law
model at high shaft speeds (i.e. high shear rates), where this
model underestimates the pressure distribution and the load
carrying capacity, whereas the Cross and Carreau-Yasuda
models yield more realistic results. At low shaft speeds (i.e.
low shear rates) all the three models are in good agreement.
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