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Abstract. This paper proposes a simple, intuitive deep learning ap-
proach for (biomedical) image segmentation tasks. Different from the
existing dense pixel classification methods, we develop a novel multi-level
aggregation network to directly regress the coordinates of the boundary
of instances in an end-to-end manner. The network seamlessly combines
standard convolution neural network (CNN) with Attention Refinement
Module (ARM) and Graph Convolution Network (GCN). By iteratively
and hierarchically fusing the features across different layers of the CNN,
our approach gains sufficient semantic information from the input image
and pays special attention to the local boundaries with the help of ARM
and GCN. In particular, thanks to the proposed aggregation GCN, our
network benefits from direct feature learning of the instances’ boundary
locations and the spatial information propagation across the image. Ex-
periments on several challenging datasets demonstrate that our method
achieves comparable results with state-of-the-art approaches but requires
less inference time on the segmentation of fetal head in ultrasound images
and of optic disc and optic cup in color fundus images.

Keywords: Regression, Segmentation, GCN, Attention, Aggregation

1 Introduction

The accurate assessment of anatomic structures in biomedical images plays an
important role in the management of many medical conditions or diseases. For
instance, fetal head (FH) circumference in ultrasound images is a critical in-
dicator for prenatal diagnosis and can be used to estimate the gestational age
and to monitor the growth of the fetus [25]. Similarly, the size of the optic disc
(OD) and optic cup (OC) in color fundus images is of great importance for the
diagnosis of glaucoma, an irreversible eye disease [34]. Manual annotation of
this kind of structures by delineating their boundaries in clinics is unrealistic
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Fig. 1: Three different segmentation paradigms by deep learning. Top row: pixel-
wise based methods [14,22,6] that classify each pixel into objects or background.
Middle row: active contour based methods [32,9] that need iterative optimization
in action to find the final contours. Bottom row: our proposed method that
directly regresses the locations of object boundaries by information aggregation
through CNN and GCN, enhanced with an attention module.

as it is time-consuming, costly, and subject to human experience and errors.
Automatic segmentation of biomedical images is much desired to help improve
the efficiency of workflow in clinical scenarios. Inspired by the method in which
clinicians annotate images, we propose an aggregated network to solve the seg-
mentation tasks through directly regressing the locations of objects’ boundaries,
and demonstrate the effectiveness of the network in the segmentation of FH in
ultrasound and OD & OC in color fundus images, respectively.

The (biomedical) image semantic segmentation task is an important problem
in the field of computer vision. The commonly-used deep learning-based seman-
tic segmentation methods [22,6,40] (top row of Fig. 1) classify each pixel of an
image into a category or class. These methods benefit from the CNN’s excellent
ability to extract high-level semantic features. Being a part of the understand-
ing of scenes or global contexts, these methods need to learn the object location,
object boundary, and object category from the high-level semantic information
and local location information [31]. However, they suffer from the loss of local
location information at the pixel-level [8], because a large receptive field corre-
sponds to a small feature map, and this dilemma has increased the difficulties
of dense prediction tasks. In order to solve this problem, approaches in [48,4]
either maintain the resolution of the input image with dilated convolution, or
capture sufficient receptive fields with pyramid pooling modules. The insights
behind these methods indicate that the spatial information and the receptive
field are both important to achieving high accuracy. However, it is hard to meet
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these two requirements simultaneously with CNN [43]. In particular, it is often
challenging to maintain enough spatial information of the input image.

To address the aforementioned challenges, we follow a simple and intuitive
methodology that human operators take to segment objects and regard segmen-
tation as a regression task. Compared with the preserving abstraction of spatial
details [48,4], we use a combination of CNN, ARM, and GCN to directly regress
the boundary locations of the instances in the Euclidean space. Our method is
different from the recent polygon-based active contour models (ACM) methods
[32,9,20] (middle row of Fig. 1), which need to initialize the boundaries and
iteratively find the final object boundaries for a new image. On the contrary,
we directly supervise the model to learn the precise location of boundaries and
produce the boundaries without iteration during inference. Compared with the
pixel-wise based methods, our method needs to learn and extract more spa-
tial information to regress the location directly. To address this issue, the local
spatial information propagation nature of GCN is exploited. GCN has recently
been applied to many low-level tasks, such as scene understanding [29], seman-
tic segmentation [6], and pose estimation [50], because GCN can propagate the
information through neighbor nodes (short range) and hence allow the model to
learn local spatial correlation structure.

We propose an aggregated GCN decoder with graph vertices sampling from
sparse to dense, which contributes to globally propagate the spatial relationship
information across the whole image. This will provide greater representational
power and more sufficient information propagation than previous segmentation
methods based on Conditional Random Fields or Markov Random Fields [2,30].
Thus, we can directly regress explicit boundary location with the Euclidean space
coordinate representation. This strategy addresses the concerns of most recent
works [41,42], which share the similar idea but convert the Euclidean space
representation into polar representation, and regressing the low-level distance
between the center point and boundary points. They found that CNN cannot
regress the Euclidean space coordinate representation of the boundary well as
some more noise may be added, and the CNN may not maintain enough spatial
information [41,42]. Our proposed aggregation GCN can handle this issue well,
and our experiment results prove that. Besides, those methods’ performance may
suffer from the low-quality of center point, so, Xie et al. [41] utilized center sam-
ple methods to classify and selected high-quality center points to improve the
segmentation result. In contrast, our methods can directly regress the boundary
location without any further center selection process. As for the proposed CNN
aggregation mechanism, some low-level features are unnecessarily over-extracted
while object boundaries are simultaneously under-sampled. In order to extract
more useful and representative features, we apply the ARM working as a fil-
ter between CNN encoder and GCN decoder, which cooperates with the GCN
to gain more effective semantic and spatial features, especially the boundary
location information from CNN.

In summary, this work has the following contributions:
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– We take a simple and intuitive approach to (biomedical) image semantic
segmentation and regard it as a direct boundary regression problem in an
end-to-end fashion.

– We propose aggregating mechanisms on both CNN and GCN modules, to
enable them to reuse and fuse the contextual and spatial information. The
additional attention mechanism helps the GCN decoder to gain more useful
semantic and spatial information from the CNN encoder.

– We propose a new loss function suitable for object boundary localization,
which helps prevent taking a large update step when approaching a small
range of errors in the late training stage.

It is envisaged that the proposed framework may serve as a fundamental and
strong baseline in future studies of biomedical semantic segmentation tasks.

2 Related Work

2.1 Pixel-based Methods

Fully Convolution Neural Networks (FCNs) [31] and U-Net architectures [37]
are widely used in semantic segmentation tasks [22,6]. These methods are aimed
at extracting more spatial information or extending the receptive field that is of
pivotal importance in semantic segmentation tasks. However, it is still difficult
to capture longer-range correspondence between pixels in an image [46].

Aggregation module In order to gain global contextual dependencies of an
image, methods like [48,51,45,40] proposed to fuse multi-scale or multi-level fea-
tures through aggregating across semantic and spatial feature domains. Zhao et
al. [48] proposed a pyramid network that utilizes multiple dilated convolution
blocks [44] to aggregating global feature maps on different scales. Other ap-
proaches such as Deeplab methods [4,5,6] exploited parallel dilated convolution
with different rates to extract features at an arbitrary resolution and preserve
the spatial information. However, it is still hard to efficiently learn the dis-
criminative feature representation as many low-level features are unnecessarily
over-extracted. Therefore, these aggregation methods may result in an excessive
use of information flow.

Attention mechanism Alternatively, some other algorithms exploited the ben-
efits of attention mechanism to integrate local discriminative representation and
global contextual features. For example, DANet and CSNet [15,33] used the at-
tentions in spatial and channel dimensions respectively to adaptively integrate
local features with their global dependencies. Furthermore, Zhao et al. proposed
the point-wise spatial attention network [49], which connected each position in
the feature map with all the others through self-adaptive attention maps to har-
vest local and long-range contextual information flexibly and dynamically. In this
work, an ARM module is also used to supervise our model to learn discriminate
features from input images.
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2.2 Polygon-based Methods

Instead of assigning each pixel with a class, some recent methods [32,9,20,41,42]
started to predict the position of all vertices of the polygon around the boundary
of the target objects. The recent work [41,42] used polar coordinates to repre-
sent object contours. Both methods achieved comparable results with pixel-based
segmentation methods in instance segmentation tasks. Also, the combination of
FCNs and Active Contour Models (ACMs) [27] has been exploited. Some meth-
ods formulated new loss functions that were inspired by the ACMs principles
[7,21] to tackle the task of ventricle segmentation in cardiac MRI. Other ap-
proaches used the ACMs as a post-processor of the output of an FCN, for exam-
ple, Marcos et al. [32] proposed a Deep Structured Active Contours model that
combined ACMs and pre-trained FCNs to learn the energy surface of the refer-
ence map. These ACM-based methods achieved state-of-the-art performance in
many segmentation tasks. However, there are still two main limitations. First,
the contour curve must be initialized, while the initialized curve is far away from
the ground truth, it may be insufficient to optimize or make an inference. Sec-
ond, due to the iterative inference mechanism of ACMs, they require a relatively
longer running time during training and testing.

2.3 GCNs in Segmentation

GCNs have been applied to image segmentation tasks recently, as they can prop-
agate and exchange the local short-range information through the whole image
to learn the semantic relations between objects [38,46]. In 2D image seman-
tic segmentation tasks, Li et al. proposed a Dual Graph Convoltional Network
(DGCNet) [46], which applied two orthogonal graphs frameworks to compute
the global relational reasoning of the whole image and the reasoning process can
help the whole network to gain rich global contextual information. Another work
[38] proposed by Shin et al. shared the similar idea, and utilized GCN to learn
the global structure of the shape of the object, which reflected the connectivity
of neighbouring vertices. Apart from using GCN to learn global contextual in-
formation from 2D input, our approach also exploits spatial and local location
information.

3 Method

3.1 Data Representation

The manually annotated object boundaries are extracted from the binary image
and uniformly divided intoN vertices with the same interval∆ θ (e.g. N = 360,∆
θ = 1◦). The geometric center of the boundary is defined as the center vertex. We
represent the object boundary with vertices and edges as B = (V,E), where V
has N+1 vertices in the Euclidean space, V ∈ RN×2, and E ∈ {0, 1}(N+1)×(N+1)

is a sparse adjacency matrix, representing the edge connections between vertices,
where Ei,j = 1 means vertices V i and V j are connected by an edge, and
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Ei,j = 0 otherwise. In our work, every two consecutive vertices on the boundary
are connected with each other and are both connected to the center vertices to
form a triangle. For the OD & OC segmentation, the OD and OC are divided
separately while the centre of the OC is shared as the centre vertex. Thus,
there are 360 triangles and 361 vertices for instances in FH images and 720
triangles and 721 vertices for OD & OC images. For more details, please refer
to supplementary material.

We directly use the coordinates in the Euclidean space to represent all the
vertices and exploit the semantic and spatial correspondence between the inputs’
instance and boundaries. Besides, our boundary representation method is not
sensitive to the center point as the boundary does not have too many correlations
with the center point.

3.2 Graph Fourier Transform & Convolution

Following [10], the normalized Laplacian matrix is L = I −D− 1
2ED−

1
2 , where

I is the identity matrix, and D is a diagonal matrix that represents the degree
of each vertex in V , such that Di,i =

∑N
j=1Ei,j . The Laplacian of the graph

is a symmetric and positive semi-definite matrix, so L can be diagonalized by
the Fourier basis U ∈ RN×N , such that L = UΛUT . The columns of U are the
orthogonal eigenvectors U = [u1, ..., un], and Λ = diag([λ1, ..., λn]) ∈ RN×N is
a diagonal matrix with non-negative eigenvalues. The graph Fourier transform
of the vertices representation x ∈ RN×3 is defined as x̂ = UTx, and the inverse
Fourier transform as x = Ux̂. The spectral graph convolution of i and j is
defined as i∗j = U((UT i) � (UT j)) in the Fourier space. Since U is not a sparse
matrix, this operation is computationally expensive. To reduce the computation,
Defferrard et al. [12] proposped that the convolution operation on a graph can
be defined in Fourier space by formulating spectral filtering with a kernel gθ
using a recursive Chebyshev polynomial [12]. The filter gθ is parametrized as a
Chebyshev polynomial expansion of order K, such that

gθ(L) =

K∑
k=1

θkTk(L̂) (1)

where θ ∈ RK is a vector of Chebyshev coefficients, and L̂ = 2L/λmax − IN
represents the rescaled Laplacian. Tk ∈ RN×N is the Chebyshev polynomial of
order K, that can be recursively computed as Tk(x) = 2xTk−1(x)−Tk−2(x) with
T0 = 1 and T1 = x. Therefore, the spectral convolution can be defined as

yj =

Fin∑
i=1

gθi,j (L)xi (2)

where xi is the i-th feature of input x ∈ RN×Fin , which has Fin features, with
Fin = 2 in this work and y ∈ RN×Fout is the output. The entire filter operation
is computationally faster and the complexity drops from O(n2) to O(n) [3].
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3.3 Graph Vertices Sampling

To achieve multi-scale aggregated graph convolutions on different vertex reso-
lutions, we follow [35] to form a new topology and neighbour relationships of
vertices. More specifically, we employ the permutation matrix Qd ∈ {0, 1}m×n
to down-sample m vertices, m = 360 or 720 in our work. Qd is obtained by itera-
tively contracting vertex pairs, which uses a quadratic matrix to maintain surface
error approximations [17]. The down-sampling can be seen as a pre-processing,
and the discarded vertices are recorded with barycentric coordinates so that the
up-sampling can map the discarded vertices back with the same barycentric loca-
tion information. We conduct up-sampling with another transformation matrix
Qu ∈ Rm×n. The up-sampled vertices Vu can be obtained by a sparse matrix
multiplication, i.e., Vu = QuVd, where Vd are down-sampled vertices. The up-
sampling is applied during learning, and it operates convolution transformations
on retained vertices.

3.4 Proposed Aggregation Network

Our novel aggregation graph regression network is motivated by fusing features
hierarchically and iteratively [45,51,40], which consists of an image context en-
coder, an attention refinement module and a vertex location decoder. Both the
encoder and decoder contain aggregation mechanisms through up-samplings and
down-samplings, which provide improvements in extracting the full spectrum of
semantic and spatial information across stages and resolutions. Besides, the at-
tention module plays an essential role to guide the feature learning and refine
the output from the CNN encoder, then passes to the GCN decoder through
multi-paths. In Section 5.3, our ablation study demonstrates that the proposed
aggregation module helps to extract more useful information, and the attention
module helps to refine the extracted features from the encoder to guide feature
learning better.
Semantic Encoder Fig. 2 (a) shows the detailed structure of our image context
encoder, which maintains high-resolution representations by connecting low-to-
high resolution convolutions in parallel, where multi-scale fusions are repeated
across different levels (rows). Our encoder is designed to lessen the location infor-
mation loss and extract a wider spectrum of semantic features through different
receptive fields. The encoder takes input images of shape 314×314×3 (Fundus
OD & OC images) or 140×140×1 (Ultrasound FH images), with operations of
up-sampling and down-sampling. The aggregation block can extract and reuse
more features across various resolutions and scales, which helps to reduce spa-
tial information loss during the encoding process. Our encoder has six output
features, for each, the shape is 5×5×128, and then those intermediate features
will be as input to the attention refinement module.
Attention Module: We propose an Attention Refinement Module (ARM) to
refine the features of each level (row) from the outputs of the encoder. As Fig.
2 (a) & (b) shows, ARM contains five attention blocks, and each block employs
global channels average pooling to capture global context through the different
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Fig. 2: Overview of our proposed network structure. The size of feature maps of
the CNN encoder and vertex maps of the GCN decoder for each stage (columns)
are shown. In the CNN encoder, the horizontal arrow represents CNN convolu-
tional operations that are achieved by a standard CNN Residual Block [24] with
kernel size 3 x 3, stride 1, followed by a Batch Normalization (BN) layer [26]
and Leaky ReLU as the activation function. The down-sampling is conducted
by setting stride size as 2, the lower level feature is bi-linearly up-sampled by a
factor 2. In the GCN decoder, down-sampling and up-sampling are conducted
by graph vertices sampling, which is described in Section 3.3, and the horizontal
arrow represents residual graph convolution (ResGCN) blocks [28] with polyno-
mial order 3. In this figure, the example is for OD & OC segmentation, and for
FH segmentation, the convolution operation will be the same. Still, the feature
map and vertex map size will be different because of different input size and
number of contours of instances.

channels, and computes an attention vector to guide the feature learning through
a convolution layer followed by a BN layer and sigmoid as the activation function.
For the filter, the kernel size is 1× 1, and the stride is 1. This design can refine the
output features of each stage in the Semantic Encoder, which easily integrates
the global context information.

Spatial Decoder The decoder takes refined multi-paths outputs from the at-
tention module, then decodes with ResGCN blocks [28] through different stages
and levels, which has been shown that as layers go deeper, ResGCN blocks can
prevent vanishing gradient problems. As Fig. 2 (b) shows, our decoder fuses and
reuses the features extracted by ResGCN blocks through different stages. Bene-
fits from the graph sampling, our decoder can regress the location of the object
boundary from sparse to dense, which allows the ResGCN blocks to hierarchi-
cally extract spatial location information from refined outputs of the attention
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module. For each ResGCN Block, it consists of 4 graph convolution layers, and
each graph convolution layer is followed by a Batch Normalization layer [26] and
Leaky ReLU as the activation function. After going through ResGCN blocks
and graph vertices up-samplings, the number of vertices is up-sampled from 25
to 721, and each vertex is represented by a vector of length 32. At last, three
graph convolution layers are added to generate 2D object contour vertices, which
reduces the vertex feature map channels to 2, as each contour vertex has two
dimensions: x and y. With the output from the decoder, we connect every two
consecutive vertices on the boundary to form a polygon contour as the final
segmentation result.

3.5 Loss Function

We regard segmentation as a vertices location regression problem. L2 and L1
loss have been used in regression tasks by CNN based networks [19,23]. How-
ever, it is difficult for the L1 loss to continuously converge and find the global
minimization in the late training stage without careful tuning of the learning
rate. It is commonly known that the L2 loss is sensitive to outliers which may
lead to unstable training in the early training stage.

Inspired by Wing-loss [13] and Smooth-L1 loss [18], we propose a new loss
function (Fig. 3) that can prevent the model from taking large update steps
when reaching small range errors in the late training stage and can recover
quickly when dealing with large errors during the early training stage. Our loss
function is defined as:

L(x) =

{
W [e(|x|/ε) − 1] if |x| < W
|x| − C otherwise

(3)

Where W should be non-negative and limit the range of the non-linear part, ε
decides the curvature between (−W,W ) and C = W−W [e(|w|/ε)−1] connects the
linear and non-linear parts. After several evaluation experiments, the parameter
W is set to 8 and ε to 5 for FH segmentation and W = 6, ε = 5 for OD & OC
segmentation. For the OD & OC segmentation tasks, we integrate a weight mask
and assign more weights to the vertices that belong to the OC, to improve the
OC segmentation performance, as OC is usually difficult to segment due to the
image quality or poor color contrast.

4 Experiments

4.1 Datasets

We evaluate our approach with two major types of biomedical images on two
segmentation tasks respectively: fundus images of retinal for OD & OC segmen-
tation, and ultrasound images of the fetus for FH segmentation.
Fudus OD & OC images: 2068 images from five datasets are merged together.
190 fundus images are randomly selected as the retina test dataset, the rest 1878
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Fig. 3: The proposed new loss function plotted with different parameter settings,
where w controls the non-linear part and epsilon (ε) limits the curvature.

fundus images are used for the training .Considering the negative influence of
non-target areas in fundus retina images, we first localize the disc centers by
detector [36] and crop to 314 × 314 pixels and then transmit into our network.
Refuge [34]. The dataset consists of 400 training images and 400 validation im-
ages. The pixel-wise OD & OC gray-scale annotations are provided. Drishti-GS
[39], which contains 50 training images and 51 validation images. All images are
taken centered on OD & OC with a field-of-view of 30 degrees. The annotations
are provided in the form of average boundaries. ORIGA [47], contains 650 fun-
dus images. The OD & OC boundaries were manually marked by experienced
graders from the Singapore Eye Research Institute. RIGA [1], contains 750 fun-
dus images from MESSIDOR [11] database, which are labeled manually by six
ophthalmologists. RIM-ONE [16], contains 169 fundus images, annotated by
five different expert.
Ultrasound FH images: The HC18-Challenge dataset 4 [25], contains 999 two-
dimensional (2D) ultrasound images with size of 800 × 540 pixels, and collected
from the database of Radboud University Medical Center. We zero-padding each
image to shape of 840 × 840, and then resize into 140 × 140 as the input image,
then we randomly select 94 images as the test dataset, and the model is trained
on the rest 905 images.

4.2 Implementation Details

To augment our dataset, we perturb the input image of training dataset by
randomly rotating images for both segmentation tasks. Specifically, the rotation
ranges from −15 to 15 degree. We randomly select 10 % of training dataset as the
validation dataset. We use stochastic gradient descent with a momentum of 0.9
to optimize our loss function. The number of graph vertices is sampled to 361,
256, 128, 64, 32, 25 crosses five stages with Graph Vertices Sampling introduced
in Section 3.3. We trained our model 300 epochs for all datasets, with a learning
rate of 1e-2 and decay rate of 0.997 every epoch. The batch size is set as 48. All
training processes are performed on a server with 8 TESLA V100 and 4 TESLA
P100, and all test experiments are conducted on a local machine Geforce RTX
2080Ti.
4 https://hc18.grand-challenge.org/
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Image GT U-Net[37] U-Net++[51]DeepLabv3+[6] Ours

Image GT U-Net[37] M-Net[14] DeepLabv3+[6] Ours

Fig. 4: Qualitative results of segmentation on retina test dataset and HC18-
Challenge [25]. Top two rows are the ultrasound FH segmentation results, and
the bottom two rows are the fundus OD & OC segmentation results.

5 Results

In this section, we show our qualitative and quantitative results on the OD &
OC segmentation and FH segmentation task. We compare our model with other
state-of-the-art methods, including U-Net [37], PolarMask [41], M-Net [14], U-
Net++ [51], DANet [15], DARNet [9], DeepLabv3+ [6] through running their
open public source code. Dice score and Area Under the Curve (AUC) are used as
the segmentation accuracy metrics. The results of an ablation study are shown in
order to demonstrate the effectiveness of the proposed aggregation mechanism,
attention mechanism and loss function, respectively.

5.1 Optic Disc & Cup Segmentation

We perform evaluation experiments on the retina test dataset, which is merged
with five different fundus OD &OC images datasets. In terms of different dataset
sources, they may contain different annotation standards for ground truths by
different doctors. However, our model still achieve good performance, which
shows the robustness and generalizability of our model. Fig. 4 shows some quali-
tative results. We achieve 96.88 % and 92.46 % Dice score on OD & OC segmen-
tation separately without any bells and whistles (multi-scale training, ellipse fit-
ting, longer training epochs, etc.), comparable with other pixel-wise based state-
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Methods
Tasks OC OD FH

Dice Score AUC Dice Score AUC Dice Score AUC

U-Net [37] 0.9016 0.9186 0.9522 0.9648 0.9625 0.9688
M-Net[14] 0.9335 0.9417 0.9230 0.9332 - -

U-Net++ [51] 0.9198 0.9285 0.9626 0.9777 0.9701 0.9789
DANet [15] 0.9232 0.9327 0.9654 0.9726 0.9719 0.9786
DARNet [9] 0.9235 0.9339 0.9617 0.9684 0.9719 0.9790

PolarMask [41] 0.9238 0.9366 0.9670 0.9782 0.9723 0.9780
DeepLabv3+ [6] 0.9308 0.9406 0.9669 0.9779 0.9779 0.9819

Our method 0.9246 0.9376 0.9688 0.9784 0.9738 0.9796

Table 1: Segmentation results on retina test dataset for OD & OC and on HC18-
Challenge [25] for FH. The performance is reported as Dice score (%) and AUC
(%). The top three results in each category are highlighted in bold.

of-the-art methods. Tab. 1 provides the results of ours and the other methods.
As for the inference speed, our model achieves faster result with 66.6 millisec-
onds (ms) per image than PolarMask [41] (72.1 ms) and DeepLabv3 [6] (323.9
ms). In the supplementary material, we also show some ‘failed’ cases compared
with ground truth. According to the comments from an expert at the anonymous
institute, our model produces more accurate results than the ground truth. This
highlights the potential issue of imperfect ground truth.

5.2 Fetal Head Segmentation

Tab. 1 and Fig. 4 shows the quantitative and qualitative results respectively, our
model achieves 0.9738 % Dice score and 0.9796 % AUC, which outperforms U-
Net++ [51] and DANet [15] by 0.2 % in terms of Dice score. Our model (60.2ms)
is faster than PolarMask [41] (65.5 ms) and Deeplabv3+ [6] (290.3ms) for per
image inference.

5.3 Ablation Study

We investigate the effect of each component in our proposed model step by step.
All the ablation experiments are performed with the same setting as section
4.2 described. The performance of each experiment in the form of Dice Score
(%) and AUC (%) are reported in Fig. 5, Tab. 4, Tab. 2 and Tab. 3. The top
performance in each category is highlighted in bold. For more qualitative results,
please refer to supplementary material.
Ablation on Parameters of Loss Function We perform Experiments to
evaluate the effect of parameter settings of our proposed loss function. When w
= 6, ε = 5, our model achieve the best performance on OD & OC segmentation
test dataset, and w = 8, ε = 5, for FH segmentation test dataset. For more
details, please refer to Fig. 5.
Ablation on Loss Function We conduct experiments to evaluate the effec-
tiveness of our proposed loss function. We compare with L1, L2, Smooth-L1 [18]
loss functions, which are commonly used in the regression problem. Tab. 2 shows
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Fig. 5: A comparison of different parameter settings (w and ε) for the proposed
loss function, measured in terms of the mean Dice score (%) on retina test dataset
for OD & OC. With w = 6, ε = 5, our model achieves the best performance (92.46
% & 96.88 %). On HC18-Challenge test dataset [25] for FH segmentation, with
w = 8, ε = 5, our model gains the best results (97.38%). It shows that our
network is not sensitive to these parameters as no significantly different results
are found.

Loss Function
Tasks OC OD FH

Dice Score AUC Dice Score AUC Dice Score AUC

L1 0.9108 0.9256 0.9543 0.9636 0.9503 0.9684
L2 0.9103 0.9208 0.9553 0.9668 0.9442 0.9571

Smooth-L1 [18] 0.9086 0.9112 0.9521 0.9652 0.9395 0.9452

Our proposed Loss

weight mask = 0 0.9183 0.9218 0.9616 0.9738
weight mask = 3 0.9223 0.9338 0.9646 0.9768
weight mask = 5 0.9246 0.9376 0.9688 0.9784 0.9738 0.9796
weight mask = 7 0.9173 0.9238 0.9623 0.9718
weight mask = 9 0.9109 0.9215 0.9603 0.9708

Table 2: Performance comparisons (%) of the different loss function and weight
mask parameter settings on the OD & OC segmentation and the FH segmenta-
tion respectively. For weight mask = 5, our model achieves best performance on
the OD & OC segmentation.

the quantitative results on OD & OC and FH segmentation tasks respectively.
As illustrated, our loss function attains a superior performance over the other
three loss functions. In particular, it achieves a mean Dice score that is 1.5 %
relatively better than that of L1 loss function on OD & OC and 2.5 % relatively
better than L1 loss function on FH segmentation. Tab. 2 shows comparing with
no-weight mask loss function, our proposed weight mask helps to improve OD
& OC segmentation results by 0.7 % when weight mask = 5 is used.

Ablation on Angle Interval Experiments are conducted to evaluate the effect
of different angle intervals ∆ θ for vertices sampling. The larger angle interval in-
dicates that, the smaller number of vertices are sampled on the boundary. When
∆ θ = 1◦, our model achieves best performance on both the FH segmentation
and the OD & OC segmentation. The results are shown in Tab. 3.

Ablation on Structure Components In this section, we evaluate the effec-
tiveness and compactness of our aggregation module, attention module and GCN
decoder through several experiments. First, we compare with no-aggregation
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Angle Interval
Tasks OC OD FH

Dice Score AUC Dice Score AUC Dice Score AUC

40◦ 0.9023 0.9093 0.9154 0.9233 0.9415 0.9502

18◦ 0.9103 0.9193 0.9488 0.9553 0.9515 0.9599

10◦ 0.9195 0.9282 0.9583 0.9647 0.9601 0.9694

5◦ 0.9238 0.9306 0.9628 0.9714 0.9708 0.9776

2◦ 0.9243 0.9376 0.9685 0.9780 0.9737 0.9797

1◦ 0.9246 0.9376 0.9688 0.9784 0.9738 0.9796

Table 3: Ablation study on different angle interval samplings. With angle interval
= 1◦ or 2◦, our model achieves comparable segmentation results on the OD &
OC and FH segmentation tasks, and at the end, angle interval = 1◦ is chosen
for our model. Dice score (%) and AUC (%) are reported for the segmentation
on OD & OC and FH test dataset.

Methods
Tasks OC OD FH

Dice Score AUC Dice Score AUC Dice Score AUC

No Aggregation
(Encoder + Decoder)

0.9023 0.9063 0.9588 0.9664 0.9565 0.9689

Aggregation 0.9205 0.9302 0.9623 0.9658 0.9699 0.9774

Aggregation + ARM
(with CNN decoder)

0.9098 0.9176 0.9528 0.9634 0.9638 0.9756

Aggregation + ARM
(Our method)

0.9246 0.9376 0.9688 0.9784 0.9738 0.9796

Table 4: Ablation study on different structure components with our proposed
loss function (w = 8, ε = 5 for FH segmentation and w = 6, ε = 5 for OD &
OC). Dice score (%) and AUC (%) are reported respectively.

structure network, in which we remove all the aggregation parts and attention
modules, leaving the one path CNN encoder and one path GCN decoder to
form a standard encoder-decoder network structure. Then we add an aggrega-
tion module to form an aggregation network with an aggregated CNN encoder
and aggregated GCN decoder. To further improve the performance, we design
an ARM, and the effect of the ARM is presented in Tab 4. Furthermore, we eval-
uate the effectiveness of proposed GCN decoder and change the GCN into CNN,
which are the same as we used in our encoder. As illustrated in the table, for FH
segmentation, the proposed aggregation module helps to improve 1.4 % on Dice
score over the no-aggregation method, the ARM module further improves 0.4
%, and GCN decoder further improves 0.6 %. For OD & OC segmentation, the
aggregation module improves 1.2 % on average by Dice score, the ARM improves
0.6 %, and the GCN decoder improves 1.7 %.

6 Conclusion

We propose a simple and intuitive regression methodology to tackle segmenta-
tion tasks by directly regressing the boundary of the instances instead of utilising
pixel-wise dense predictions. We have demonstrated its potentials on the segmen-
tation problems of the fetal head and optic disc & cup. It is anticipated that our
approach can be widely applicable in the real world.
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