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Background. Ecological communities tend to be spatially structured due to environmental gradients
and/or spatially contagious processes such as growth, dispersion and species interactions. Data
transformation followed by usage of algorithms such as Redundancy Analysis (RDA) is a fairly common
approach in studies searching for spatial structure in ecological communities, despite recent suggestions
advocating the use of Generalized Linear Models (GLMs). Here, we compared the performance of GLMs
and RDA in describing spatial structure in ecological community composition data. We simulated realistic
presence/absence data typical of many β-diversity studies. For model selection we used standard
methods commonly used in most studies involving RDA and GLMs.

Methods. We simulated communities with known spatial structure, based on three real spatial
community presence/absence datasets (one terrestrial, one marine and one freshwater). We used spatial
eigenvectors as explanatory variables. We varied the number of non-zero coefficients of the spatial
variables, and the spatial scales with which these coefficients were associated and then compared the
performance of GLMs and RDA frameworks to correctly retrieve the spatial patterns contained in the
simulated communities. We used two different methods for model selection, Forward Selection (FW) for
RDA and the Akaike Information Criterion (AIC) for GLMs. The performance of each method was assessed
by scoring overall accuracy as the proportion of variables whose inclusion/exclusion status was correct,
and by distinguishing which kind of error was observed for each method. We also assessed whether
errors in variable selection could affect the interpretation of spatial structure.

Results. Overall GLM with AIC-based model selection (GLM/AIC) performed better than RDA/FW in
selecting spatial explanatory variables, although under some simulations the methods performed
similarly. In general, RDA/FW performed unpredictably, often retaining too many explanatory variables
and selecting variables associated with incorrect spatial scales. The spatial scale of the pattern had a
negligible effect on GLM/AIC performance but consistently affected RDA’s error rates under almost all
scenarios.

Conclusion. We encourage the use of GLM/AIC for studies searching for spatial drivers of species
presence/absence patterns, since this framework outperformed RDA in situations most likely to be found
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in natural communities. It is likely that such recommendations might extend to other types of
explanatory variables.
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24 Abstract
25

26 Background. Ecological communities tend to be spatially structured due to 
27 environmental gradients and/or spatially contagious processes such as growth, dispersion and 
28 species interactions. Data transformation followed by usage of algorithms such as Redundancy 
29 Analysis (RDA) is a fairly common approach in studies searching for spatial structure in 
30 ecological communities, despite recent suggestions advocating the use of Generalized Linear 
31 Models (GLMs). Here, we compared the performance of GLMs and RDA in describing spatial 
32 structure in ecological community composition data. We simulated realistic presence/absence 
33 data typical of many β-diversity studies. For model selection we used standard methods 
34 commonly used in most studies involving RDA and GLMs. 
35 Methods. We simulated communities with known spatial structure, based on three real 
36 spatial community presence/absence datasets (one terrestrial, one marine and one freshwater). 
37 We used spatial eigenvectors as explanatory variables. We varied the number of non-zero 
38 coefficients of the spatial variables, and the spatial scales with which these coefficients were 
39 associated and then compared the performance of GLMs and RDA frameworks to correctly 
40 retrieve the spatial patterns contained in the simulated communities. We used two different 
41 methods for model selection, Forward Selection (FW) for RDA and the Akaike Information 
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42 Criterion (AIC) for GLMs. The performance of each method was assessed by scoring overall 
43 accuracy as the proportion of variables whose inclusion/exclusion status was correct, and by 
44 distinguishing which kind of error was observed for each method. We also assessed whether 
45 errors in variable selection could affect the interpretation of spatial structure.    
46 Results. Overall GLM with AIC-based model selection (GLM/AIC) performed better 
47 than RDA/FW in selecting spatial explanatory variables, although under some simulations the 
48 methods  performed similarly. In general, RDA/FW performed unpredictably, often retaining too 
49 many explanatory variables and selecting variables associated with incorrect spatial scales. The 
50 spatial scale of the pattern had a negligible effect on GLM/AIC performance but consistently 
51 affected RDA’s error rates under almost all scenarios.
52 Conclusion. We encourage the use of GLM/AIC for studies searching for spatial drivers 
53 of species presence/absence patterns, since this framework outperformed RDA in situations most 
54 likely to be found in natural communities. It is likely that such recommendations might extend to 
55 other types of explanatory variables. 
56

57 Introduction
58

59 Ecological communities tend to be spatially structured in response to environmental 
60 gradients that are themselves organized in space, or to spatially contagious processes such as 
61 growth, dispersion, and species interactions (Legendre & Legendre, 2012; Peres-Neto & 
62 Legendre, 2010). Thus, disentangling the causes of spatial structure and identifying spatial 
63 variability and different scales of organization in natural communities is a central question in 
64 ecology (Legendre, 1993). Answering this question requires the construction of explanatory 
65 variables based on spatial relationships among sites (Dray et al., 2006). One approach 
66 extensively used to create spatial variables and/or control for spatial autocorrelation in residuals 
67 is an eigenvector-based method, called Moran’s eigenvector maps  (MEMs, Dray et al., 2006). 
68 This method creates spatial explanatory variables representing structure on a range of spatial 
69 scales from the spatial relationships among sampling sites. These variables can be used for a 
70 broad range of goals, from controlling for phylogenetic autocorrelation in ecological data (Diniz-
71 Filho et al., 2012) to searching for spatial structure in natural communities, even when 
72 irregularly sampled (e.g. Bauman et al., 2016; Neves et al., 2015). 
73 In many studies the response variables for which ecologists seek to find spatial structure 
74 are community composition datasets containing either abundances or presence/absence 
75 information (here, we focus on the latter). For community ecology studies, Redundancy Analysis 
76 (RDA) is one of the most popular strategies due to its versatile framework, well-established 
77 literature and abundant toolkits available for implementation (see Blanchet, Legendre, Bergeron, 
78 & He, 2014; Borcard, Legendre, & Drapeau, 1992; Eisenlohr & Oliveira-Filho, 2015; Saiter, 
79 Eisenlohr, Barbosa, Thomas, & Oliveira-Filho, 2015). The RDA algorithm searches for optimal 
80 linear combinations (in the least-squares sense, see Legendre & Legendre, 2012) of the 
81 explanatory variables that best explain the variation in the transformed community composition 
82 data (Legendre & Gallagher, 2001; Borcard et al., 2011; Blanchet et al., 2014). The usual 
83 approach then consists of establishing the global significance of the relationship between the 
84 response matrix and all the explanatory variables, after which a subset of explanatory variables is 
85 usually selected by stepwise procedure such as Forward Selection (FW, sensu Blanchet et al., 
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86 2008). The most common approach uses two thresholds for variable selection: a significance 
87 level α and the adjusted R² (see below and Blanchet et al., 2008 for details). This whole 
88 framework will hereafter be called RDA/FW for brevity. A statistic related to the Akaike 
89 Information Criteria (AIC, Akaike, 1973) has also been suggested for RDA model selection 
90 (Godínez-Domínguez & Freire, 2003), but it has been shown to perform poorly and will not be 
91 further explored here (Bauman, Drouet, Dray, et al., 2018). 
92 However, methods based on least-squares such as RDA are unlikely to perform well 
93 when applied to data that violate the assumption of constancy in the mean-variance relationship. 
94 This assumption is usually violated by datasets containing many zeros including abundance 
95 (count or semi-quantitative) and presence/absence (binary) data. Data transformation does not 
96 always solve such problems (O’Hara & Kotze, 2010; Warton, 2018), although least-squares can 
97 give reasonably robust tests of the significance of regression coefficients (Ives, 2015). In general, 
98 algorithmic methods such as RDA do not take into account the statistical properties of the 
99 response variable, such as the distribution of variances and how the response changes along 

100 spatial/environmental gradients (Ferrier et al., 2007; Warton et al., 2012, 2015, 2018). More 
101 recently, Generalized Linear Models (GLMs) have been proposed as an alternative model-based 
102 approach to the analysis of presence/absence or count data (Wang et al., 2012; Warton et al., 
103 2015; Yee, 2006). The use of GLMs has long been established for univariate analyses and related 
104 approaches for  multivariate count data are now available (O’Hara & Kotze, 2010; Warton, 
105 2018). The usual approach to selection of explanatory variables in this approach is Akaike’s 
106 Information Criterion (AIC: Akaike, 1973; Wagenmakers & Farrell, 2004). This framework will 
107 hereafter be named GLM/AIC.
108 Here, we compared the performance of the RDA/FW and GLM/AIC approaches to 
109 selecting spatial explanatory variables for community presence/absence data by measuring the 
110 proportion of spatial patterns contained in simulated communities they could correctly retrieve. 
111 There have been some studies of simulated multivariate count data (Warton et al., 2012), but 
112 presence/absence data are particularly important in spatial studies because they are often the only 
113 data that can be collected consistently over large spatial extents. We therefore compare the 
114 performance of RDA/FW and GLM/AIC methods for the selection of MEM spatial variables 
115 (including one special case, the asymmetric eigenvector map or AEM) from realistic simulated 
116 presence/absence data. We used spatial variables as our predictors since we were interested in 
117 discovering whether varying the spatial scales in which communities were structured would 
118 affect model performance. We generated simulated data sets with predefined spatial structure 
119 based on three real data sets, under two different ecological interpretations of presence/absence 
120 data. First, we assumed that species are truly present at some sites and absent at others, and are 
121 detected if present (simulated presence method, SPM). Alternatively, absences may represent 
122 failure to detect species that are truly present. In this case, we simulated species abundances, 
123 followed by a simulated sampling step to obtain presence/absence data (simulated abundances 
124 method, SAM). 
125

126 Materials & Methods
127

128 Baseline Datasets

129

130 We compared the two approaches to spatial variable selection using simulated community 
131 data based on three real community composition datasets with a range of properties:
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132 A) Presence/Absence of 110 marine benthic macroalgae species from a Rapid Assessment 
133 Program for biodiversity of 42 sample sites spanning roughly 2000 km2 at Ilha Grande 
134 Bay, Rio de Janeiro, Brazil (tropical southwest Atlantic) (Carlos-Júnior et al., 2019, 
135 permit number IBAMA/RJ:031/04); 
136 B) Presence/Absence of 588 plant species from grassland covering 500 km2 of Scotland’s 
137 coast. Data were collected from 3639 5 × 5 m quadrats from 94 sites. We used sites as 
138 our sample units, treating species as present when they occurred in at least one quadrat at 
139 a site, and absent otherwise (see Lewis et al., 2014 for more information); 
140 C) Presence/Absence of 47 freshwater aquatic insect species collected from 30 sample sites 
141 in five tributaries of the Guapiaçú River basin, Brazil which covers about 40 km² (Feijó-
142 Lima in prep, permit number INEA-RJ: 019-2014). 
143 For each of the datasets we used the geographical coordinates (maps and sampling sites in 
144 Supplemental Figure S1) to calculate spatial explanatory variables for regression (Fig. 1). We 
145 chose MEMs as our spatial variables since they are commonly used to describe spatial structure 
146 in ecological studies. Moreover, in contrast to coarser methods such as trend-surface analysis, 
147 MEMs are a flexible method, capable of describing all spatial scales provided by the sampling 
148 design (Borcard et al., 2011). They are also more flexible and powerful than the method of 
149 principal coordinates of neighbor matrices (PCNMs, a special case of distance-based MEMs) 
150 (Bauman, Drouet, Dray, et al., 2018; Bauman, Drouet, Fortin, et al., 2018; Borcard & Legendre, 
151 2002; Dray et al., 2006). One needs two matrices to build the MEM variables for a given set of 
152 site coordinates: matrix B describing the connectivity among the geographical sampling sites and 
153 matrix A describing the weights of such connections. The Hadamard product of these two 
154 matrices generates the spatial weighting matrix (matrix W), which is then doubly centred and 
155 diagonalized, yielding eigenvectors to be used as spatial variables. For ecological studies, the 
156 processes of interest are usually those generating positive autocorrelation, and it is therefore 
157 common to use only MEMs associated with positive eigenvalues (as in this study). For studies in 
158 which negative spatial autocorrelation is also of interest (e.g. where negative interactions such as 

159 competitive exclusion, predation, etc are suspected), the eigenvectors associated with negative 
160 eigenvalues can also be separately used (Bauman, Drouet, Dray, et al., 2018). We made 
161 decisions about B and A for each dataset based on our ecological knowledge of the spatial 
162 structure of these regions, since our goal was to simulate communities with ecologically sensible 
163 spatial structures. Therefore, for dataset A we chose the minimum spanning tree (B) with 
164 Euclidian linear distances as weights (A). Our decision was based on the shape of the bay and the 
165 fact that the main water movements make the sampling sites geographically compartmentalised 
166 in subregions where sites are likely to be minimally connected (Carlos-Júnior et al., 2019). 
167 Similarly, spatial organisation in dataset B could be sensibly described in terms of Delaunay 
168 triangulation (B) with Euclidian weights (A). Despite some degree of connectivity among all 
169 sites, pairs of sites could be mostly associated not to their immediate neighbours but rather as a 
170 function of their distances. This is due to cultural differences in land management. For example, 
171 northern and western islands share cultural histories, which is reflected in species composition 
172 (Lewis et al., 2014). Directional spatial processes in ecological data, such as those observed in 
173 rivers, are well described by a special case of MEMs called asymmetric eigenvector maps 
174 (AEMs, Blanchet, Legendre, & Borcard, 2008), which were used for constructing variables for 
175 dataset C. In MEMs, larger eigenvalues are associated with broader-scale spatial structures while 
176 smaller eigenvalues represent fine-scale spatial structures. This allowed us to control the spatial 
177 scale of variation in community structure. Dataset A had 16 positive MEMs from 42 sites, 
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178 dataset B had 30, and dataset C had 12 AEMs with positive autocorrelation. For computation of 
179 the MEMs for the three datasets we used the packages adespatial (version 0.3-7, Dray et al., 
180 2019) and spdep (version 0.7-4, Bivand & Piras, 2015; Bivand, Hauke, & Kossowski, 2013).
181

182 Simulating communities with chosen spatial drivers 

183

184 We simulated realistic communities with known spatial structure, based on the three 
185 datasets. We used spatial eigenvectors as explanatory variables. We varied the number of MEMs 
186 with non-zero coefficients and created new binary (presence/absence) communities (with the 
187 same number of sites and same expected number of species as the real ones) using two different 
188 modelling scenarios. These simulated communities reflected the effect of those MEMs with non-
189 zero coefficients. By varying the number and ordering of the non-zero coefficients, we could 
190 therefore control the spatial structure and scale of the simulated community data (see scheme in 
191 Fig. 1 and Table 1). 
192 In order to simulate new binary communities under the simulated presence method (SPM, 
193 in which species are always detected if present), we first estimated a coefficient matrix  of size 𝐂
194 (m variables + 1 (first) row with intercepts) × p species from each real data set. This was 
195 achieved using the manyglm function with binomial errors in R package mvabund (version 
196 3.11.9, Wang et al., 2012), with explanatory matrix X (n sites × m positive MEMs + an initial 
197 column of 1’s ). The matrix  gives the effect of each explanatory variable on the logit-𝐂
198 transformed probabilities of presence. The mvabund package provides a GLM framework for 
199 multivariate response data. 
200 We then created new hypothetical scenarios by generating a new coefficient matrix , 𝐂 ∗
201 of the same size as , whose elements  are given by 𝐂 𝑐 ∗𝑘𝑗
202

203    eqn 1{
𝑐 ∗𝑘𝑗 = 𝑐1𝑗,  𝑖𝑓 𝑘 = 1,  𝑗 = 1, 2,…, 𝑝,  (intercepts)𝑐 ∗𝑘𝑗~ 𝐹𝑏,  𝑖𝑓 𝑘 ‒ 1 ∈ 𝐾,  𝑗 = 1, 2,…,  𝑝,𝑐 ∗𝑘𝑗 = 0,  otherwise,

�
204

205 where  is the empirical distribution function of   (k=2, 3, …, m+1, j= 1, 2, …, p) 𝐹𝑏 𝑐𝑘𝑗
206 (Evans et al., 2000), and the  are sampled with replacement. The set K defines to which rows 𝑏 ∗𝑘𝑗
207 of  the non-zero coefficients were allocated: we studied 14 such sets (see below and Table 1 a-𝐂 ∗
208 c). In other words, we used the originally-estimated intercepts in each simulation (first row of 
209 eqn 1), and drew those coefficients assigned to non-zero values (second row of eqn 1) from the 
210 empirical distribution of all the originally-estimated explanatory variable coefficients. We 
211 sampled the values of the non-zero coefficients from the empirical distribution in order to 
212 simulate plausible but not fixed spatial structures. Table 1 depicts for each dataset how the non-
213 zero coefficients were assigned for each dataset and simulation scenario (see below). 
214 We then calculated predicted probabilities of presence  for the jth species at the ith site.  𝑝𝑖𝑗
215 Given the matrix  (n sites × p species) of predicted logit probabilities of presence, the 𝐘 = 𝐗𝐂 ∗
216 predicted probability of presence is
217

218 .   eqn 2𝑝𝑖𝑗 =
exp(𝑦𝑖𝑗)

1 + exp(𝑦𝑖𝑗)
219
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220 The simulated presence/absence value for species j at site i was sampled from a Bernoulli 
221 distribution with success probability  . The result is a community matrix with the same number 𝑝𝑖𝑗
222 of sites and the same expected number of species as the real community, and with realistic 
223 coefficients for spatial eigenvectors. As in the maximum likelihood estimation done by 
224 manyglm (Wang et al., 2012), species and sites were assumed conditionally independent when 
225 generating simulated presence/absence data, given the values of the explanatory variables. Our 
226 simulated communities correspond to the simple case in which presence/absence patterns are 
227 affected by environmental variables but not interspecific interactions. Nevertheless, interspecific 
228 interactions could be well relevant to real world systems and other models (Godsoe & Harmon 
229 2012; Anderson, 2017). 
230 Since GLMs are specified correctly for presence/absence data generated this way, we 
231 would expect them to perform well. We therefore devised a second ecologically meaningful 
232 simulation method in which absences arise from the sampling protocol, called the simulated 
233 abundance method (SAM). The two simulation methods differ in whether they assume we have 
234 true absences or sampling-related absences. Note that it is not possible to simulate binary data 
235 directly using RDA, because RDA does not generate predicted probabilities of presence. Instead, 
236 we treated  as log expected abundances and exponentiated each element to get expected 𝐘
237 abundances . Then we calculated the probability of detecting the species under Poisson 𝜆
238 sampling (i.e. the probability of drawing a value of at least 1 from a Poisson distribution with 
239 parameter ), which is𝜆
240

241    eqn 3𝑝𝑖𝑗 = 1 ‒ 𝑒 ‒ 𝜆
242

243 Finally, we generated a Bernoulli random variable with success probability  to produce 𝑝𝑖𝑗
244 a simulated presence-absence observation. Both GLM and RDA are mis-specified for data 
245 generated in this way. Codes for both the SPM and SAM simulation frameworks and all the 
246 datasets used in our simulations are available as supplemental information (Data S1, S2 and S3). 
247 We compared GLM and RDA variable selection under up to 14 different scenarios, 
248 differing in the number of non-zero coefficients (nVar) and whether these coefficients were 
249 associated with fine or broad spatial scales. We simulated up to six different choices of the 
250 number of MEM variables creating the spatial structure in the data (i.e. having non-zero 
251 coefficients): none, approximately one sixth, approximately one third, approximately half, 
252 approximately three-quarters, and all (Table 1 a-c, rows). We also simulated three different 
253 spatial scales of the patterns. As mentioned above, MEMs associated with larger eigenvalues 
254 represent broader spatial scales. We ordered the MEMs in descending order of eigenvalues and 
255 arranged the non-zero coefficients within matrix  in three different ways (Table I a-c, 𝐂 ∗
256 columns): only broad-scale MEMs with non-zero coefficients (scaling 1); only fine-scale MEMs 
257 with non-zero coefficients (scaling 2); half broad-scale, half fine-scale (scaling 3). Because not 
258 every combination of number of non-zero coefficients and spatial scaling is possible (e.g. it is 
259 not possible to assign one non-zero coefficient in scaling 3), there were 14 possible combinations 
260 overall for each dataset (Table 1). The main steps of the simulation scheme are summarized in 
261 Fig. 1. 
262

263 RDA and GLM 

264 We used the default RDA function from the R package vegan (version 2.4-1, Oksanen et 
265 al., 2016), with simulated community composition as the response variable, and MEMs 
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266 associated with positive eigenvalues generated from geographical coordinates of the sample sites 
267 as explanatory variables. In order to perform a transformation-based RDA (Borcard et al., 2011; 
268 Blanchet et al., 2014) we used the Ochiai coefficient, which is the Hellinger transformation 
269 analogue for binary data, as recommended by Legendre & Gallagher (2001) and  Borcard et al. 
270 (2011).
271 Binomial GLMs were fitted to the same data using the manyglm function in R package 
272 mvabund (Wang et al., 2012). We fitted our models using a logistic regression (logit link 
273 function for binomial response), with species compositional data as the multivariate response 
274 variable and MEMs as predictors. No interaction terms were included, following common 
275 practice in spatial modelling of community data.
276

277 Comparing model selection between RDA and GLM frameworks

278

279 We compared the results of model selection between the approach usually taken in the 
280 RDA and a somewhat-similar approach for GLMs. For RDA, we used the forward selection with 
281 double stopping criterion following Blanchet et al. (2008), beginning with a global test of 
282 significance (model with all spatial predictors) and carrying on with the variable selection if the 
283 global model was significant. The forward selection itself consists of a stepwise procedure 
284 including in the model the variable contributing the most to the adjusted R2. The procedure stops 
285 either when the next variable with the highest contribution is not significant (first stopping 
286 criterion) or causes the adjusted R2 to be bigger than that of the global model (i.e. containing all 
287 variables; second criterion). This is implemented in the function ordiR2step in the vegan  
288 package (Oksanen et al., 2016). For GLM, we used  forward selection with a stopping rule based 
289 on minimum Akaike Information Criterion (AIC) (Akaike, 1973; Wagenmakers & Farrell, 
290 2004). The selection procedure started from a model with intercept only and added one 
291 explanatory variable at a time, until no further improvement in the sum of AIC over each of the 
292 response variables was possible. We used this approach because the usually large number of 
293 MEMs makes it difficult to compare the AIC sum over all possible GLMs. 
294  The performance of each method on simulated data was mainly assessed by two criteria. 
295 First, we assessed how many MEMs with zero coefficients were incorrectly included in the final 
296 model. Second, we assessed how many MEMs with non-zero coefficients were incorrectly 
297 excluded from the final model. Also, we assessed overall accuracy (score) as the percentage of 
298 MEMs whose inclusion/exclusion status was correct. The goals of ecological studies are usually 
299 not directly related to the inclusion/exclusion of individual MEM variables, but instead to 
300 identify spatial pattern, represented by a linear combination of MEMs. However, since the 
301 MEMs form a basis for the space spanned by the transformed spatial weighting matrix, such a 
302 linear combination is unique (Fraleigh & Beauregard, 1995, pages 197-198). Furthermore, the 
303 MEMs are orthogonal, so that each represents a qualitatively distinct aspect of spatial pattern. 
304 Therefore, if an individual MEM is incorrectly included or excluded, the estimated spatial 
305 pattern is qualitatively wrong.
306 We further explored the ability of each method to capture spatial pattern using a graphical 
307 approach (Article S1). For each real dataset and each method, we haphazardly picked one 
308 simulated data set. We plotted the MEM decompositions of both the true and estimated spatial 
309 patterns. We chose the scenarios in which each method had the worst performance in terms of 
310 correctly including/excluding variables, in order to determine whether in such cases, overall 
311 spatial pattern would still be captured.
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312 Finally, we calculated how much of the variation in response variables was explained by 
313 each method using the adjusted R² for the linear model in RDA and its analogue for GLMs, the 
314 D-value (Tjur, 2009). These two values cannot be directly compared since they are not exactly 
315 equivalent, but their results could yield interesting insights and are made available as 
316 supplemental information (see table results in Data S4). 
317 For each of the combinations of conditions in Table I, 1000 simulated data sets were 
318 generated under each of SPM and SAM. For each simulated data set, spatial explanatory 
319 variables were selected using both GLM/AIC and RDA/FW. 
320

321 Results
322

323 Overall, GLM/AIC outperformed RDA/FW in selecting spatial explanatory variables 
324 when data were simulated under either SPM or SAM in all three scaling patterns (Fig.2).
325 In general, GLM/AIC had fairly predictable performance: it performed nearly perfectly 
326 when few or none of the available variables had non-zero true coefficients (i.e. nVar = 0, , 𝑚 6

327  or m/2), but was less accurate when many or all the variables had non-zero true coefficients (𝑚 3

328  or ) (blue lines in Fig.2 A-E). There was also some discernible pattern in 𝑛𝑉𝑎𝑟 = 3𝑚 4 𝑛𝑉𝑎𝑟 = 𝑚
329 RDA/FW’s scores: it performed best at  and , with intermediate values showing 𝑛𝑉𝑎𝑟 = 0 𝑛𝑉𝑎𝑟 = 𝑚
330 a considerable decrease in selection success. The loss of accuracy for intermediate values of 
331 nVar (drop in red lines across different nVar values in Fig.2 A-E) varied substantially among 
332 datasets, making general inferences about results more difficult. There was little difference 
333 between the results from the SPM and SAM simulations (Fig. 2B, D, F).  
334 It is also noteworthy that when the model had a smaller number of variables to select 
335 from (River dataset C with 12 MEMs),  scores in GLM/AIC were higher, with virtually no 
336 incorrect inclusion of variables, and incorrect exclusion of variables occurring on average in only 
337 approximately 6% of all 14000 simulations over the whole set of replicates (Figure 3E). Under 
338 the same conditions, RDA/FW’s rate of success was approximately 81%, incorrectly including 
339 variables at a rate of 18% (incorrect exclusions represented less than 1%) as depicted in Figure 
340 3E. 
341 Under both the SPM and SAM simulation methods, GLM/AIC differed substantially 
342 from the RDA/FW framework in regard to the type of errors it most often produced. GLM/AIC 

343 had virtually no incorrect inclusion of variables (Fig. 3, blue). However, when  or 𝑛𝑉𝑎𝑟 = 3𝑚 4

344  some variables that should be included in the final model were left out. Nevertheless, 𝑛𝑉𝑎𝑟 = 𝑚
345 GLM/AIC never had less than around 90% accuracy over all three datasets (overall mean = 96  

346 1.3% against 71  1.7% from RDA/FW). On the other hand, RDA/FW often included more 
347 variables than it should in the model (Fig. 3, red). Such errors especially occurred when 

348 . Under some conditions, up to one third of the variables selected by RDA/FW 0 < 𝑛𝑉𝑎𝑟 ≤ 3𝑚 4

349 had zero coefficients. 
350 MEM decompositions of true and estimated spatial structure provided a visual 
351 assessment of the extent of the misspecification yielded by each method (Article S1). In all three 
352 datasets, the worst performance of GLM/AIC corresponded to those models in which it should 
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353 have included all MEM variables (Fig. 2). Those scenarios represented communities structured at 
354 all spatial scales (broad, intermediate and fine). Despite incorrectly excluding several individual 
355 variables, GLM/AIC was capable of selecting subsets of variables that corresponded to all those 
356 scaling categories (Article S1.2-S1.7). In contrast, RDA/FW performed worse when there were 
357 few spatial variables (nVar = 5, nVar = 10 and nVar=2 for datasets A, B and C, respectively). 
358 Under those conditions, incorrect inclusion of variables also resulted in the inclusion of incorrect 
359 spatial scales. For example, in one simulation from dataset A (Article S1.8) the true spatial 
360 structure contained only five MEMs describing finer spatial scale patterns (scaling 2 = MEMs 
361 12-16). However, the final model selected by RDA/FW included 13 variables describing both 
362 broad (MEMs 1-6) and intermediate spatial scales (MEMs 9, 11), along with the correct ones 
363 (Article S1.9). Similar results were found in all three datasets (Article S1.10-S1.13). Moreover, 
364 these incorrect inclusions of individual variables by RDA/FW resulted in the inclusion of MEM 
365 variables associated to eigenvalues substantially different from the correct ones, representing 
366 spatial scales much larger than those actually present in the data (Article S1.14). For matters of 
367 space, we only plotted one failure example from each dataset for both GLM/AIC and RDA/FW. 
368 However, the correct spatial structures within simulated communities and those structures 
369 retrieved by both methods in all our simulations scenarios are available as supplemental data 
370 (Data S5).           
371 Under SPM simulations, the scale of spatial pattern (fine, broad or mixed: scaling 1, 2 
372 and 3, respectively) had negligible effect on GLM/AIC performance (Fig.4A, C, E). A slight 
373 difference in variable selection scores between scaling 1 to 2 and 3 was only found in one 
374 modelling condition (Fig. 4, ). On the other hand, scaling often affected the 𝑛𝑉𝑎𝑟 = 3𝑚 4
375 performance of RDA/ FW, although there was no obvious general pattern across different 
376 conditions and datasets (Fig.4A, C, E). Under SAM simulations, both frameworks performed 
377 similarly to what was observed under SPM (Fig.4B, D, F).
378

379 Discussion
380

381 Here, we showed that a GLM/AIC-based method for finding spatial structure in 
382 communities outperformed an RDA/FW-based method, for presence-absence data simulated 
383 under two different ecologically plausible scenarios about how absences arise. We based our 
384 simulated datasets on real datasets from marine, terrestrial and freshwater data. Notably, 
385 differences in assumptions about how absences arise made little difference to performance. This 
386 might be due to the structure of our community presence/absence datasets, which (like most 
387 ecological datasets) had many rare species and, therefore, many expected abundances close to 
388 zero. In such cases, the relationship between the community data and explanatory variables could 
389 be approximated by a binomial GLM with a logit link function, even if this was not the correct 
390 model (as in the SAM simulations). We therefore focus below on general patterns that apply 
391 equally to both assumptions about absences, rather than on the details of these assumptions.
392 In selecting spatial explanatory variables, GLM followed by AIC-based model selection 
393 (GLM/AIC) performed better than the widely-used approach of RDA followed by forward 
394 selection (RDA/FW). Not only did GLM/AIC have better performance overall, but its 
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395 performance varied little between simulation conditions (Fig. 2). In contrast, RDA/FW 
396 performed unpredictably, but often retained too many explanatory variables (Fig. 3).
397 The problems arising from data with non-Gaussian error distributions, such as classic 
398 community presence and absence data, in a linear modelling framework are not new to science ( 
399 Legendre & Gallagher, 2001; McCullagh & Nelder, 1989; Wolda, 1981). Classical linear models 
400 such as RDA ( Legendre & Anderson, 1999; Legendre & Legendre, 2012) make assumptions 
401 regarding constancy of variance in the data (ter Braak & Prentice, 1988) that cannot be true for 
402 presence-absence data, even after data transformation (O’Hara & Kotze, 2010; Warton, 2018; 
403 Warton et al., 2012). The problem may be negligible in some hypothesis testing situations (Ives, 
404 2015). Regardless, incorrectly assuming linearity (and constant variance) may lead to serious 
405 problems. Unfortunately, RDA is an algorithmic method that makes implicit decisions about the 
406 distribution of variances (ter Braak & Prentice, 1988; Warton et al., 2012) and does not provide 
407 the flexibility to separate systematic variation from random variation in the way that statistical 
408 models such as GLMs do (Warton et al., 2015; and see O’Neil & Schutt, 2013 for differences 
409 between algorithms and statistical models). New frameworks, such as using GLMs with 
410 spatially-structured random effects (followed by variation partitioning to find environmental and 
411 spatial components) have also been specifically proposed as a model-based alternative to MEMs 
412 (Ovaskainen et al., 2017). Despite recent advances showing that better estimates could be 
413 obtained by using sensible selection procedures, manipulating the data appropriately and/or by 
414 splitting the analysis of the response data over shorter spatial/environmental gradients (Bauman, 
415 Drouet, Dray, et al., 2018; Ives, 2015; Vieira et al., 2019), employing statistical models that 
416 match the distribution of the response data is better practice in most cases (Ferrier et al., 2007; 
417 Warton, 2018; Warton et al., 2015). 
418  Another relevant aspect of the general performances of the two methods concerns the 
419 peaks of performance in detecting spatial structure. The scores in the GLM/AIC framework were 
420 close to ideal across datasets when the number of variables that should be selected was none or 
421 was small relative to the number of variables available. The performance only decayed when 
422 many or all of the available variables should have been retained in the final model.  Thus, if a 
423 few variables are responsible for most of the spatial structure in community composition, 
424 GLM/AIC will usually outperform RDA/FW (Fig. 2). Considering that the majority of effects 
425 could be derived from a small number of causes (Sullivan, 2019) in many biological systems, 
426 GLM/AIC could presumably perform well on many real  systems. On the other hand, RDA/FW 
427 worked best precisely in situations thought unlikely in real systems, when no spatial structure is 
428 present among communities (where GLM/AIC also performed equally well), or when 
429 composition is structured at all possible spatial scales (i.e.,  and , respectively). 𝑛𝑉𝑎𝑟 = 0 𝑛𝑉𝑎𝑟 = 𝑚
430 Moreover, when the model had a small number of variables to select from (River dataset, Fig.3E-
431 F), performance of RDA/FW was very variable (Fig. 3E-F). 
432 The two approaches also differed in the ways they failed. GLM/more often included too 
433 few variables, while RDA/FW more often included too many. This was consistent among all 
434 three datasets under SPM and SAM simulations (Fig. 3) and is in contrast with results from 
435 previous studies where GLMs produced higher Type I error rates compared to a linear model 
436 (Ives, 2015). For beta diversity studies, where the aim is to identify the most important variables 
437 associated with differences in community composition, leaving out a few variables that affect 
438 composition is better, in our opinion, than including many variables whose effects are not 
439 important. On the contrary, in other scenarios such as when one tries to select pivotal attributes 
440 that could be important for the conservation of a population or community, it might be better to 
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441 accept a higher risk of including spurious variables. Furthermore, model selection problems 
442 involve a trade-off between bias and variance, with inclusion of unnecessary variables inflating 
443 the uncertainty in parameter estimates (Miller, 1990). Using AIC is often a good way to deal 
444 with this trade-off ( Anderson et al., 2000), and in our simulations, an AIC-based approach 
445 worked well. Thus, we suggest that GLM/AIC will usually outperform RDA/FW in selecting 
446 spatial explanatory variables for presence/absence community composition data. Unfortunately, 
447 AIC-like statistics are not recommended for constrained ordination methods such as RDA, and 
448 therefore its use cannot be trusted (see below and Bauman et al., 2018 for details). When 
449 different RDA-based procedures were systematically compared, the commonly (mis)used 
450 combination of RDA and AIC model selection produced the worst results, yielding inflated Type 
451 I errors rates (Bauman, Drouet, Dray, et al., 2018). Therefore, the benefits from AIC in dealing 
452 with the bias and variance trade-off do not apply to RDA or related ordination methods. Despite 
453 our interest in some attributes of the MEMs for our simulations, such as differences in model 
454 performance under varying spatial scales, we hypothesize that the results demonstrated here hold 
455 true for other types of explanatory variables (e.g. environmental) not tested here. 
456 The spatial scale represented by the MEMs had a negligible effect on GLM/AIC’s 
457 performance, with only one condition in one dataset slightly differing in results between different 
458 scales (see Fig.4 when the number of non-zeros is ). In contrast, RDA/FW’s performance ⌊3𝑚 4⌋
459 was strongly affected by spatial scale (Fig.4). In real systems, where the spatial scale at which 
460 community composition varies is not known a priori, the performance of RDA/FW could 
461 therefore be unpredictable. The uncertainty around RDA/FW performance over differing spatial 
462 scales could be especially troublesome for analyses involving processes that may not be constant 
463 along spatial/environmental gradients, as commonly observed for rates of species turnover, for 
464 example (Ferrier et al., 2007; Fitzpatrick et al., 2013).  
465

466 Conclusions
467

468 We discourage the use of traditional RDA/FW to search for spatial descriptors of 
469 variation in multivariate presence/absence data sets of moderate size, although large datasets 
470 could potentially overcome the issues found here. Instead, we recommend the GLM/AIC 
471 framework, in which the relationship between the response and its predictors is modelled in a 
472 way that respects the nature of the response. Similar recommendations are likely to apply to 
473 other forms of community abundance data with non-normal error distributions (e.g. count data 
474 with many zeros or proportional data, Bolker et al., 2009; Warton et al., 2012, 2016). 
475
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Table 1(on next page)

Simulation scenarios for the three datasets as described in main text.

Distribution of MEM variables with non-zero coefficient under each simulation scenario in all
three datasets (A = marine algae from Ilha Grande Bay, m = 16; B= Scotland grasslands, m
= 30; C= freshwater insects, m = 12). Rows and columns define all simulation scenarios
regarding the number of variables to be used and their position. Rows represent the number
of non-zero variables to be included based on set K (see main text), whereas columns define
the scaling of these non-zero variables, i.e. position to which those non-zero variables would
be assigned. Scaling 1 assigned non-zero coefficients only to MEMs associated with larger
eigenvalues representing broader spatial scales. Scaling 2 assigned non-zero coefficients
only to MEMs associated with smaller eigenvalues, representing finer spatial scales. Scaling 3
assigned non-zero coefficients to MEMs representing a range of spatial scales. Cells contain
sets of indices of explanatory variables. When nVar=0, none of the variables had non-zero
coefficients.
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Scaling

1 (only broad) 2 (only fine) 3 (mixed)

(A) 0 None - -⌊𝑚 6⌋ {1,2} {15,16} {1,16}⌊𝑚 3⌋ {1,2,3,4,5} {12,13,14,15,16} {1,2,3,15,16}⌊𝑚 2⌋ {1,2,…,8} {9,11,…,16} {1,2,3,4,13,14,15,16}⌊3𝑚 4⌋ {1,2,…,12} {5�,7,…, �16} {1,2,…,6,11,12,…,16}𝑚 {1,2,…,16} - -

(B) 0 None - -⌊𝑚 6⌋ {1,2,3,4,5} {26,27,28,29,30} {1,2,3,29,30}⌊𝑚 3⌋ {1,2,…,10} {21,22,…,30} {1,2,…,10,21,22,…,30}⌊𝑚 2⌋ {1,2,…,15} {16,17,…,30} {1,2,…,8,24,25,…,30}⌊3𝑚 4⌋ {1,2,…,22} {6�,7,…, �30} {1,2,…,11,21,22,…,30}𝑚 {1,2,…,30} - -

(C)

0 None - -⌊𝑚 6⌋ {1,2} {11,12} {1,12}⌊𝑚 3⌋ {1,2,3,4} {9,10,11,12} {1,2,11,12}⌊𝑚 2⌋ {1,2,…,6} {7,8,…,12} {1,2,3,10,11,12}⌊3𝑚 4⌋ {1,2,…,9} {4,5,…,12} {1,2, 3,4, 5,9,10,11,12}𝑚 {1,2,…,12} - -
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Figure 1
Schematic diagram of the main steps used in this study to simulate community
presence/absence data with pre-defined spatial structure.

Data acquisition (I): We used real data from marine, terrestrial and freshwater
communities and their respective sampling site coordinates as our baseline datasets.
Obtaining response and predictor matrices (II): Those datasets were used to construct
a response matrix of presence/absence data Y (1) and a matrix X of spatial explanatory
variables called MEMs. The spatial variables were obtained from a pairwise site-by-site
distance matrix A (2) and a connectivity matrix B (3) describing the spatial relationship
among sites (see main text for specific decisions for each dataset). The Hadamard product of
these two matrices generates the spatial weighting matrix W (4), which is then doubly
centred and diagonalised, yielding eigenvectors to be used as spatial variables, represented
below by matrix X. Obtaining realistic coefficients for spatial variables (III). From a
Generalized Linear Model (GLMs) for the relationship between Y and X (5) we obtained a
matrix C of realistic regression coefficients (6). Using non-zero coefficients to model new

presence/absence data with pre-defined spatial structure (IV): We sampled different
numbers of non-zero coefficients from C under 14 distinct scenarios (see main text) to build a
new matrix C* and then left-multiplied C* by X (7) to obtain matrix Ŷ*. This matrix
represented the logit predicted probabilities of presence or a matrix of log abundances,
depending on which of two models that differed, respectively, in assumptions regarding
absences as real (simulated presence model, SPM) or artifacts derived from poor sampling
(SAM). From Ŷ* we estimated (8) new presence/absence data Y* containing the spatial
structure defined by C*. Using GLM/AIC and RDA/FW to select spatial models using

the simulated presence/absence data (V): Finally, we regressed Y* against X using the
GLM/AIC and RDA/FW frameworks (9) to assess which MEMs would be correctly selected by
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those two methods. The performance of each method was mainly assessed by the proportion
of MEM variables that were correctly included or excluded from final models by each method
(10).
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Figure 2
Overall performance comparison between GLM/AIC (blue) and RDA/FW (red) methods on
simulated presence/absence data.

Scores were measured by counting the percentage of MEMs correctly included/excluded from
the final model out of the total number of variables in each dataset (A = 16, B = 30, C= 2).
This comparison was made across varying numbers of MEMs with non-zero coefficients (x
axis). (A, D) simulated data based on subtidal macroalgae in Ilha Grande Bay ; (B, E) data
based on plant species from Scottish grassland and (C, F) data based on aquatic
macroinvertebrate insect species from a river in Brazil. Panels A, C and E depict results
where community presence/absence data was simulated directly from real coefficients (SPM,
see main text) whereas B, D and F show simulation results where presence/absence data was
estimated from expected abundances (SAM).
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Figure 3
Differences in performance between GLM/AIC and RDA/FW frameworks regarding the
proportion of incorrect inclusions/exclusions of explanatory variables across 1000
simulations for each method.

Panels A, C and E depict results where community presence/absence data was simulated
direclty from real coefficients (SPM, see main text) whereas B, D and F show simulation
results where presence/absence data was estimated from expected abundances (SAM).
Panels A and D depict results for simulated data based on subtidal macroalgae in Ilha Grande
Bay; panels B and E represent data based on plant species from Scottish grassland; and
panels C and F represent data based on aquatic macroinvertebrate insect species from a
river in Brazil. Darker lines represent mean values.
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Figure 4
Performance of GLM/AIC (blue) and RDA/FW (red) modelling approaches under variation
in spatial scales of MEMs with non-zero coefficients.

Spatial scale was defined as broad (1), fine (2) or mixed (3) (where applicable). (A, B)
simulated data based on macroalgae in Ilha Grande Bay ; (C, D) data based on plant species
from Scottish grassland and (E, F) data based on aquatic macroinvertebrate insect species
from a river in Brazil. Panels A, C and E depict results where community presence/absence
data was simulated direclty from real coefficients (SPM) whereas B, D and F show simulation
results where presence/absence data was estimated from expected abundances (SAM, see
main text).
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