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Abstract: We proposed a method for driving metal nanoparticles in the focal field by cylin-
drical metalens with phase gradient. It was found that the introduced gradient phase would
not affect the formation of the focal line, where metal nanoparticles can be trapped. While
being driven along the direction with the phase gradient, Ag nanoparticles with different
sizes, and nanoparticles with different materials (Au and Ag) were successfully separated,
respectively. The induced driving force has an approximately linear relationship with the
phase gradient. This kind of planar thin structure can be combined with a microfluidic chip
to form a miniaturized system for label-free and non-contact sorting of particles or biological
cells, and it may find potential applications in biomedicine.

Index Terms: Optical trapping, optical sorting, metal nanoparticles, metalens, phase
gradient.

1. Introduction
Sorting particles or biological cells plays an important role in colloidal physics, analytical chemistry,
and biomedicine. The miniaturization of the sorting system is a tendency for integrated and portable
applications. Based on lab-on-a-chip, several microfluidic methods including fluorescence-activated
cell sorters [1], electrodynamics mobilization of fluid [2], dielectrophoretic forces [3], and hydrody-
namic flow control [4] have been developed. However, fluorescent labels, microfluidic buffers, and
electrophoretic damage can either contaminate the sample or affect the result. Therefore, there is
a need to develop label-free and non-invasive methods for particle sorting.

In 1986, Ashkin and his colleagues invented optical tweezers for particle trapping by creating a
three-dimensional (3D) potential well through a highly focused laser with an objective lens [5]. The
focal field can selectively deflect running particles in solution. That is, when two groups of particles
flow through the focal field, after the competition between optical force and fluid force, one group of
particles deviates from the original direction of motion, while the other group of particles continues
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Fig. 1. (a) The schematic of the particle manipulation system based on a cylindrical metalens with
phase gradient. (b) The metalens unit cell that consists of a TiO2 nanofin and a SiO2 substrate.

flowing without influence. The separation is determined by the inherent properties of particles such
as sizes or refractive indices. Due to its non-contact form, this method has been intensively used
for optical sorting [6]–[8]. For large-area sorting, several devices including microlens array [7],
[9], [10], diffraction optical element [11], and spatial light modulator [12], [13] have been utilized
to generate optical lattice for sorting in the last decade. However, these structures are bulky,
expensive, and not easy to be integrated. Configurations of waveguide and thin metal film can
overcome these limitations with driving particles through surface waves of evanescent wave [14]
and surface plasmon wave [15], respectively, and they were potentially used for sorting particles
[16], [17]. Nevertheless, they have high scattering and absorption losses, and the operations are
only confined at their surfaces within limited ranges.

In recent years, metasurfaces have been considered to be promising two-dimensional meta-
materials with various geometries, which impart phase for controlling phase, amplitude, and
polarization of transmitted or reflected electromagnetic waves in a desired and flexible manner
[18]–[22]. Because of the freedom for wavefront control, metasurfaces have been manufactured
to be lenses [23]–[25], waveplates [26]–[28], polarizers [29]–[33], and so on. Metalens as an
alternative of the objective lens was used for laser focusing [23] and further applied for optical
trapping [34]. The trapping of nanoparticles was numerically achieved with optical vortex array
generated by a multifocal metalens [24]. Selective trapping of metal particles was demonstrated by
polarization-sensitive metalens [35], [36]. Metalens is also easily engineered with phase gradients
[37]. In the form of scattering forces, optical forces arising from the phase gradients in extended
laser beams to drive particles [38], [39] provide a new possibility for particle manipulation, which
can be combined with microfluidics for particle sorting.

In this work, a method was proposed for optical trapping and separation of metal nanoparticles
by using cylindrical metalens with phase gradient. Particles with different sizes or materials were
examined. Finite-difference time-domain (FDTD) method was used to calculate the optical forces
and potentials of particles in the focal fields. The simulation results show that the particles can be
laterally trapped and longitudinally driven.

2. Method and Theory
2.1 The Metalens Structure

As shown in Fig. 1(a), through a metalens, normally incident light is focused to the channel in
the polydimethylsiloxane (PDMS), where a metal nanoparticle is trapped. Through adding a phase
gradient in the y-direction, the particle experiences optical force to compensate drag force. Fig. 1(b)

Vol. 12, No. 4, August 2020 4600810



IEEE Photonics Journal Optical Trapping and Separation of Metal Nanoparticles

shows the unit cell of the metalens, which is composed of a titanium dioxide (TiO2) nanofin and
a silica (SiO2) substrate. By choosing the nanofin with length, width, and thickness of 250 nm,
95 nm, and 600 nm, respectively, it is designed to be a half waveplate at the working wavelength
of 740 nm. The length, width, and thickness of the substrate are 325 nm, 325 nm, and 500 nm,
respectively. The center-to-center spacing of the nanofins is 325 nm. The material TiO2 is lossless
and its refractive index is high in the visible regime. For high-index dielectric metasurfaces, the
interaction among the nanofins is negligible and light scattered at each nanofin is dominated with
the local waveguide effect. Thus, the transmission coefficient of the unit cell array can be roughly
seen as an individual response of a unit cell [40], [41], which maintains transmission efficiency as
high as 90% according to Ref. [24].

These transparent nanofins have resonant behaviors and allow for manipulating the phase of lo-
cally transmitted light over the whole 2π range through precise engineering in two dimensions. Due
to the birefringence, the effective refractive indices of nanofins vary for two orthogonal polarizations
perpendicular to the propagation direction. For incident right-handed circularly polarized light, the
phase change and rotation angle of a nanofin have a relationship: ϕnf (x, y ) = 2θnf (x, y ), according
to the Pancharatnam-Berry (PB) phase [42], [43]. The phase and angle profiles of nanofins in a
focusing metalens should satisfy [23]

ϕnf (x, y ) = 2π

λd

(
f −

√
x2 + y2 + f 2

)
, (1)

θnf (x, y ) = π

λd

(
f −

√
x2 + y2 + f 2

)
, (2)

where λd is the wavelength, f is the focal length.

2.2 Optical Force, Trapping Potential and Drag Force

The time-averaged optical force applied to a particle can be calculated through the integral of
Maxwell stress tensor (MST) on the particle surface [24].

< F > =
∫ { ε

2
Re[(E · n)E ∗] − ε

4
(E · E ∗)n + μ

2
Re[μ(H · n)H∗] − μ

4
(H · H∗)n

}
ds, (3)

where ε and μ are the relative dielectric constant and magnetic permeability of the medium
surrounding the particle, n is the normal unit perpendicular to the integral area s. The optical force
can be obtained by the MST toolbox available in a commercial solver (FDTD solutions, Lumerical).
Note that the total force is composed of the gradient force and scattering force.

The trapping potential can be calculated by the following formula [44]:

U (r0) = −
∫ r0

∞
F (r )dr, (4)

where U (r0) is the energy required to move a particle from infinity to position r0. To obtain a
stable trap, a trapping potential depth of more than 10kBT is generally required to overcome the
interference from thermal effect [45], where kB the Boltzmann constant and T is the temperature.

One-dimensional Langevin equation can be used to describe the linear motion of a trapped
particle. Assuming that the motion is at the overdamped limit, the acceleration is negligible in a
short distance, and the noise is ignored, the equation can be simplified as

γ
dy
dt

= F (y ), (5)

where y is the position of the particle, F (y ) is the optical force exerted the particle at the position y,
and γ is the friction coefficient, which is defined by Stokes’ law, γ = 6πυR, where R is the radius of
the particle and υ is the dynamic viscosity of the medium.
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Fig. 2. (a), (e), and (i) Top views of cylindrical metalenses without phase gradient, with a fixed
phase gradient, and with gradually varying phase gradients, respectively. The right pics show the
enlargements of partial metalens structures. (b), (f), and (j) The corresponding electrical intensities
in the propagation x-z planes. The interface between nanofin and substrate is at z = 0 μm. (c), (g), and
(k) The corresponding electrical intensities in the focal x-y planes. (d), (h), and (l) The corresponding
Ey phase distributions in the focal x-y planes.

3. Results and Discussions
3.1 The Cylindrical Metalens

To design a cylindrical metalens without phase gradient, the phase changes and rotation angles of
the metalens nanofins need to follow [46]

ϕnf (x, y ) = 2π

λd

(
f −

√
x2 + f 2

)
, (6)

θnf (x, y ) = π

λd

(
f −

√
x2 + f 2

)
. (7)

As shown in Fig. 2(a), the nanofins in the cylindrical metalens without phase gradient are
continuous in the y-direction, and the rotation angles of the nanofins far from the middle change
more rapidly than those close to the middle. To facilitate simulation calculations, the metalenses
were designed with a focal length of 2 μm and a size of 7 × 14 μm2, including 20 columns and
40 rows. It is worth mentioning that the number of unit cells or the size of the metasurface can
also influence the performance of the device. Note that our suggested design concept is not the
only possible implementation that can meet the specified conditions. However, due to its inherent
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simplicity that all the constituent unit cells are identical in shape and size, our solution offers great
ease for experimental realization.

To design a cylindrical metalens with phase gradient in the y-direction, the phase changes and
rotation angles of the metalens nanofins need to follow

ϕnf (x, y ) = 2π

λd

(
f −

√
x2 + f 2

)
+ 2π

ad
yb, (8)

θnf (x, y ) = π

λd

(
f −

√
x2 + f 2

)
+ π

ad
yb, (9)

where a and b are the factors of the phase gradient, and d is the center-to-center spacing of the
nanofins. As shown in Fig. 2(e), the rotation angles of nanofins increase by the step size of π/20
per row in the y-direction. A total rotation angle change of 2π was added to the y-direction for a
phase gradient of π/20d (rad/m). In this case, a = 20 and b = 1. The bottom row of nanofins is
the same in all cases for reference. As shown in Fig. 2(i), the rotation angles of nanofins each row
increase nonlinearly from bottom to top, the phase gradients are gradually varying. In this case,
a = 320 and b = 2.

The focal fields by the three metalenses above were simulated. The collimated light normally
illuminates from the beneath of the substrate, across the nanofins, to the air. Then, the corre-
sponding far-field distribution was obtained by a field monitor. For the metalenses in Figs. 2(a)
and (e), periodic boundary conditions were used in the y-direction while perfect matching layer
(PML) boundaries were used in the x- and z- directions. For the metalens in Fig. 2(k), the periodic
boundary condition is not applicable in y-direction due to nonuniform structure distribution, all the
boundary conditions were using PMLs. The mesh step of the simulations was 5 nm. Figs. 2(b),
(f), and (j) are the calculated light intensity distributions in the x-z plane, showing the convergence
behaviors. The focal points are all located at about z = 1.9 μm, which is slightly different from the
designed focal length. This is consistent with Eqs. (8) and (9) that the focal length f is independent
of the position y. Figs. 2(c), (g), and (k) are the calculated light intensity distributions in the focal
x-y planes. Clear focal lines at the middle (x = 0 μm) can be seen, indicating the introduced phase
gradient has almost no effect on the focusing by the phase changes in the x-direction. Because
of the different boundary conditions applied in simulation, the distribution in Fig. 2(k) is slightly
different from the other two. With the introduction of relatively large phase gradient, the rotation
angle distribution changes significantly. As the transmission efficiency of nanofin with different
angles differs, thus the intensity at the focal line in Fig. 2(k) is slightly nonuniform. Figs. 2(d), (h),
and (l) are the calculated phase distributions in the focal x-y plane. Phase responses were obtained
by extracting the transmission electrical field components and calculating arctan[Im(Ey )/Re(Ey )]. It
can be seen from Fig. 2(h) that there is a 4π phase change in the y-direction, which is particularly
clear in the middle, while the phase distribution in Fig. 2(d) remains uniform in the y-direction. In
Fig. 2(l), it can be seen in the middle that the phase gradients increase from bottom to top. All the
phase distributions are in good consistency with the designs for all the metalenses. Therefore, the
phase gradient of the cylindrical metalens can be independently controlled by adjusting the values
of a and b, offering great freedom degree.

3.2 Optical Trapping of Metal Nanoparticles by a Cylindrical Metalens With a
Fixed Phase Gradient

By using the metalens in Fig. 2(e), we studied the trapping of Ag nanoparticles with radii every
50 nm from 50 nm to 400 nm. In the simulation, the power of the incident light was 0.98 mW, the
medium around Ag nanoparticles was water (ns = 1.33), which was not embedded around the
nanofins for practical consideration. Both the sample and metalens can be adjusted freely in 3D
directions, this avoids the contamination of metalens and offers great freedom for optical adjustment
and alignment. Then we calculated the trapping forces and potential depths for Ag nanoparticles
with different sizes according to Eqs. (3) and (4). It can be seen from Fig. 3(a), when the radii are
less than 200 nm, Ag nanoparticles are subjected to forces that always point to the zero point at
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Fig. 3. (a) Relationships between Fx and the position at the x-axis (y = 0) of Ag nanoparticles.
(b) Relationships between the potential depth and the position at the x-axis (y = 0) of Ag nanoparticles.
The inserts in (a) and (b) indicate the radii of the particles.

the x-axis. This is because plasmonic nanoparticles can be trapped due to the localized surface
plasmon resonance [47] whilst large particles cannot. This can also be explained by the competition
between gradient force (pulling) and scattering force (pushing). When the radii of Ag nanoparticles
are larger than 200 nm, the directions of forces are opposite, and traps cannot be formed. When
the size of a particle is relatively small, the particle is easily polarized, the gradient force(Coulomb
force) from the intensity gradient is dominant that points to the middle with higher intensity. While
when the size of a particle is relatively large, the x-direction component of the scattering force can
be dominant that points to two sides with lower intensity. As shown in Fig. 3(b), when the radii of
Ag nanoparticles are smaller than 200 nm, potential wells can be generated. When the radii of Ag
nanoparticles are at the range 50 nm∼200 nm, the potential depths are larger than 10kBT , stable
traps can be obtained.

3.3 Optical Separation of Metal Nanoparticles by a Cylindrical Metalens With a
Fixed Phase Gradient

Based on the trapping of metal nanoparticles by the cylindrical metalens with a fixed phase
gradient, we firstly studied the effect of the size on the force of metal nanoparticles. Among
the trapped Ag nanoparticles above, those with radii of 50 nm and 100 nm were selected
as the simulation objects. Under the conditions of stable traps as illustrated in Figs. 4(a) and (b),
the phase gradient forces of Ag nanoparticles with these two radii were studied. We measured
Fy every 1 μm from −5 μm to 5 μm in the y-direction (x = 0), as shown in Fig. 4(c). Fy of Ag
nanoparticles with the two different sizes are separately distributed in two regions. The average Fy

value of Ag nanoparticles with a radius of 50 nm is 0.325 pN, and that of Ag nanoparticles with
a radius of 100 nm is 2.16 pN. With the phase gradient forces, metal nanoparticles can be driven
along the focal line, which can be regarded as a nano-optical conveyor belt for transporting particles
or biological cells.

In order to study the behaviors of Ag nanoparticles in the focal field, we used Eq. (5) to calculate
the instantaneous velocity v = dy/dt of Ag nanoparticles at various positions. As shown in Fig. 4(d),
the velocity values of Ag nanoparticles with two radii are separately distributed in two regions. The
velocity values of Ag nanoparticles with a radius of 50 nm are all around 0.3 μm/s, while that of
100 nm are all around 1.5 μm/s. Fig. 4(e) shows the time required for Ag nanoparticles with two
radii to move from the current position to the next position. The instantaneous velocity of the particle
at each position was taken as the average velocity at 1 μm interval between two positions. It takes
23.307 s for a Ag nanoparticle with a radius of 50 nm to travel through the whole focal line, while
it takes only 3.341 s for a Ag nanoparticle with a radius of 100 nm. These results demonstrate that
metal nanoparticles of different sizes can be separated by the phase gradient metalens.
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Fig. 4. (a) Relationships between Fx and the position at the x-axis (y = 0), (b) potential depth
distributions along x-direction, and (c), (d), and (e) scatter plots of Fy − y, Vy − y, and t-y (x = 0), for Ag
nanoparticles with radii of 50 nm and 100 nm, respectively.

Secondly, we studied the effect of the material on the force of nanoparticles. Ag and Au
nanoparticles with the same radius of 75 nm were chosen as the simulation objects. The magnitude
of the trapping force Fx is at the level of pN. The potential depths are greater than 10kBT . Both Ag
and Au nanoparticles can be stably trapped at the focal line. As shown in Fig. 5(c), the average
Fy of Au and Ag nanoparticles are respectively 1.91 pN and 1.70 pN, respectively. The fluctuation
of the forces comes from the variation of the laser intensity in the y-axis, as the intensity gradient
force (gradient force) will cause changes to the phase gradient force (scattering force). Then we
calculated the instantaneous velocities of Au and Ag nanoparticles at each position according to Eq.
(5), as shown in Fig. 5(d). Next, we calculated the time required for the two groups of nanoparticles
to move from the current position to the next position, as shown in Fig. 5(e). It takes 3.784 s
for Au nanoparticle with a radius of 75 nm to move through the focal line, while it takes 4.613 s
for Ag nanoparticle. These results demonstrate that nanoparticles with different materials can be
separated by the phase gradient metalens.

3.4 The Phase Gradient Dependent Force

Finally, we studied the effect of the phase gradient on the force of metal nanoparticles. By
modulating the factors a and b in Eq. (8), the phase gradient in the y-direction can be adjusted.
Here, we chose b = 1 and a = 3, 4, 6, 10, 20, 40, 80, 120 respectively for the design of the
metalenses. The maximum phase gradient is π/3d (rad/m), which is formed by at least three rows
of nanofins. We got a boxplot for Fy of Ag nanoparticles with a radius of 100 nm in the y-direction
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Fig. 5. (a) Relationships between Fx and the position at the x-axis (y = 0), (b) potential depth distribu-
tions, and (c), (d), and (e) scatter plots of Fy − y, Vy − y, and t-y (x = 0), for Ag and Au nanoparticles
with the same radius of 75 nm, respectively.

Fig. 6. (a) Boxplot of Fy in the y-direction (x = 0) for Ag nanoparticles with a radius of 100 nm under
phase gradients with π /120d, π /80d, π /40d, π /20d, π /10d, π /6d, π /4d, and π /3d (rad/m). The blue
dotted lines indicate the ranges of the force values, the blue boxes indicate the quartiles, the lines in
the boxes indicate the median values, and the red dots indicate the outliers. The black inclined line is
fitted based on the median values excluding those at π/3d and π/4d by using the least square method.
(b) Scatter plots of Fy − y of a Ag nanoparticle with a radius of 100 nm in the y-direction (x = 0). The
black line is fitted by using the least square method. The abscissa denotes the position of the particle
located at the focal line by the metalens in Fig. 2(i).

(x = 0) under different phase gradients, as shown in Fig. 6(a). The force has an approximately
linear relationship with the phase gradient when it is less than π/6d (rad/m). As for the relatively
large phase gradients of π/3d or π/4d (rad/m), the focal field may be affected because the phase
changes drastically, as shown in Fig. 2(k), thus the force deviates from the ideal value. The situation
for the case of π/3d is worse, thus the average force is lower than that of π/4d . The negative values
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of the forces in the y-direction can be attributed to that the phase gradient forces are too small to
overcome the gradient forces.

In order to study the effect of forces by the nonuniform phase gradients, we further measured Fy of
a Ag nanoparticle with a radius of 100 nm at the focal line by the metalens in Fig. 2(i). The metalens
has linearly increasing phase gradients with the quadratic phase profile. As shown in Fig. 6(b),
along with the phase gradient increasing from bottom to top, the force Fy of the Ag nanoparticle
increases. Since the phase gradients are relatively small, the forces and phase gradients still
maintain an approximately linear relationship. Therefore, different phase gradients can be imprinted
on a single metalens for dynamic manipulation of particles.

4. Conclusion
In summary, we numerically studied cylindrical metalenses without and with phase gradients,
the former can be potentially used for particle self-assembly with a line trap, the latter can be
used for driving particles along the direction with phase gradient, which can be further used for
optical separation of metal nanoparticles with different sizes or materials. The driving forces on
metal nanoparticles have a linear relationship with relatively small phase gradients. Compared with
traditional optical trapping by objective, cylindrical metalenses with phase gradients can be used to
move particles without the need of any mechanical movement. Compared with previous methods
of driving particles through surface waves including evanescent wave or surface plasmon wave, the
phase gradient focal field can be constructed in the 3D space rather than on the surface only, thus
avoiding physical contact between particle solution and structure. This manipulation mechanism
can be cooperated with microfluidics to achieve more controlled particle sorting. This work may
open up new avenues for optical tweezers and their application in biomedicine.
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