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Abstract 13 

Carriage of resistance genes can underpin bacterial survival, and by spreading these genes 14 

between species, mobile genetic elements (MGEs) can potentially protect diversity within 15 

microbial communities. The spread of MGEs could be affected by environmental factors such as 16 

selection for resistance, and biological factors such as plasmid host range, with consequences 17 

for individual species and for community structure. Here we cultured a focal bacterial strain, 18 

Pseudomonas fluorescens SBW25, embedded within a soil microbial community, with and 19 

without mercury selection, and with and without mercury resistance plasmids (pQBR57 or 20 

pQBR103), to investigate the effects of selection and resistance gene introduction on (1) the 21 



focal species; (2) the community as a whole; (3) the spread of the introduced mer resistance 22 

operon. We found that P. fluorescens SBW25 only escaped competitive exclusion by other 23 

members of community under mercury selection, even when it did not begin with a mercury 24 

resistance plasmid, due to its propensity to acquire resistance from the community by horizontal 25 

gene transfer. Mercury pollution had a significant effect on community structure, decreasing 26 

alpha diversity within communities while increasing beta diversity between communities, a 27 

pattern that was not affected by the introduction of mercury resistance plasmids by P. 28 

fluorescens SBW25. Nevertheless, the introduced merA gene spread to a phylogenetically 29 

diverse set of recipients over the five weeks of the experiment, as assessed by epicPCR. Our 30 

data demonstrates how the effects of MGEs can be experimentally assessed for individual 31 

lineages, the wider community, and for the spread of adaptive traits. 32 

Keywords 33 

horizontal gene transfer1, conjugative plasmids2, mobile genetic elements3, Pseudomonas4, 34 

mercury5, soil6, bacterial communities7 35 

Introduction 36 

Many of the traits that make bacteria economically, ecologically, or clinically important are 37 

encoded by accessory genes carried by mobile genetic elements (MGEs) (Hall et al., 2017a). 38 

Conjugative MGEs, i.e. those with genes that produce a channel (the conjugative pilus) through 39 

which the MGE can be copied between neighbouring bacteria (Garcillán-Barcia and Cruz, 2013; 40 

Cury et al., 2017), are particularly important for the spread of traits in bacterial communities. 41 

This is because of the efficiency with which conjugative MGEs can transmit large accessory 42 

gene cargos between individuals, including those of different species (Halary et al., 2010; 43 

Klümper et al., 2015). By enabling adaptive traits to move into new lineages, conjugative MGEs 44 

can drive rapid evolution, and adaptation to environmental change (Hall et al., 2017a). 45 



The impacts of MGE acquisition for adaptation can be seen at the level of an individual bacterial 46 

lineage, where trait acquisition can allow survival in the face of a new abiotic stress like 47 

disinfectants or toxic metals (Silver and Misra, 1988; Wassenaar et al., 2015), provide genes to 48 

outcompete rivals (Riley and Wertz, 2002), or enable that lineage to occupy a new niche, such 49 

as a new animal or plant host (Faruque and Mekalanos, 2003; Platt et al., 2012). Horizontal 50 

gene transfer through MGE exchange also has effects that manifest at the level of the wider 51 

bacterial community. From a community perspective, adaptive traits spread by MGEs can 52 

potentially sustain community-wide diversity — and community function — in the face of strong 53 

selection for that trait. In mouse gut microbial communities, for example, antibiotic treatment 54 

caused increased mobilisation of resistance genes by bacteriophage (Modi et al., 2013), which 55 

could mediate functional resilience of the microbiome. The effects of MGE transmission can 56 

also be considered from the perspective of the trait in question. Mobile traits are likely to be 57 

more persistent relative to traits that are more tightly linked to a particular lineage, particularly at 58 

times where positive selection is weak or absent, because mobile traits can move into lineages 59 

that are better adapted to the prevailing local conditions (Bergstrom et al., 2000; Niehus et al., 60 

2015). Probiotic treatments, designed to introduce new traits such as phytoprotection or 61 

detoxification of pollutants into microbial communities (also known as ‘bioaugmentation’), could 62 

therefore benefit from a consideration of the mobility of the genes encoding the introduced 63 

function (Garbisu et al., 2017). 64 

The maintenance and spread of mobile genetic elements in a bacterial community is affected by 65 

several factors. MGE acquisition varies across taxa, and across different strains of the same 66 

species (McNally et al., 2016; Wyres and Holt, 2018). Lineages vary in their ability to acquire 67 

and maintain plasmids, due to conflicting genes such as restriction-modification systems and 68 

CRISPR immunity (Oliveira et al., 2016; Westra et al., 2016). Lineages that are favourable to 69 

MGE acquisition would therefore be predicted to be susceptible to infectious parasites like 70 



bacteriophage, but also more resilient to environmental change as they can acquire adaptive 71 

MGEs (Jiang et al., 2013; Bellanger et al., 2014; Westra et al., 2016). Patterns of MGE 72 

transmission will also vary with the MGEs themselves: different types of MGE vary in their host 73 

range (Jain and Srivastava, 2013; Cury et al., 2018), impose varying burdens on recipient 74 

fitness, and have differing baseline rates of transmission (e.g. Hall et al., 2015). The prevailing 75 

environmental conditions will also affect the spread of MGE-borne traits. Selection for the traits 76 

carried by MGEs can favour MGE spread by enhancing the fitness of recipients, but may at the 77 

same time reduce MGE spread by removing potential recipients from the community (Lopatkin 78 

et al., 2016; Stevenson et al., 2017). Highly transmissible MGEs can effectively spread traits in 79 

the absence of selection, particularly when MGE persistence depends on infectious 80 

transmission (Lopatkin et al., 2016; Hall et al., 2016). Although the factors driving MGE spread 81 

have been investigated in laboratory studies, there is a general lack of experimental data 82 

describing MGE transmission in the context of species-rich bacterial communities in their natural 83 

habitat, and how patterns of MGE exchange are affected by selection. 84 

To understand how both genetic and ecological factors drive the spread of MGEs, and what the 85 

consequences are for individual lineages and the broader bacterial community, we established 86 

an experiment in which a trait was introduced into a diverse bacterial community on different 87 

conjugative plasmids, with and without positive selection for the trait. We used the 88 

Pseudomonas fluorescens SBW25/pQBR plasmid system. P. fluorescens SBW25 is a plasmid-89 

free strain isolated from the same site as the pQBR plasmids, and thus represents a naturally-90 

relevant host. P. fluorescens SBW25 is plant-associated, but can proliferate in bulk potting soil, 91 

and has been studied in soil microcosm experiments both by itself and alongside the resident 92 

soil community (Lilley and Bailey, 1997b; Gómez et al., 2016; Hall et al., 2016). The pQBR 93 

plasmids were isolated by their ability to mobilise mercury resistance (Lilley et al., 1996). 94 

Though all pQBR plasmids sequenced to date contain the same mercury resistance operon 95 



located on a Tn5042 transposon, the plasmid backbones can be very different. Previous work 96 

has shown that pQBR103 and pQBR57 — conjugation-proficient megaplasmids of 425 kb and 97 

307 kb respectively — carry identical merA genes but pQBR103 has a larger fitness cost and a 98 

lower conjugation rate than pQBR57, when tested in P. fluorescens SBW25 (Hall et al., 2015). 99 

Both plasmids are known to transfer into other species of Pseudomonas, but their broader 100 

ranges are unknown (Hall et al., 2016; Kottara et al., 2018). Both plasmids are predominantly 101 

comprised of uncharacterised genes with unknown relevance to the soil environment, but there 102 

is evidence that some pQBR103 genes are associated with plant interactions (Lilley and Bailey, 103 

1997a; Zhang et al., 2004). The microbial community was derived from a suspension of the 104 

same soil used in the experiments: it represents a species-rich natural assemblage likely to 105 

contain archaea and eukaryotes alongside bacteria. Though this community has been artificially 106 

extracted from potting soil by a soil wash process (which may have failed to sample some 107 

members of the original assemblage) it remains directly relevant to the experimental conditions 108 

under investigation. 109 

We cultured P. fluorescens SBW25 (the ‘focal strain’), carrying either of two mercury resistance 110 

plasmids, pQBR57 and pQBR103, or no plasmid, and either by itself, or embedded within this 111 

semi-natural community from potting soil. These soil microcosms contained either 112 

unsupplemented potting soil or potting soil supplemented with two different concentrations of 113 

ionic mercury, in a fully-factorial design. The levels of mercury used represented moderate-high, 114 

and very high levels of pollution seen in natural sites (Arbestain et al., 2008). Over the course of 115 

five growth cycles in soil microcosms, we tracked the dynamics of the focal strain, the 116 

composition of the bacterial fraction of the community as a whole, and the spread of mercury 117 

resistance. 118 

Materials and Methods 119 



Bacterial soil culture 120 

P. fluorescens SBW25 was previously labelled with a streptomycin resistance cassette and the 121 

lacZ marker gene and used as a recipient for conjugation of plasmids pQBR103 and pQBR57 122 

(Hall et al., 2015). Strains were streaked onto Kings B media (20 g proteose peptone, 1.5 g 123 

MgSO4•7H2O, 1.5 g K2HPO4•3H2O, 10 g glycerol per litre, supplemented with 12 g/L agar) 124 

containing 200 µg/ml streptomycin, and 20 mM HgCl2 where appropriate, and isolated colonies 125 

used to set up liquid KB cultures for the experiment (one colony per replicate). Colonies were 126 

grown for 40 h to reach saturation before beginning the experiment. Soil cultures were 127 

maintained in twice-autoclaved ‘potting soil microcosms’, which consisted of 10 g John Innes #2 128 

potting compost in a 30 ml glass universal tube. Before inoculation, microcosms were amended 129 

by the addition of 900 µl of either water or HgCl2 solution to adjust Hg2+ concentration 16 µg/g or 130 

64 µg/g, and vortexed briefly. Microcosms were incubated at room temperature for 131 

approximately one hour after amendment before use. Soil water content was approximately 132 

25% v/w (Hall et al., 2015). To establish the experiment, the natural community was first 133 

extracted using a soil wash. Unautoclaved soil (200 g), from the same bag as that used to make 134 

the microcosms, was added to a 500 ml duran flask with 400 glass beads (5 mm) and 200 ml 135 

sterile M9 buffer (47.8 mM Na2HPO4, 22 mM KH2PO4, 8.55 mM NaCl, 18.7 mM NH4Cl, pH 7.4) 136 

and mixed thoroughly by shaking and vortexing for 5 minutes. Supernatant was removed into a 137 

sterile falcon tube, and sample of this was autoclaved for the ‘no natural community’ treatments. 138 

P. fluorescens cultures were pelleted and resuspended in M9 buffer at 1:20 dilution. Samples 139 

were mixed 1:1 v/v with either natural community or autoclaved natural community, and 200 µl 140 

was added to the soil microcosm and vortexed briefly to disperse. Soil cultures were maintained 141 

at 28°C and 80% relative humidity. 142 

Every seven days, samples of soil wash from each population was transferred into fresh media. 143 

M9 buffer (10 ml) and twenty 5 mm glass beads were added to each microcosm and vortexed 144 



for 1 minute. A sample of soil wash (100 µl) was transferred into a fresh microcosm to continue 145 

the experiment, and samples were spread on media to establish population densities. Routinely, 146 

samples were spread on KB agar supplemented with 50 µg/ml X-gal and 200 µg/ml 147 

streptomycin to enumerate P. fluorescens SBW25 cfu/g, onto 0.1x nutrient agar (NA, Oxoid) 148 

supplemented with 50 µg/ml X-gal to enumerate the total community, and onto 0.1x NA with 50 149 

µg/ml X-gal and 2 µM HgCl2 to enumerate the mercury resistant portion of the natural 150 

community. Natural community plates were counted after 4 days growth at 28°C. Mercury 151 

resistance amongst P. fluorescens SBW25 was tracked by plating samples of culture onto KB + 152 

200 µg/ml streptomycin + 20 µM HgCl2, or by replica plating from the KB + 200 µg/ml 153 

streptomycin plates onto 100 µM HgCl2. In some cases (e.g. from the plasmid-free populations) 154 

mercury resistance was also estimated by spreading samples on KB supplemented with 200 155 

µg/ml streptomycin and 20 µM HgCl2. Mercury concentrations were adjusted across media 156 

types to be selective for resistance, based on results from preliminary experiments. Colony PCR 157 

was performed on up to 12 mercury-resistant endpoint clones from each surviving population to 158 

test for the presence of plasmid backbone genes (oriV, trfA) as described previously (Harrison 159 

et al., 2015; Hall et al., 2016); plasmid loss with merA maintenance was found in only two 160 

populations: pQBR57 with 64 µg/g Hg2+ with natural community, replicate a; and pQBR103 with 161 

16 µg/g Hg2+ with natural community replicate d. In each case, 3/12 (25%) of tested clones had 162 

lost the pQBR plasmid but maintained merA. 163 

Samples of communities for downstream analyses (16S sequencing, epicPCR) were frozen by 164 

adding glycerol to soil wash at 20% w/v final concentration and freezing at -80°C. 165 

Extracting bacteria from soil 166 

We adapted a nycodenz centrifugation protocol from Burmølle et al. (2003) to extract bacteria 167 

from soil for 16S and epicPCR analysis. Frozen soil wash/glycerol samples were thawed and 168 



pelleted at 5 G for 5 min, and resuspended in 600 µl 0.2% w/v sodium pyrophosphate. 169 

Resuspended samples were vortexed for 1 minute, then 300 µl of Nycodenz cushion (1.3 g/ml) 170 

was carefully pipetted below each sample, avoiding mixing. Samples were centrifuged for 10 171 

minute at 10.9 G, before the top layer and interface (~700 µl) was carefully removed and added 172 

to a new tube containing 400 µl 0.85% NaCl. Samples were pelleted again at 5 G for 5 minutes 173 

and resuspended in 1 ml nuclease-free water. Preliminary experiments showed that this 174 

protocol often resulted in aggregates. To remove these and generate the single-cell suspension 175 

necessary for epicPCR, all samples were gently pipetted and then filtered through a 5 µm 176 

syringe filter, pelleted, and resuspended in H2O. A sample was taken for epicPCR bead prep 177 

and the remainder was frozen in 20% glycerol in M9 for subsequent 16S amplicon PCR. 178 

Generating acrylamide beads for epicPCR and generation of epicPCR 179 

amplicons. 180 

Un-lysed cells were used to generate acrylamide beads for epicPCR according to Spencer et 181 

al. (2016) with a lysozyme step for cell lysis. Full details are provided in Supplementary 182 

Methods. Samples of beads were stained with SYBR green (1:10,000) and imaged using a 183 

fluorescence microscope to ensure that >99% of beads were empty before generating 184 

emulsions for epicPCR. Beads were used as templates in the first-round of epicPCR using the 185 

primers merA_F1B, merA_F2+R1, and R1 (Supplementary Table 7), and samples of the PCR 186 

reaction were imaged to ensure emulsion stability and the presence of only one acrylamide 187 

bead per drop. Second-round epicPCR products were generated using primers merA_F3E and 188 

PE16S_V4_E786_R. Blocking primers R1+F1block10F and R1+F1block10R were added to 189 

block amplification of unfused products. Quadruplicate reactions were performed for each 190 

sample and the products pooled and purified using AMPure XP beads. 191 

DNA extraction for 16S amplicon generation 192 



Total DNA from cells extracted using the nycodenz protocol was extracted using the DNeasy 193 

Blood & Tissue Kit’ (QIAGEN) and 5 µl used for PCR using primers PE16S_V4_U515_F and 194 

PE16S_V4_E786_R using Phusion Hot-Start Flex polymerase. Full details are provided as 195 

Supplementary Methods. Quadruplicate reactions were performed for each sample and the 196 

products pooled. 16S and epicPCR amplicons were barcoded and pooled and each library was 197 

sequenced using a MiSeq v2 with 250 bp paired-end reads. The 16S amplicon analyses 198 

generated >50,000 read pairs per sample library. Yield from epicPCR was variable due to low 199 

input from some samples. 200 

Community sequence analysis 201 

Amplicon data was analysed using QIIME2 (version qiime2-2018.11) (Bolyen et al., 2019) using 202 

the dada2 denoising module, and R (R Foundation for Statistical Computing, Vienna, Austria). 203 

Short read sequences can be found at the short read archive PRJEB34647. 204 

For the 16S data, primer sequences were removed using ‘--p-trim-left-f 23’ and ‘--p-trim-left-r 20’ 205 

functions. Reads were truncated to maintain read quality above a PHRED-scaled score of 30, 206 

which resulted in a truncation length of 210 in the forward read and 190 in the reverse read. 207 

About 25% of reads were lost, primarily through the removal of chimeras. Low abundance 208 

sequence variants (total frequency < 0.001%) were removed, leaving 4,863,898 sequences 209 

comprising 613 variants across the evolved populations. Preliminary data exploration revealed 210 

that one sample (replicate a, plasmid-free, no mercury) had a very divergent population 211 

structure which could be traced to a technical issue with DNA extraction, so this sample was 212 

excluded from the analysis. Data were subsampled to 50,000 reads for all analyses. Alpha 213 

diversity metrics were analysed using linear models with plasmid, mercury, and their interaction 214 

as fixed effects, using Type II Sums of Squares to assess main effects, and the sjstats package 215 

was used to calculate eta-squared. Beta-diversity was analysed by permutational MANOVA 216 



using the adonis2 function in the vegan package (Okansen et al., https://CRAN.R-217 

project.org/package=vegan). Dispersion for each distance measure was extracted using the 218 

betadisper function in the vegan package and analysed as with alpha diversity. We identified a 219 

generally good correlation between plate counts for P. fluorescens SBW25 and abundance of 220 

reads matching the expected SBW25 amplicon sequence variant (ASV; Spearman’s rho = 221 

0.879, p < 0.001). Dominant, abundant amplicon sequences can cause technical artefacts with 222 

16S amplicon analyses. Though the SBW25 amplicon was not overwhelmingly abundant, we 223 

repeated all of the analyses with the SBW25 amplicon excluded, and found that this had no 224 

qualitative effect on our conclusions. To investigate enrichment of specific taxa across 225 

treatments we performed differential abundance analysis using balances via gneiss, 226 

implemented in QIIME2. Balances were identified that were associated with increasing and 227 

decreasing abundance with mercury, and the distributions of taxa across these balances (from 228 

phylum to genus) were tested with Chi-Squared goodness-of-fit tests, with Benjamini-Hochberg 229 

correction for multiple testing. 230 

For the epicPCR data, a preliminary analysis was first conducted to test that primers were 231 

amplifying the correct merA allele. Primer sequences were removed using ‘--p-trim-left-f 21’ and 232 

‘--p-trim-left-r 20’ functions, and as products were expected to be fused amplicons, the data 233 

were initially denoised for preliminary analysis without chimera checking using the option ‘--p-234 

chimera-method none’. Reads were truncated to 205 bp in the forward read and 180 bp in the 235 

reverse read to ensure PHRED-scaled quality scores > 30. Representative sequences were 236 

analysed for the presence of the expected merA fragment. Of 10,906 sequences, 8,994 237 

contained the correct sequence for merA. Of the remaining sequences, approximately half were 238 

truncated 16S fragments, and approximately half had only single basepair differences from the 239 

expected merA fragment, suggesting that these amplicon variants are likely to have a negligible 240 

effect on data interpretation. Nevertheless, all non-matching amplicons were removed from 241 



subsequent analysis. Primers and merA fragments were removed from matching reads, which 242 

were denoised and merged. Samples with <1,000 reads were considered amplification failures, 243 

and so only the remaining samples (n = 13, all of which had >150,000 reads) were used for 244 

subsequent analyses. The two negative controls (a no-sample control, and a control 245 

representing the natural community before pQBR plasmid addition) both yielded very few reads 246 

(2 and 102 respectively), almost all of which matched P. fluorescens SBW25 and 247 

Enterobacterales which were abundant in other samples, and thus likely represent a low level of 248 

contamination. 249 

Plasmid recipients were analysed by removing the ASV corresponding to P. fluorescens SBW25 250 

from all samples and subsampling to the smallest sample (2,000 reads) before proceeding with 251 

taxonomy assignment. To analyse 16S data and epicPCR data together (Figure S6), reads from 252 

the corresponding samples were processed to remove primer sequences and the merA 253 

fragment. The ASV corresponding to SBW25 was removed, and samples were subsampled to 254 

2,000 reads before running the QIIME ‘core diversity metrics’. 255 

Sequencing and analysis of the acquired mobile genetic element 256 

Nine specific mercury resistant clones, identified by growth on KB agar amended with 20 µM 257 

HgCl2, were selected for sequencing. These isolates represented ‘early’ (retrieved from the first 258 

transfer) and ‘late’ samples (retrieved at the end of the experiment) (Figure 1). Samples of 259 

bacteria were sent for short-read sequencing at MicrobesNG (Birmingham, UK). Reads were 260 

mapped to the P. fluorescens SBW25 chromosome (EMBL accession AM181176) using bwa-261 

mem (Li and Durbin, 2009), and non-mapping reads were extracted using the ‘-f 4’ option. For 262 

each sample, non-mapping reads were assembled using SPAdes (Bankevich et al., 2012), and 263 

contigs >1000 bp extracted (the merA gene is approximately 1.6 kb, so this threshold was 264 

unlikely to exclude any relevant genes). All samples were found to have three contigs of similar 265 



sizes: 52 kb, 3.3 kb, and 2.6 kb. Corresponding contigs from each sample were aligned and 266 

examined. The 3.3 kb contigs matched the lacZ gene, whereas the 2.6 kb contigs carried the 267 

streptomycin 3’-adenylyltransferase gene (aadA). Both of these fragments were known to have 268 

been inserted into the experimental strain prior to inoculation, as resistance and reporter 269 

constructs (Zhang and Rainey, 2007; Hall et al., 2015). The 52 kb candidate was therefore the 270 

candidate mercury resistance element. Corresponding contigs from the different samples were 271 

aligned and trimmed to the same length, and were found to be identical. 272 

Annotation of this putative mercury resistance element using the RAST server 273 

(https://rast.nmpdr.org/) (Aziz et al., 2008) predicted a merRTPCABD operon, which has a merD 274 

gene absent from the pQBR plasmid Tn5042 mer operon. Additionally, the merRTPCAB genes 275 

were divergent from those of Tn5042, with 71.5% nucleotide identity. Specific mercury 276 

resistance had therefore been acquired independently of the pQBR plasmids. The mercury 277 

resistance element carried a Rep_3 superfamily plasmid replication initiator protein gene (ORF 278 

21), as well as putative plasmid partitioning proteins (ORFs 12 and 23). However, an integrase 279 

was identified at the 5’ end of the sequence, and in each sample, the candidate element was 280 

identified in whole genome de novo assemblies, with sufficient contiguous sequence at the ends 281 

to identify a putative insertion site into the P. fluorescens SBW25 chromosome. Sequencing 282 

coverage across the mercury resistance element and the contiguous P. fluorescens SBW25 283 

chromosome was approximately 1:1. The insertion site resulted in a 12 bp duplication at 284 

1181688..1181699 (GAGTGGGAGTGA) on the reverse strand of the reference sequence. This 285 

region is at the 3’ end of the guaA gene encoding GMP synthase (PFLU_5043), a locus that is a 286 

common target for integrative and conjugative elements (ICE) (Burrus et al., 2002; Song et al., 287 

2012). The fact that the element transferred into P. fluorescens SBW25, and is predicted to 288 

carry the genes required for conjguation (MOBP1/MPFT system identified using the MacsyFinder 289 

CONJscan module (Cury et al., 2020), also identified from RAST prediction, and by tblastx 290 



similarity to plasmid RK2) led us to consider the mercury resistance element to be an ICE. A 291 

transposon number was requested from the Tn registry (Tansirichaiya et al., 2019) and the 292 

mercury resistance element was designated integrative conjugative element (ICE)6775. 293 

Putative CDS, identified and annotated using RAST, were supplemented with manual functional 294 

predictions based on InterProScan 5 and BLASTP queries of the NCBI refseq database, and 295 

the sequence was submitted to GenBank and given accession number MT279197. 296 

Statistics 297 

Single-species P. fluorescens SBW25 population dynamics were analysed using a mixed 298 

effects model in nlme with mercury and plasmid and their interactions as main effects, and a 299 

random effect of population to account for repeated measures. Dynamics of P. fluorescens 300 

SBW25 in the presence of the natural community were analysed using linear models of 301 

cumulative densities across the experiment to resolve heteroscedasticity (resulting from 302 

population extinctions at later timepoints), with mercury and plasmid and their interactions as 303 

main effects. Effects of the natural community were assessed by comparing measurements at 304 

transfer 1, with mercury, plasmid, natural community, and their interactions as main effects. 305 

Effects on the natural community (both total density, and mercury resistant density) were 306 

assessed using a mixed effects model in nlme with mercury, timepoint, plasmid and their 307 

interactions as main effects, and a random effect of population to account for repeated 308 

measures. The assumptions of parametric modelling were tested using Q-Q and residual plots, 309 

Shapiro-Wilk, Fligner, and Bartlett’s tests, and data Box-Cox transformed as necessary. 310 

Data availability 311 

Short read sequencing data associated with this study can be found on the Short Read Archive 312 

(SRA) using accession PRJEB34647. The sequence of ICE6775 can be found on Genbank, 313 



accession MT279197. Other data and sample analysis scripts can be found on the University of 314 

Liverpool DataCat, doi: 10.17638/datacat.liverpool.ac.uk/1076. 315 

Results 316 

The focal strain: Addition of mercury promoted P. fluorescens persistence 317 

in the soil microbial community 318 

Consistent with previous studies, P. fluorescens SBW25 grew well in soil microcosms when 319 

cultured alone (Figure 1, Figure S1, left panels). A negative effect of mercury pollution at high 320 

levels (64 µg/g) on the density of P. fluorescens SBW25 over time was detected in the plasmid-321 

free treatment (linear mixed effects model (LMM), likelihood ratio test (LRT) 322 

plasmid:mercury:timepoint interaction, ChiSq = 9.91, p = 0.007), but these populations persisted 323 

at levels ~10% of those of plasmid bearers. 324 

In contrast, P. fluorescens SBW25 densities were strongly suppressed when grown within the 325 

natural potting soil community, when cultured in unpolluted microcosms (linear model of 326 

densities at transfer 1, main effect of natural community F1,90 = 269.0, p < 0.0001; Figure 1, 327 

Figure S1, right panels). In all populations, with and without plasmids, density of P. fluorescens 328 

SBW25 reduced below the detection threshold (estimated as 220 cfu/g soil) over the course of 329 

the experiment, suggesting that P. fluorescens SBW25 was a poor competitor in the absence of 330 

mercury. It is likely that there existed one or more other members of the community that 331 

competitively excluded P. fluorescens SBW25 under unpolluted conditions. Mercury treatment 332 

at both moderate (16 µg/g) and high (64 µg/g) levels enhanced the persistence of both 333 

pQBR57- and pQBR103-bearing P. fluorescens SBW25 within the soil community (linear model 334 

of cumulative densities, plasmid:mercury interaction F4,24 = 13.77, p < 0.0001, main effect of 335 

mercury F2,45 = 19.5, p < 0.0001). Selection for plasmid-borne specific resistance genes carried 336 



by the otherwise uncompetitive P. fluorescens SBW25 thus apparently enhanced its 337 

competitiveness. 338 

Surprisingly, mercury pollution also enhanced persistence of plasmid-free P. fluorescens 339 

SBW25 when embedded within the soil community. By the end of the experiment, 3/6 340 

populations grown with 16 µg/g mercury, and 3/6 of those grown with 64 µg/g mercury, had 341 

detectable P. fluorescens SBW25, in contrast with the extinctions observed in the absence of 342 

mercury. Replica plating of samples onto mercury-supplemented media indicated that these 343 

populations of P. fluorescens SBW25 had acquired specific mercury resistance. No similar 344 

specific resistance was found for plasmid-free SBW25 evolved without the natural community. 345 

Specific mercury resistance could have emerged either by de novo mutation or by horizontal 346 

acquisition of resistance genes from the natural community. To distinguish between these 347 

possibilities, we conducted whole genome sequencing of clones from 5 of these populations, 348 

and identified a 52 kb integrative conjugative element (ICE) ICE6775 encoding mercury 349 

resistance had integrated into the P. fluorescens SBW25 chromosomes of all evolved clones, 350 

explaining their acquired mercury resistance (Figure 2, see Materials and Methods for details). 351 

Attempts to conjugate ICE6775 from P. fluorescens SBW25 into a gentamicin-resistant recipient 352 

using 20 µM mercury chloride for selection did not succeed, regardless of whether mating took 353 

place in liquid KB broth or in soil microcosms. It is therefore possible that ICE6775 was 354 

mobilised by other elements into P. fluorescens SBW25, and/or that ICE6775 is not conjugation 355 

competent in P. fluorescens SBW25, at least under the tested conditions. Although we did not 356 

identify the specific member of the natural community that was the donor of this ICE, BLAST 357 

analyses identified a similar ICE present in other soil proteobacteria, including Burkholderia, 358 

Pseudomonas, and Rahnella. These data suggest that an environmental stress, to which P. 359 

fluorescens SBW25 was initially vulnerable, enabled the survival of P. fluorescens SBW25 in a 360 



competitive community, due to the ability of P. fluorescens SBW25 to acquire novel genetic 361 

material by conjugative transfer. 362 

The community as a whole: composition was affected by mercury 363 

treatment, but not plasmid addition. 364 

Mercury pollution had a significant effect on the natural community as assessed by culture on 365 

0.1x nutrient agar (i.e. the culturable heterotrophic compartment), boosting both mercury 366 

resistance over time (LRT, mercury:timepoint, ChiSq = 46.89, p = 6.6e-11), and the culturable 367 

portion of the community (LRT, effect of mercury ChiSq = 28.05, p = 8.1e-07), probably through 368 

species sorting shifting the community composition towards fast-growing and thus more easily 369 

cultured taxa (Rasmussen and Sørensen, 2001) (Figure S2). We did not find support for the 370 

hypothesis that addition of the mercury resistance plasmid affected the overall success of the 371 

culturable fraction of the population under mercury pollution, indeed we found no significant 372 

effect of plasmid treatment or any higher-order interactions on either the culturable fraction of 373 

the natural community (all effects p > 0.11) nor on the size of the mercury resistant 374 

compartment (all effects p > 0.4; Figure S2). This suggests that any effects of resistance 375 

plasmid addition were overwhelmed by pre-existing mercury resistance in the community, as 376 

exemplified by the presence of ICE6775 carrying mercury resistance (Figure 2). 377 

To understand how mercury pollution and mercury resistance plasmid addition affected the 378 

composition of the entire bacterial community, we conducted 16S amplicon sequencing on the 379 

endpoint samples. Mercury pollution reduced species richness (alpha diversity estimated by 380 

Faith’s phylogenetic divergence, F2,48 = 114.67, p < 2e-16), consistent with species sorting 381 

favouring more resistant and/or faster-growing strains (Figure 3). No significant effect of plasmid 382 

treatment, either as an interaction with mercury or as a main effect, was identified 383 

(Plasmid:Mercury interaction F4,44 = 1.96, p = 0.12; main effect of plasmid F2,48 = 1.44, p = 0.25). 384 



Similar trends were also noted with alternative alpha diversity measures (Pielou’s evenness, 385 

Shannon’s H, Figure S3). 386 

Alongside the negative effect that mercury had on alpha diversity, we also detected a significant 387 

effect of mercury on community composition suggesting that pollution shifted community 388 

structure in a broadly consistent manner across replicates of the same treatment, primarily 389 

through species presence/absence (Figure 4, unweighted UniFrac measure, effect of mercury, 390 

pseudo-F = 20.1, p = 0.001; weighted UniFrac pseudo-F = 5.13, p = 0.001; all effects of plasmid 391 

p > 0.3; Supplementary Tables 1–3). At the same time, community structure across replicate 392 

populations diverged with increasing concentrations of mercury (Figure 5, distances to centroid, 393 

effect of mercury unweighted UniFrac F2,44 9.6, p < 0.001; weighted UniFrac F2,44 = 32.3, p < 394 

0.001; Supplementary Tables 4–6). A significant main effect of plasmid treatment was detected 395 

only when species relative abundance was considered (weighted UniFrac F2,44 = 6, p = 0.005) 396 

but the effect was small (eta-squared = 0.097). 397 

We detected some differences in the distribution of taxa that were enriched or depleted with 398 

increasing mercury at the Order and Family levels (Chi-Squared test, padj = 0.009 for both 399 

levels). Pseudomonadales and Xanthomonadales were enriched in the pool of taxa that 400 

increased with increasing mercury, whilst Bacillales, Burkholderiales, Rhodospirillales, 401 

Sphingobacteriales were represented in the pool of taxa that were depleted as mercury 402 

concentration increased and were not amongst the taxa that were enriched. 403 

Together, the results from 16S amplicon analyses contribute to an overall picture whereby 404 

mercury pollution generally favours a shift in population structure towards a subset of lineages, 405 

but their exact identity and relative abundance varies stochastically across replicates. Plasmid 406 

addition had a negligible effect on community composition regardless of mercury pollution. 407 



The resistance gene: both plasmids mobilised resistance to a 408 

phylogenetically broad range of recipients 409 

Previous experiments have shown that pQBR57 and pQBR103 vary in their transmission 410 

between isogenic P. fluorescens SBW25 strains, suggesting that spread of the mercury 411 

resistance genes through the community may vary depending on plasmid backbone (Hall et al. 412 

2015). To understand how the different plasmids, and application of mercury pollution, affected 413 

transmission of the introduced mercury resistance operon, we used epicPCR. epicPCR is an 414 

emulsion amplicon library preparation technique, whereby primers ensure that the V4 region of 415 

the 16S gene is amplified from single cells only when a gene of interest is present (Spencer et 416 

al., 2016). By performing the reaction on single cells trapped in ‘beads’ of an emulsion, 16S 417 

amplicons are only generated from those individuals with the gene of interest. We designed 418 

primers targeting the specific merA allele introduced on pQBR103 and pQBR57 and performed 419 

epicPCR on endpoint samples to determine what members of the community had acquired 420 

mercury resistance from the introduced plasmids. Note that as our primers were designed to 421 

target a specific region of Tn5042 merA they would not bind the divergent ICE6775 merA (10/19 422 

mismatches for the forward primer, 5/18 mismatches in the reverse primer). 423 

We found that epicPCR consistently highlighted a subset of the community as harbouring the 424 

introduced merA allele, that had a composition distinct from that indicated by bulk 16S amplicon 425 

sequencing (Figure S6). After removing the original P. fluorescens SBW25 donor from the 426 

analysis, we found that merA had mostly transferred into other Gammaproteobacteria, 427 

particularly Pseudomonadales and Xanthomonadales. However, we also detected merA 428 

transmission to more phylogenetically distant taxa, including Burkholderiales (which often 429 

possess multireplicon genomes and thus represent potentially favourable plasmid recipients 430 

(diCenzo and Finan, 2017)), Rhizobiales, and even Bacillales. We note that these data do not 431 

necessarily imply pQBR maintenance in these recipient bacteria, since ‘dead-end’ transmission 432 



would still yield epicPCR products. Indeed, given that the pQBR plasmids’ merA gene is located 433 

on an active transposon (Tn5042) (Hall et al., 2017b) it is possible that merA has translocated 434 

onto other replicons by various mechanisms, which were subsequently transferred into 435 

recipients. Nevertheless, our data is consistent with our previous findings showing pQBR103 436 

and pQBR57 readily transmit between diverse Pseudomonas species (Kottara et al., 2018). 437 

We did not obtain sufficient epicPCR data from enough samples to statistically compare 438 

between mercury and plasmid treatments, but a visual inspection of Figures 6 and S6 do not 439 

show any obvious clustering of the different treatments. We were not able to conclude, 440 

therefore, whether mercury stress or plasmid identity had an effect on merA transmission into 441 

the community. 442 

Discussion 443 

By taking an experimental evolution approach to study entire microbial communities, we show 444 

how community structure responds to an environmental change, in this case mercury pollution, 445 

and, furthermore, how MGEs play a critical role by transferring adaptive genes among lineages. 446 

Our data provides a clear example of how receptiveness to MGE acquisition can enhance 447 

adaptation of a bacterial lineage in a changing environment. Our focal strain, P. fluorescens 448 

SBW25, was uncompetitive in the presence of the natural community under normal conditions. 449 

However, a new environmental stress, mercury, promoted P. fluorescens SBW25 even when 450 

that strain did not originally possess mercury resistance, because P. fluorescens SBW25 451 

acquired the mercury resistance element ICE6775 from the broader community. We 452 

hypothesise that P. fluorescens SBW25 is relatively receptive to acquisition of new MGEs, 453 

endowing it with an adaptability that underpins its success in changing environments. Indeed, 454 

previous studies have shown that P. fluorescens SBW25 can rapidly evolve to accommodate 455 

new conjugative plasmids, relative to other Pseudomonas species (Kottara et al., 2018; Hall et 456 



al., 2019), a factor that may enable this plant-associated microbe to exploit plant-associated 457 

niches during the course of the growing season (Lilley and Bailey, 1997b). That P. fluorescens 458 

SBW25 was competitively excluded in unpolluted environments is perhaps not surprising, 459 

because it is likely that the bacteria resident in potting soil would be better adapted to that 460 

environment than an incomer that was previously isolated from the sugar beet phyllosphere 461 

(Bailey et al., 1995). It is interesting to consider why competitive exclusion was less effective 462 

under mercury selection. Presumably, the competitor(s) in the broader community were either 463 

less able to acquire, or less able to maintain, functioning mobile mercury resistance. MGE 464 

acquistion can be impeded by various mechanisms. By inserting into a resident replicon, ICE 465 

can have a broader host range than plasmids and are not so constrained by incompatibility 466 

(Cury et al., 2018), but ICE transmission can be inhibited by resident surface- or entry-exclusion 467 

systems as well as genome defence loci such as restriction-modification or CRISPR (Brockhurst 468 

et al., 2019). Many CRISPR spacers in sequenced genomes target elements of the conjugation 469 

machinery, which acts to reduce flow of adaptive traits (Jiang et al., 2013; Westra et al., 2016; 470 

Shmakov et al., 2017). Notably, P. fluorescens SBW25 does not have an identified 471 

CRISPR/Cas system (Couvin et al., 2018). In addition, acquisition of resistance could have 472 

imposed lower fitness costs in P. fluorescens SBW25 compared with its competitor. We were 473 

not able to measure the effects of ICE6775 acquisition in our study because we could not 474 

transfer ICE6775 from P. fluorescens SBW25, despite a predicted functional conjugation 475 

system. Nevertheless, maintenance of acquired MGEs is known to differ between recipient 476 

genetic backgrounds, in part through varying fitness costs (De Gelder et al., 2007; Kottara et al., 477 

2018). It would be interesting for future studies to investigate whether capacity for adaptation via 478 

MGE aquisition in the face of environmental change trades off against competitive ability under 479 

less stressful environments. 480 



Mercury pollution reduced within-community diversity and caused the composition of the natural 481 

community to diverge between replicates (i.e. increased beta diversity). Previous studies 482 

examining the effects of environmental stressors on microbial communities have found broadly 483 

similar patterns. An investigation into the consequences for soil microbial communities of the 484 

underground passing of a coal seam fire in Centralia, Pennsylvania showed a reduction in 485 

within-community (alpha) microbial diversity driven by strong environmental filtering caused by 486 

high temperatures. Interestingly, as with mercury pollution here, the microbial communities in 487 

Centralia also underwent an increase in between-community (beta) diversity during the period of 488 

maximum stress (high soil temperatures) (Lee et al., 2017). The authors of that study suggest 489 

that the between-community variability is due to priority effects, in their case arising from the 490 

stochastic emergence of thermotolerant bacteria from dormancy. Similar patterns may be at 491 

play in our experiments, where the identity of species that come to occupy the niches rendered 492 

vacant by the inhibition of mercury-sensitive taxa is either non-deterministic, or has not been 493 

given sufficient time to equilibrate. Frossard et al. (2017) found that increasing mercury pollution 494 

in seven different natural soils shifted bacterial and fungal community composition by reducing 495 

alpha diversity, consistent with our data, though in their study soil type remained the main factor 496 

explaining community structure. Rasmussen & Sørensen (2001) found that mercury pollution of 497 

soil microbial communities had an immediate negative impact on genetic diversity, and though 498 

the overall effect weakened over time this was due predominantly to the appearance of new 499 

strains rather than the recovery of the prior community. Together this suggests that in selecting 500 

for resistant — or at least tolerant — taxa, the stress imposed by mercury decreased the 501 

diversity of communities and drove between-community differences. In our experiments, it is 502 

notable that neither of these ecological processes was significantly ameliorated by the addition 503 

of mercury resistance genes on plasmids. 504 



Ionic mercury (i.e. Hg2+ such as was added to the communities in our experiments) is toxic 505 

owing to its high affinity for sulfhydryl (thiol) groups which disrupts protein function (Boyd and 506 

Barkay, 2012). The mer operon confers resistance because of the activity of MerA, a mercuric 507 

reductase that transfers electrons to the mercuric ion to transform it into elemental mercury 508 

(Hg0), a relatively unreactive gas that diffuses away (Barkay et al., 2003; Boyd and Barkay, 509 

2012). Resistance encoded by mer therefore has a social aspect, in that mer-carrying bacteria 510 

detoxify their extracellular environment enabling otherwise susceptible bacteria to survive and 511 

proliferate (O’Brien and Buckling, 2015). We expected that introduction of pQBR mercury 512 

resistance plasmids to communities experiencing heavy mercury pollution would have affected 513 

community composition by preserving otherwise sensitive strains and increasing alpha diversity, 514 

relative to the treatments where no additional mercury resistance plasmids were added. 515 

Sensitive strains might have been protected either by acquiring mer by horizontal gene transfer, 516 

or as a side effect of detoxification by mer carried by the focal strain. However, as we did not 517 

detect a significant effect of pQBR plasmid treatment, it is likely that mercury resistance already 518 

resident in the soil wash community — in ICE6775 and probably also other instances — 519 

rendered the introduced mer operon redundant or diminished its effects. Mercury resistance is 520 

ubiquitous, and mer-harbouring MGEs are diverse in natural soil communities (Lilley et al., 521 

1996; Smit et al., 1998; Drønen et al., 1998; Sen et al., 2011), even from sites which have not 522 

experienced recent mercury pollution. The field from which the pQBR plasmids were isolated 523 

was pristine with no specific mercury pollution (Lilley et al., 1996). Indeed, though increased 524 

environmental concentration of mercury is associated with industrialisation, mercury resistance 525 

MGEs have even been identified in ancient Arctic permafrost (Mindlin et al., 2005), so it is not 526 

surprising that mer was present in the soil wash community we isolated from unpolluted potting 527 

soil. The low fitness costs of this operon (Stevenson et al., 2017) (due to repression by MerR in 528 

the absence of mercury) and its association with diverse and efficient MGEs (Nakahara et al., 529 



1977; Pal et al., 2015) are likely to be instrumental in the widespread presence of mer (Boyd 530 

and Barkay, 2012). 531 

Resident MGEs may have been better adapted to spread in the communities than the 532 

introduced pQBR-borne resistance. Nevertheless, using epicPCR we were able to detect 533 

transmission of the introduced merA allele into diverse recipients. The principal recipients were 534 

other Gammaproteobacteria, particularly Pseudomonadales (most closely related to P. 535 

fluorescens SBW25), and Xanthomonadales (a large group of soil- and plant-associated 536 

bacteria), though we found a non-negligible subset of recipients from more phylogenetically-537 

distant taxa. Both pQBR57 and pQBR103 are known to transmit across different Pseudomonas 538 

species, but neither plasmid conforms to previously characterised incompatibility (Inc) groups 539 

and the extents of their host ranges are unknown. However, as we tracked the merA allele and 540 

not the plasmids themselves, our data describes the capacity of these plasmids to transmit a 541 

resistance gene into the community, rather than the host ranges of the plasmids per se. In our 542 

experiments, the mer operon is located on a Tn5042 transposon on the plasmids. Mercury 543 

resistance transposons like Tn5042, Tn21, and Tn5041 (Liebert et al., 1999; Kholodii et al., 544 

2002) can efficiently transfer mer between conjugative elements, potentially allowing onwards 545 

spread by the activity of diverse genetic vehicles. We have previously shown that Tn5042 546 

readily transfers from the pQBR plasmids onto other replicons (Harrison et al., 2015; Hall et al., 547 

2017b; Kottara et al., 2018), and this property may explain why we detected the introduced 548 

merA allele in very phylogenetically distant hosts, like Bacillus, that would not necessarily be 549 

expected to maintain Pseudomonas plasmids (Jain and Srivastava, 2013). Another possibility is 550 

that merA was detected from pQBR plasmids that had transferred into diverse taxa, but were 551 

not able to replicate in these recipients. Previous studies have found proteobacterial plasmid 552 

transmission to a broad phylogenetic range of bacteria, including Gram-positive recipients 553 

(Klümper et al., 2015), and even if carriage is transient within a lineage, the evolutionary and 554 



ecological consequences could be significant if accessory genes are able to relocate to the 555 

chromosome prior to plasmid loss. Future work, tracking both adaptive traits and their vehicles, 556 

will provide a detailed picture of the routes by which genes spread in complex communities, 557 

crucial to understanding how microbial communities respond to selective pressures such as 558 

antibiotic and industrial pollution (Garbisu et al., 2017; Smalla et al., 2018). 559 

Horizontal transfer of resistance genes plays a central role in bacterial evolution and ecology 560 

even over relatively short timescales. Innovative approaches to understand HGT in 561 

experimental settings and on the scale of the microbial community, including fluorescence 562 

approaches (Klümper et al., 2016), meta-C sequencing (Stalder et al., 2019), and epicPCR 563 

(Cairns et al., 2018), represent powerful tools to survey community responses to ecological 564 

treatments, enabling experimental analyses to unpick the relative contributions of these 565 

evolutionary drivers. Tracking the patterns and consequences of HGT for individual lineages, for 566 

the genes involved, and for the structure and function of the broader microbial community will 567 

underpin the design of effective interventions to mitigate or control resistance gene spread. 568 
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Figure legends 589 

Figure 1. Mobile genetic elements rescued Pseudomonas fluorescens SBW25 in 590 

competition with a natural community in the presence of mercury stress. Each line 591 

indicates the population dynamics of P. fluorescens in an independent population. Different 592 

combinations of treatments are shown on separate subpanels. Subpanels are organised into 593 

rows corresponding to different P. fluorescens SBW25 plasmid states at the initiation of the 594 

experiment (‘plasmid–’ = no added plasmid), into columns corresponding to different mercury 595 

pollution treatments, and into a left and right block corresponding to absence/presence of the 596 

natural community. Lines are coloured according to plasmid treatment for consistency with other 597 

figures. Timepoint indicates transfers, which occurred weekly. Dots in the mercury-treated 598 

plasmid– populations indicate populations and timepoints from which single mercury resistant 599 

clones were isolated for sequencing. Six replicate populations were established for each 600 

combination of treatments. 601 

Figure 2. Acquisition of ICE6775 conferred specific mercury resistance to P. fluorescens 602 

SBW25 that did not begin with a pQBR plasmid in mercury-polluted environments. 603 

ICE6775 is 52,235 bp and carries 60 predicted coding sequences (CDS). Blocks indicate CDS, 604 

those above the line run 5’–3’ left to right across the page, whereas those below the line are 5’–605 

3’ right to left. Key regions are indicated and coloured: int = P4-like tyrosine recombinase; tra = 606 

conjugative machinery, with major components virD2 relaxase, virD4 coupling protein, and virB4 607 

major ATPase indicated below; mer = mercury resistance operon, with mer gene names 608 

indicated below. Asterisks indicate regions that were absent from the closest BLASTN hits as 609 

performed April 2020, exemplifying the mosaic nature of mobile genetic elements. In all cases, 610 

ICE6775 inserted towards the 3’ end of guaA GMP synthase, resulting in a 12 bp 611 

GAGTGGGAGTGA tandem duplication at each end. 612 



Figure 3. Increased mercury pollution decreased within-sample (alpha) diversity 613 

regardless of plasmid treatment. Each point indicates a population, with different colours and 614 

panels indicating the different plasmid and mercury treatments. Groups of replicate treatments 615 

are summarized with an overlaid boxplot, where the thick horizontal line indicates the median. 616 

Plots showing alternative alpha diversity metrics are provided in Figure S3. 617 

Figure 4. Mercury pollution shifted community composition, with effects that were not 618 

ameliorated by plasmid addition. Principal coordinates analysis of unweighted UniFrac 619 

distances. Each point indicates a population, with different colours indicating different plasmid 620 

treatments, and shapes indicating mercury treatments. Groups of replicates subjected to the 621 

same combination of treatments are enclosed within dotted lines and are connected to their 622 

group centroid with solid lines. PCoA1 = 38.6% of the variance; PCoA2 = 8.8% of variance. 623 

Plots showing analyses conducted with alternative distance measures are provided in Figure 624 

S4. 625 

Figure 5. Mercury pollution increased community compositional divergence between-626 

replicates. Distance for each population from corresponding treatment centroids, calculated 627 

from unweighted UniFrac data presented in Figure 4. Points and bars are coloured as Figure 3. 628 

Plots showing alternative beta diversity metrics are provided in Figure S5. 629 

Figure 6. epicPCR analysis shows merA transmission into a diverse range of recipients 630 

in the soil community. Top: yellow bars indicate, for each sample, the proportion of reads from 631 

the epicPCR data that exactly match the expected 16S sequence from the P. fluorescens 632 

SBW25 donor. Bottom: bar chart showing, for each sample, the proportion of non-SBW25 reads 633 

matching different amplicon sequence variants (ASV). Black outlines indicate different ASV, 634 

coloured according to broad phylogenetic category described in the legend below. Populations 635 

are grouped according to treatment. 636 



Figure S1. Mercury resistance dynamics in P. fluorescens SBW25 largely mirror the 637 

broader population dynamics. Lines in black are drawn according to Figure 1. Lines in red 638 

indicate dynamics of the mercury resistant compartments of the populations. Six replicate 639 

populations were established for each combination of treatments. 640 

Figure S2. Population dynamics of the total community. Lines in black describe total 641 

population dynamics, while lines in red indicate dynamics of the mercury resistant 642 

compartments of the populations, as with Figure S1. Note that population dynamics were 643 

calculated from cfu grown on 0.1x nutrient agar and thus represents only part of the the 644 

culturable heterotrophic portion of the community. Six replicate populations were established for 645 

each combination of treatments. 646 

Figure S3. Effects of experimental treatments on alpha diversity (Shannon’s H, Pielou’s 647 

evenness). Figures are displayed as Figure 3. We detected a significant effect of mercury, but 648 

not plasmid, on Shannon’s H (effect of mercury, F2,48 = 11.8, p = 6.63e-5; effect of plasmid F2,48 649 

= 1.7, p = 0.19). We did not detect significant effects of either treatment on Pielou’s evenness 650 

(effect of mercury, F2,48 = 2.5, p = 0.09; effect of plasmid F2,48 = 1.01, p = 0.37). 651 

Figure S4. Effects of experimental treatments on community composition differences 652 

(Bray-Curtis distance, weighted UniFrac). Principal coordinates analysis of Bray-Curtis (top) 653 

and weighted UniFrac (bottom) distances. Plot is displayed as Figure 4. For Bray-Curtis, PCoA1 654 

= 21.6% of the variance; PCoA2 = 11.8% of variance; effect of mercury pseudo-F = 6.13, p = 655 

0.001; effect of plasmid pseudo-F = 0.85, p = 0.64. For weighted UniFrac, PCoA1 = 42.9% of 656 

the variance; PCoA2 = 16.7% of variance; effect of mercury pseudo-F = 5.23, p = 0.001; effect 657 

of plasmid pseudo-F = 0.99, p = 0.43. 658 

Figure S5. Effects of experimental treatments on community composition dispersion 659 

(Bray-Curtis distance, weighted UniFrac). Beta dispersion analysis of Bray-Curtis (top) and 660 



weighted UniFrac (bottom) distances. Plot is displayed as Figure 5. For Bray-Curtis, 661 

plasmid:mercury interaction F4,44 = 0.3, p = 0.8723. For weighted UniFrac, plasmid:mercury 662 

interaction F4,44 = 1.22, p = 0.32. 663 

Figure S6. epicPCR samples a separate compartment of the community to general 16S 664 

amplicon sequencing. Principal coordinates analysis of unweighted UniFrac (top), Bray-Curtis 665 

(middle), and weighted UniFrac (bottom) distances, comparing epicPCR and whole-population 666 

16S amplicon sequencing approaches. The amplicon corresponding to P. fluorescens SBW25 667 

was removed to ensure that only the effects of merA transmission were analysed. Each point 668 

indicates a sample, with colours and shapes indicating the treatment of the corresponding 669 

popualtion (colours indicating different plasmid treatments, shapes indicating mercury 670 

treatments). Solid lines connect replicate treatments to the group centroid. Samples prepared 671 

with the same technique (epicPCR or 16S) are enclosed within dotted lines, and the area is 672 

shaded for the epicPCR samples for clarity. The variances explained by each axis for each 673 

distance are as follows: unweighted UniFrac PCoA1 = 47.2%, PCoA2 = 8.7%; Bray-Curtis 674 

PCoA1 = 16%, PCoA2 = 11.2%; Weighted UniFrac PCoA1 = 34.8%, PCoA2 = 24.3%. 675 

  676 
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Generating acrylamide beads for epicPCR 

Un-lysed cells were used to generate acrylamide beads for epicPCR according to Spencer et 

al. (2016). A suspension of cells (approx. 10-20 million cells in 30 µl water) were mixed by 

gentle vortexing in a 2 ml round-bottom microcentrifuge tube with 200 µl acrylamide solution 

(12% acrylamide, 0.32% N-N’-bis(acryloyl)cystamine) and 25 µl amminium persulfate (10% w/v 

in water). STT emulsion oil (4.5% Span 80, 0.4% Tween 80, 0.05% Triton X-100 v/v in mineral 

oil) was added (600 µl) and the combined aqueous and oil phases were vortexed at maximum 

speed for 30 seconds. To polymerise the acrylamide, 25 µl tetramethylethylenediamine 

(TEMED) was added and the sample again vortexed at maximum speed for 30 seconds before 

incubating at room temperature for 90 minutes. To purify the acrylamide beads, 800 µl diethyl 

ether was added and the tube immediately mixed to generate a precipitate. The ether/oil mixture 

around the precipitate was removed, and the precipitate, which contained the beads, was 

washed five times in nuclease-free water. Washing was achieved by addition of 1 ml water, 

pelleting at 12 G for 30 seconds, and removing the water until all oil was removed. Remaining 

water was removed and beads were resuspended in 1 ml TK buffer (20 mM Tris-HCl pH 7.5, 60 

mM KCl), and passed through a 35 µm cell strainer. 

Cells within beads were lysed by treating 50 µl samples of beads with 0.4 µl Ready-Lyse 

Lysozyme (35 U/µl, epicentre, Madison, WI, USA) and incubating at 37°C overnight. Samples 

were centrifuged at 12 G for 30 seconds, the supernatant removed, and the pellet resuspended 

in 40 µl TK buffer. Proteinase K (10 µl, 1 mg/ml, Sigma P6556-5MG) and 0.4 µl Triton X-100 

were added and incubated at 37°C for 30 minutes, followed by 95°C for 10 minutes. Beads 

were then washed 3 times in TK buffer and stored at 4°C until use. 

Performing epicPCR reactions 



epicPCR reactions were prepared by mixing a master mix consisting, for each sample, of 20 µl 

5X Phusion HF buffer, 2 µl 50 mM MgCl2, 10 µl 10 µM merA_F1B primer, 10 µl 10µM R1 primer, 

1 µl 1 µM merA_F2+R1 primer, 0.5 µl 20 mg/ml molecular biology grade BSA, 0.2 µl Tween 20, 

8 µl Phusion Hot Start Flex polymerase (New England Biolabs M0535), 1 µl nuclease-free 

water. Samples of the master mix (55.2 µl) were mixed with 45 µl polyacrylamide beads by 

pipetting, and added to a 2 ml round-bottom tube containing four 2 mm sterile glass beads and 

900 µl ABIL emusion oil (4% ABIL EM-90 (Evonik, Essen, Germany), 0.05% Triton X-100 v/v in 

mineral oil). Emulsions were generated by vortexing at maximum speed for 1 minute, and the 

reactions distributed across 16 PCR tubes (60 µl per tube). Reaction conditions were 1 min 

94°C denaturation, followed by 33 cycles of 20 sec 94°C denaturation, 30 sec 52°C annealing, 

45 sec 72°C extension, followed by a final extension at 72°C for 5 minutes. Immediately after 

completion, reactions were pooled and 2 µl 50 mM EDTA was added and stored at 4°C. 

Products were purified by centrifuging the reactions (13 G for 5 minutes) and the upper oil 

phase removed. Two extractions were performed with diethyl ether, by added 1 ml diethyl ether 

to each sample, mixing well by vortexing, centrifuging briefly, and discarding the upper phase. 

One extraction was performed with ethyl acetate, and then two further extractions performed 

with diethyl ether. Samples were left for remaining solvent to evaporate for approximately 10 

minutes, and 100-150 µl sample was collected from the bottom phase. DNA was purified from 

the reactions using AMPure XP beads (Beckman Coulter, A63880), washed twice with 70% v/v 

ethanol, and eluted in 40 µl buffer EB (QIAGEN). 

Second-round epicPCR products were generated using primers merA_F3E and 

PE16S_V4_E786_R. Blocking primers R1+F1block10F and R1+F1block10R were added to 

block amplification of unfused products. Reaction components were: 5 µl HF buffer 5x, 0.5 µl 10 

µM dNTPs, 2.5 µl each amplification primer merA_F3E and PE16S_V4_E786_R (3 µM), 2.5 µl 

each blocking primer R1+F1block10F and R1+F1block10R (32 µM), 0.25 µl enzyme, 5 µl 



purified product from reaction 1, and 4.25 µl dH2O. Reaction conditions were 1 min 98°C 

denaturation, followed by 40 cycles of 20 sec 98°C denaturation, 30 sec 58°C annealing, 30 sec 

72°C extension, followed by a final extension at 72°C for 5 minutes. Quadruplicate reactions 

were performed for each sample and the products pooled and purified using AMPure XP beads. 

Full details of the epicPCR protocol including an instructional video can be found in Spencer et 

al. (2016). 

DNA extraction for 16S amplicon generation 

Cells extracted using the nycodenz protocol were suspended in 25 µl TES and treated with 1 µl 

lysozyme (1250 U/ml) at 37°C for 30 minutes. TES (175 µl) and Triton X-100 (2 µl) were added, 

and the ‘Purification of total DNA from crude lysates using the DNeasy Blood & Tissue Kit’ 

(QIAGEN) was used to purify DNA, with a 30 minute incubation at 56°C following Buffer AL 

addition. DNA was eluted in 100 µl and 5 µl used for PCR using primers PE16S_V4_U515_F 

and PE16S_V4_E786_R. Reactions were performed using Phusion Hot-Start Flex. Reaction 

components were: 5 µl HF buffer 5x, 0.5 µl 10 µM dNTPs, 2.5 µl each primer (3 µM), 0.25 µl 

enzyme, 1 µl DNA template, and 13.25 µl H2O. Reaction conditions were 1 min 98°C 

denaturation, followed by 30 cycles of 20 sec 98°C, 30 sec 52°C, 30 sec 72°C, followed by a 

final extension at 72°C for 5 minutes. Quadruplicate reactions were performed for each sample 

and the products pooled. 

Addition of Illumina sequencing barcodes and sequencing of 16S and 
epicPCR amplicons 

Illumina sequencing barcodes were added by PCR using the following reaction components: 5 

µl 5x HF buffer, 0.5 µl 10 µM dNTPs, 1 µl each primer (10 µM), 0.25 µl Phusion Hot-Start Flex 

polymerase, 13.25 µl dH2O, 4 µl purified product (either epicPCR reaction 2, or 16S 

amplification product). Reaction conditions were 1 min 98°C denaturation followed by 7 cycles 



of 30 sec 98°C, 30 sec 83°C, 30 sec 72°C, followed by 5 min 72°C final extension. 

Quadruplicate reactions were performed for each sample and the products pooled. 

Products were run on an agarose gel to assess purity and concentration. 16S samples were 

pooled by mixing 5 µl of each barcoded sample. EpicPCR samples were pooled by mixing 5 µl 

of each barcoded sample that yielded a clear band on the gel, and 10 µl from each sample that 

did not produce a clear band (likely to due low/no yield). Each library was sequenced using a 

MiSeq v2 with 250 bp paired-end reads. The 16S amplicon analyses generated >50,000 read 

pairs per sample library. Yield from epicPCR was variable due to low input from some samples. 
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