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Highlights 
• Integration of dendrochronological and palaeoecological disturbance reconstructions. 

• Increase in disturbances in temperate mountain spruce forests from 1600s. 

• The concurrent occurrence of disturbance agents create a complex disturbance regime. 

• Management and conservation strategies should consider the multiple disturbance agents. 

Abstract 
Disentangling the long-term changes in forest disturbance dynamics provides a basis for predicting the 

forest responses to changing environmental conditions. The combination of multidisciplinary records can 

offer more robust reconstructions of past forest disturbance dynamics. Here we link disturbance histories 

of the central European mountain spruce forest obtained from dendrochronological and palaeoecological 

records (fossil pollen, sedimentary charcoal, bark beetle remains and geochemistry) using a small glacial 

lake and the surrounding forest in the Šumava National Park (Czech Republic). Dendrochronological 

reconstructions of disturbance were created for 300-year-long records from 6 study plots with a minimum 

of 35 trees analyzed for the abrupt growth increases (releases) and rapid early growth rates, both indicative 

of disturbance events. High-resolution analysis of lake sediments were used to reconstruct 800-year long 

changes in forest composition and landscape openness (fossil pollen), past fire events (micro- and 

macroscopic charcoal), bark beetle occurrence (fossil bark beetle remains), and erosion episodes 

(geochemical signals in the sediment) potentially resulting from disturbance events. 

Tree-ring data indicate that disturbances occurred regularly through the last three centuries and identify a 

most intensive period of disturbances between 1780 and 1830 CE. Geochemical erosion markers (e.g. K, Zr, 

% inorganic) show greater flux of catchment sediment and soils in the periods 1250–1400 and 1450–1500 

CE, before a substantial shift to a more erosive regime 1600–1850 and 1900 CE onwards. Pollen records 

demonstrate relatively small changes in forest composition during the last 800 years until the beginning of 

the 20th century, when there was decrease in Picea. Fossil bark beetle remains indicate continuous 

presence of bark beetles from 1620s to 1800s, and charcoal records suggest that more frequent fires 

occurred during the 18th century. Each of the dendrochronological, palaeoecological and sedimentological 

records provide a unique perspective on forest disturbance dynamics, and combined offer a more robust 

and complete record of disturbance history. We demonstrate that sedimentary proxies originating from the 

lake catchment mirror the forest disturbance dynamics recorded in the tree-rings. The multidisciplinary 
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records likely record forest disturbances at different spatial and temporal scales revealing different 

disturbance characteristics. Integrating these multidisciplinary datasets demonstrates a promising way to 

obtain more complete understanding of long-term disturbance dynamics. However, integrating datasets 

with variable spatial and temporal influence remains challenging. Our results indicated that multiple 

disturbance factors, such as windstorms, bark beetle outbeaks and fires, may occur simultaneously creating 

a complex disturbance regime in mountain forests, which should be considered in forest management and 

conservation strategies. 
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1. Introduction 
Natural disturbances such as windthrows, insect outbreaks, droughts and fires maintain the high diversity 

and structural characteristics of natural temperate forest ecosystems (Kulakowski et al., 2017). In recent 

years, natural disturbances have intensified and the changing climate, together with increasing 

anthropogenic influence, have put temperate mountain forests under increasing pressure that may affect 

the resilience of these forests (Reyer et al., 2015, Thom et al., 2017). In central European temperate 

mountain forests, insect outbreaks and windthrow events have caused large disturbances during the last 

few decades (e.g. Schelhaas et al., 2003, Čada et al., 2013, Čada et al., 2016, Holeksa et al., 2017). 

Windstorms and insect outbreaks are considered as the main disturbance agents in these mountain 

ecosystems. However, there is an increasing number of studies demonstrating the importance of fire as a 

disturbance agent in temperate forest ecosystems (e.g. Niklasson et al., 2010, Feurdean et al., 2017, Bobek 

et al., 2018, Carter et al., 2018) and predictions of increasing climate extremes, such as droughts, may 

increase the future risk of fires in central European ecosystems (IPCC). As it is uncertain how forest 

ecosystems will respond to the future changes, knowledge of long-term changes of natural and human-

induced disturbances, and understanding the processes behind them is crucial to apply the best 

management practices to maintain the ecological diversity and ecosystem services. 

Dendrochronology has been widely used to reconstruct stand-scale disturbance dynamics and their impact 

on forest ecosystems. These disturbance reconstructions from tree-rings can extend a few hundred years 

back in time and provide valuable information about disturbance frequency and severity (e.g. Svoboda et 

al., 2013, Čada et al., 2016, Holeksa et al., 2017, Janda et al., 2017). However, it is problematic to assess the 

long-term changes in disturbance history based on dendrochronological records alone, because these 

records usually span just one tree generation. It is also impossible to identify the disturbance agent, 

because prevailing agents such as windstorms, bark beetle outbreaks, and logging are not recorded in tree-

rings by any specific feature. Palaeoecological data, such as pollen, macrofossils, and charcoal, derived from 

sedimentary archives provide information of past disturbance history over millennial scale and can provide 

means to assess the possible disturbance agents in long-term perspective. Where dendrochronological data 

is accurate at the spatial (single tree) and temporal (annual) scale, this accuracy is limited to km’s and 

decades in palaeoecological records, respectively. In addition to dendrochronological and palaeoecological 

records, physical properties of lake sediments, measured using the sediment geochemistry and grain size, 

reflect erosion events (e.g. floods) and change in the baseline erosion regime of the catchment (Davies et 

al., 2015). Physical properties thereby provide means for identifying potential landscape responses to 

forest disturbances. These multidisciplinary approaches used to reconstruct disturbances reveal different 

spatial and temporal aspects of disturbance regimes, and highlight the effects that disturbances can have 

on forest ecosystems. This highlights the importance of integrating multidisciplinary records to enable us to 

understand the complex processes behind the mountain forest dynamics. The integration of 

dendrochronological, palaeoecological and sedimentological records in disturbance reconstructions provide 



a more robust and complete record of disturbance history, and are essential to identify the impact of 

disturbances on forest ecosystems with changing climate dynamics. 

There have been previous studies including both dendrochronological and palaeoecological methods to 

reconstruct for example past climate (e.g. Edwards and Dunwiddie, 1985, Helama et al., 2012), natural and 

anthropogenic environmental change (e.g. McLachlan et al., 2000) and past fire dynamics from fire scars 

(e.g. Niklasson et al., 2002, Drobyshev et al., 2004, Higuera et al., 2005, Stivrins et al., 2019). Here we link, 

for the first time to our knowledge, dendrochronological (300-years long) disturbance reconstruction based 

on changes in tree-ring width with multiproxy sedimentological and palaeoecological (800-years long) 

datasets from a central European mountain spruce forest, in which windthrows and bark beetle outbreaks 

are expected to be the prevailing disturbance agents. Precise dendrochronological disturbance 

reconstruction based on trees’ growth rate changes is coupled with; (1) high-resolution fossil pollen records 

to reconstruct the changes in forests composition and landscape openness, (2) sedimentary charcoal to 

reveal the past fire events, (3) fossil bark beetle remains to identify insect outbreaks, and (4) variations in 

sediment geochemistry and grains size to detect changes in the catchment erosion regime associated with 

disturbance events in the lake catchment. The main objectives are to (i) produce a long-term (800 years) 

disturbance history in the mountain spruce forest, (ii) to assess the possible disturbance agents and the 

impacts in the lake catchment and (iii) to evaluate the integration of dendrochronological, palaeoecological 

and sedimentologicaldata in providing a multidisciplinary reconstruction of forest disturbance history. 

2. Methods 

2.1. Study area 

The study area is located in the temperate vegetation zone in Bohemian Forest, Šumava National Park (NP), 

Czech Republic, central Europe (Fig. 1). Bedrock of the lake catchment belongs to the crystalline complex of 

the Bohemian massive and consists of gneisses (Cháb et al., 2007). Soils are shallow and poor, dominated 

by podsols and stony soils (Kozák, 2010). Climate is cold with mean annual temperature of 4 °C, and a mean 

annual precipitation of 1200 mm (Tolasz et al., 2007). The mountain glacier in the area was deglaciated 

~14,000 cal yr BP (Mentlík et al., 2010). The study site, Laka is a shallow (maximum depth 4 m) mesotrophic 

lake located at 1096 m.a.s.l. being at the highest elevation of the eight glacial lakes formed in the glacial 

cirques in the Bohemian Forest. It is also the smallest with surface area of circa 2.8 ha, a catchment area of 

1,35 km2 and catchment:lake area ratio at 48:1, which is conducive for recording catchment processes. 

 



Fig. 1. Research area in Bohemian/Bavarian forest is marked in the map on the right with red square and 

map in left shows the study area with coring site (star) and dendrochronological study plots (dots).  

The present vegetation in the Laka catchment is composed of the nearly monospecific Norway spruce 

(Picea abies) forests, with minor components of rowan (Sorbus aucuparia), Sycamore maple (Acer 

pseudoplatanus), fir (Abies alba), and beech (Fagus sylvatica) (Neuhäuslová and Moravec, 1998). The 

vegetation community is mostly comprised of grass species Calamagrostio villosae-Piceetum; with patches 

dominated by Calamagrostis villosa (Chaix), Deschampsia flexuosa, and blueberry (Vaccinium myrtillus) 

growing on more stony soils (Neuhäuslová and Moravec, 1998). 

The Mountain regions in Šumava NP have remained in relatively natural conditions until fairly recently. 

Intensive colonization of the foothills and logging of the Bohemian Forest linked to the glass and metallurgy 

industries occurred during the 14th century. However, the higher parts of the Bohemian forests were not 

colonized until the 18th century onwards (Kozáková et al., 2015). Old growth forest with minimal human 

disturbance during last centuries (Čada et al., 2016a) characterizes the mountain spruce forests 

surrounding the lake catchment, which provides valuable opportunity to assess the natural processes 

behind the disturbance history. 

2.2. Dendrchronological analyses 

Six plots used for the dendrochronological analysis is located circa 0.2–1.6 km from the lake (Fig. 1). Four of 

these plots were already published in landscape level study of Čada et al. (2016a) and two plots were 

additionally sampled for this study using the same method. The plot size was 1000 m2 to obtain increment 

cores from at least 35 trees within the plot. The ring width measurement and cross dating of increment 

cores were conducted using standard techniques. In accordance to traditional dendrochronological 

approach, individual tree-ring series were analyzed for two ring-width patterns that indicate past 

disturbance events: abrupt and sustained growth increases (releases from suppression) and rapid early 

growth rates (Lorimer and Frelich, 1989). In order to classify annual tree-ring growth as a release, the 

absolute growth increase between subsequent 10-year means had to exceed 0.55 mm. In case there were 

multiple subsequent years exceeding the 0.55 mm release threshold, the maximum growth year within a 

20-year interval (±10 years) was identified as a release year. The average ring width of 6th–15th ring had to 

exceed 1.0 mm to classify the first year of the series as a year of rapid early growth rate (Čada et al., 

2016a). The threshold values specific for Norway spruce were obtained from the literature and have been 

verified during our previous studies using extensive tree-ring data and our experience with growth variation 

of the species (see; Čada et al., 2016a). The stand-level disturbance chronology was based on the number 

of trees that indicated a disturbance event at each decade relative to the number of trees available within a 

given decade. The beginning of the chronology was set to 1720s, when the number of available trees and 

plots was 5 and 3, respectively. The number of samples and the robustness of dendrochronological 

disturbance estimations increased dramatically after 1800s (87 and 6 available trees and plots, 

respectively). 

2.3. Sediment sampling 

A 1.5 m sediment profile (Laka 15-1) was collected from 1.6 m depth of water and sampled from a floating 

platform using a Russian-style (1.5 × 0.075 m) corer. The sediment-water interface was collected using a 

gravity corer (Laka 15-1GC) (Boyle, 1995). The cores were taken to the laboratory in the University of 

Liverpool for wet sediment geochemical analysis (Olympus Delta XRF) and high-resolution (15 µm) 

photography under uniform lighting with a Linescan Camera on a Geotek Multi-sensor Core logger and 

subsampling. Sediment core were stored at +4 °C for further analysis. Subsamples were taken at 1 cm 

intervals to analyse fossil pollen and non-pollen-palynomorphs, micro- and macroscopic charcoal, fossil 



beetles, particle size, near-infrared spectrometry and dry mass specific geochemistry using an energy 

dispersive X-ray Florescence (ED-XRF) analyser. 

2.4. Sediment chronology 

Independent age control for the top 10 cm of the sediment profile at Laka was determined using records of 

the fallout radionuclides Pb-210, Cs-137 and Am-241 (Appleby and Oldfield, 1978, Appleby et al., 1991) 

(Table 1). Measurements of these radionuclides were carried out by direct gamma spectrometry using 

Ortec HPGe GWL series well-type coaxial low background intrinsic germanium detectors (Appleby et al., 

1986) at the Environmental Radioactivity Research Centre in Liverpool, UK (See more detailed description 

from APPENDIX A.1). 

Table 1. Radiocarbon results for the long-core Laka-15 and lead 210 dating results for core LAK 15-1GC. 

Depth Laboratory 14CAge± Assigned210Pb Assigned age Material 

(cm) ID 
 

(YearCE) (calyrBP) 
 

163 Pb210_1 
 

2015 ± 0 −65 
 

164.5 Pb210_2 
 

2009 ± 1 −59 
 

165.5 Pb210_3 
 

1996 ± 2 −48 
 

166.5 Pb210_4 
 

1981 ± 3 −31 
 

167.5 Pb210_5 
 

1965 ± 4 −15 
 

168.5 Pb210_6 
 

1948 ± 5 2 
 

169.5 Pb210_7 
 

1933 ± 6 17 
 

170.5 Pb210_8 
 

1925 ± 7 25 
 

171.5 Pb210_9 
 

1925 ± 7 25 
 

172.5 Pb210_10 
 

1915 35 
 

173.5 Pb210_11 
 

1899 51 
 

193.5 Poz-81584 130 ± 30 
  

Plantmaterial 

207.5 Poz-94514 340 ± 30 
  

Plantmaterial 

220.5 Poz-84784 195 ± 30 
  

Plantmaterial 

244.5 Poz-84785 150 ± 30 
  

Plantmaterial 

274.5 Poz-85123 310 ± 30 
  

Plantmaterial 

305.5 Poz-85124 630 ± 30 
  

Plantmaterial 

325.5 Poz-94517 880 ± 30 
  

Plantmaterial 

 

The stratigraphy of the long-core was secured by 10 AMS C-14 dates (Table 1) targeting hand-picked 

terrestrial-sourced plant macrofossils (e.g. Picea abies needles) measured at the Poznań Radiocarbon 

Laboratory, Poland. All the geochronological data (Table 1) including the sediment surface (2015) were 

integrated within a Bayesian age-depth modelling routine ‘BACON’ (Blaauw and Christen, 2011) using a 

Student-t distribution that considers scatter in the 14C measurements and allows for statistical outliers. 

The Bayesian analysis (Christen and Perez, 2009) partitioned the core into 36 sections (0.05 m thick) 

estimating the accumulation rate for each segment using a Markov Chain Monte Carlo (MCMC) approach. 

The modelling was constrained by a prior model of sediment accumulation rate (a gamma distribution with 



mean 5-year cm-1 and shape 1.5) and its variability (memory, a beta distribution with mean 0.32 and shape 

18). All 14C ages were calibrated and modelled in ‘BACON’ using the IntCal13 curve (Reimer et al., 2013) 

(Fig. 2). 

 

Fig. 2. ‘Bacon’ age-depth model for the integrated Laka core based on seven radiocarbon ages and the 

210Pb and 137Cs radionuclide dating series. 

2.5. Sedimentary analyses 

2.5.1. Physical properties and geochemistry 

The long and gravity cores were subsampled at 1 cm intervals and freeze dried for 48–60 h to collect water 

content data (%). Major and trace element concentrations were determined using a Bruker S2 Ranger ED-

XRF for the gravity core and Spectro XEPOS 3 ED-XRF for the long core. For both ED-XRF, the samples were 

hand pressed and measured under a He atmosphere under combined Pd and Co excitation radiation and 

using a high resolution, low spectral interference silicon drift detector. Daily standardisation procedures 

provide a system check on both ED-XRF and they have comparable accuracies verified using 18 certified 

reference materials (Boyle et al., 2015). Particle size distributions (PSD) were measured for all samples 

across the range 0.375–2000 μm using a Coulter LS 13 320 Single-Wavelength Laser Diffraction Particle Size 

Analyser. Hot H2O2 pretreatment removed organic matter from the PSD samples, with samples dispersed 

Na6O18P6, sonicated and run under sonicating measurement conditions. Results are the average of three 

repeats following elimination of outliers. The Coulter LS320 undergoes regular calibration checks using 



samples with known size distributions and particle size frequency statistics were calculated using standard 

geometric formulae using the GRADISTAT 8.0 software (Blott and Pye, 2001). 

Near Infrared Spectrometry (NIRS) by diffuse reflectance were measured for all sediment samples using a 

Bruker MPA Fourier-Transform NIRS using an integrating sphere. All samples were homogenised by 

grinding and were lightly hand pressed, with the NIR spectra produced from 64 scans at an 8 cm−1 interval 

across the range 3595–12,500 cm−1. We used multiple regression of the NIR spectra for a selection known 

composition end-member materials (EMS-MR, Russell et al., 2019) to interpret the unknown composition 

lake sediment samples from Lake Laka. The EMS-RC provides simultaneous quantification of major 

sediment components; here these were end member spectra for local bedrock, biogenic silica (diatoms) 

and organic matter (see Russell et al., 2019). The end members were minerogenic late glacial muds from 

nearby Prášilské lake, which we regard as representative of the catchment bedrock. A marine diatom 

sample treated with H2O2 to remove any organic material to reflect the proportion of biogenic silica. The 

organic component of the lake sediment were rationalised to an ombrotrophic peat sample including less 

decomposed plant remains and humic compounds. The fitting of these end member materials included 

sensitivity analysis using other end member selections for all three components across a wider library of 

materials to obtain the overall best fitting performance, defined by high R2 of the sample multiple 

regressions (>0.85). 

The catchment-lake area ratio (48:1) for Laka is conducive to efficient flux of detrital materials from 

catchment to the lake, and so the down core patterns of major geochemical elements are likely to reflect 

changes in the erosion regime. Geochemical ratios for Si:Al and Zr:Rb provide information on indications of 

biogenic silica and the presence of coarser grain sizes, respectively (Davies et al., 2015). Changes sediment 

sources, availability and the energy in the catchment most likely guided changing in properties like the 

mean grain size, the coarsest grains (e.g. 90th percentile) and degree of sorting. The NIR spectra provide 

parallel reconstructions of the proportions mineral, biogenic silica (diatom) and organic matter in the 

sediments. Principal components analysis (PCA) was used to explore the relationships between 

geochemical, grain size and NIRS down-core patterns. A stratigraphically constrained cluster analysis for all 

these parameters, after standardisation to ± one standard deviation unit length, produced dendrograms 

that identify the major changes in the stratigraphy. 

2.5.2. Pollen and non-pollen palynomorph analysis 

Subsamples of 0.5 cm3 were extracted in 1 cm resolution and processed standard procedures of KOH-, 

acetolysis- and HF-treatment (Faegri et al., 1989). In order to calculate microfossil concentrations (grains 

cm−3) and accumulation rates (PAR; grains cm−2 yr) Lycopodium marker spores were added into the 

subsamples (Stockmarr, 1972) prior-to the sample preparation. The samples were mounted in glycerine 

and a minimum of 500 terrestrial pollen grains were identified using a 400x magnification. Pollen 

identification is based on Beug, 2004, Moore et al., 1991, and a reference collection at Charles University in 

Prague. Results are presented as a proportion of each pollen taxon from the total sum of terrestrial taxa. 

The pollen ratio between the sum of arboreal pollen (AP) taxa and the sum of non-arboreal pollen (NAP) 

taxa indicating more open landscape were used to detect opening of forest canopy related to disturbance 

events. The summed percentage of Cerealia-type, Secale cereale, Centaurea cyanus-type, Fagopyrum, 

Plantago sp., Rumex sp. and Urtica were used as an indicator of anthropogenic activity. 

In addition to pollen, non-pollen palynomorphs (NPP: microfossil remains of fungi, insect, algae and 

cyanobacteria) were analyzed simultaneously with pollen from microscopic slides. NPPs provide valuable 

additional proxy information for past disturbances and changes in the lake catchment (Van Geel, 2002). 



Identification of NPPs was based on van Geel (1998). Pollen and NPP data were plotted using the C2 

program (Juggins, 2003). 

2.5.3. Fossil bark beetle analysis 

For the analysis of bark beetles (Coleoptera: Curculionidae: Scolytinae), sediment was sieved over 100 µm 

mesh in order to retain all insect and botanical macro fossils (Hofmann, 1986, Birks, 2007). Beetle remains 

were picked under a stereomicroscope with 15x magnification and bark beetles were identified with the 

help of a small collection of Scolytinae species and an identification key of Scolytinae of Czechoslovakia 

(Pfeffer, 1989). Primary (species feeding on healthy trees) and secondary (species feeding on dying or dead 

trees) bark beetles were identified and their remains were used for the reconstruction of the minimum 

number of individuals (MNI) per sample. 

2.5.4. Charcoal analysis and detection of fire events 

Macroscopic charcoal particles (>200 µm) were used to detect local fires, where microscopic charcoal 

provides a signal of regional fire history (Whitlock and Larsen, 2001). For the reconstruction of regional 

fires, microscopic charcoal was analyzed concurrently from the same microscopic slides used for pollen and 

NPP identification. Opaque, sharp-edged particles (>5 µm) were identified as charcoal (Scott, 2010). The 

total concentrations (particles cm−3) and influx (particles cm−2 yr) of microscopic charcoal fragments were 

calculated for each sample. For the reconstruction of local fire events, macroscopic charcoal was analyzed 

following the method adapted from Mooney and Tinner (2011). Subsamples of 0.5–1 cm3 were soaked in a 

20 ml solution of sodium hexametaphosphate ((NaPO3)6) and 10 ml of potassium hydroxide (KOH; 5%). 

Samples were carefully sieved through a 250 µm mesh, and then bleached using a solution of 1 or 2 ml of 

NaOCl (8%). After bleaching samples were once more sieved through a 125 µm mesh. Macroscopic charcoal 

particles were first recorded under a binocular microscope and then ImageJ (https://imagej.nih.gov/ij/) 

software was employed for analyzing charcoal area measurements and counts using 8-bit images at a 

threshold of 137 greyscale units (ie 137–255 greyscale units) following Halsall et al. (2018). The total 

concentrations and influx of macroscopic charcoal area and counts were calculated for each sample. 

CharAnalysis software, applying a signal-to-noise index (SNI) to separate peaks in the charcoal record from 

background variability (Higuera et al., 2009, Higuera et al., 2010, Kelly et al., 2011) were used for assessing 

the regional and local fire events. Microscopic charcoal concentrations (particles cm−3) were used to 

determine regional fires. Macroscopic charcoal concentrations (particles cm−3) were used to assess the 

local fire history. First both records were interpolated to mean temporal samples resolution and then 

separated into a low-frequency background component (BCHAR) and a peak component using the 

CharAnalysis software (Higuera et al., 2009). In both cases smoothing with LOWESS regression within a 100-

year moving-window was applied to determine the background component. The peak component was 

calculated as residuals between interpolated charcoal records and BCHAR (Cpeak = CHARint-BCHAR) and 

evaluated using the 99th percentile of a Gaussian mixture model in order to separate fire events reflected 

by charcoal peaks from the background noise. Furthermore, detected peaks in microscopic charcoal records 

were screened using minimum-count peak (p = 0.05) test in CharAnalysis. 

Determination of the macroscopic charcoal area has proven to be a reliable method for detection of local 

fires, when the number of charcoal particle counts is low (Ali et al., 2009, Halsall et al., 2018). Therefore 

macroscopic charcoal area measurements (the area of particles mm2 cm−2 yr), were used as additional 

proxy to assess local fires. 



2.5.5. Comparison of dendrochronological and palaeoecological data 

To compare the palaeoecological records and the disturbance history based on dendrochronological 

records, all palaeoecological data (pollen, Glomus spores, sedimentary charcoal, bark beetles) were 

combined to 10-year bins corresponding the decadal resolution used in tree-ring based disturbance 

reconstruction (e.g. 1710–1720, 1720–1730, 1730–1740 etc.) and plotted using C2 – program (Juggins, 

2003). 

3. Results 

3.1. Disturbance signal from dendrochronological data 

The dendrochronological disturbance signal indicates that the most extensive disturbances occurred during 

the period of 1780–1830 CE (Fig. 3). The extensive, frequent disturbances affected all of the study plots 

within this period and removed most of the canopy cover on at least four of the six available plots 

(Appendix A.2). Two plots (plot 3 and 10) also experienced severe disturbance during the period of 1830–

1860 CE. Other less severe (loss of ≥10%), localized disturbance events occurred regularly within the study 

period (e.g. in 1720s, 1740–1760, 1870s, 1900s, 1920s and 1980–1990s). The accuracy of the 

dendrochronological record is questionable before the 1760s due to the limited number of records 

available, however regional reconstruction from Šumava NP identifies regional disturbances during the 

1690s, 1720s and 1740s (Čada et al., 2016a; see the paper for more detailed description of tree-ring based 

disturbance history). 

 

Fig. 3. Tree-ring based disturbance history of the forest stand in the catchment of Laka, Šumava NP, Czech 

Republic. Decadal resolved disturbance rate (columns) showing the proportion of affected trees was 

compiled from 6 study plots with 224 trees located throughout the catchment. The trend in number of 

available individual tree-ring series (tree age-structure) is shown with red dashed line. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

3.2. Disturbance signals from the lake sediments 

3.2.1. Trends in the physical properties and geochemistry 

In the physical properties measured for the Laka sediments 68.5% of the variation in a Principal 

Components Analysis (PCA) is summarised on the first two components (Fig. 4). The geochemistry, NIRS 

end member components and grain size parameters (d90, d50 and sorting) form three distinct groupings in 

the PCA. Group 1 includes organic content and elements that strongly associate with organic matter (Br, S 

and Cl). Group 2 associates NIRS-inferred biogenic silica with Si (mg m-1) measured by XRF, which suggests 

firstly that biogenic silica dominates these samples and second the Si:Al ratio (Davies et al., 2015) should be 

a strong measure of biogenic silica that is independent of NIRS-inferred biogenic silica. Coarser grain size 



and poor sorting also associate in part with biogenic silica indicating that larger diatoms may be affecting 

grain size measurements for more organic older samples. Group 3 (a + b) includes a large number of 

primarily minerogenic indicators including NIRS-inferred mineral content and a series of lithogenic 

elements (e.g. Al, K, Zr, Ca and Ti). 

 

Fig. 4. Biplot of Principal Component Analysis axes 1 and 2 calculating for geochemical, NIRS end member 

components and grain size parameters (d90, d50 and sorting) showing three distinct groupings of 

parameters. Sample PCA coordinates are colored by zones delimited using a stratigraphical cluster analysis 

for all variables. 

The cluster analysis of the physical properties highlights a series of major stratigraphical changes through 

the last 800 years and provides a basis for zoning the sediment sequence (Fig. 5). There is some separation 

with Group 3 with elements Cu, Pb, P and As plotting higher on PC2 closer to the organic Group 1, the more 

easily remobilized elements (Al, Zn and Cr) plot lower on PC2, with the more stable elements in the middle 

(Ti, Zr, K). There is a strong stratigraphical order to the distribution of samples within the PCA progressing 

between the organic Zones 1, 3a and 4 with abundant biogenic silica, and Zones 2 and 3b a mix of organic 

and mineral matter (Fig. 5). The transition to Zones 5 and 6 reflects a substantial shift in the erosion regime 

in the catchment producing limnic muds composed dominantly of minerogenic sediment and containing 

less organic and diatomaceous material. Zone 7 shows evidence for a reduction in minerogenic material 

with more diatom-rich sediments. Zone 8, the most recent sediments, plot as outliers in the PCA with 

fluctuations in concentrations of biogenic silica, and a switch to lithogenic elements of the more easily 

mobilized variety (Al, Zn and Cr). 

 



 

 

Fig. 5. Physical properties for the Laka sediment profile plotted against the age-depth model (cal. years CE) 

showing the relative proportions of NIRS-inferred mineral and organic content, element concentrations 

(ED-XRF) for K, Zr and P, degree of sorting, d90 and d90 of the grain size distributions, and NIRS inferred 

biogenic silica alongside the Si:Al element ratio. The dendrogram reports a stratigraphical cluster analysis 

for all variables standardized to mean = 0 and ±1 standard deviation, which informed the zone boundaries 

(1–8). 

3.2.2. Physical properties and geochemistry 

Zone 1 (1200–1265 CE): has moderately low minerogenic content, but without being particularly inorganic. 

Interpretation of the NIRS and Si:Al ratios reflect high concentrations of biogenic silica (Fig. 5). Laka appears 

quite productive and has a relatively stable catchment limiting the flux of minerogenic materials. Zone 2 

(1265–1395 CE): begins with a sharp increase in mineral and organic content, with sharp declines in 

biogenic silica. Concentrations of the detrital lithogenic elements all increase mirrored by increases in grain 

size. The d90 (µm) displays a series of peaks showing coarse in-wash events that resemble flood or similar 

high-energy events. The catchment-lake area ratio is large and flood in-wash is a plausible mechanism 

(Schillereff et al., 2015). Lithogenic elements are not uniform in their concentration, with broad multi-

decade peaks early and late in zone 2. Organic content for the most part varies inversely with the lithogenic 

elements. Zone 3 (1395–1490 CE): comprises two stages, an early 3a with abundant biogenic silica content 

which increases at the expense of both mineral and organic content. This relationship reverses with 3b 

comprising a pronounced minerogenic layer. Lithogenic elements follow the trends in the total mineral 

content. Sediment grain size fluctuates reflecting a continued contribution of higher energy in- wash 

events. Declines in the degree of sorting, however resemble patterns in biogenic silica indicating a possible 

contribution from diatoms to the grain size spectra. Zone 4 (1490–1610 CE): is dominated by peaks in the 

Si:Al ratio and biogenic silica increasing to >30% of the sediment initially and latterly climbing to maxima 

close to 50%. These increases are at the expense of sharp declines in mineral content and lithogenic 

elements. There is no inverse relationship with patterns in organic content, which declines by 10% through 

the zone. The sediment reflects a relatively stable catchment limiting the flux of minerogenic materials to 

the lake and the lake is very productive. Zone 5 (1610–1785 CE): is marked by the most substantial changes 

in the sequence, with organic content falling to <10% and mineral content increasing to >90%. NIRS-

inferred biogenic silica and the Si:Al ratio suggest either an absence of algae or dissolution of diatoms. We 

exclude masking of a diatom signal by the increased flux of mineral matter, because Si and Al are in ratio. 



There is an increase in lithogenic elements throughout the zone. Higher energy in-wash event (~18 layers) 

are represented by d90 peaks that extend into the fine sand and by poorer sorting of these coarse units. In 

summary, the catchment has shifted to a more erodible condition, and higher energy flows drove the 

sharper peaks in coarser minerogenic influx. Zone 6 (1785–1860 CE): begins with declines in concentrations 

of lithogenic elements and a minor dip in the total mineral content. These changes reflect greater organic 

content, with little or no change in the proportion of biogenic silica. This recovery or increasing catchment 

stability required to reduce the supply of lithogenic elements is short-lived and followed by further layer of 

coarse sediment enriched with K, Zr and P denoting a further erosion episode. Zone 7 (1860–1910 CE): is 

unusual in commencing with falls in all lithogenic elements except for Si, a phenomenon often associated 

with diatom rich sediments, but here NIRS-inferred diatoms and Si:Al ratio are both low. Grain size 

increases sharply and so the unit comprises of relatively pure quartz sand. Latterly, the mineral content falls 

sharply, lithogenic elements continue at low concentrations, there is increased organic content and a spike 

in biogenic silica, which is perhaps a lagged response by algal communities in the lake to the influx of quartz 

sand to the lake. Zone 8 (1910–2015 CE): is marked by relatively slow rates of sediment accumulation and 

in the early part a sharp in-wash layer dominated by increases in all lithogenic elements. The product of 

greater erosion in the catchment, this layer contains finer grain sizes than the Zone 7 quartz-dominated 

event, and it suppresses both the biogenic silica and organic content. The last 50 years show a stabilization 

of the catchment reflected by declines across all lithogenic elements, increasing the organic and biogenic 

silica content. There is a minor mineral-rich layer near the top of the core profile. 

The physical properties show substantial shifts in the flux of materials from catchment to the lake. These 

take the form of shifts in the baseline chemistry and grain size, but also differing event scale dynamics with 

greater frequency of in-wash layers/spikes, probably floods, during the extreme erosive episode 1600–1790 

CE. Together the physical properties show short-lived erosive episodes 1250–1300, 1340–1400, 1450–1500 

and around 1550 CE, before a major regime change 1600–1790 and 1825–1860 CE. The peaks in 

minerogenic sediment supply reflect some form of catchment disturbance, most likely perturbation of the 

forest cover; with the intervening lulls in minerogenic sediment reflect system recovery. The last century 

shows slower rates of sediment accumulation but includes a further minerogenic unit 1900–1950 CE before 

some recovery and a further minerogenic influx event towards the top of the core. 

3.2.3. Palynological records 

Spruce was the dominant tree taxa in the forest vegetation during the last 800 years, with beech and fir as 

minor components. Forest composition remained relatively constant during 1200–1900 CE and most 

notable changes occurred during the 20th century. Pollen record demonstrates the highest average 

proportion (30%) of Picea pollen from 1500 to 1610 CE (Fig. 6). There is circa 10% momentarily drop around 

1630 CE, after which the values stay roughly at 25% until the end of the 19th century. During the last 100 

years of the record the proportion of Picea pollen fluctuated between 18 and 30 %, with lowest values at 

1920s, 1930s and 1990s and highest values at 1900s and 1960s. Fagus pollen had the second highest values 

of an average of 15% proportion of the forest composition during 1500–1900 CE. Most notable changes in 

Fagus pollen record occurred during the last 100 years, when the highest Fagus pollen values (12–14%) 

coincided with the decline in Picea pollen around 1930–40 s. The highest values (8–10%) of Abies pollen 

occurred during the first half of the record from 13th to 16th century, followed by a gradual decline 

towards the present, especially during the last 100 years of the record. The increase in the pollen 

proportion of light demanding early successional taxa, such as Acer, Populus, Salix, Sorbus, Epilobium, and 

Pteridium coincides with the decrease in the main tree taxa during the last 100 years indicating forest 

openness. Proportions of herbs and human indicator taxa, such as Cerealia-type, Secale cereale, Rumex sp. 



and Plantago sp., increased slightly from the 16th century with a clear increase during the 20th century, 

indicating the opening of the landscape. More detailed pollen diagram can be found in Appendix A.3. 

 

Fig. 6. Diagram showing tree-ring based disturbance signal in decadal resolution, mineral content (%), grain 

size (µm) and Potassium (mg/g) as sedimentological proxies for erosion in the lake catchment and 

palaeoecological proxies Glomus fungal spore influx, macroscopic charcoal concentrations (particles cm−3) 

and area measurements (mm2 cm−3), microscopic charcoal influx, presence of primary (P) and secondary 

(S) bark beetles, pollen curves for main forest forming tree taxa Abies, Picea and Fagus, sum of herbaceous 

pollen taxa sum of human indicator pollen taxa (Cerealia sp., Secale, Plantago sp. Rumex) and Poaceae in 10 

year temporal resolution. 

Glomus fungal spores were used as an additional indicator of soil erosion, possibly caused by disturbances 

in lake catchment (Van Geel, 2002). Increase in influx of Glomus fungal spores indicating enhanced soil 

erosion of topsoil in the lake catchment occur at 1350–1400, 1450s, 1520s, between 1600 and 1780s, 

1860s and 1950s (Fig. 6). 

3.2.4. Bark beetles 

The number of insect remains is typically low due to the small volume samples analyzed throughout the 

lake sediment record resulting in mostly one or zero individuals of Scolytinae per sample. Both primary and 

secondary bark beetle remains were found throughout the core. The top part of the core from 1620 CE to 

the present (0–255 cm) contained notably higher amounts of beetle remains than the lower part (255–322 

cm) of the core. Remains of Ips typographus, the species causing the most extensive mortality of Norway 

spruce, were found at 1270, 1290, 1630, 1700, 1800, 1880 and 1950 CE (Fig. 6). Remains from other 

primary bark beetles feeding on Norway spruce, Pityogenes chalcographus, Pityogenes conjunctus, 

Polygraphus poligraphus and Polygraphus subopacus, were found throughout the core but mainly between 

1620 and 1820 CE. The highest occurrence of primary bark beetles in single samples was found during the 

1800s, where Ips typographus appeared together with Polygraphus poligraphus and P. subopacus. Remains 

of secondary bark beetles consisted of a variety of genera, attacking dead or dying conifer trees. In general, 

occurrences of secondary bark beetles coincided with primary bark beetles or shortly after. A detailed list 

of the identified Scolytinae species can be found in Appendix A.4. 

 

Potassium 



3.2.5. Fire history 

The amount of sedimentary charcoal is relatively low in both micro- and macroscopic charcoal records, and 

in the macroscopic area measurements during the last 800 years (Fig. 6). All records show increasing values 

from 1600s onwards. Results from CharAnalysis show that average SNI values were above 3.0 for both 

micro- and macroscopic charcoal count records demonstrating the suitability of both records to the peak 

detection analysis. Ten significant peaks in the microscopic charcoal were recorded in Šumava NP during 

the last 800 years. Highest peak magnitude in microscopic charcoal was recorded at 1710 and 1770 CE 

indicating more extensive regional (longer distance from the lake) fire events. In macroscopic charcoal 

record four significant charcoal peaks were recorded indicating possible fire events at 1710, 1750, 1900 and 

1980 CE in the vicinity of the Laka. The macroscopic charcoal area measurements show an slight increase 

around 1700 and 1750 CE and between 1900 and 1910 CE corresponding with the peaks in macroscopic 

charcoal counts. However, there is a peak in macroscopic charcoal area measurements at 1840 CE that is 

not detected in the macroscopic charcoal particle concentrations. A more detailed reconstruction of fire 

history and the results of CharAnalysis can be found in Appendix A.5. 

4. Discussion 

4.1. Increasing disturbances from 1600s 

Multidisciplinary dataset of palaeoecological and dendrochronological records demonstrated reoccurring 

disturbances in central European mountain spruce forest during the last 800 years (Fig. 6). Increases in 

Glomus spores together with the increase in lithogenic elements from 1600s suggest changes to the 

catchment erosion regime. Coarse laminations in the more minerogenic episodes reflect that higher flows 

(floods) are interacting with a landscape that is in general more susceptible to erosion. This change 

coincides with the increase in sedimentary charcoal records and with the continuous occurrence of fossil 

bark beetle remains. Therefore, the change in the erosion regime is most likely triggered by an increase in 

disturbance rate in the study area from 1600s. Tree-ring records demonstrate a period of severe 

disturbances in the lake surroundings between 1780 and 1820 CE. Sedimentary records reveal that the 

period of more severe and/or frequent disturbances started at the beginning of the 17th century. There is 

no local tree-ring data for the 17th century, but the regional disturbance reconstruction from whole 

Šumava region demonstrated potentially extensive disturbance event around 1620s (Čada et al., 2016a). 

While disturbance reconstruction based on tree-ring records and physical proxies reflecting the erosional 

events give an indication of the occurrence and timing of the disturbance events around the lake 

catchment, fossil bark beetle remains, and charcoal records provide insights for the possible causes of the 

disturbances. 

Morris et al. (2015) suggested that even low numbers of fossil bark beetle remains in lake sediments may 

indicate disturbances and it is plausible that the continuous presence of fossil bark beetle remains, 

although in low numbers, from 1600s is linked to increasing frequency of bark beetle disturbances. 

Presence of three different species of primary and two species of secondary bark beetles in the fossil 

record between 1700 and 1720 CE coincides with the historical documents recording insect outbreaks in 

the area around 1720s (Zatloukal, 1998, Brázdil et al., 2004, Jelínek, 2005). The highest number of different 

primary and secondary bark beetle species around 1800s coincide with the period of maximum disturbance 

indicated in the tree-ring based disturbance signal and sedimentary records. It is plausible that disturbances 

in the early 1800s might have resulted from the joint effect of insect outbreak indicated in the fossil record 

and windthrows documented in the archival documents (see Čada et al., 2016a). The effect of outbreaks on 

the amount of fossil bark beetle remains accumulating into lake sedimentary basin is still unknown. 

Therefore, it could be only speculated that the presence of fossil bark beetles during the disturbance events 

at 1380–1400 and 1510–1530 CE, indicated by the soil erosion (increased flux of lithogenic elements and 



Glomus spores), could have been at least partly caused by bark beetle outbreaks. The periods of absence of 

bark beetle fossils before 1600s, coincide with the periods of low disturbance rate indicated by both tree-

ring and sedimentary records. Bark beetle population were probably smaller during these periods and did 

not cause more extensive tree mortality. This may be, because bark beetle outbreaks are not only triggered 

by favorable climatic conditions, such as warm and dry weather, but also by stand structural characteristics 

(older and bigger trees are more sensitive to bark beetles) and related windthrows (Seidl et al., 2011, Thom 

et al., 2013). In general, these results suggest that bark beetle outbreaks have been an important part of 

the disturbance regime in mountain spruce forests for a long time and that windstorms and insect 

outbreaks are the main and intimately related disturbance agents in central European mountain spruce 

forests (e.g. Svoboda et al., 2013, Seidl et al., 2014, Čada et al., 2016). We also found that these disturbance 

agents may produce a substantial response in erosion regime of the affected areas. Comparison of the 

fossil bark beetle remains together with dendrochronological reconstruction is promising and may provide 

more exact information about past bark beetle outbreaks, but further development of the method with 

more extensive dataset is needed. 

Compared to windthrows and bark beetle outbreaks, fire disturbances have not been studied intensively in 

central European mountain spruce forest probably because there are very few known recent natural fires in 

these forests (Feurdean et al., 2017). Our sedimentary disturbance record revealed the presence of fires in 

the history of the studied area and it suggests increased fire activity from the 1600 CE onwards. The more 

pronounced increase in microscopic charcoal compared to macroscopic charcoal most probably indicates 

regional fires, rather than local fires in the lake catchment. However, macroscopic charcoal records suggest 

four local fire events in the lake catchment from which the significant peak around 1800 CE is recorded in 

both micro- and macroscopic charcoal records, and coincides with the period of the most severe 

disturbances indicated by tree-ring records, with erosional indicators and with the highest number of bark 

beetle taxa. As there are no significant changes in forest composition in connection to these events, it is 

likely that no substantial stand-replacing fires, but rather small and very local fires occurred in the study 

area. Fires may have been connected to the increasing fuel load from windthrows and bark beetle infested 

dying trees. Similar co-occurrence of bark beetle outbreak and fires were observed after the severe 

windthrow at 2004 in Tatra mountains (Fleischer et al., 2017). However, it is important to note that these 

fires may have been also connected to the increased human influence in the area. Although, fires have 

been scarce around the study site during the last millennia, our results together with a recent study by 

Carter et al. (2018) demonstrated that fires have been part of the long-term disturbance dynamics in 

Šumava NP. Furthermore, the recent report of European commission EIP-AGRI focus group (2019) 

identified the increasing fire risk in temperate continental zone and mountain forests as one of the 

probable climate change impacts. Therefore, it is vital to acknowledge the role of fires in the past 

disturbance history and the probable future role of fires in the management plans of the temperate 

mountain spruce forests. 

In general, the long-term disturbance dynamics derived from both denrochronological and palaeoecological 

records demonstrate the co-occurrence of multiple disturbance factors such as windthrows, bark beetles 

and fires. Similar interaction of different disturbance agents has been reported also in previous studies (e.g. 

Brunelle et al., 2008, Holeksa et al., 2016, Nagel et al., 2017, Šoltés et al., 2010). Hence, the future forest 

management and conservation strategies should acknowledge that multiple disturbance factors, such as 

windthrows, bark beetles, and fires, may occur simultaneously creating a complex disturbance regime in 

mountain forests affecting the forests composition and structure. 

 



4.2. Stable forest composition until the end of the 20th century 

Despite the fact that the studied spruce forest was subjected to relatively extensive disturbances during 

1600–1900 CE, only minor changes in the pollen composition were recorded in this period. However, the 

most notable changes in pollen composition that could relate to forest disturbances were recorded at the 

beginning of the 20th century, when only small disturbance events were indicated by dendrochronological 

analyses. The decline in Picea pollen during the 1930s and 1970s together with an increase of landscape 

openness indicators may be connected to the windstorms recorded in historical documents (Brázdil et al., 

2004). 

More intensive and/or proximal anthropogenic disturbance near the lake during last 100 years could also 

explain the shift in pollen composition. Current forest structure indicates localized clearings and 

management in the surrounding forest and along the lake shore, this coincides with an increase of 

cultivated plants observed in the pollen taxa during the 20th century. It is also plausible that human 

induced air pollution peaked in the region during the 1950–1980s affected the physiology of the mature 

trees (Kopácek et al., 2001, Čada et al., 2016), which may have resulted in lower pollen production and 

hence more notable changes in the pollen records corresponding to disturbance events during the last 100 

years. 

4.3. Integration of dendrochronological and sedimentary data 

In the integration of tree-ring and sedimentary data, the biggest challenge lies in the unambiguous 

temporal and spatial correlation of these two different datasets. We expected that the disturbance-related 

mortality of mature trees, indicated by tree-ring records and resulting in a likely decrease in spruce trees, 

would be accompanied by a decrease in the proportion of spruce pollen in the sedimentary pollen record. 

However, pollen records of the main tree taxa did not indicate substantial compositional changes during 

the major disturbance events revealed by dendrochronology around 1800s. There are multiple reasons for 

this discrepancy. It is probable that although Laka is a small lake, the relative source area of pollen extends 

beyond the lake catchment due to the strong upscaling winds in the mountain region that may bring 

regional rather than local pollen signals (e.g. Bunting et al., 2008, van der Knaap et al., 2010), whereas the 

disturbance signal from tree-rings is very local. The relatively high proportion of Corylus pollen supports 

this notion, as the closest hazel population is located at a lower elevation circa 1–2 km from the study site. 

Whereas the pollen record reflects the vegetation from all directions surrounding Laka, the tree-ring record 

based on 6 study plots is highly localized and all plots are located on the slope above the southern edge of 

the lake in the old-growth stand. Therefore, the source area for the pollen record derived from a lake 

sediments and the disturbance signal from individual tree-ring study plots may have notably different 

spatial scale. 

Other explanations for the lack of any clear response between the pollen record and the extensive 

disturbance events based on tree-ring data may be related to pollen production. It is possible that the 

canopy opening was only moderate, when the whole canopy area is considered and that the pollen 

production in remaining trees increased in response to disturbance due to increased light and nutrient 

availability, or that the trees in the closest proximity of the lake might have survived disturbance events 

and subsequently influence the pollen record. Furthermore, as windthrows and bark beetle outbreaks kill 

mainly the mature trees, the younger, surviving trees continue or quickly start to produce pollen and hence 

there may be a weaker signal in the pollen records compared to e.g. notable changes in the pollen 

composition seen after severe stand-replacing fire event. It is therefore probable that patchy forest 

disturbances driven primarily by wind and insect outbreaks (Čada et al., 2016a) are not necessarily reflected 

in the main tree pollen taxa derived from lake sediments. 



 

From our knowledge, this is the first study to compare tree-ring based and sedimentary disturbance 

records in order to construct more precise disturbance reconstruction. Although, integration of these two 

different data sets can be challenging, the information derived from both records are complementing and 

when combined can provide valuable insights into the cause, extent and consequences of the disturbance 

events. It is noteworthy that sedimentary records that most likely have originated from the lake catchment, 

such as fossil beetle remains indicating bark beetle outbreaks, macroscopic charcoal indicating local fires, 

high values of Glomus spores together with increase in physical and geochemical properties indicating soil 

erosion, demonstrate similar trends to those reconstructed using tree-ring data. This allows the 

interpretation of possible causes behind the disturbance events indicated by tree-ring record. Furthermore, 

comparison of sedimentary records to the tree-ring records demonstrated that all disturbances are not 

necessarily visible in the pollen record, but may still have important impact on the forest structure, 

especially when caused by disturbance agents that affect just specific age cohorts, such as windstorms or 

insect outbreaks. Finally, with the palaeoecological and sedimentological records we were able to extend 

the disturbance reconstruction beyond the length of the tree-ring chronology (age of tree generation) and 

demonstrate changes in the disturbance regime, which were not detectable in the dendrochronological 

records. In future, the challenges in the integration of multidisciplinary data that have different spatial and 

temporal limitation could be overcome with using more local sampling sites (e.g. small hollows) for 

palaeoecological data or more regional set of dendrochronological study plots. To overcome the offset in 

the temporal resolution of the different records would require even more high-resolution sedimentary 

records and high chronological control of the samples. 

5. Conclusions 
Comparison of disturbance records from multidisciplinary data can provide important insight into the 

disturbance agents and the changes in forest composition. Multidisciplinary data demonstrate more 

frequent disturbance events and heightened catchment erosion from the 1600s in the study area. This 

suggests that there has been long-term shift in disturbance history, that could not have been detected 

solely with dendrochronological record. Although, windstorms and insect outbreaks are considered as main 

disturbance factors in the mountain spruce forest, the role of fires should not be ignored in the future 

forest management and conservation strategies. 

This study highlights the importance of spatial and temporal consideration when integrating 

multidisciplinary datasets. We demonstrated that sedimentary proxies that originate from the lake 

catchment appear to mirror patterns in the tree-ring based disturbance signal. As the spatial scale of the 

datasets used may largely explain the discrepancies between palynological and tree-ring records, there is 

need for developing more precise analytical methods to integrate dendrochronological, sedimentological 

and palaeoecological data from spatially more constrained sites as from small forest hollows or if lake 

sediment is used comparison should be conducted with more larger dendrochronological data set. 
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