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Modern high-speed digital cameras enable the investigation of fluid flows with unprecedented res-
olution both in space and in time. A remarkable example is given by the study of drop impact and
dynamic wetting phenomena, which occur on time scales of few milliseconds and exhibit features,
such as the contact angle, which are often treated as geometric singularities. Whilst a good reso-
lution of the camera sensor and a high-quality optics are obvious prerequisites to obtain accurate
measurements, the extraction of quantitative information from digital images always requires some
kind of processing algorithm. In particular, the accurate measurement of the position and velocity
of fluid interfaces, and that of contact angles, require the identification of image features such as
contours, edges and corners, which represents a non-trivial problem of digital image processing with
fundamental applications in machine vision systems. This work illustrates systematic analytical
procedures to identify fluid interfaces, corners and angles in high-speed digital images of fluid flows,
with focus on their application to the study of drop impact and dynamic wetting phenomena.

KEY WORDS: Drop impact, contact line, contact angle, image processing

1. INTRODUCTION

The increasing accessibility of high-speed, high-resolution imaging systems enables the experi-
mental study of fluid flows with unprecedented level of detail. These imaging systems produce
large stacks of images with several megapixels resolution, increasing exponentially the amount
of raw data generated during experiments. Thus, it is necessary to develop fast, reliable, con-
sistent algorithms and procedures to obtain accurate quantitative measurements from digital im-
ages.

A remarkable example of a research topic that received great impulse from the systematic use
of high-speed imaging is drop impact dynamics. When a liquid drop impacts onto solid substrate
different outcomes may be observed (Rioboo et al., 2001), however all of these phenomena are
characterized by very short characteristic times. Depending upon the impact Weber number,
We = ρU 2D0/σ (where ρ is the fluid density, σ the surface tension, U the impact velocity,and
D0 the equilibrium drop diameter), the inertial spreading phase develops in about 5 ms, and the
following receding phase in about 50 ms after maximum spreading; this means that at the frame
rate of 5000 fps there are 25 images available for the analysis of the spreading phase and 250
images for the analysis of the receding phase.
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Figure 4.1: (left) Fig. 1, Thoroddsen et Al. (right) Fig. 6(c), Farshid Chini et Al.

to be confident in the quality of their results, from the point of view of the scientific

knowledge these advances need to be shared completely with the public. However,

the content of the papers is enough to highlight some general issues concerning these

techniques:

contact line reconstruction The images resulting from the experimental setup of

Thoroddsen et Al. [8] are characterized by only five main pixel intensity levels:

one for the glass slide (the background) and the others for four di↵erent displace-

ments in time of the drop on the glass (an example is reported in Figure 4.1).

However, as can be noticed from the figure, the intensity of the pixels of the drop

contour di↵ers significantly from the pixels of the liquid it surrounds (they are

darker), even if they belong to the same time instant. Subsequently, the appli-

cation of a gradient based edge detection technique may result in edges that are

thick and not well–suited to develop the polar description of drop contour; in fact

if the angular position of every edge point is calculated from the angular coe�-

cient of the line intercepting the edge point and the drop weight centre, multiple

points may fall on the same line. Furthermore once using an averaged template

patching algorithm to verify the quality of the detected edges, the template may

di↵er significantly from the interceptions curve described above; an obvious ques-

tion may result: when they di↵er, is it better to preserve the interception curve or

the template? The author didn’t give indication of how he dealt with this issue;

lastly, the resulting curves were smoothed with parametric curves (that are also

not explicitly indicated).

gas–liquid interface interpolation The SPPF method introduced by Chini et Al.

[48] is composed by two main steps: (1) the image of the drop is fitted with a

sigmoid into the edge region (Canny algorithm used) and the edge is redefined

as the sigmoid saddle point, (2) the resulting curve (the curve composed by all
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FIG. 1: (a) Example of inaccurate interface detection using the Canny algorithm (Chini and Amirfazli,
2011). (b) Visualization of the contact line at different times during dewetting (Thoroddsen and Sakakibara,
1998); the pixel intensity is non-monotonic (edge pixels are darker).

To analyse phenomena of such a short duration, different imaging devices and techniques are
discussed in literature (Hutchings et al., 2007; Thoroddsen et al., 2008; Versluis, 2013). How-
ever, irrespective of the experimental technique used to acquire images, extracting quantitative
features (e.g., lengths and/or angles) from drop impact experiments requires some sort of image
processing, especially to identify contour lines with precision; unfortunately, with few excep-
tions the details of the image processing algorithms used are not disclosed.

The output of a digital camera device is represented by a sequence of images, or frames, in
the form of discrete light intensity maps, where both the field of view of the artificial eye and the
light intensity are discretized and treated as matrices of integers. Let then L(x, y, z) be the light
intensity in a Cartesian space: an image I(x, y) can be defined as the surface representing the
amount of light that can be collected from an ideal plane z = z∗ placed at the working distance
of the lens; it immediately follows that I(x, y) = L(x, y, z∗). In practice, the ideal infinite plane
z = z∗ is bounded by the field of view of the lens, and its resolution is limited by the sensor of
the camera; thus, if ∆p is the dot pitch of the sensor (i.e., the true pixel width on the sensor),
and X and Y are, respectively, the upper bounds of the planar region originating in the point
O = {0, 0} that can be visualized from the lens, the theoretical maximum available resolution of
the device is (X/∆p)× (Y/∆p) pixels. Each pixel p represents a specific location in the image
grid that can be identified by two discrete spatial coordinates xi = i∆p and yj = j∆p, and the
light intensity Ii,j = I(xi, yj).

Fluid interfaces usually correspond to large image intensity gradients, therefore they are of-
ten identified by fitting the pixel intensity profile with a sigmoid (Canny, 1986) and setting the
edge position in the sigmoid inflexion point. However, sigmoid fitting may not identify the inter-
face accurately depending on the image histogram, as shown in Figure 1a (Chini and Amirfazli,
2011). In addition, this method is not suitable in the presence of small intensity gradients and/or
non-monotonic intensity profiles, such as in the example displayed in Figure 1b (Thoroddsen
and Sakakibara, 1998).

Corners and angles are formed at the intersection of edges; this is the case, for example, of
the contact angle of liquid drops deposited on a surface, defined as the angle between the solid
surface and liquid-air interface on the side of the liquid phase. A common approach to measure
contact angles from side views of drops consists in fitting one or more analytical functions to the
drop shape, or to a part of it, in the neighborhood of the contact (three-phase) point, and then tak-
ing the analytical tangent to the fitting curve. In the Axisymmetric Drop Shape Analysis method
(ADSA), a solution of the Laplace equation is fitted to the drop shape by minimizing the error
between the theoretical and observed drop boundaries (Hoorfar and Neumann, 2006; Rotenberg
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et al., 1983). A limitation of ADSA and other similar methods is they require drop symmetry,
which makes them unsuitable to measure contact angles of drops moving on an inclined surface,
or drops impacting on a solid surface. An alternative approach consists in fitting polynomials to
a small portion of the drop edge near the contact line (Bateni et al., 2003; Schuetter et al., 2006);
these methods are very sensitive to the order of the fitting polynomial and to the local image
resolution, although accuracy can be improved using sub-pixel resolution (Chini and Amirfazli,
2011). In addition, interpolating the contour with a polynomial can displace artificially the con-
tact point (Biolè et al., 2016). A simple edge-fitting method for asymmetric drops uses piecewise
continuous polynomial functions (B-splines) (Stalder et al., 2006); these curves can fit reason-
ably well any drop shape, provided suitable nodes are selected on the drop edge. However, since
these optimum nodes are specified manually by the user, the method is impractical to analyse
large stacks of images, for example those generated by high-speed imaging systems.

This paper describes systematic image processing algorithms to identify features in digi-
tal images, such as edges, interfaces and corners, and to extract quantitative measurements of
lengths and angles. In particular, algorithms are specifically adapted to address common issues
arising in the processing of high-speed images of drop impact phenomena, and to provide accu-
rate measurements of contour lengths and contact angles.

2. IMAGE PRE-PROCESSING

2.1 Intensity histogram equalization

The histogram of an image is the non-normalized distribution of the light intensity I (which
sometimes is confused with the image brightness); since both the visual plane and the light
intensity measured on the plane are discretized, the resulting distribution is also discrete. Very
often in high-speed imaging the recorded frames are dark, due to the short exposure time of
the sensor to the incoming light or to non optimal illumination conditions, as shown in the
example displayed in Figure 2a. As a consequence, the corresponding histogram is polarized in
the dark field (see Figure 2c). A simple technique to enhance contrast (i.e., the gap between the
minimum and the maximum intensity of an image, measured in intensity units) in a dark image
is to threshold the image (bound the intensity field between two values, Imin and Imax) and then
rescale intensity according to Eq. (1).

Ie i,j :=
Ii,j − Imin
Imax − Imin

, ∀ pi,j = p(xi, yj) (1)

The equalized histogram (Figure 2c) covers the entire range of intensities available, enhanc-
ing the image contrast (Figure 2b).

2.2 Background removal

Images often contain unnecessary information, therefore any unwanted features should be erased
by removing the image background. The simplest technique that can be used to remove the
background contribution from an image is the pixel-by-pixel subtraction of a reference image
I0(x, y), containing only the undesired objects, from the initial image I(x, y). If the normalized
intensity difference is below a certain threshold, the pixel intensity is set equal to a constant (e.g.,
to the maximum value of brightness), otherwise it remains identical to the initial image (see Eq.
2).
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FIG. 2: Effect of histogram equalization. (a) Original image. (b) Image after histogram equalization. (c)
Intensity histograms of the original image (red) and of the equalized image (black).

Ic i,j :=

{
constant if

∣∣∣ Ii,j−I0 i,j

I0 i,j

∣∣∣ < k

Ii,j otherwise
, ∀ pi,j = p(xi, yj) (2)

More advanced techniques of background removal take into account the characteristics of
the illumination sources, the materials properties, and the system geometry (Marr and Hildreth,
1980). For example, when back-to-front illumination with a coherent light source parallel to the
optical axis of the camera is used, and there is no light scattering along the optical path, the
image intensity results from light absorption according to Beer-Lambert law:

I(x, y) = I0 exp(−λ(x, y)z∗) (3)

where I0 is the (uniform) illumination intensity, λ(x, y) is the absorption coefficient correspond-
ing to the point (x, y), and z∗ is the distance between the light source and the image plane. In
this case, the ratio between the intensities of the initial image and of the reference image is an
exponential function of the local light absorption coefficient (Eq. 4), therefore enhances the fea-
tures of the initial image which are not present on the reference image. Thus, the background
removal obtained using Eq. (4) yields a better result with respect to the background subtraction
method.

Ic i,j :=
Ii,j
I0 i,j

= exp(−λi,j z∗) , ∀ pi,j = p(xi, yj) (4)

Figure 3 shows the difference between background removal by subtraction (Figure 3b), and
background removal by division (Figure 3c), for an image with back-to-front parallel illumina-
tion (Figure 3a).
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FIG. 3: (a) Original image. (b) Image after background removal (subtraction). (c) Image after background
removal (division).

The main drawbacks that affect both algorithms are salt-and-pepper noise (i.e., small dots
having high contrast with the background), and the formation of hot or cold spots (i.e., large
regions with intensity that smaller than the lower bound or larger than the upper bound of the
image class considered (for 8− bit integer unsigned images intensity in the range [0, 255]). Spa-
tial averaging (filtering) is generaly sufficient to remove salt-and-pepper noise, while to mitigate
hot or cold spots one can force the pixels intensity within the range admitted by the image class,
changing the values over maximum and under minimum, or rescale all intensities between the
maximum and minimum values defined by the highest-intensity hot-spot and the lowest-intensity
cold-spot, respectively.

3. OBJECT IDENTIFICATION

3.1 Edge detection

Edge detection is one of the most fascinating topics in the history of computer vision (Canny,
1986; Lindeberg, 1996; Perona and Malik, 1990; Sobel and Feldman, 1968; Torre and Poggio,
1986). An edge represents the set of the pixel locations where the variation of the image inten-
sity exceeds a prescribed threshold. Local changes of the intensity in an image may be caused
by changes in illumination (shadows, visible light sources and illumination gradients), in the
orientation or distance from the viewer to the visible surfaces, in surface reflectance (Marr and
Hildreth, 1980) and any combination of them. Edge detection algorithms enhance the locations
where the image intensity varies irrespective of the physical origin of this variation.

Most authors approach edge detection as the search of inflection points of one-dimensional
functions; in fact, considering a smooth function f(x) (twice continuous and differentiable on
a sub-set of R), its curvature (reciprocal of the gradient f ′(x)) is minimum in correspondence
of the zero-crossings of the second order derivative f ′′(x) = 0, therefore in these points the
function f(x) is expected to change rapidly. Unfortunately, extending this approach to surfaces
or images is not straightforward. Given a smooth surface S(x, y) (hence twice continuous and
differentiable on R2), the information about how its shape changes over its domain is carried
by its gradient, ∇S(x, y), its Hessian matrix, HS(x, y), and its Laplacian, ∆S(x, y), which
represents the mean curvature in correspondence of the zero-crossings of the gradient. However,
in most images the topology of the intensity map is not smooth at all, as shown in Figure 4a,
which makes differentiation impossible. To obtain a differentiable surface, one can smooth the
original image by applying a Gaussian filter using the integral operator of convolution:
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FIG. 4: Image intensity surface: (a) Original image; (b) The same image smoothed with a Gaussian filter
with variance σ1 = 3.

W (x, y,σ1) = G(x, y,σ1) ∗ I(x, y) (5)

An example of the effect of Gaussian smoothing is displayed in Figure 4b. Using the convolution
properties, the intensity surface derivation can be calculated as:

∇W (x, y,σ1) = ∇G(x, y,σ1) ∗ I(x, y) = G(x, y,σ1) ∗ ∇I(x, y) (6)

The most common edge detection techniques based on image filtering are:

• Derivative of Gaussian (DoG):∇W (x, y,σ1) > k

• Difference of Gaussians (doG): |W (x, y,σ1)−W (x, y,σ2)| > k, σ1 6= σ2

• Laplacian of Gaussian (LoG): ∆W (x, y,σ1) > k

where k is a constant threshold value. The above inequalities are used to create synthetic binary
images that are valued 1 only in the pixel locations where the constraint is verified, and zero
otherwise. Figure 5 shows examples of edge detection on the same sample image using the
Derivative of Gaussian (Figure 5a) and the Laplacian of Gaussian (Figure 5b) methods.

To reduce the computation time required to execute derivations, it was proposed to use small
3× 3 kernels (Sobel and Feldman, 1968) for the partial derivatives in ||∇W || =

√
Wx

2 +Wy
2

and ∆W = Wxx +Wyy (where the termsWx = I ∗Gx,Wy = I ∗Gy,Wxx = I ∗Gxx,Wyy = I ∗Gyy
represent the partial derivatives of the smoothed image). The general formula of a 3× 3 deriva-
tion kernel can be written convolving the central difference scheme with a smoothing vector:

Gx = Gy
T = 2hβ1

 1
b1
1

 ∗ [− 1
2h

0
1

2h

]
(7)
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FIG. 5: Examples of differentiation of the smoothed sample image, and corresponding binary images. (a)
intensity gradient ||∇W ||, used for the Derivative of Gaussian (DoG) method, with threshold k = 0.08;
(b) Laplacian ∆W , used in the Laplacian of Gaussian method with threshold k = 0.02.

Gxx = Gyy
T = h2β2

 1
b2
1

 ∗ [ 1
h2 − b2

h2

1
h2

]
≈ h2β2

 1
b2
1

 ∗ [ 1
h2 − 2

h2

1
h2

]
(8)

In the case of a Gaussian smoothed average the coefficients assume the following values:
β1 = −(2πσ3e)−1, b1 =

√
e, β2 = (πσ4e3)−1, b2 = e

√
e, and h = 1 for images.

More advanced edge detection algorithms identify edges as the zero crossing curves of dif-
ferential invariants of a smooth and twice differentiable surface, such as the Lindeberg invariant
(Lindeberg, 1993, 1998):

L = W 2
xWxx + 2WxWyWxy +W 2

yWyy (9)

3.2 Corners detection

Corners are local features of images, usually represented using a very small subset of the image
pixels. In the literature, corners are found either as intersection of two or more edges having
different direction (i.e. a junction), or as points on lines (edges) where the local curvature is
maximum (Mokhtarian and Suomela, 1998; Noble, 1987), or as points characterized by low
self–similarity (Moravec, 1980).

Corner detection algorithms can be sorted into two main categories, i.e. algorithms based
on contour curvature and algorithms based on image intensity. In algorithms based on contour
curvature, corners lie on image edges, where the curvature along the chain of points describing
an edge is calculated, and corners are identified in those pixels with either a large curvature or
a large curvature gap from the neighboring points (Langridge, 1982; Rutkowski and Rosenfeld,
1978). In algorithms based on image intensity, corners are identified in regions with high mean
curvature (Kitchen and Rosenfeld, 1982), therefore the search is not limited to edge lines, but
covers the whole image surface.
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Other methods look for intensity variations in fixed size windows. The Harris operator per-
forms a local evaluation of the image autocorrelation and takes this quantity as a measure of the
point self-similarity (Harris and Stephens, 1988). The SUSAN scheme (Smith and Brady, 1997)
simply counts for every pixel the number of neighboring points having the same intensity, and
does not perform any surface differentiation; local minima are taken as corner points.

From a mathematical point of view, a point P = {xP , yP } belonging to an image I(x, y) is
a corner if it satisfies the following conditions:

• It belongs to the image edges, i.e., using Eq. (9), L(xP , yP ) = 0;

• The unit normal ~n = ∇I/||∇I|| to the surface in P is orthogonal to the unit normal
~p = ∇φ/||∇φ|| to the gradient of the surface inclination, defined as φ = arctan(Iy/Ix).

Examples of the quantities ∇I and ∇φ obtained from the image of a simple square corner are
displayed in Figures 6a and 6b, respectively. In other words, corners can be defined as those edge
points where ~n · ~p = 0. This can be proven by showing that the conditions L(xP , yP ) = 0 and
~n ·~p = 0 correspond to points where the Gaussian curvature, κ, defined in Eq. (10), is maximum.

κ =
IxxIyy − I2

xy

(1 + ||∇I||2)2 (10)

The product ~n · ~p can be written as:

~n · ~p =
∇I∇φ

||∇I|| ||∇φ||
=
Ixφx + Iyφy
||∇I|| ||∇φ||

= cos ξ (11)

where ξ is the angle between ~n and ~p, and:

φx =
Ix(Ixy − Ixx tanφ)

||∇I||2
(12)

φy = −Iy(Ixy − Iyy cotφ)

||∇I||2
(13)

Introducing Lindeberg’s condition, L = 0 (Eq. 9), yields:

Iyy tanφ− Ixx cotφ = 2||∇I|| ||∇φ|| cos ξ (14)

which can be re-written as:

Iyy = Ixx
I2
x

I2
y

+ 2
Ix
Iy
||∇I|| ||∇φ|| cos ξ (15)

Ixy = −(
Ix
Iy
Ixx + ||∇I|| ||∇φ|| cos ξ) (16)

Introducing Eqs. (15) and (16) into the definition of Gaussian curvature, Eq. (10), yields:

κ = −||∇I||
2 ||∇φ||2

(1 + ||∇I||2)2 (cos ξ)2 (17)

Equation (17) shows that the maximum value of the Gaussian curvature is κ = 0, corre-
sponding to ξ = π/2, i.e. the two unit vectors ~n and ~p are orthogonal, as shown in the example
of Figure 6c relative to a square corner.
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(a)$ (b)$ (c)$

∇I ∇φ

FIG. 6: Detection of a sample synthetic square corner: (a) intensity gradient∇I; (b) gradient of the surface
inclination∇φ; (c) detail of the vector fields ~n (blue) and ~p (green) in the vicinity of the corner point.

4. QUANTITATIVE MEASUREMENTS

4.1 Contour length of impacting drops

Measuring the length of edges in digital images, such as the contour length of an impacting
drop (e.g., Figure 3), requires first of all the identification of the edge of interest; in fact, edge
detection algorithms find all edge features in an image (see e.g. Figure 5), including spurious
edges inside the contour of the drop which must be erased.

The first step is to enhance all edges by checking the connectivity of pixels; in other words,
if a pixel pi,j is surrounded by a sufficient number of pixels belonging to an edge, then pi,j must
also belong to the same edge. In practice, this operation can be done by convolving the image
with the kernel defined in Eq. (18), and replacing those pixels where the convolution product
exceeds a certain threshold, k2.

MFC =
1
8

 1 1 1
1 0 1
1 1 1

 (18)

Thus, if I1 is the initial image containing edges, the new image after connectivity check is:

I2 := {I1 ∗MFC > k2, k2 > 0.5} (19)

The hole filling procedure consists essentially in the same operation, but using a smaller
value of the threshold, k3:

I3 := {I2 ∗MFC > k3, k3 < 0.5} (20)

Spurious edges can be removed by filling the area inside the drop contour line, i.e., by filling
the pixels between the first and the last edge pixel of each row and each column, respectively. If
the contour line is open, pixels must be filled on the side of spurious edges. Finally, the contour
line is determined by applying the edge finding algorithm to the resulting binary image. Figure
7 shows the intermediate steps of the procedure applied to the drop image displayed in Figure 3.

The set of points {xi, yi} constituting the contour of the wetted area (red points in Figure 7c)
cannot be used directly to calculate the contour length because the set is unsorted; usually, con-
ditional operations for matrices are performed in compilers first by rows and then by columns,
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(a)$ (b)$ (c)$

FIG. 7: Steps of contour line identification: (a) image edges after connectivity check (k2 = 0.6) and hole
filling (k3 = 0.1); (b) spurious edges removal; (c) contour line (red) superimposed to the original image.

producing the set to be sorted by columns and then by rows. Ideally, the best way to sort the set is
by growing angle in a polar coordinate system with origin inside the contour line, so that the pair
{xi, yi} can be converted to {θi, ri}. The origin {xc, yc} of the polar coordinate system can be
placed in the point with coordinates equal to the arithmetic mean of the contour line coordinates
(Thoroddsen and Sakakibara, 1998):

xc ≡ x =
1
n

n∑
i=1

xi , yc ≡ y =
1
n

n∑
i=1

yi (21)

where n is the total number of pixels belonging to the contour line. Alternatively, one can use
the more accurate least squares fitting of circles (LSF circles) technique (Chernov and Lesort,
2005), which uses higher-order central moments of the contour line pixel coordinates:[ ∑n

i=1 ui
2 ∑n

i=1 uivi∑n
i=1 uivi

∑n
i=1 vi

2

] [
xc − x
yc − y

]
=

1
2

[ ∑n
i=1 ui

3 +
∑n
i=1 ui

2vi∑n
i=1 vi

3 +
∑n
i=1 uivi

2

]
(22)

where ui = xi − x and vi = yi − y. Once the centre of the wetted area is found, the variable
change {xi, yi} → {θi, ri} is straightforward:

θi = α + arctan
yi − yc
xi − xc

, ri =
√

(xi − xc)2 + (yi − yc)2 (23)

where α = 0 in the first quadrant, α = π in the second and third quadrants, and α = 2π in the
fourth quadrant, respectively.

Figure 8 displays the contour line in polar coordinates, after sorting the pixels {θi, ri} by
growing θi. The contour line length, L, can now be obtained by simple numerical integration:

L =

∫ 2π

0
r(θ)dθ ≈

n−1∑
i=0

(θi+1 − θi)
ri+1 + ri

2
(24)

4.2 Dynamic contact angle of impacting drops

Angle measurements are relatively simple if the analytical expressions of the two intersecting
edges are known, hence the abundance of edge fitting methods available in the literature. How-
ever, the optimal choice of the fitting curve and, in case of piecewise fitting, of partitions, are
non-trivial issues that can be mitigated only at a high computational cost. An alternative approach
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FIG. 8: Polar representation of the contour line of Figure 7c.

to measure angles (or more in general the slope of an edge) in digital images is to directly process
the image intensity matrix without edge fitting.

An important example of angle measurement from images is the static or dynamic contact an-
gle of a liquid drop in contact with a solid surface, as it appears in a side view image of the drop.
The drop curvature causes non-uniform light scattering, which makes edge visualization difficult
especially in the region of interest near the surface; thus, accurate contact angle measurements
require high-quality images obtained with uniform, parallel back-to-front illumination. This is
usually provided as a standard in commercial goniometers, however can be difficult to achieve
in case of dynamic contact angle measurements (Bertola, 2010; Bertola and Wang, 2015), be-
cause high-speed cameras require a large illumination intensity and the drop curvature varies
significantly during drop impact.

The exact position of the contact points where the drop edge meets the surface can be de-
tected with the aid of the reflected image of the drop on the substrate, which is visualised by
tilting the optical axis of the camera downwards at an angle α having a magnitude of a few de-
grees. This has two side effects: (i) the projected image of the substrate superimposes to the drop
image in a thin strip containing the contact points, and (ii) the observed contact angle, θo, lies in
a different plane than the actual contact angle, θa, introducing an error (usually negligible) that
can be estimated by tan θo = tan θa cosα (Chini et al., 2013).

A straightforward algortihm to compute contact angles from digital images (Biolè and Bertola,
2015b) is based on the univocal and monotonic relationship between the contact angle, θ, and
the area of the overlapping region between the drop image and a suitable geometric shape (or
goniometric mask) centered on the contact point, A, as illustrated schematically in Figure 9a.
In particular, a triangular goniometric mask offers a number of advantages when discretised, in-
cluding a weaker dependence of results on the mask size and a significantly lower computational
cost. This happens because among all shapes that can be constructed inside a square matrix, the
triangle is the convex shape enclosing the smallest number of elements, hence there are less non-
zero elements involved in operations. Using an isosceles triangle having a base of lenght 2R and
a height of length R as goniometric mask, and assuming it is small enough compared to the drop
size that the portion of drop contour line inside it can be linearised, the relationship between the
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FIG. 9: Schematic of the relation between the contact angle and the overlapping area between the drop
image and a triangle centered on the contact point (a), and schematic of the convolution between the drop
image and the goniometric mask in the pixel corresponding to the contact point of the drop (b).

contact angle and the overlapping area is expressed by Eq. (25):

θ =
π

2
(1 + λ) + arctan

2A− (1 + λ)R2

R2 − 2A
(25)

where λ = −1 for A ≤ R2/2 and λ = 1 for A > R2/2.
In the case of binary images, the count of pixels falling within a certain delimited region is

a direct measure of its area; thus, the area of the overlapping region sketched in Figure 9a can
be obtained with a simple 2-dimensional convolution operation between the drop image matrix
and a second binary matrix, defined in Eq. (26), corresponding to the image of a triangle, and
centered on the pixel corresponding to the contact point in the drop image. To enable centring
the mask on a single element (pixel), the mask size, i.e., the number of rows or column of the
matrix, or the number of pixels of a side of the corresponding image, is 2b + 1, where b is an
integer number. In fact, the discrete convolution operator between two matrices A and B yields
a matrix whose elements, defined in Eq. (27), are the sums of the products of the elements of
A and B, as shown schematically in Figure 9b. Since convolution takes the rows and columns
of the second matrix in reverse order, the goniometric mask must be flipped both vertically and
horizontally.

MG =



0 0 0 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 0 0 0
1 · · · · · · 1 · · · · · · 1

0
. . .

... . .
.

0
...

. . .
. . .

... . .
.

. .
. ...

0 · · · 0 1 0 · · · 0


(26)

A(r, c) =

2b∑
i=0

2b∑
j=0

I(r − i, c− j)MG(i, j) (27)
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The mask size, z = 2b+ 1, strongly affects the angle measurement because a discrete mask
can resolve a maximum number of discrete angle values equal to the number of pixels in the
triangle, (z+ 1)2/4. Thus, the minimum value (in radians) that can be measured, corresponding
to one pixel, is 4π/(z + 1)2 ; for example, to measure an angle of 1◦, the mask size should be
z = 2

√
180 − 1 ≈ 25. The overall accuracy of the method is the result of trade-off between

the input parameters; on one hand, increasing the mask size pays back in terms of accuracy but,
on the other hand, if the image size to mask size ratio is too small angles are not measurable.
Accuracies comparable with those of average commercial software can be achieved with masks
as small as 21× 21 pixels, provided the image size to mask size ratio is ≥ 7.

In summary, the steps to obtain the contact angle value are:

• Convert the drop side view image into binary form using the procedure described in Sec-
tion 4.1;

• Locate the position(s) {ic, jc} of the contact point(s) using the procedure described in
Section 3.2;

• Calculate the convolution between the drop image and the goniometric mask,A = I∗MG;

• Calculate the contact angle using the discrete version of Eq. (25):

θ =
π

2
(1 + λ) + arctan

2A(ic, jc)− (1 + λ)(b+ 1)2

(b+ 1)2 − 2A(ic, jc)
(28)

The method can be easily adapted to measure contact angles on convex surfaces of arbitrary
shape (Chen and Bertola, 2017).

A different approach to calculate the contact angle, which can be useful when edges in the
image are ill-defined or blurred, is to consider all possible directions within a subset of the
image around the contact point, as shown schematically in Figure 10a, and weigh them with
the intensity gradient of the image (Biolè and Bertola, 2015a). Since the intensity gradient is
maximum in correspondence of edges, the weighted average of directions corresponds to the
tangent to the drop edge in the contact point hence enables finding the most likely value of the
contact angle.

Setting the origin of the coordinate system in the contact point, directions are given by
m(x, y) = arctan(y/x), therefore if IS is a subset of the image around the contact point
the weighted average angle is simply θ = ||∇IS(x, y)|| ∗ m(x, y)/||∇IS(x, y)||, where ∗ is
the convolution operator. Although the concept is straightforward when the image intensity
I(x, y) and m(x, y) are continuous functions, some further analysis is necessary if the image
is a discrete matrix of pixels, Ii,j . In this case, the discrete matrix of directions can be written as
mi,j = arctan[(i − ic)/(j − jc)], where ic and jc are, respectively, the row and column of the
central element of the matrix mi,j .

m5×5
i,j =


45 63.43 −90 −63.43 −45

26.56 45 −90 −45 −26.56
0 0 NaN 0 0

−26.56 −45 90 45 26.56
−45 −63.43 90 63.43 45

 (29)
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Fig. 3 Pre-processing and interface detection results for three frames of the stack (rows from top to bottom: (1) pre-processed image I , (2) image
gradient magnitude ∥∇ I∥, (3) fluid–fluid interface; columns from left to right: (1) t = 5 ms, (2) t = 20 ms, (3) t = 50 ms; Gaussian scale parameter
h = 2)

needed (i.e. near the edges), while it is zero elsewhere; there-305

fore, one can conclude the gradient magnitude represents a306

good candidate for the role of weighing function. In fact, if307

one imagines to place the fluid–fluid interface profile over308

the gradient magnitude surface and then looks at a specific309

point of the curve interpreting ∥∇ I∥ as a probabilistic vari-310

able, the point is likely to move along the profile, although311

there exist a non-zero probability that it may fall outside; the312

same applies to the interface curvature.313

Taking as a reference the geometrical construction of the314

ADSA method [36,39] (see Fig. 4), it is trivial to demonstrate315

that the well-known curvature formula of Eq. 9 is valid on 316

any arc of the interface f (x, y) = 0 that can be defined as a 317

plane curve (i.e., y = y(x)). 318

dx

ds
= cos φ(x)

dy

ds
= sin φ(x) y′ =

dy

dx
= tan φ(x) 319

κ =
1
R

=
dφ

ds
= cos φ(x)

dφ(x)

dx
(9) 320

For example, one might take the arc from the drop apex to 321

the point corresponding to the maximum diameter of the drop 322

(either side of the drop), or from this point till the intercept

123
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FIG. 10: Contact angle measurement using the probabilistic approach: (a) original ill-defined drop image;
(b) most likey tangent lines obtained for three different values of the directional matrix half-size, b =
(z − 1)/2; (c) dependence of the measured contact angle on the directional matrix half-size.

As one can see in the example given in Eq. (29), which shows the explicit values of mi,j for
a 5× 5 matrix, each value (corresponding to a particular angular direction, except the central el-
ement) appears a certain number of times, ni,j ; if z denotes the size of mi,j , then 2 ≤ ni,j ≤ z.
Thus, each element of mi,j must be divided by its probability density, Pi,j = ni,j/N , where
N = z2− 1 is the number of angular directions in mi,j (i.e., the number of elements of mi,j ex-
cluding the central one). This is equivalent to multiply each element ofmi,j by the corresponding
element of a normalized weighing matrix defined as:

Wi,j =

1
Pi,j
− ( 1

Pi,j
)min

( 1
Pi,j

)max − ( 1
Pi,j

)min
=

N
ni,j
− N

z

N
2 −

N
z

=

z
ni,j
− 1

z
2 − 1

(30)

Finally, the most likely value of the contact angle is given by:

θ =

[
||∇Ii,j || ∗ (Wi,j ·mi,j)

||∇Ii,j || ∗Wi,j

]
i=ic,j=jc

(31)

where ic and jc are, respectively, the row and column of the pixel corresponding to the contact
point. An example of contact angle measurement using this method, and of the measurement
sensitivity to the directional mask size, is shown in Figure 10.

5. CASE STUDY

This section provides an example of application of the image processing protocol outlined above
to the analysis of high-speed movies of impacting drops. In particular, the impact of water drops
onto a hydrophobic substrate (a glass slide coated with Parafilm-M, with equilibrium contact
angle of ≈ 90◦) was recorded using a Vision Research Phantom V9.17 high-speed camera, at
a rate of 5,000 frames per second, with exposure time of 190µs and a resolution of 576 × 576
pixels. Drops were released from a blunt hypodermic needle suspended above the substrate at
the distances of 20 mm, 60 mm, 100 mm, and 140 mm, corresponding to impact velocities,
U0 =

√
2g(h−D0) (where h is the falling height and D0 the equilibrium drop diameter) equal

to 0.58 m/s, 1.06 m/s, 1.38 m/s, and 1.64 m/s. Accordingly, the impact Weber numbers were
We = 14, We = 47, We = 80, and We = 113. The equilibrium drop diameter was calculated
as D0 = 3

√
6m/πρ = 3.06 ± 0.05 mm, where the drop mass, m, was determined using a

precision scale (Mettler PM100).
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(a)$
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(i)$ (ii)$ (iii)$

FIG. 11: Images of water drops at maximum spreading after impact on a glass slide coated with Parafilm-
M, for impact Weber numbers We = 14 (a), We = 47 (b), We = 80 (c), We = 113 (d), at different stages
of the image processing protocol: (i) raw image; (ii) image after background subtraction, equalization, and
Gaussian smoothing; (iii) binary image defining the contour line.
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FIG. 12: Contact line length (a) and velocity (b) measured as a function of time at different impact Weber
numbers.

In the case of the contact line perimeter measurement, the camera and the lens were aligned
vertically under the drop target, looking through the semi-transparent substrate, while in the case
of contact angle measurements the optical axis was aligned parallel to the substrate to obtain side
views of the drops. Further details about the experimental setup and procedure can be found in
Biolè and Bertola (2015c) and Bertola and Wang (2015).

Figure 11 displays images of impacting drops at maximum spreading, for different impact
Weber numbers, at different stages of image processing. In particular, Figures 11(i),(a-d) dis-
play the raw images as obtained from the camera, Figures 11(ii),(a-d) display the same images
image after background subtraction, histogram equalization, and Gaussian smoothing, and Fig-
ures 11(iii),(a-d) display the binary output defining the contour line. The contact line length, L,
calculated according to Eq. (24), and the average contact line velocity calculated as:

Ui+1 =
Li+1 − Li
ti+1 − ti

(32)

where i is the discrete time, are shown in Figures 12a and 12b, respectively.
Dynamic apparent contact angle measurements were obtained from side view images of im-

pacting drops, a selection of which is displayed in Figure 13 for the four impact Weber numbers
considered. After making contact with the surface, the drop starts to spread and deforms ini-
tially taking the shape a pancake, which rapidly evolves into a thin liquid disk (the lamella)
surrounded by a toroidal rim. After maximum spreading, the drop recoils and eventually attains
the equilibrium spherical cap shape after several seconds.

The apparent dynamic contact angles are plotted as a function of time in Figure 14a, for the
four impact Weber numbers considered. Initially, the apparent contact angle rapidly decreases
from the initial value of 180◦ at the moment of impact and goes through a minimum in less
than 1 ms, then it grows to reach approximately the value of the advancing contact angle until
maximum spreading. During the receding phase, contact angles exhibit amplitude oscillations
that exponentially decay until they attain the equilibrium value (approximately 95◦) after several
seconds.

In general, dynamic contact angle time series are affected by an algorithmic noise signifi-
cantly higher than length measurements, therefore it may be necessary to smooth data using a
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FIG. 13: Side view images of water drops impacting on a glass slide coated with Parafilm-M, for impact
Weber numbers We = 14 (a), We = 47 (b), We = 80 (c), We = 113 (d): raw images (odd rows);
processed images (even rows).
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FIG. 14: Apparent dynamic contact angles measured as a function of time at different impact Weber num-
bers. (a) Original measurements; (b) smoothed data by moving average over 1 ms.
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moving average filter, as shown in Figure 14b. This operation, however, reduces the time res-
olution, and consequently the accuracy of measurements during the spreading stage, where the
largest gradients are observed.

6. CONCLUSIONS

A systematic approach to obtain comprehensive quantitative measurements from digital images
of impacting drops is discussed and recast into formal mathematical terms. The procedure con-
sists of: (i) an initial pre-processing, which includes image enhacement and background removal;
(ii) detection of singular features, i.e. edges and corners; (iii) measurement of contour lengths;
(iv) measurement of contact angles.

The use of a standard, automated procedure instead of customized image processing or, even
worse, manual measurements with commercial software, which heavily depend on the operator’s
skills, on one hand improves the quality and consistency of measurements, and on the other hand
enables more reliable comparisons among different experimental data sets.

Whilst the proposed image processing procedure maximizes the quality of data that can be
extracted from a given image, the quality of the raw image determined by the optical setup
remains the most important factor to obtain accurate quantitative measurements.
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