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Abstract 11

This paper presents a highly efficient and accurate approach to determine the bounds on the first 12

excursion probability of a linear structure that is subjected to an imprecise stochastic load. Traditionally, 13

determining these bounds involves solving a double loop problem, where the aleatory uncertainty has 14

to be fully propagated for each realization of the epistemic uncertainty or vice versa. When considering 15

realistic structures such as buildings, whose numerical models often contain thousands of degrees of 16

freedom, such approach becomes quickly computationally intractable. In this paper, we introduce an 17

approach to decouple this propagation by applying operator norm theory. In practice, the method 18

determines those epistemic parameter values that yield the bounds on the probability of failure, given 19

the epistemic uncertainty. The probability of failure, conditional on those epistemic parameters, is 20

then computed using the recently introduced framework of Directional Importance Sampling. Two case 21

studies involving a modulated Clough-Penzien spectrum are included to illustrate the efficiency and 22

exactness of the proposed approach. 23

Keywords: Stochastic loading, First excursion probability, Linear structure, imprecise probabilities, 24

interval analysis 25

Highlights: 26

• Effects of imprecision on stochastic loads are considered. 27

• Reliability of linear dynamical structures is quantified. 28

• Propagation of epistemic and aleatory uncertainty is decoupled. 29

• Epistemic uncertainty is propagated using operator norm theorem. 30



• Probabilities are computed by means of directional importance sampling. 31

1. Introduction 32

Dynamic loading acting on structural systems can be seldom described precisely. A classical means 33

for characterizing uncertainty in loading and capturing time correlations is resorting to probability 34

theory and in particular, to stochastic processes, see, e.g. [1, 2]. The framework associated with 35

stochastic processes provides an excellent means for capturing inherent (aleatory) uncertainty. However, 36

issues such as lack of knowledge, conflicting sources of information, vagueness and other epistemic 37

sources of uncertainty may hinder the application of stochastic processes. In such context, imprecise 38

probability (see, e.g. [3]) may offer an appropriate framework for handling both types of uncertainties. 39

While imprecise probability is a versatile tool, it also poses a major challenge from a numerical viewpoint 40

when performing uncertainty quantification, as both sources of uncertainty (aleatory and epistemic) 41

must be propagated to the response of the structural system. In view of such issue, this contribution 42

proposes an approach for dealing with both sources of uncertainties by means of a decoupling strategy, 43

which allows a drastic reduction on numerical efforts when compared to existing alternatives in the 44

literature (see, e.g. [3]). Decoupling is investigated herein for the specific case of the estimation of 45

interval first excursion probability, that quantifies the level of safety of a structure under dynamic 46

loading. 47

Imprecise probabilistic analysis as described above [4] offers a variety of tools to deal with such 48

“deep” (i.e., a combination of aleatory and epistemic) uncertainty. Following for instance a p-box 49

framework, the epistemically uncertain hyper-parameters of the random parameter distributions are 50

modeled as being interval or fuzzy valued [4], and propagated as such through the numerical simulation 51

model under consideration. It is important to note that such propagation is conducted under the 52

condition that the effects of aleatory and epistemic uncertainty are kept separated. This implies that 53

both sources of uncertainty are usually propagated by means of the so-called double loop approaches, 54

where the outer loop takes care of epistemic uncertainty while the inner loop deals with aleatory 55

uncertainty [5]. Double loop approaches such as e.g., applied in [6] are generally highly accurate, but 56

the corresponding computational cost becomes quickly intractable, especially when industrially sized 57

models are considered. Therefore, a considerable amount of research is focused on finding more efficient 58

techniques for the propagation of deep uncertainty through numerical simulation models. In this context, 59

several authors proposed approaches that rely on the approximation of the interval valued parameters 60
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via series expansion methods (see e.g., [7], [8]) or orthogonal polynomial expansion schemes (see e.g., 61

[9]), effectively enabling propagation without double loop approaches. However, in case the epistemic 62

uncertainty is comparatively large, perturbation approaches are known to be inaccurate [10], a problem 63

that is alleviated by resorting to Chebyshev polynomial based schemes such as presented in [11]. Also 64

efficient surrogate modeling schemes for imprecise probabilistic problems have been proposed using 65

sparse polynomial chaos expansion representations of the model (see e.g., [12, 13]), interval predictor 66

models [14, 15] or variants of the Sobol-Hoeffding decomposition (also known as HDMR representation) 67

of the relation between the epistemic parameters and the probability of failure [16, 17], providing an 68

efficient and accurate approximation of the problem. Yet another type of methods for propagating 69

mixed uncertainty rely on extensions of classical methods for structural reliability, see e.g. [18, 19]. 70

In the context of imprecise probabilistic stochastic processes, such as the ones described in the first 71

paragraph, only very recent initiatives have been undertaken. Gao et al. [20] introduced imprecise 72

random fields where the mean and variance of the field are interval valued. Dannert et al. [21] and 73

Faes and Moens [22] introduced random fields where also the correlation length of the auto-correlation 74

function can be interval valued. Alternative approaches to deal with sources of insufficient data in 75

the description of quantities that are subjected to uncertainty with spatial correlation include methods 76

based on (Bayesian) compressive sampling [23, 24] or Kriging regression models [25]. 77

This paper deals with bounding the first excursion probability of linear systems subjected to an 78

imprecise stochastic excitation. By fully exploiting the linearity in this problem, the method that is 79

introduced in this paper efficiently and effectively computes these bounds by applying operator norm 80

theory. Specifically, operator norms are applied to find those epistemic parameters that yield a bound 81

on the probability of failure a priori, requiring only a single deterministic model evaluation together 82

with the solution of two optimization problems. Then, based on the identified values for the epistemic 83

uncertain parameters, the bounds on the first excursion probability can be obtained by propagating two 84

stochastic processes through the numerical model, which is sped up by applying Directional Importance 85

Sampling [26]. In this paper, the application of the method is examined on the computation of the first 86

excursion probability of a structure that is subjected to a stochastic ground acceleration, which in its 87

turn is modeled as a modulated Clough-Penzien spectrum (see e.g. [1, 2]). A first case study illustrates 88

the method on a single-degree-of-freedom (SDOF) oscillator. This study shows that the method is more 89

efficient than double loop approaches where quasi Monte Carlo or the vertex approach are used for the 90

propagation of the epistemic uncertainty. Furthermore, it is shown that the proposed approach is also 91
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far more accurate than both approaches. The second case study concerns a finite element model of a 92

6-story building subjected to a modulated Clough-Penzien spectrum. Also in this case, the accuracy 93

and efficiency of the method is illustrated. This paper is structured as follows. Section 2 provides a 94

rigorous formulation of the problem under consideration. Section 3 presents directional Importance 95

Sampling as an extension to the directional sampling method. Section 4 discusses the computation of 96

the reliability of structures subjected to imprecise stochastic loading, both via a traditional double-loop 97

approach, as well as via the presented decoupling approach. Section 5 and 6 provide the illustrative 98

case studies. Finally, Section 7 lists the conclusions of this manuscript. 99

2. Formulation of the Problem 100

This section describes the class of problems considered in this contribution, namely calculation of 101

the bounds of first excursion probabilities of linear systems subjected to imprecise stochastic ground 102

acceleration loads. The presented material starts with a formulation considering purely aleatory uncer- 103

tainty and then, the effects of imprecision are included. Such flow of ideas is selected as the problem of 104

calculating first excursion probabilities in the presence of aleatory uncertainty is already quite involved; 105

thus the consideration of imprecision makes this problem even more challenging. 106

2.1. Dynamic Analysis 107

Consider a structural system modeled as linear, elastic and with classical damping. The model 108

possesses nD degrees-of-freedom, its structural matrices are deterministic, and it is subjected to a 109

stochastic loading p (t) . The equation of motion is [27]: 110

Mẍ(t, z) +Cẋ (t, z) +Kx (t, z) = ρp (t, z) , t ∈ [0, T ], x(0, z) = ẋ(t, z) = 0 (1)

where x, ẋ and ẍ are vectors that represent the displacement, velocity and acceleration, respectively, 111

each of dimension nD × 1; M , C, and K are the mass, damping and stiffness matrices, respectively, 112

each of dimension nD × nD. Vector ρ couples the stochastic loading p (t) with the corresponding 113

degrees-of-freedom of the structure and its dimension is nD × 1. 114

In case where the effects of ground accelerations on a structure are considered, for instance to study 115

the loads induced by earthquakes, the inherent uncertainty associated with this ground acceleration can 116

be described in terms of a stochastic Gaussian processes P (t) [28, 29, 30, 31]. Hereto, let p(t) in Eq. (1) 117

denote a Gaussian ground acceleration acting over a structural system that is dependent on time t. 118

4



Without loss of generality, it is assumed in the following that the mean value of this process is zero. In 119

a first approximation, P (t) is regarded as a wide-sense stationary process which can be characterized 120

through its power spectral density S(ω), where ω denotes circular frequency. The Wiener-Khintchine 121

theorem (see, e.g. [32]) allows for the calculation of the autocorrelation function of a stochastic process 122

from its power spectrum and vice versa based on following Fourier transforms: 123

S(ω) =
1

2π

∫ +∞

−∞
R(τ)e−iωτdτ (2)

R(τ) =

∫ +∞

−∞
S(ω)eiωτdω (3)

with R(τ) the autocorrelation function with lag τ . 124

The above discussion assumes that the stochastic process can be modeled as a wide-sense stationary 125

stochastic process. It is clear that this is a simplifying assumption, as loading may in realistic conditions 126

exhibit a non stationary behavior. A possible means for including such effect consists of modulating the 127

stationary stochastic process by means of a deterministic function of time m(t) (see, e.g. [33]). Thus, 128

the autocorrelation function of the stochastic process Rm becomes [34]: 129

Rm(t1, t2) = m (t1)m (t2)R
s (t2 − t1) (4)

where t1 and t2 are two time instants and Rs is the stationary autocorrelation function of the stochastic 130

process, before being modulated. 131

Samples of the stochastic process as described above can be generated applying the Karhunen-Loève 132

(KL) expansion (see, e.g. [35, 36]). For this purpose, assume that the loading possesses a duration T and 133

that time is discretized such that tk = (k−1)∆t, k = 1, . . . , nT , where ∆t is the time step discretization 134

and nT the number of discrete time steps. Then, the discrete covariance matrix Γ of dimension nT ×nT 135

associated with the stochastic loading model becomes: 136

Γ =


m (t1)m (t1)R

s (0) m (t1)m (t2)R
s (t1 − t2) . . . m (t1)m (tnT )Rs (t1 − tnT )

m (t2)m (t1)R
s (t2 − t1) m (t2)m (t2)R

s (0) . . . m (t2)m (tnT )Rs (t2 − tnT )
...

...
. . .

...

m (tnT )m (t1)R
s (tnT − t1) m (tnT )m (t2)R

s (tnT − t2) . . . m (tnT )m (tnT )Rs (0)


Samples of the stochastic ground acceleration can be generated according to the well-known Karhunen- 137
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Loève expansion: 138

p(z) = ΨΛ1/2z (5)

where p denotes a nT × 1 vector containing the sample of the loading; z is a realization of the random 139

variable vector Z which follows a nKL-dimensional standard Gaussian distribution; nKL is the number 140

of terms retained in the KL expansion; Ψ is a nT ×nKL matrix whose columns contain the eigenvectors 141

associated with the largest nKL eigenvalues of the discrete covariance matrix Γ; and Λ is a nKL × nKL 142

matrix whose diagonal contains the largest nKL eigenvalues of Γ. A criterion for selecting the number 143

of terms to be retained in the KL expansion is to find the minimum value of nKL such that
∑nKL

p=1 λp ≥ 144

pv
∑nT

p=1 λp, where pv denotes the fraction of the total variance of the underlying stochastic process that 145

is retained by the approximate representation and λp is the p-th eigenvalue of Γ [37]. For a recent 146

overview of numerical methods to solve the associated Fredholm integral eigenvalue problem, the reader 147

is kindly referred to the overview paper by Betz et al. [38]. 148

In general engineering practice, only a subset of all dynamic responses x of the structure in eq. (1) 149

are of interest for the analysis. These dynamic responses are denoted as ηi(t, z), i = 1, . . . , nη and are 150

calculated applying the convolution integral between the corresponding unit impulse response functions 151

hi(t), i = 1, . . . , nη and the stochastic loading p(t, z): 152

ηi (t, z) =

∫ t

0

hi (t− τ) p (t, z) dτ , i = 1, . . . , nη (6)

Under the assumption that the responses of interest correspond to a linear combination of the response 153

vector, the unit impulse response functions are calculated as: 154

hi(t) =

nD∑
v=1

γTi φvφ
T
v ρ

φTvMφv

1

ωd,v
e−ζvωvt sin(ωd,vt), i = 1, . . . , nη (7)

where φv, v = 1, . . . , nD are the eigenvectors associated with the eigenproblem of the undamped 155

equation of motion; ωv, v = 1, . . . , nD are the natural frequencies of the system; ζv, v = 1, . . . , nD are 156

the corresponding damping ratios; ωd,v = ωv
√

(1− ζ2v ), v = 1, . . . , nD are the damped frequencies; and 157

γi is a constant vector such that ηi = γTi x. It should be noted that the contribution of higher order 158

modes to the unit impulse response function in Eq. (7) is negligible for several cases of practical interest 159

[27]. 160

In view of the excitation model introduced in Eq. (5), the dynamic response of interest evaluated at 161
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time tk is: 162

ηi(tk, z) =
k∑

l1=1

∆tεl1hi(tk − tl1)

(
nKL∑
l2=1

ψl1,l2
√
λl2zl2

)
(8)

= aTi,kz, i = 1, . . . , nη, k = 1, . . . , nT (9)

where ψl1,l2 is the (l1, l2)-th element of matrix Ψ; ai,k is a vector of dimension nKL × 1 such that: 163

ai,k =



∑k
l1=1 ∆tεl1hi(tk − tl1)ψl1,1

√
λ1∑k

l1=1 ∆tεl1hi(tk − tl1)ψl1,2
√
λ2

...∑k
l1=1 ∆tεl1hi(tk − tl1)ψl1,nKL

√
λnKL

 (10)

and εl1 is a coefficient depending on the numerical integration scheme used in the evaluation of the 164

convolution integral. For the case where the trapezoidal integration rule [39] is chosen, εl1 = 1/2 if 165

l1 = 1 or l1 = k; otherwise, εl1 = 1. 166

2.2. Precise reliability analysis 167

Structural systems subjected to a stochastic loading as described above exhibit an uncertain re- 168

sponse. A possible means for quantifying such uncertainty consists of calculating the first excursion 169

probability, which measures the probability that any of the responses of interest ηi(t), i = 1, . . . , nη 170

exceeds a prescribed threshold level bi, i = 1, . . . , nη within the duration T of the stochastic excitation. 171

This failure criterion is cast in terms of the so-called performance function, which is equal to: 172

g (z) = 1− max
i=1,...,nη

(
max

k=1,...,nT

(
|ηi (tk, z)|

bi

) )
(11)

where | · | denotes the absolute value. From this equation, note that the term |ηi (tk, z)|/bi represents the 173

normalized demand, which measures how close the response of interest lies to the allowable threshold in 174

a dimensionless manner [40]. Thus, whenever the maximum normalized demand (retrieved by max(·) 175

in eq. (11)) exceeds unity, failure takes place. The above formulation of the performance function 176

corresponds to a classical series event (see, e.g. [41]). 177
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As such, the first excursion probability is written in terms of the following integral [32, 41, 42]: 178

Pf =

∫
z∈RnKL

IF (z) fZ (z) dz (12)

where fZ (·) is standard Gaussian probability density function in nKL dimensions; and IF (·), is an 179

indicator function whose value is equal to one in case g(z) < 0 and zero otherwise. It is noted that 180

the probability integral in Eq. (12) usually comprises a high number of dimensions, as nKL may be in 181

the order of hundreds or thousands, while the indicator function is known point-wise only for specific 182

realizations z of Z. Therefore, such an integral cannot be solved analytically; however, lower/upper 183

bounds [43] or approximate solutions [44] exist in certain cases. For more general cases, simulation 184

methods appear to be the only feasible means for evaluating the failure probability, see e.g. [45]. 185

2.3. Effects of Imprecision on Stochastic Loading and First Excursion Probability 186

The characterization of the stochastic process in terms of its power spectral density or autocorrelation 187

function and a modulating function as described above usually relies on a prescribed model, which in 188

its turn depends on a number of parameters, grouped in a vector θ. Without loss of generality, in this 189

paper we consider the modulated Clough-Penzien (CP) autocorrelation function (see also Appendix A). 190

The parameters that determine the auto-correlation function Rm(t1, t2) in this case reflect some specific 191

characteristics of the process, such as dominant frequencies, amplitude, etc. Naturally, when setting the 192

model, there might be considerable uncertainty on the precise values of these parameters [46] arising due 193

to issues such as lack of knowledge, vagueness, conflicting information sources, etc., especially given the 194

fact that these parameters may be highly sensitive to specific site conditions. For instance, considering 195

Table A.7, a selection of the appropriate parameters has to be made based on the classification of the 196

soil being Firm, Medium or Soft. As an illustration of the effect of this imprecision, figure 1 shows 197

the power spectrum corresponding to these three classifications of the soil and a spectral intensity 198

S0 = 0.05 m2/s3. The figure furthermore shows a realization of the stochastic process corresponding to 199

each of these spectra, with parameters of the modulation equal to c1 = 0.14, c2 = 0.16 (see details in 200

Appendix A), where z is taken to be the same for the three processes. As is clear from this figure, the 201

classification of the soil has a large impact on the representation of the base excitation that is imposed 202

on the structure under consideration. 203

In such scenario, non-traditional models for uncertainty quantification appear as a natural choice 204

for characterizing the parameters θ of the stochastic loading [4, 10], as they provide the analyst with 205
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Figure 1: Clough-Penzien spectra corresponding to a soft, medium or firm soil as well as one realisation from the stochastic
process corresponding to these spectra.

more objective and robust tools to asses the bounds on the estimated reliability of the structure, based 206

on epistemic uncertainty that is present on the parameters of the stochastic process definition. In 207

this paper, the uncertainty of each of these parameters is characterized as an interval vector θI , as 208

intervals require only very few data points to make an objective worst-case estimate of the bounds on 209

the reliability [10]. Furthermore, recent developments allow for estimating robust interval bounds given 210

only limited data (see e.g., [47, 48]). In the following intervals are denoted with apex I, e.g. θI denotes the 211

interval associated with θ. In the example of the modulated CP auto-correlation function, θI is defined 212

as θI = [ωIg , ω
I
f , ζ

I
g , ζ

I
f , S

I
0 , c

I
1, c

I
2], which can geometrically be represented as a 7-dimensional hyper- 213

rectangular input space (please see Appendix A for the physical interpretation of these parameters). 214

The fact that the input parameters of the stochastic loading model are described by means of 215

intervals has important implications on the evaluation of the structural reliability of the model under 216

consideration. In particular, both the loading and the responses of interest of the structural system 217

become interval stochastic processes, as described in [22]. This implies in turn that the performance 218

function becomes interval valued, which causes the failure probability to become interval valued as well. 219

This implies that both the lower bound P f and upper bound P f of the interval associated the failure 220
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probability pIF must be determined, which leads to the following two optimization problems: 221

P f = minθ∈θI (Pf (θ)) = minθ∈θI

(∫
z∈RnKL

IF (z,θ) fZ (z)dz

)
(13)

222

P f = maxθ∈θI (Pf (θ)) = maxθ∈θI

(∫
z∈RnKL

IF (z,θ) fZ (z)dz

)
(14)

The calculation of the bounds associated with the failure probability can be extremely demanding from 223

a numerical viewpoint. On one hand, the calculation of the failure probability for a fixed value of the 224

parameters associated with the stochastic process is quite costly, even when highly efficient methods 225

such as Directional Importance Sampling (as described in the forthcoming section) are applied. On the 226

other hand, solving the associated optimization problems is far from trivial, as it constitutes a double 227

loop problem, where the inner loop comprises probability calculation, while the outer loop explores 228

the possible values that the parameters θ may assume. As such, a full propagation of the stochastic 229

process towards the first excursion probability has to be performed. Hence, apart from considering 230

near-trivial simulation models, such computation is intractable without resorting to surrogate modelling 231

strategies [49]. 232

Such task is carried out as follows in this work: Section 3 addresses the issue of the failure probability 233

whenever the stochastic loading process is characterized precisely (that is, for a crisp value of θ), while 234

in Section 4, the effect of imprecision on the stochastic loading model is explicitly included in the 235

analysis and the bounds on the interval failure probability are calculated efficiently and accurately with 236

the help of the operator norm theorem. 237

3. Directional importance sampling 238

3.1. Context 239

This section presents Directional Importance Sampling (DIS), which is a simulation approach that 240

allows calculating first excursion probabilities of linear structural systems subject to Gaussian loading 241

[26]. In the following, it is assumed that the parameters θ associated with the stochastic loading model 242

can be regarded as deterministic. In this context, note that the estimation of such first excursion 243

probabilities is not trivial (even when precise probabilistic models are considered) and hence, DIS plays 244

a fundamental role for reliability assessment within the proposed framework. 245
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3.2. Basic formulation 246

Directional sampling (see e.g., [50], [51]) consists of exploring the input space associated with the 247

stochastic loading by random samples of a unit direction vector amplified by a length factor. This 248

corresponds to a polar representation, as discussed in detail in [52]. Thus, the realization z is represented 249

as: 250

z = ru (15)

where u is a unit vector pointing towards z, that is: 251

u =
z

‖z‖2
(16)

where ‖·‖2 denotes the Euclidean norm; and r is the Euclidean norm of z, that is r = ‖z‖2. Thus, the 252

failure probability integral in Eq. (12) is expressed as: 253

Pf =

∫
r

∫
u

IF (ru) fR (r) fU (u)dudr (17)

where fU (u) is the uniform probability distribution over a hypersphere and fR(r) is the probability 254

density function associated with r. It is readily seen that applying the formula for change of variables for 255

probability distributions [53], fR(r) = 2rfχ2
nT

(r2), where fχ2
nT

(r2) is the Chi-squared probability density 256

function of nT degrees-of-freedom (recall that r2 follows a Chi-squared distribution of nT degrees-of- 257

freedom as it is the sum of the squares of nT standard Gaussian variables). 258

Direct estimation by means of simulation of Eq. (17) may not be efficient: as failure probabilities are 259

usually low (e.g. 10−3 or less), the associated estimator may exhibit a large variability. Such issue can 260

be alleviated by introducing a suitable importance sampling density function fU ,IS (u), which leads to 261

the following expression for the failure probability integral: 262

Pf =

∫
r

∫
u

IF (ru) fR (r)
fU (u)

fU ,IS (u)
fU ,IS (u)dudr (18)

The above expression corresponds to a Directional Importance Sampling (DIS) strategy for calculating 263

the failure probability and it can be efficiently estimated by means of random sampling given that the 264

importance sampling density function fU ,IS (u) is selected appropriately. This issue is discussed in the 265

following. 266
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3.2.1. Failure domain and its geometry 267

As discussed in [54], the safe and failure domains associated with the first excursion probability of 268

a linear structure subject to Gaussian excitation are separated by a collection of hyperplanes. Such 269

information provides valuable information for selecting fU ,IS (u). 270

Consider the so-called positive elementary failure domain Fi,k
+, which is the set that collects all real- 271

izations z such that the response ηi exceeds its corresponding threshold bi at the time instant tk. In 272

view of linearity of the response of interest with respect to z as shown in Eq. (8), it is noted that the 273

set Fi,k
+ is bounded by a hyperplane, that is: 274

Fi,k
+ =

{
z ∈ RnKL : aTi,kz ≥ bi

}
(19)

In a similar manner, the negative elementary failure domain Fi,k
−, in which the response of interest ηi 275

exceeds the threshold −bi at the time instant tk, is also bounded by a hyperplane: 276

Fi,k
− =

{
z ∈ RnKL : aTi,kz ≤ −bi

}
(20)

The union of positive and negative elementary failure domains Fi,k
+ and Fi,k

−, respectively, forms the 277

elementary failure domain Fi,k. In addition, the overall failure event F is formed by the union of 278

elementary failure events (see, e.g. [41]). 279

F =

nη⋃
i=1

nT⋃
k=1

Fi,k (21)

Note that the failure event F contains all possible random excitations that cause a first excursion. 280

These elementary failure domains are represented schematically in Figure 2. 281

As the elementary failure events Fi,k are bounded by hyperplanes, their individual probability of 282

occurrence is completely characterized by the reliability indexes βi,k, i = 1, . . . , nη, k = 1, . . . , nT . 283

These indexes are equal to [54, 55]: 284

βi,k =
bi
‖ai,k‖

(22)

Figure 2 provides a schematic representation of the reliability indexes. From this figure, it is easy to see 285

that these indexes are actually equal to the Euclidean norm of the design points associated with each 286

12



z1

z2
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β1,1

β1,1

β1,2

β1,2

F+
1,1

F−
1,1

F+
1,2

F−
1,2

Figure 2: Failure domain for the case where nKL = 2.

elementary failure domain (please see [54, 55] for details on the definition of the design point). Hence, 287

the probability of occurrence of each of the elementary failure events is given by: 288

P [Fi,k] = 2Φ (−βi,k) (23)

where P [·] denotes probability and Φ (·) represents the standard normal cumulative density function. 289

The summation P̂f of the probability of occurrence of each elementary failure event: 290

P̂f = 2

nη∑
i=1

nT∑
k=1

Φ (−βi,k) (24)

provides an upper bound for the sought first excursion probability [41, 55], that is Pf ≤ P̂f . 291

As the elementary failure domains are bounded by hyperplanes, it is possible to deduce some analytic 292

expressions associated with them. For example, the probability density associated with a direction u 293

in the standard normal space given that the elementary failure event Fi,k occurs, which is denoted as 294

fU (u|Fi,k), can be calculated in closed form by virtue of Bayes’ theorem, yielding [26, 52]: 295

fU (u|Fi,k) =
fU (u)P [Fi,k|u]

P [Fi,k]
(25)

The term P [Fi,k|u] expresses the probability of occurrence of the elementary failure domain Fi,k con- 296

ditioned on the unit direction u. It can be readily demonstrated that such probability can be solved in 297
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closed form (see detailed deduction in [26]), leading to: 298

fU (u|Fi,k) =
fU (u)

(
1− FX2

nT

(
Ci,k(u)2

))
P [Fi,k]

(26)

where Fχ2
nT

(·) corresponds to the Chi-squared cumulative density function with nT degrees-of-freedom 299

and Ci,k(u) corresponds to the Euclidean norm of the vector lying between the origin of the standard 300

normal space and the intersection of the boundary of Fi,k with the ray along the direction u. In view 301

of linearity of the response, it is straightforward to demonstrate that Ci,k(u) is equal to [26]: 302

Ci,k(u) =
bi

|ηi(tk,u)|
(27)

As fU (u|Fi,k) is known in closed form, it provides valuable information for setting an importance 303

sampling density function fU ,IS (u). In fact, the latter density function is selected as a weighted 304

summation of the probability density function associated with u conditioned on the different elementary 305

failure domains [55], that is: 306

fU ,IS (u) =

nη∑
i=1

nT∑
k=1

wi,kfu (u|Fi,k) (28)

where wi,k is a weight associated with the elementary failure domain Fi,k, which is selected as [56]: 307

wi,k =
P [Fi,k]∑nη

l=1

∑nT
m=1 P [Fl,m]

(29)

Taking into account all previous results, the importance sampling density function fU ,IS (u) reduces 308

to: 309

fU ,IS (u) =
fU (u)

P̂f

nη∑
i=1

nT∑
k=1

(
1− Fχ2

nT

(
Ci,k(u)2

))
(30)

The main advantage of the above importance sampling density function is that it ensures that samples 310

of the direction vector u which are highly relevant for the failure probability calculation are drawn 311

frequently within the context of simulation. 312
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3.2.2. Estimator of first excursion probability 313

The importance sampling density function proposed in Eq. (30) applied over Eq. (18) leads to the 314

following estimator for the first excursion probability: 315

P̃DIS
f ≈ P̂F

N

N∑
j=1

1− Fχ2
nT

((
Cmin

(
u(j)

))2)
D (u(j))

(31)

where u(j) are N independent, identically distributed samples that follow fU ,IS (u) and where: 316

Cmin

(
u(j)

)
= min

(
Ci,k

(
u(j)

))
(32)

with i = 1, . . . , nη and k = 1, . . . , nT , and: 317

D
(
u(j)

)
=

nη∑
i=1

nT∑
k=1

(
1− Fχ2

nT

(
Ci,k
(
u(j)

)2))
(33)

Samples of u distributed according to fU ,IS (u) can be generated using the approach described in 318

[26, 57]. This approach comprises the following basic steps: 319

• Generate a sample z that follows a standard Gaussian distribution in nT dimensions. 320

• Select an elementary failure domain Fi?,k? with probability proportional to its weight wi?,k? . 321

• Generate a sample z? which follows a standard Gaussian distribution conditioned on the failure 322

event Fi?,k? . Such sample is generated by manipulating the projection of z onto Fi?,k? [55]. 323

• The sought sample of the direction is chosen as the unit vector pointing towards z?, that is 324

u = z?/||z?||22. 325

For a detailed description of the approach for generating a sample of u distributed according to fU ,IS (u), 326

it is referred to [26, 57]. 327

Numerical experience as reported in [26] suggests that the probability estimator in eq. (31) is highly 328

efficient, as it allows estimating small failure probabilities (10−3 or less) with high accuracy (that is, 329

coefficient of variation smaller than 10%) and high efficiency (that is, a few hundred samples). 330
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4. Reliability of structures subjected to imprecise stochastic loading 331

This section focuses on the calculation of the failure probability for the case where the effects of 332

imprecision are included in the description of the stochastic loading process by the interval vector θI . 333

A naive approach would involve solving Eq. (13) and (14) directly following a double-loop approach. 334

However, since we consider linear structures, the double loop problem described by Eq. (13) and (14) 335

can be decoupled by determining those parameter values in θI that yield P f and P f a priori using 336

operator norm theory. 337

4.1. General framework 338

The decoupling of the double loop is based on the operator norm theorem, which states that for 339

any continuous map A : RnKL 7→ RnT it holds that there exists a real number c and arbitrary vector 340

v ∈ RnKL such that: 341

||Av||p(1) ≤ |c| · ||v||p(2) (34)

where ||•||p denotes a norm on the vector spaces RnKL and RnT and p(i) ≥ 1 constructs a particular Lp 342

norm according to: 343

||v||p =

(
nKL∑
i=1

|vi|p
)1/p

(35)

Note that the norms on the vector spaces on both sides of the equation are not necessarily equal. 344

Physically speaking, Eq.(34) states that the length of the vector v can maximally be increased by a 345

factor c as a result of applying the linear mapping described by A. The operator norm ||A||p(1),p(2) of the 346

linear map A describes how much A lengthens vectors v ∈ RnKL in the maximum case, and is defined 347

as: 348

||A||p(1),p(2) = inf
{
c ≥ 0 : ||Av||p(1) ≤ |c| · ||v||p(2) ∀v ∈ RnKL

}
(36)

The operator norm on A can equivalently be defined as: 349

||A||p(1),p(2) = sup

{ ||Av||p(1)
||v||p(2)

: v ∈ RnKL with v 6= 0

}
(37)

Note that the definition of the vector spaces as RnKL and RnT is only made to highlight the link 350

with the previous section. In fact, this theorem holds for all normed spaces on R or C, as long as the 351

map A is continuous. 352

In the context of determining the bounds on the probability of failure of a linear structure, subjected 353
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to an imprecise stochastic load, Ai is defined as Ai (θ) = [aTi,1 (θ) ;aTi,2 (θ) ; . . . ;aTi,nT (θ)], i.e., the column 354

stacking of the ai,k vectors for the k = 1, ..., nT time instants (as defined in Eq. (10)). In this case, 355

Eq. (34) can be rewritten as: 356

||Ai (θ) z||p(1) ≤ |ci (θ)| · ||z||p(2) (38)

which is by virtue of Eq. (8) equivalent to: 357

||ηi (t,θ, z)||p(1) ≤ |ci (θ)| · ||z||p(2) (39)

where ηi (t, z) denotes the ith dynamic response as a function of t, and z are the i.i.d. Gaussian variables 358

stemming from the KL expansion in Eq. (5). The computation of the operator norm ||A||p(1),p(2) is in this 359

case related to the choice of the type of Lp norm that is selected on both sides of the equation, which is 360

highly case-dependent. In the specific case of bounding the probability of failure described as the first 361

excursion probability of a linear dynamic system, the analysis is mainly driven by the extreme responses 362

ηi(t,θ, z) within the duration T of the stochastic excitation. As such, the operator norm should be 363

defined such that it describes the maximum amplification of the length of z towards the maximum 364

values in ηi(t,θ, z), as those drive the calculation of the first excursion probability. Therefore, following 365

problem is considered: 366

||ηi (t,θ, z)||∞ ≤ |ci (θ)| · ||z||2 (40)

The choice for an L∞ norm is motivated by the notion that those values in θ that yield the most 367

extreme structural responses are of highest interest, as these extremes in the responses are the ones 368

that predominantly drive the probability of failure. Concerning the right hand side, the L2 norm is 369

selected as it can be loosely defined as the energy content in the random variables. It should be noted 370

that the latter is in fact a constant value (in average), as z is by construction a set of i.i.d. standard 371

normal random variables. As a matter of fact, the selection of the norm on ||z|| does not matter, as the 372

vector in case of a Gaussian stochastic process is always dictated by a standard normal distribution (as 373

presented in the context of this work). In this case, it can be shown that ||A||p(1),p(2) can be computed 374

as [58]: 375

||A||p(1),p(2) = max
l
||Ai,l:(θ)||2 (41)

where the subscript l : denotes taking the lth row of the matrix Ai(θ). As such, ||A||p(1),p(2) is computed 376

as the maximum L2 norm of a row of Ai(θ). Physically speaking, θ is a measure for the best possible 377
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amplification of the energy contained in z to the extreme values of the dynamic response ηi(t,θ, z) 378

under consideration. 379

4.2. Bounds on the probability of failure using operator norm theory 380

To determine the bounds on Pf without resorting to a double loop optimization procedure, the 381

operator norm framework that was explained in the previous section can be applied. Indeed, since the 382

operator norm describes the elongation of z to the largest responses of the system, it can be used to 383

determine those values of θ that provide the largest possible elongation of z by min/maximizing the 384

operator norm with respect to θ. 385

First, consider a structure with a single dynamic response η(t, z) that drives the computation of 386

Pf . In this case, to determine which values in θI yield respectively P f and P f , following optimization 387

problems have to be solved: 388

θ∗ = argmin
θ∈θI

max
l
||Al:(θ)||2 (42)

θ∗ = argmax
θ∈θI

max
l
||Al:(θ)||2 (43)

In case more than one dynamic response ηi(t, z), i = 1, . . . , nη is considered, the optimization problem 389

has to be expanded. Indeed, in this case a matrix Ai is defined for each response of interest, yielding 390

following optimization problems: 391

θ∗ = argmin
θ∈θI

max
i=1,...,nη

max
l
||Ai,l:(θ)||2 (44)

θ∗ = argmax
θ∈θI

max
i=1,...,nη

max
l
||Ai,l:(θ)||2 (45)

In this equation, the maximal values of maxl ||Ai,l:(θ)||2 over all responses ηi(t, z), i = 1, . . . , nη have 392

to be considered jointly. Since usually only a limited number of dynamic responses are considered, the 393

additional computational cost of the inner optimization is trivial. 394

These analyses show that the parameters of the stochastic ground acceleration model that yield the 395

bounds on the first excursion probability of the structure can be determined in two optimization calls. 396

Furthermore, this only requires a single deterministic call to the FE solver, namely to determine the 397

impulse response functions hi that are required to assemble ai,k, as shown in Eq. (10). Therefore, since 398

the interval problem corresponding to Eq. (13) and Eq. (14) can be solved completely a priori, only 2 399
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computations of the probability of failure are required: 400

P f =

∫
z∈RnKL

IF (z,θ∗) fZ (z)dz (46)

to obtain the lower bound and: 401

P f =

∫
z∈RnKL

IF
(
z,θ∗

)
fZ (z)dz (47)

to obtain the upper bound, strongly reducing the computational cost of the determination of the bounds 402

on the first excursion probability of the structure subjected to an imprecise stochastic ground motion 403

acceleration. As such, instead of having to solve 2×nopt×nPf solutions of Eq. (8), only 2× (nopt +nPf ) 404

solutions are required, where nopt denotes the number of function calls performed by the optimization 405

algorithm to solve the ‘outer’ loop, while nPf denotes the number of simulations required for determining 406

the failure probability in the ‘inner’ loop. 407

5. Case study 1: Single-degree-of-freedom oscillator 408

5.1. Case introduction 409

This example comprises a single-degree-of-freedom oscillator with mass m = 1 kg, stiffness k = 225 410

N/m and classical damping d = 5% subject to a stochastic ground acceleration gA (t). The ground 411

acceleration follows a modulated Clough-Penzien (CP) model. A description of this model along with the 412

modulating function considered can be found in Appendix A. Nominal parameters for the modulated 413

Clough-Penzien model are set equal to [ωg, ωf , ζg, ζf , S0, c1, c2] = [6π, 0.6π, 0.6, 0.6, 4× 10−2, 0.14, 0.16]. 414

The total duration of the acceleration is 20 [s] and the time step discretization is ∆t = 0.01 s. The 415

prescribed threshold level is b = 0.1 m. The oscillator is at rest at the beginning of the stochastic 416

excitation. The K-L expansion of the stochastic process is truncated at 99% of the total variance, 417

yielding approximately 1300 terms in the expansion. The exact number of terms in the expansion 418

depends on the actual parameter values in θI , and calculated for each stochastic process propagation 419

run separately based on the variance truncation. Directional importance sampling with a sample size 420

of 500 deterministic model evaluations is used to compute the crisp probability of failure. Using this 421

set of parameters, the probability of failure of the mass-spring system is 0.0053 with a coefficient of 422

variation of 0.0359. 423

To illustrate the performance of the developed approach, a study is performed with wide interval 424
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widths on the parameters in θI , as illustrated in table 1. These bounds are derived from the data in 425

table A.7 and expert knowledge and correspond to a case of nearly non-informative estimates on the 426

parameters. For the soil conditions, parameters spanning the full range between Soft and Firm soil are 427

considered. Due to the interval-valued definition of these parameters, also the probability of failure of 428

the model will become interval valued. Furthermore, since the intervals on the parameters are wide, it 429

is expected that the upper and lower bound on Pf will diverge also significantly. 430

Table 1: Tested values for θI

ωIg ωIf ζIg ζIf SI0 cI1 cI2
π[2.4; 8] π[0.24; 0.8] [0.6; 0.85] [0.6; 0.85] 4× 10−2[0.75; 1.25] [0.12; 0.16] [0.14; 0.18]

5.2. Computation of the bounds on Pf 431

The methods developed in this paper are applied to compute the bounds on Pf . Hereto, the operator 432

norm that represents the magnitude of the amplification of the stochastic base excitation of the SDOF 433

oscillator towards the maximally occurring displacement values is computed as: 434

||A(θ)||p(1)→∞,p(2)=2 = max
l
||Al:(θ)||2 (48)

with A =
[
aT1 ,a

T
2 , . . . ,a

T
nT

]
a matrix collecting the nT vectors ak (see eq. (10)) for each time instant 435

tk of the simulation. The parameter values of θI that yield the bounds on Pf are then determined 436

by solving Eq. (42) and Eq.(43). These optimization problems are solved using a sequential quadratic 437

programming approach. Solving this equation leads to the intervals for the parameters θI,∗ = [θ∗;θ∗] 438

shown in table 3. The probability of failure corresponding to these two sets of hyper-parameters is 439

then computed via Eq. (46) and Eq. (47). As such, only two calculations of the probability of failure 440

are required, and hence, 1000 deterministic model evaluations. As can be noted from table 3, some 441

values degenerate to a crisp number, indicating that both extremes of the maximum amplification of 442

the signal, and hence, the probability of failure depend on the same vertex of θI . Furthermore, it may 443

be noted that the upper bound on Pf depends on a value of ωIg that is located at neither bound. 444

To validate this approach, two additional methods for computing the bounds of Pf of the SDOF 445

oscillator subjected to the imprecise stochastic load are applied: a vertex analysis and a double-loop 446

Quasi Monte Carlo simulation. Both methods are aimed at replacing the ‘outer’ optimization loop in 447

Eq. (13) and Eq. (14) by a computationally more efficient approximation. 448
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The vertex analysis replaces the outer optimization in Eq. (13) and Eq. (14) by assessing all possible 449

combinations of the bounds of the parameters in θI . For each of these combinations, a value for Pf is 450

computed. Hence, 27 = 128 computations of the probability of failure are required and hence, 64000 451

deterministic model evaluations. 452

The Quasi Monte Carlo simulation approach replaces the outer optimization problems by means of 453

a quasi-random sampling scheme under the assumption of a uniform distribution between the bounds 454

in θI . Following these auxilliary uniform distributions, a Sobol sequence with 500 points is generated 455

and Pf is computed for each of these samples. This leads to 500 computations of the probability of 456

failure and hence, 250000 deterministic model evaluations. 457

The results of these three propagation schemes are shown in Table 2. As can be noted, the bounds 458

obtained by the optimization procedure are wider as compared to both the sets of bounds obtained via 459

vertex analysis and Sobol sampling. Both the vertex analysis and Sobol sampling underestimate the 460

upper bound on the probability of failure significantly. Furthermore, the lower bound of Pf as computed 461

by both the optimization procedure and the vertex analysis is lower as compared to the one obtained 462

by the Sobol set analysis. However, P f as computed by the vertex analysis is lower as compared to 463

the result of the Optimization procedure. This is explained by the results in table 3, which shows that 464

the optimization method apparently derives the same value for the lower bound as the corresponding 465

vertex. However, due to numerical precision of the optimizer, both values differ very slightly, and 466

hence, small differences in the resulting failure probability exist, especially since the lower bound is 467

extremely low. Increasing the numerical accuracy of the optimization algorithm that is used to solve 468

Eq. (43) will alleviate this problem. Also from this table, it is clear that the problem is not necessarily 469

monotonic with respect to the parameters of the CP model. Indeed, looking at the values that yield the 470

upper bound, one can see that the value for ωg that gives the highest probability of failure lies inside 471

the interval. Since the vertex approach assumes monotonicity of all parameters with respect to Pf , it 472

is not capable of determining the correct upper bound for the failure probability. The optimization 473

approach introduced in this paper however, does not make assumptions on the monotonicity of Pf with 474

respect to any parameters, and is therefore capable of determining the bounds exactly, at far reduced 475

computational cost as compared to the other two methods. The origin of this non-monotonicity lies 476

in the interplay between the frequency content of the non-stationary stochastic base excitation with 477

resonances inside the structure. Since the optimization method takes this into account (see section 4), 478

it is capable of tackling the non-monotonicity. This point is further clarified in figure 3, which shows the 479
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Clough-Penzien power spectra corresponding to θ∗, obtained by the Operator norm optimization method 480

(O), Vertex sampling (V) and Sobol set propagation (S) together with the damped natural frequency 481

of the SDOF oscillator (ωd). As is clear, the dominant frequency of the CP spectrum corresponding 482

to θ∗ obtained via optimizing the operator norm perfectly matches with the damped eigenfrequency 483

of the oscillator, which causes resonance, and hence, a higher probability of failure. This match with 484

the eigenfrequency of the oscillator is not present in the two other spectra. It should be noted that 485

this method only works when the considered structure is linear due to the inherent coupling with the 486

solution of a dynamic linear system that underlies the derivations in section 4. 487

Figure 3: Clough-Penzien power spectra corresponding to θ∗, obtained by the Operator norm optimization method (O),
Vertex sampling (V) and Sobol set propagation (S).

Table 2: Computed bounds on the failure probability

Vertex analysis Sobol sampling Optimization
Pf [2.77× 10−15; 0.018] [4.7× 10−14; 0.0192] [2.78× 10−15; 0.328]

maxl ||Al:(θ)||2 [0.01186; 0.0272] [0.0123; 0.0279] [0.0118; 0.0286]

Table 3: Identified values for θI,∗. O are the results from the optimization procedure, whereas V denotes the results from
the vertex method. Note that the bounds on the reported intervals are those values that correspond to a bound on Pf .

Method ωIg ωIf ζIg ζIf SI0 cI1 cI2
O π[2.4; 5.84] π[0.8; 0.8] [0.85; 0.6] [0.85; 0.6] 4× 10−2[0.75; 1.25] [0.16; 0.12] [0.18; 0.14]
V π[2.4; 8] π[0.8; 0.8] [0.85; 0.6] [0.85; 0.6] 4× 10−2[0.75; 1.25] [0.16; 0.12] [0.18; 0.14]

A further illustration of the results is given in figure 4. This figure shows the value of Pf plotted 488

against maxl ||Al:(θ)||2 for 500 Sobol samples in between the bounds of θI , combined with the data from 489
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the vertex analysis. It can be noted that a monotonic relationship between these two quantities exists, 490

and furthermore that the bounds on Pf indeed correspond to the bounds on maxl ||Al:(θ)||2. Finally, it 491

can be noted that also a few Sobol samples lie outside the bounds provided by the vertex method (e.g., 492

one around maxl ||Al:(θ)||2 = 0.028. 493

Figure 4: Pf plotted against maxl ||Al:(θ)||2 for 500 Sobol samples in between the bounds of θI , combined with the data
from the vertex analysis

6. Case study 2: six story building model 494

6.1. Case introduction 495

The second example involves the six story reinforced concrete building model depicted in Figure 496

5, which is borrowed from [59]. Each floor plan is of square shape with side length 32 m and story 497

height of 3.6 m. All floor slabs possess a thickness of 20 cm and are supported by a C-shaped shear 498

wall of 20 cm thickness and 16 columns of square cross section with side length 40 cm. The Young’s 499

modulus is set equal to 2.3 × 1010 Pa. It is assumed that the building undergoes small displacements 500

and hence, it is modeled as linear elastic. The behavior of the building is characterized by means of 501

a finite element model that comprises about 9500 shell and beam elements and more than 50 × 103
502

degrees-of-freedom. The building is excited by a stochastic ground acceleration along the y direction. 503

This ground acceleration is generated considering a modulated Clough-Penzien model, with nominal 504

parameters [ωg, ωf , ζg, ζf , S0, c1, c2] = [4π, 0.4π, 0.7, 0.7, 3× 10−4, 0.14, 0.16]. Similarly to example 1, the 505

stochastic process is truncated at 99 % of the total variance, yielding approximately 1300 terms in 506

the KL expansion. The total duration of the acceleration is 20 s and the time step discretization is 507

∆t = 0.01 s. Due to design purposes, it is of interest to control that the interstory drifts along the y 508
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direction does not exceed a threshold level of 2 × 10−3 times the story height. These interstory drifts 509

are controlled at five points, between nodes n2-n1, n3-n2, n4-n3, n5-n4 and n6-n5. The probability of 510

failure is computed with Direction Importance Sampling with a sample size of 500 deterministic model 511

evaluations. Table 4 illustrates the parameter interval on the parameters of the CP ground acceleration 512

that is used to model the imprecision in the stochastic ground acceleration. Also in this case, due to 513

the imprecision in the stochastic load, represented by the interval-valued definition of the governing 514

hyper-parameters θ, the probability of failure will become interval-valued as well. 515

Figure 5: Example 2 – Isometric view of the building model

Table 4: Tested values for θI

ωIg ωIf ζIg ζIf SI0 cI1 cI2
π[2.4; 8] π[0.24; 0.8] [0.6; 0.85] [0.6; 0.85] 3× 10−4[0.75; 1.25] [0.12; 0.16] [0.14; 0.18]

6.2. Computation of the bounds on Pf 516

The results of these three propagation schemes are reported in table 5. First, it can be noted that the 517

bounds produced by the Sobol sampling underestimate the width of the interval on Pf severely, where 518

especially the underestimation of P f is problematic. Furthermore, comparing the results of the vertex 519
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analysis with the optimization procedure, it can be concluded that both predict the same bounds on 520

the probability of failure. As such, in this case, the problem behaves seemingly monotonic with respect 521

to θ. 522

Furthermore, despite the fact that the intervals on θI are the same as in the case with the SDOF 523

oscillator, the realizations that yield respectively P f and P f are completely different. For instance, 524

concerning ωIg , the values that give P f in the SDOF oscillator give P f on the building model. This 525

is due to the fact that the bounds of Pf are determined by both the energy content of the stochastic 526

excitation, as well as the match of its dominant frequencies of the excitation with the resonances 527

of the structure under consideration, especially when the latter are dominated by a few eigenmodes. 528

Also this example shows that the proposed approach is capable of providing an analyst with a highly 529

accurate estimation of the bounds on Pf within a very limited computational budget, as compared to 530

a double loop approach. Especially the gain in computational efficiency is noteworthy, although the 531

vertex analysis and optimization approach yield the same results concerning the bounds, the latter 532

approach needs only 1 + 2 × 500 = 1001 deterministic model evaluations, whereas the former requires 533

128× 500 = 64000 deterministic model evaluations, without any guarantee of conservatism in case the 534

relation between θI and Pf is not strictly monotonic. 535

Table 5: Computed bounds on the failure probability

Vertex analysis Sobol sampling Optimization
Pf [4.47× 10−07; 0.0495] [1.14× 10−06; 0.0275] [4.47× 10−07; 0.0495]

maxi maxl ||Ai,l:(θ)||2 [9.44× 10−04; 2.34× 10−03] [9.78× 10−04; 2.21× 10−03] [9.44× 10−04; 2.34× 10−03]

Table 6: Identified values for θI,∗

Method ωIg ωIf ζIg ζIf SI0 cI1 cI2
O π[8; 2.4] π[0.8; 0.8] [0.85; 0.6] [0.85; 0.6] 3× 10−4[0.75; 1.25] [0.16; 0.12] [0.18; 0.14]
V π[8; 2.4] π[0.8; 0.8] [0.85; 0.6] [0.85; 0.6] 3× 10−4[0.75; 1.25] [0.16; 0.12] [0.18; 0.14]

Finally, figure 6 shows the behavior of maxi=1,...,nη maxl ||Ai,l:(θ)||2 with respect to Pf . Specifically, 536

this figure shows the combined results of the optimization procedure, Sobol sampling and vertex analysis. 537

It can be noted that also in this case a sufficiently convex optimization problem is obtained. However, 538

the functional relation is comparably less smooth that in the case where only one response is considered. 539

This is due to the additional optimization layer in Eq. (45). 540
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Figure 6: Pf plotted against maxi=1,...,nη
maxl ||Ai,l:(θ)||2 for 500 Sobol samples in between the bounds of θI , combined

with the data from the vertex analysis and the optimization procedure

7. Conclusions 541

This paper presents a highly efficient and accurate approach to determine the bounds on the first ex- 542

cursion probability of a linear oscillating system when the structure is excited by an imprecise stochastic 543

process. The method decouples the epistemic uncertainty from the aleatory by a priori determining 544

which parameters in the stochastic spectrum yield the bounds on the probability of failure of the struc- 545

ture. As such, the propagation of the epistemic uncertainty only requires a single deterministic model 546

evaluation together with the solution of two optimization problems. The aleatory uncertainty in the 547

problem is propagated using the framework of Directional Importance Sampling. Using the two param- 548

eter sets yielding the bounds on the probability of failure, only two Directional Importance Sampling 549

evaluations are required. 550

The method is illustrated using the propagation of a non-stationary modulated Clough-Penzien 551

excitation spectrum, but is generally applicable to the case of linear dynamical systems subjected to 552

imprecise stochastic excitation. The conclusions of the paper can be summarized as follows: 553

• the proposed technique provides an extremely efficient approach to determine the bounds on the 554

first excursion probability of a linear oscillator subjected to an imprecise stochastic excitation 555

• the method is shown to be more accurate than existing double loop approaches such as double 556

loop quasi Monte Carlo 557

• since the method does not make assumptions on the monotonicity of the relationship of the 558

probability of failure with the parameters of the exciting stochastic process, it is also more accurate 559

than a combination of vertex analysis + directional importance sampling 560
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Appendix A. Clough-Penzien model 568

One of the most commonly used parametric models for the power spectral density associated with 569

ground acceleration is the Kanai-Tajimi spectrum (see, e.g. [32]), whose physical basis consists of a 570

white noise process of spectral intensity S0 associated with the bedrock excitation that passes through 571

a linear soil filter characterized in terms of a natural frequency ωg and damping ζg. A drawback of the 572

Kanai-Tajimi spectrum is that its associated velocity and displacement power spectra are not defined 573

as the circular frequency tends to zero (ω → 0). Such issue is remedied by the Clough-Penzien power 574

spectrum, which passes the signal produced by the Kanai-Tajimi spectrum through an additional linear 575

filter with natural frequency ωf and damping ζf . The expression for the Clough-Penzien power spectrum 576

SCP is given by [32, 60]: 577

SCP(ω) =
ω4
g + (2ζgωgω)2(

ω2
g − ω2

)2
+ (2ζgωgω)2

· ω4(
ω2
f − ω2

)2
+ (2ζfωfω)2

· S0 (A.1)

Typical values for the filter parameters associated with the Clough-Penzien power spectrum as suggested 578

in [1] are shown in Table A.7. The autocorrelation function RCP (τ) associated with the Clough-Penzien

Soil type ωg [rad/s] ζg ωf [rad/s] ζf
Firm 8π 0.60 0.8π 0.60

Medium 5π 0.60 0.5π 0.60
Soft 2.4π 0.85 0.24π 0.85

Table A.7: Filter parameters associated with Clough-Penzien power spectrum

579
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power spectrum is calculated taking the inverse Fourier transform of SCP, yielding [61]: 580

RCP(τ) =
πS0

2ζgωg
e−ζgωg |τ |

(
(Ca1 + Cb1) cos

(
ωdg |τ |

)
+
ζgωg
ωdg

(Ca1 − Cb1) sin
(
ωdg |τ |

))
(A.2)

+
πS0

2ζfωf
e−ζfωf |τ |

(
(Ca2 + Cb2) cos

(
ωdf |τ |

)
+
ζfωf
ωdf

(Ca2 − Cb2) sin
(
ωdf |τ |

))
(A.3)

where the constants ωdg , ω
d
f , Ca1, Ca2, Cb1 and Cb2 are defined as indicated below: 581

ωdg =
√

1− ζ2gωg (A.4)

ωdf =
√

1− ζ2fωf (A.5)

Ca1 = −
ω6
g

D

((
1 + 8ζ2g − 16ζ4g

)(
1−

ω4
g

ω4
f

)
− 8ζ2g

ω2
g

ω2
f

(
1− 2ζ2f −

ω2
g

ω2
f

+ 2ζ2g
ω2
g

ω2
f

))
(A.6)

Cb1 =
2ω6

g

D

((
1 + 8ζ2g − 16ζ4g

)(
1− 2ζ2g −

ω2
g

ω2
f

+ 2ζ2f
ω2
g

ω2
f

)
− 2ζ2g

(
1−

ω4
g

ω4
f

))
(A.7)

Ca2 =
ω4
gω

2
f

D

((
1 + 8ζ2g − 16ζ4g

)(
1−

ω4
g

ω4
f

)
− 8ζ2g

ω2
g

ω2
f

(
1− 2ζ2f −

ω2
g

ω2
f

+ 2ζ2g
ω2
g

ω2
f

))
(A.8)

Cb2 =
2ω2

gω
4
f

D

(
ω2
g

ω2
f

(
−
ω2
g

ω2
f

− 8ζ2g + 16ζ2g ζ
2
f

)(
1− 2ζ2g −

ω2
g

ω2
f

+ 2ζ2f
ω2
g

ω2
f

)
+ 2ζ2g

(
1−

ω4
g

ω4
f

))
(A.9)

D = −4ω2
gω

2
f

(
1− 2ζ2g −

ω2
g

ω2
f

+ 2ζ2f
ω2
g

ω2
f

)(
1− 2ζ2f −

ω2
g

ω2
f

+ 2ζ2g
ω2
g

ω2
f

)
+ ω4

f

(
1−

ω4
g

ω4
f

)
(A.10)

The above discussion assumes that the ground acceleration can be modeled as a wide-sense stationary 582

stochastic process. It is clear that this is a simplifying assumption, as ground acceleration exhibits a non 583

stationary behavior. A possible means for including such effect in the Clough-Penzien model consists 584

of modulating the white noise bedrock process by means of a deterministic function of time m(t) (see, 585

e.g. [33]). Here, the so-called Shinozuka and Sato modulating function [2] is considered: 586

m(t) =
1

c3

(
e−c1t − e−c2t

)
(A.11)

where c1 and c2 are parameters of the model and c3 is defined such that the maximum value of the 587

modulating function is equal to unity, yielding: 588

c3 =
c1

c2 − c1
e

c2
c2−c1

ln
(
c2
c1

)
(A.12)
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[12] R. Schöbi, B. Sudret, Structural reliability analysis for p-boxes using multi- 631

level meta-models, Probabilistic Engineering Mechanics 48 (2017) 27–38. 632

doi:https://doi.org/10.1016/j.probengmech.2017.04.001. 633

URL http://www.sciencedirect.com/science/article/pii/S0266892017300152 634

[13] R. Schöbi, B. Sudret, Global sensitivity analysis in the context of imprecise probabilities (p-boxes) 635

using sparse polynomial chaos expansions, Reliability Engineering & System Safety 187 (2019) 129 636

– 141, sensitivity Analysis of Model Output. doi:https://doi.org/10.1016/j.ress.2018.11.021. 637

URL http://www.sciencedirect.com/science/article/pii/S0951832017306099 638

[14] M. Faes, J. Sadeghi, M. Broggi, M. de Angelis, E. Patelli, M. Beer, D. Moens, On the Robust 639

Estimation of Small Failure Probabilities for Strong Nonlinear Models, ASCE-ASME J Risk and 640

Uncert in Engrg Sys Part B Mech Engrg 5 (4) (dec 2019). doi:10.1115/1.4044044. 641

URL https://asmedigitalcollection.asme.org/risk/article/doi/10.1115/1.4044044/955249/On-the-Robust-Estimation-of-Small-Failure642

[15] J. Sadeghi, M. de Angelis, E. Patelli, Robust propagation of probability boxes by interval predictor 643

30



models, Structural Safety 82 (2020) 101889. doi:https://doi.org/10.1016/j.strusafe.2019.101889. 644

URL http://www.sciencedirect.com/science/article/pii/S0167473018303035 645

[16] P. Wei, J. Song, S. Bi, M. Broggi, M. Beer, Z. Lu, Z. Yue, Non-intrusive stochastic analysis with 646

parameterized imprecise probability models: I. performance estimation, Mechanical Systems and 647

Signal Processing 124 (2019) 349 – 368. doi:https://doi.org/10.1016/j.ymssp.2019.01.058. 648

URL http://www.sciencedirect.com/science/article/pii/S0888327019300743 649

[17] P. Wei, J. Song, S. Bi, M. Broggi, M. Beer, Z. Lu, Z. Yue, Non-intrusive stochastic analysis with 650

parameterized imprecise probability models: II. reliability and rare events analysis, Mechanical Sys- 651

tems and Signal Processing 126 (2019) 227 – 247. doi:https://doi.org/10.1016/j.ymssp.2019.02.015. 652

URL http://www.sciencedirect.com/science/article/pii/S0888327019300986 653

[18] J. Hurtado, D. Alvarez, J. Ramirez, Fuzzy structural analysis based on fundamental reliability 654

concepts, Computers & Structures 112–113 (2012) 183–192. doi:10.1016/j.compstruc.2012.08.004. 655

[19] M. Troffaes, Imprecise monte carlo simulation and iterative importance sampling for the estima- 656

tion of lower previsions, International Journal of Approximate Reasoning 101 (2018) 31 – 48. 657

doi:https://doi.org/10.1016/j.ijar.2018.06.009. 658

URL http://www.sciencedirect.com/science/article/pii/S0888613X17305868 659

[20] W. Gao, D. Wu, K. Gao, X. Chen, F. Tin-Loi, Structural reliability analysis with 660

imprecise random and interval fields, Applied Mathematical Modelling 55 (2018) 49–67. 661

doi:https://doi.org/10.1016/j.apm.2017.10.029. 662

URL https://www.sciencedirect.com/science/article/pii/S0307904X17306467 663

[21] M. Dannert, A. Fau, R. Fleury, M. Broggi, U. Nackenhorst, M. Beer, A probability- 664

box approach on uncertain correlation lengths by stochastic finite element method, 665

PAMM (Proceedings in Applied Mathematics and Mechanics) 18 (1) (2018) 666

e201800114. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.201800114, 667

doi:10.1002/pamm.201800114. 668

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201800114 669

[22] M. Faes, D. Moens, Imprecise random field analysis with parametrized kernel functions, Mechanical 670

Systems and Signal Processing 134 (2019) 106334. doi:10.1016/j.ymssp.2019.106334. 671

31



[23] L. Comerford, H. Jensen, F. Mayorga, M. Beer, I. Kougioumtzoglou, Compressive sensing with an 672

adaptive wavelet basis for structural system response and reliability analysis under missing data, 673

Computers & Structures 182 (2017) 26–40. doi:10.1016/j.compstruc.2016.11.012. 674

URL //www.sciencedirect.com/science/article/pii/S0045794916304618 675

[24] S. Montoya-Noguera, T. Zhao, Y. Hu, Y. Wang, K.-K. Phoon, Simulation of non- 676

stationary non-gaussian random fields from sparse measurements using bayesian compres- 677
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