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Abstract

We explore the applications of the Euler–Maclaurin formula in analyzing
functions expressed as infinite series and products. Three illustrative
examples show the difficulties that may be encountered and the means
by which these can be overcome.

1 Introduction.
A seemingly elementary but rarely discussed problem in mathematics is the
following: Given a function S(x) expressed as an infinite series, find the value
of the limit

lim
x→∞

S(x)

(or perhaps the limit as x→ 0). Better still, find an asymptotic expansion
for S(x). Exact summation is rarely a practical option, as there are relatively
few series for which closed-form expressions are known, and few tools for
deriving such formulae. Moreover, the limit x→∞ may not commute with
the implicit limit as the number of terms tends to infinity. For example, if

S(x) =
∞∑
j=1

e−j
2/x2 = lim

N→∞

N∑
j=1

e−j
2/x2 , (1)

what can we say about the behavior of S(x) as x → ∞? We would like
something more insightful than “It diverges!” For this very simple case
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Jacobi’s imaginary transformation for theta functions [14, p. 476] gives the
exact result

S(x) =
x
√
π

2
− 1

2
+ x
√
π

∞∑
j=1

e−(jπx)
2

, x > 0. (2)

Jacobi first published this formula in 1828 [4], but he credits it to Poisson,
who found it five years earlier [10, p. 420]. If x is large, then (2) can be
used to approximate S(x) as a linear function, with an error proportional
to xe−(πx)

2 . In contrast, (1) is useful for computation when x is small, but
inefficient when x is large because many terms are needed in order to obtain
an accurate result.

In this article, we show how the Euler–Maclaurin formula can be used to
analyze series that contain a large (or small) parameter. This approach works
by relating the series to an integral, and before attempting a problem of this
type, one should ask the following question: “If the summation symbol were
to be replaced by an integral, could the integral be evaluated exactly?” It is
likely that progress can be made if the answer is “Yes.” The same method
can sometimes be applied to infinite products. Thus, if

G(x) =
∞∏
j=1

g(j;x),

where g(j;x) > 0 for j ∈ N and g(j, x)→ 1 as j →∞, then taking logarithms
yields

lnG(x) =
∞∑
j=1

ln g(j;x).

Therefore we may treat the product as a series, and take exponentials to
obtain a final result.

After reviewing the derivation of the Euler–Maclaurin formula in Section 2,
we apply it to three examples in Section 3: first Poisson’s series (1), then
a series with a summand containing an odd function, with no symmetry
about j = 0, and finally a more challenging example derived from an infinite
product, featuring a logarithm in the summand. In each case, we obtain
an asymptotic approximation that produces accurate results for parameter
regimes in which the convergence of the original series is very slow.
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2 The Euler–Maclaurin Formula.
The Euler–Maclaurin formula is a standard result [5, Chapter 14],[11, Sec-
tion 3.3], though its use in asymptotically expanding infinite series is somewhat
obscure. Perhaps the first mathematician to apply it in this way was Niels
Erik Nørlund, around 1924 [8, Chapter 4]. Today it is probably fair to class
Nørlund’s idea as well known amongst those to whom it is well known.1 To see
how the Euler–Maclaurin formula operates, it is useful to begin by reviewing
a brief derivation, for which we largely follow [2]. Let n0 and n1 be integers
with n1 > n0, and consider the integral∫ n1

n0

f(s;x) ds =

n1−1∑
j=n0

∫ j+1

j

f(s;x) ds.

For each term in the sum on the right-hand side, write f(s;x) = 1× f(s;x)
and integrate by parts, using the antiderivative∫

1 ds = s− j − 1
2
. (3)

In this way, we find that∫ n1

n0

f(s;x) ds =

n1−1∑
j=n0

{[(
s− j− 1

2

)
f(s;x)

]j+1

j
−
∫ j+1

j

(
s− j− 1

2

)
f ′(s;x) ds

}
,

and then by evaluating the boundary terms and rearranging, we obtain

n1∑
j=n0

f(j;x) =

∫ n1

n0

f(s;x) ds+
f(n0;x) + f(n1;x)

2

+

n1−1∑
j=n0

∫ j+1

j

(
s− j − 1

2

)
f ′(s;x) ds. (4)

Here and henceforth, the prime symbol indicates differentiation with respect
to the first argument. Now the factor s− j − 1

2
is the periodic extension of

the function P1(s) = s− 1
2
from the interval [0, 1) to the real line, except at

1Credit for this excellent description, which applies to many of the more esoteric
mathematical techniques, goes to the late Fritz Ursell [1].
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integer values for s where the former takes different values in adjacent terms.
However, changing the value of an integrand at isolated points has no effect,
so if we write

P1(s) = s− bsc − 1
2
, −∞ < s <∞, (5)

where b·c means “round down,” then the second sum in (4) can be evaluated
to yield

n1∑
j=n0

f(j;x) =

∫ n1

n0

f(s;x) ds+
f(n0;x) + f(n1;x)

2
+

∫ n1

n0

P1(s)f
′(s;x) ds. (6)

This is the first order Euler–Maclaurin formula.
Further formulae are obtained using integration by parts, differentiating f ′

and integrating P1. The required antiderivatives are chosen to be continuous,
so that boundary terms can only occur at s = n0 or s = n1, and not at the
intermediate points s = n0 + 1, n0 + 2, . . . , n1 − 1. We begin by writing

Pj(s) = j

∫ s

0

Pj−1(w) dw + cj, j = 2, 3, . . . , (7)

where the factor j multiplying the integral is included for later convenience. A
consequence of this definition is that P2 is continuous, P3 is once differentiable,
P4 is twice differentiable, and so on. Now P2 inherits the 1-periodicity of P1,
because

P2(a+ 1)− P2(a) = 2

∫ a+1

a

P1(w) dw

for any real number a, and the integral of P1 over one period is zero. (This
can easily be deduced from the plot in Figure 1.) For 0 ≤ s < 1, we have

P2(s) = 2

∫ s

0

(
w − 1

2

)
dw + c2 = s2 − s+ c2,

and values elsewhere are determined by periodic repetition. It follows that
P2(s) is bounded for s ∈ R, and since this property turns out to be useful, we
will choose the constants cj so that the functions P3, P4, . . . are also periodic
(and therefore bounded). To achieve this, we simply need to ensure that the
integral of each function over one period is zero, i.e.,∫ 1

0

Pj(w) dw = 0, j = 1, 2, . . . . (8)
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Figure 1: The functions P1(s), P2(s), and P3(s) for −3 ≤ s ≤ 3.

It then follows that c2 = 1
6
, and in general (using (7)),

cj = −j
∫ 1

0

∫ s

0

Pj−1(w) dw ds.

The functions that evolve through this process are periodic extensions of the
Bernoulli polynomials [9, §24]; indeed,

Pj(s) = Bj(s− bsc).

Graphs of P1(s), P2(s), and P3(s) are shown in Figure 1.
Now P1(s) is antisymmetric about s = 1

2
, which means P2(s) is symmetric.

It then follows that P3(s) is antisymmetric except possibly for a constant
vertical shift. However, (8) can only hold if the vertical shift is absent, so
P3(

1
2
) = 0 and P3(0) = −P3(1). By periodicity P3(0) = P3(1), and this is

only possible if P3(0) = c3 = 0. The alternating pattern of symmetry and
antisymmetry continues throughout the sequence, meaning that c2j+1 = 0,

P2j−1(n+ 1
2
) = 0, and P2j+1(n) = 0,

for all integers n and natural numbers j. In view of the last result, it is
conventional to apply an even number of integrations by parts to the last
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term in (6). In this way, we arrive at the general Euler–Maclaurin formula
n1∑
j=n0

f(j;x) =

∫ n1

n0

f(s;x) ds+
f(n0;x) + f(n1;x)

2

+
m∑
j=1

B2j

(2j)!

[
f (2j−1)(n1;x)− f (2j−1)(n0;x)

]
+ ∆m, (9)

where
∆m =

∫ n1

n0

P2m+1(s)

(2m+ 1)!
f (2m+1)(s;x) ds.

Here we have used the fact that P2j(n) = B2j , the 2jth Bernoulli number, for
j ≥ 0 and any integer n [3, Section 9.6]. The usual strategy for employing (9)
to asymptotically expand a series is to evaluate the integral on the right-hand
side exactly, and prove that ∆m is of smaller magnitude than the other terms.
Often this last step can be achieved by making an appropriate substitution
to remove the dependence upon x from f and then using the bound [6]∣∣∣∣ P2m+1(s)

(2m+ 1)!

∣∣∣∣ < 2

(2π)2m+1
. (10)

If (as is often the case) f(s;x) = f(w) where w = s/x, then

∆m = x−2m
∫ n1/x

n0/x

P2m+1(xw)

(2m+ 1)!
f (2m+1)(w) dw, (11)

and hence

|∆m| ≤
1

π(2πx)−2m

∫ n1/x

n0/x

∣∣f (2m+1)(w)
∣∣ dw. (12)

It is difficult to determine how the integral in (12) behaves as m increases, so
the error is usually estimated by considering the next term that would appear
in the finite series on the right-hand side of (9), if m were to be increased.
However, there are situations in which this series disappears entirely. For
example, if f(s;x) is symmetric about s = n0 (or n1), then all its odd
derivatives will vanish at this point. Alternatively, if n0 and n1 are extended
to ±∞, and the resulting series and integrals are convergent, then in most
problems of practical interest f and its derivatives will vanish in these limits.
Should the series disappear from the right-hand side of (9), m may be chosen
arbitrarily, and the error caused by discarding ∆m is then exponentially small.
This phenomenon has previously been observed in [13] and (in the context of
analyzing infinite series) [12].
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3 Examples.
We now consider three example series. Each contains a positive parameter
x, and converges rapidly when this is small. We will derive asymptotic
approximations that provide accurate results for large x. The first two
examples are relatively straightforward, and the last is much more difficult.

3.1 Even summand.

For our introductory example, we consider the series S(x) given in (1). We
begin by setting

f(s;x) = e−s
2/x2 .

Clearly, it will be easier to evaluate the relevant integral in (9) if we apply the
Euler–Maclaurin formula starting at s = 0, rather than s = 1. In addition,
since f(s;x) is an even function, we have f (2j−1)(0) = 0. Thus, substituting
into (9), taking n0 = 0, and letting n1 →∞, we find that

∞∑
j=0

e−j
2/x2 =

∫ ∞
0

e−s
2/x2 ds+

1

2
+ ∆m, (13)

where

∆m =

∫ ∞
0

P2m+1(s)

(2m+ 1)!

(
d

ds

)2m+1

e−s
2/x2 ds. (14)

Evaluating the integral in (13) then yields the first two terms in (2). For
(14), we may write w = s/x and then use (10) as in (11) and (12) to show
that ∆m = O(x−2m). Since m may be chosen arbitrarily, it follows that the
error committed in discarding this term is asymptotically smaller than any
algebraic power of x. This is in agreement with Poisson’s result (which implies
that ∆m decreases exponentially as x→∞), but we have not succeeded in
making further progress towards (2) from (14).

3.2 A summand without symmetry.

We now consider the series

T (x) =
∞∑
j=1

e−j
3/x3 , x > 0. (15)
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As before, the corresponding integral is easier to evaluate if its lower limit is
zero; indeed the substitution w = s3/x3 shows that∫ ∞

0

e−s
3/x3 ds = xΓ

(
4
3

)
, x > 0,

where Γ(·) represents the Gamma function [9, Chapter 5], and we have used
the identity zΓ(z) = Γ(z + 1). Therefore we apply the Euler–Maclaurin
formula with n0 = 0, rather than n0 = 1. Letting n1 →∞ and writing

f(s;x) = e−s
3/x3

in (9), we find that

T (x) = xΓ
(
4
3

)
− 1

2
−

m∑
j=1

B2j

(2j)!
f (2j−1)(0;x) + ∆m, (16)

where

∆m =

∫ ∞
0

P2m+1(s)

(2m+ 1)!

(
d

ds

)2m+1

e−s
3/x3 ds.

Next, we look to simplify the finite sum in (16), by finding an explicit value
for the derivative. To achieve this, we write the exponential as a Maclaurin
series and then differentiate repeatedly. In this way, we find that

f (k)(s;x) =
∞∑
p=0

(−1)p

x3pp!

(
d

ds

)k
s3p

=
∞∑

p=dk/3e

(−1)p

x3pp!
(3p)(3p− 1) · · · (3p− k + 1)s3p−k,

where d·e means “round up.” In the last line, the lower limit for the series is
determined by noting that differentiating once eliminates one term, differenti-
ating four times eliminates two terms, etc. A nonzero value at s = 0 can only
occur if k is divisible by three, in which case

f (k)(0;x) =
(−1)k/3k!

xk(k/3)!
.

Therefore the summand in (16) evaluates to zero unless 2j − 1 = 6p − 3
(i.e., an odd multiple of 3) for some p ∈ N. We can then perform further
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integrations by parts in the error term ∆m, stopping at the last step before a
nonzero boundary term occurs. However, a simpler approach is to base the
error estimate on the first (nonzero) term omitted from the series; that is,

T (x) = xΓ
(
4
3

)
− 1

2
+

1

2

r∑
p=1

B6p−2

(2p− 1)!(3p− 1)x6p−3
+O(x−6r−3). (17)

This is an asymptotic representation of T ; the series will diverge if the upper
limit r is extended to infinity. Nevertheless, very accurate results can be
obtained using a finite number of terms. Generally, for a given x, the best
available approximation occurs when r is chosen so that the terms included in
the series decrease monotonically in magnitude, but subsequent terms do not
[7, Chapter 1]. In the particular case of (17), the terms initially decrease fairly
rapidly in magnitude, after which the summand remains small for a sequence
of p values. For example, if x = 2.5, the magnitude of the terms decreases
monotonically up to p = 6, at which point (17) yields T (2.5) ≈ 1.731915773,
which has nine correct digits. Similar approximations may be obtained by
taking r to have any value in the range 3, . . . , 9. Increasing the upper limit
beyond r = 9 causes the approximation to deteriorate.

3.3 A summand with a real singularity.

As a more challenging example, we now consider a series that originates from
the infinite product

G(x) =
∞∏
j=1

(
1− e−j

2/x2
)
.

Expressions of this type appear in the study of heat transfer through walls; see
the supplemental material and references therein. Taking logarithms yields

F (x) = lnG(x) =
∞∑
j=1

ln
(
1− e−j

2/x2
)
, (18)

and we aim to determine the behavior of F (x) for large x. We begin by
writing

f(s;x) = ln
(
1− e−s

2/x2
)
.

Although this is an even function, it is not defined at the origin, and this
presents some problems. However, f(s;x) does have the property that odd-
ordered derivatives vanish at s = 0, and we can take advantage of this as
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follows. We start with the first order Euler–Maclaurin formula (6), letting
n1 →∞ and setting n0 = 1; that is,

F (x) =

∫ ∞
1

f(s;x) ds+
f(1;x)

2
+

∫ ∞
1

P1(s)f
′(s;x) ds. (19)

As in the two previous examples, the first integral on the right-hand side is
easier to evaluate if the lower limit is replaced by zero. Thus, expanding the
logarithm as a Taylor series, we find that∫ ∞

0

ln
(
1− e−s

2/x2
)

ds = −
∞∑
j=1

1

j

∫ ∞
0

e−js
2/x2 ds

= − x
√
π

2
ζ
(
3
2

)
,

(20)

having used the substitution w = s
√
j/x. Here, ζ(·) represents the Riemann

zeta function [9, Chapter 25], that is

ζ(x) =
∞∑
j=1

1

jx
, x > 1. (21)

In view of (20), we rewrite (19) in the form

F (x) = − x
√
π

2
ζ
(
3
2

)
−
∫ 1

0

f(s;x) ds+
f(1;x)

2
+

∫ ∞
1

P1(s)f
′(s;x) ds. (22)

It is now desirable to “join” the remaining two integrals, but the singularity
at the origin prevents integration by parts using (3). To overcome this, we
introduce the regularized function

f̂(s;x) = ln
(
1− e−s

2/x2
)
− ln

(
s2/x2

)
.

This has no singularity at the origin; in fact it is not difficult to show that
f̂(0;x) = 0. In addition, f̂ ′(s;x)→ 0 as s→∞, so we can replace f with f̂
in (22) provided we add the correction term

C = −
∫ 1

0

ln
(
s2/x2

)
ds+

ln
(
1/x2

)
2

+ 2

∫ ∞
1

P1(s)

s
ds. (23)
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The first integral that appears here is elementary. For the second, we use (5)
to obtain ∫ ∞

1

P1(s)

s
ds = lim

N→∞

N∑
j=1

∫ j+1

j

s− j − 1
2

s
ds

= lim
N→∞

[
N −

N∑
j=1

(
j + 1

2

)(
ln(j + 1)− ln j

)]
.

The above series can be made partially telescopic by rearranging the summand;
thus(
j + 1

2

)(
ln(j + 1)− ln j

)
= (j + 1) ln(j + 1)− j ln j − 1

2

(
ln(j + 1) + ln j

)
,

which leads us to∫ ∞
1

P1(s)

s
ds = lim

N→∞

[
N − (N + 1

2
) ln(N + 1) + ln(N !)

]
.

Now Stirling’s series [9, equation 5.11.1] can be written in the form

ln(N !) =
(
N + 1

2

)
ln(N + 1)− (N + 1) +

ln(2π)

2
+O(N−1),

and this shows that ∫ ∞
1

P1(s)

s
ds =

ln(2π)

2
− 1.

Returning to (23), we now find that C = ln(2πx) and then from (22),

F (x) = ln(2πx)− x
√
π

2
ζ
(
3
2

)
+
f̂(1;x)

2
+

∫ ∞
1

P1(s)f̂
′(s;x) ds−

∫ 1

0

f̂(s;x) ds.

Integrating once by parts in the last term reduces this to

F (x) = ln(2πx)− x
√
π

2
ζ
(
3
2

)
+

∫ ∞
0

P1(s)f̂
′(s;x) ds.

Having eliminated the singularity at the origin, the next step is to integrate
by parts repeatedly. In this way, we find that

F (x) = ln(2πx)− x
√
π

2
ζ
(
3
2

)
+ ∆m, (24)
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where
∆m =

∫ ∞
0

P2m+1(s)

(2m+ 1)!
f̂ (2m+1)(s;x) ds. (25)

Note that, since f̂ is an even function, no boundary terms are produced
in any step (in contrast to the derivation of (9)). However, integrating by
parts an even number of times facilitates the use of (10) after making the
substitution w = s/x. A slightly more complicated bound is required if even
indices are permitted [6]. Ultimately, these are minor details; the end result
is that ∆m is asymptotically smaller than any algebraic power of x. This
rapid decay can be observed with a simple numerical experiment, computing
F (x) directly using (18) and approximating using (24) with ∆m = 0. Three
correct significant figures are obtained if x ' 0.68, six if x ' 1.3, and sixteen
if x ' 3.2.

4 Concluding remarks.
We have demonstrated that the Euler–Maclaurin formula provides a simple
but powerful means for finding asymptotic expansions of series and products
that contain a large (or small) parameter. It takes some creativity to make
this work with summands that possess real singularities (such as (18)), but
ultimately the techniques used are all based on elementary calculus, and
integration by parts in particular. However, we have not retrieved Poisson’s
full result (2) by this approach. Indeed, it is not clear how information about
the precise nature of ∆m can be obtained from (14) or (25), if this is possible
at all. Of course we would be delighted to hear from any readers who can
find a way to derive (2) using the Euler–Maclaurin formula. In Part 2 of
our article, we will explore an even more powerful approach to the same
problem, capable of reproducing Poisson’s result and also a corresponding
exact transformation for (18).
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1 Wall d coefficients.
The series

F (x) =

∞∑
j=1

ln
(
1− e−j

2/x2)
, (1)

which motivated this study, came to the authors’ attention through its appearance
in a technique used for modelling heat transfer through building walls, due to
climate and other time-varying conditions. Analysis of the flow of heat through a
building wall in steady conditions was first undertaken in the nineteenth century.
However, with incorporation of large areas of glazed wall into the light-weight
fabric of buildings in the post World War II era, some buildings overheated in
summer and had unusably cold areas in winter. By the 1960s, attention was
turning to time-varying behavior.

The determining relation for wall heat transfer is the Fourier continuity
equation (also called the heat equation), that is,

λ
∂2T

∂y2
= ρcp

∂T

∂t
, (2)

where λ, ρ, and cp are the thermal conductivity, density, and specific heat of a
layer of the material, with units Wm−1K−1, kgm−3, and JK−1kg−1, respectively.
We use y to denote position, rather than the customary x, since x has been used
with a different meaning in the main body of the article. There are four classes
of solution to (2), each corresponding to specific physical conditions, discussed in
[3, Chapter 17]. In one of them, y and t appear as the product yt, and in another
as a quotient y2/t. However, y and t appear separately if a slab or series of slabs
forming a wall is excited by a sinusoidally varying temperature (with period 24
hours in building applications). The variables y and t also appear separately
if a slab or wall has some arbitrary temperature distribution within it, and
from time t = 0 onwards, the inside and outside temperatures are held at zero.
The temperature distribution can then be resolved into a series of orthogonal
profiles. The profiles are sinusoidal in wall elements having mass (concrete,

1



insulation, etc.) and linear in the elements modelling convective and radiative
exchange inside and outside. Plotted against progressive resistance through the
wall, the first mode profile approximates to a single half-wave, the second to two
half-waves, etc. The temperature in the jth profile falls everywhere as e−t/zj ,
where zj is its decay time. The largest decay time, z1, is typically of the order
of hours in building applications.

The values of temperature and heat flow at the outside and inside surface of a
slab are related by a four-element slab transfer matrix and the outside and inside
values for the whole wall are related by the product of the slab matrices. The
elements of the product matrix are functions of 1/z, and as this increases from
zero, each element in the product matrix oscillates about zero. Zero values of
each element denote corresponding imposed boundary conditions. The condition
of interest here is that Toutside = Tinside = 0, and a search has to be made for
the sequence of values z1, z2, z3, . . . that satisfy it. There are four sets of such
values and they are discussed in [5].

Consider now a building wall. The inside space is held at zero temperature
Ti, the mean outside temperature To,t=kδ is known at hourly intervals δ up to
time t = 0. The inward heat flow q0 (units Wm−2) at time t = 0 into the
internal space can be found from short series of bk and dk values — “transfer
coefficients” which include values of recent fluxes. The value of the present heat
flow is then given by

q0 =

N∑
k=0

bkTo,kδ −
N∑
k=1

dkqkδ. (3)

The bk coefficients have units Wm−2 K−1 and describe the heat flow from the
wall due to imposition of a triangular temperature pulse of unit height and base
2δ at the other side at the earlier time kδ, but we are not concerned with it here.
The dk values, which are dimensionless, are found from the values of the wall
decay times zj together with the choice of the sampling time δ. The transfer
coefficients have the property that the ratio

∑N
k=0 bk/

∑N
k=0 dk describes the

steady state transmittance of the wall, long denoted by U . The U value for
single glazing is about 5.8Wm−2 K−1 (but very dependent on wind speed); walls
have lower values and, since the energy crisis of 1973, increasing thicknesses of
insulating materials including super-insulation have been incorporated to reduce
heat losses, achieving U values as low as 0.15Wm−2 K−1.

2 The dk values.
If there is no variation of temperature after time t = 0, the expression for heat
flow (3) reduces to

q0 = −
N∑
k=1

dkqkδ.

The values of the dk coefficients follow from the decay times zj and the choice of
δ. Their evaluation can be illustrated by supposing that the wall is represented
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by two lumped capacities with flanking resistances. This structure has two decay
times z1 and z2 and any net temperature profile in the model can be resolved
into two independent components, one decaying as e−t/z1 and the other as e−t/z2 .
Suppose that the heat outflow at t = −2δ is written as q−2 = A + B. One
interval δ later, its value falls to q−1 = Aβ1 +Bβ2, where

βj = e−δ/zj .

A further interval δ later, the heat outflow is q0 = Aβ2
1 + Bβ2

2 , which can be
expressed in terms of earlier values as

q0 = (β1 + β2)q−1 − β1β2q−2.

It is conventional to write (β1 + β2) = −d1 and β1β2 = +d2. This can be
generalized to model a wall by an indefinite number of capacities and so a
continuous distribution of capacity and resistance. We then have

+d0 = 1

−d1 = β1 + β2 + β3 + β4 + · · ·
+d2 = β1β2 + β1β3 + β1β4 + β2β3 + β2β4 + · · ·
−d4 = β1β2β3 + β1β2β4 + · · ·
...

...
±dN = β1β2 · · ·βN .

(4)

Conversely, the coefficients βj are the solutions of the polynomial

d0β
n + d1β

n−1 + · · ·+ dN = 0.

The sum of the d coefficients can be expressed in product form; thus

N∑
k=0

dk =

N∏
k=1

(1− βk).

In most applications, a relatively small number of zj values, N ′, say, are needed
to compute d1, and a decreasing number are needed to accurately compute d2,
d3, etc. The number of zj values needed to compute dN and the sum of dk
values, N , is smaller; see [4]. Walls with greater density, thickness, etc. have
greater values for zj , and consequently, larger values for both N ′ and N .

The 1993 ASHRAE Handbook of Fundamentals [1, p26.26] and subsequent
editions listed the bk and dk values of 41 building walls from lightweight to
heavyweight construction (those including at least 300mm of heavy concrete).
Coefficients for a further 35 walls are listed in [2].

It is found (see [5] for example) that (log10
∑
dk)wallW is highly correlated

with the value of VW of the wall, where

VW =
∑√

ciri
4πδ

.
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Here, ci is the capacity of layer i of wall W (units Jm−2 K−1), the product
of its density, specific heat and thickness Y , and ri is the resistance of layer i
(units m2 KW−1), which is the ratio of thickness and conductivity. Values of
VW generally lie in the range 0.6 to 3.3.

3 The plain slab.
For a plain slab, the decay times are found simply as zj = cr/(jπ)2. The
component profiles are now strictly sinusoidal; in fact

T (y, t) =

∞∑
j=1

Aj sin

(
jπy

Y

)
e−t/zj , t > 0.

It was noted in [3, p. 378] that when Vslab =
√
cr/(4πδ) exceeds about 1.5, d1 is

an approximately linear function of Vslab, d2 is approximately quadratic, etc. In
fact these results follow from Poisson’s formula

∞∑
j=1

e−j
2/x2

=
x
√
π

2
− 1

2
+ x
√
π

∞∑
j=1

e−(jπx)
2

, x > 0

after writing
x2 = cr/(π2δ) = 4V 2

slab/π, (5)

and omitting exponentially small terms. Thus, −d1 ≈ S(x), so

d1 ≈
1

2
− Vslab.

Note that there is a typographical error in the corresponding equation in [3]
(which is 17.17(a)): the left-hand side should be −d1, not d1. The approximation
for d2 given in [3, equation 17.17(b)] can then be reproduced by using (4) to
observe that, in general,

d21 = (β2
1 + β2

2 + β2
3 · · · ) + 2(β1β2 + β1β3 + β2β3 + · · · )

=

∞∑
j=1

β2
j + 2d2.

Now squaring βj is equivalent to replacing δ with 2δ, or V with V/
√
2. Therefore,(

1

2
− Vslab

)2

≈ −
(
1

2
− Vslab√

2

)
+ 2d2,

which rearranges to yield

d2 ≈
1

2
V 2

slab −
1

2

(
1 +

1√
2

)
Vslab +

3

8
.
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The sum of dk values is related to the series F (x) from (1) via( ∞∑
k=0

dk

)
slab

=

∞∏
j=1

(
1− e−δ/zj

)
=

∞∏
j=1

(
1− e−j

2/x2)
,

in view of (5). The product on the right-hand side is then the exponential of F (x).
In engineering literature, its value is generally reported as a base 10 logarithm.
The values of the physical constants needed for finding d values—conductivity,
density, specific heat and radiative and convective transfer coefficients for building
materials—cannot generally be determined to high precision, so a relative error of
approximately 10−3 is generally acceptable. Therefore, for practical purposes, it
is sufficient to retain only the logarithmic and linear terms in the approximation
obtained at the end of the main article, and then write

log10

( ∞∑
k=1

dk

)
slab
≈ log10(e)

[
ln(4
√
π V )− ζ(3/2)V ]

≈ 0.4343
[
ln(7.090V )− 2.612

]
.
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