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Abstract

Following on from our recent investigation of series and products using
the Euler–Maclaurin formula, we show how the trapezoidal rule can be
used to obtain the same asymptotic expansions and can also produce
exact transformations into equivalent series with different convergence
properties.

1 Introduction.
In a recent article [9], henceforth referred to as “Part 1,” we investigated
applications of the Euler–Maclaurin formula in analyzing the behavior of
infinite series and products. Specifically, if S(x) is a function expressed as a
series, we are concerned with the behavior as x→∞, where this cannot be
obtained by elementary means. As an example, we looked at Poisson’s series

S(x) =
∞∑
j=1

e−j
2/x2 . (1)

Using the Euler–Maclaurin formula, we were able to show that

S(x)− x
√
π

2
+

1

2
→ 0 as x→∞,

and also that the magnitude of the left-hand side decreases exponentially
as x increases. However, we did not retrieve the full form of Poisson’s 1823
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result [7, p. 420]

S(x) =
x
√
π

2
− 1

2
+ x
√
π

∞∑
j=1

e−(jπx)2 , x > 0. (2)

As further examples, we also considered

T (x) =
∞∑
j=1

e−j
3/x3 , x > 0, and F (x) =

∞∑
j=1

ln
(
1− e−j

2/x2
)
. (3)

The first of these is motivated by the fact that even summands tend to make
matters easier (so we decided to investigate a similar-looking series with an
odd function in the summand), and the second originates from the infinite
product

G(x) = exp
[
F (x)

]
=
∞∏
j=1

(
1− e−j

2/x2
)
,

which originates from a method for modelling heat flow through walls (see the
supplemental material for Part 1). In this sequel article, we will investigate an
alternative method that is slightly more complicated than the Euler–Maclaurin
formula, but significantly more powerful: the trapezoidal rule. Using this,
we will see that Poisson’s result (2) can be retrieved in full, and (somewhat
remarkably) an exact transformation with similar properties can be obtained
for F (x).

2 The trapezoidal rule.
The composite trapezoidal rule for the real line may be obtained by starting
with a finite interval [−a, a] and dividing this into 2n subintervals each of
width ∆s = a/n. Given a function h, we then approximate the area under
the graph of h(s) on each subinterval using a trapezoid. The area of one such
trapezoid is

Aj =
∆s

2

[
h
(
(j − 1)∆s

)
+ h
(
j∆s

)]
,
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and summing over j leads to the result∫ a

−a
h(s) ds =

∆s

2

n∑
j=1−n

[
h
(
(j − 1)∆s

)
+ h
(
j∆s

)]
+ E

= ∆s

[
h(−a) + h(a)

2
+

n−1∑
j=1−n

h(j∆s)

]
+ E,

where E is the error, which generally disappears as ∆s→ 0. Taking the limit
n → ∞ while keeping ∆s fixed (assuming that h(±a) → 0 as a → ∞, and
that the integral exists in this limit), we find that the rule for the whole real
line is ∫ ∞

−∞
h(s) ds = ∆s

∞∑
j=−∞

h(j∆s) + E. (4)

So, much like the Euler–Maclaurin formula, the trapezoidal rule relates a
sum to an integral involving the same function. As a simple example we can
set h(s) = e−s

2 and ∆s = 1/x to immediately retrieve the first two terms in
(2). The issue now is to determine the error E. One approach is to return
to the Euler–Maclaurin formula (see [8, §3.3] for example), but this simply
reproduces results we already have. We will employ an alternative method
based on contour integration, which can yield more information, especially in
cases where E decreases exponentially with ∆s (see [10] for a comprehensive
survey of these). The idea dates back to paper from the late nineteenth
century by Georg Landsberg [3], where it was used to derive (2). Later it was
used “in reverse” by Alan Turing [11], as a means of proving that a certain
integral representation of the Riemann zeta function can be computed very
precisely using a series.

We begin by setting up an integral that will evaluate to the series in ques-
tion in an appropriate limit. Let Ω be the anticlockwise oriented rectangular
contour with vertices at ±(Q+ 1

2
) + iu and ±(Q+ 1

2
)− iv for u, v > 0 (see

Figure 1). Then, provided f is analytic inside Ω, the residue theorem shows
that ∫

Ω

f(s;x)

e2πis − 1
ds = 2πi

Q∑
j=−Q

f(j;x) lim
s→j

s− j
e2πis − 1

=

Q∑
j=−Q

f(j;x).

(5)
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Figure 1: The closed contour Ω, consisting of the straight sections Ω1, . . . ,Ω6.
The black bars denote the divisions between Ω1 and Ω6 and between Ω3 and
Ω4 at s = ±(Q+ 1

2
).

Now consider the individual sections of the contour Ω. On the lower edge,
the factor e2πv appears in the denominator of the integrand, so if v is chosen
to be sufficiently large then the contribution from Ω5 will be exponentially
small. To achieve the same effect on the upper edge, we observe that

f(s;x)

e2πis − 1
= f(s;x)

(
e2πis

e2πis − 1
− 1

)
, (6)

and hence

lim
Q→∞

∫
Ω1,2,3

f(s;x)

e2πis − 1
ds = lim

Q→∞

∫
Ω1,2,3

f(s;x)

1− e−2πis
ds+

∫ ∞
−∞

f(s;x) ds.

Here we have introduced the shorthand notation Ω1,2,3 to mean the union of
the three sections Ω1, Ω2, and Ω3. Combining this with (5), we then have

∞∑
j=−∞

f(j;x) =

∫ ∞
−∞

f(s;x) ds+H + V, (7)

where H and V represent the contributions from the horizontal and vertical
components of Ω, respectively. That is,

H = lim
Q→∞

[∫
Ω2

f(s;x)

1− e−2πis
ds+

∫
Ω5

f(s;x)

e2πis − 1
ds

]
(8)
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and

V = lim
Q→∞

[∫
Ω1,3

f(s;x)

1− e−2πis
ds+

∫
Ω4,6

f(s;x)

e2πis − 1
ds

]
. (9)

Next, we simplify our expression for H. Parametrizing Ω2 and Ω5 by
writing s = w+ iu and s = w− iv (and noting that Ω2 is traversed from right
to left), we obtain

H =

∫ ∞
−∞

f(w + iu;x)

e2π(u−iw) − 1
dw +

∫ ∞
−∞

f(w − iv;x)

e2π(v+iw) − 1
dw. (10)

Up to this point, we have allowed for the possibility that u and v might take
different values. This may be useful for complex series, but if the summand
f(s;x) is real for real s then the Schwarz reflection principle [6, Theorem 10.4]
applies, i.e.,

f(s̄;x) = f̄(s;x), (11)

where the overbar denotes a complex conjugate. Crucially, this means the
singularity structure of f is symmetric about the real axis. In this case,
setting v = u makes the integrals in (10) into mutual complex conjugates,
meaning that

H = 2 Re

∫ ∞
−∞

f(w + iu;x)

e2π(u−iw) − 1
dw. (12)

Even in this reduced form, it is usually difficult to evaluate H directly.
However, it may be possible to proceed using the fact that |e2π(u−iw)| > 1,
and so

H = 2
∞∑
j=1

e−2πju Re

∫ ∞
−∞

f(w + iu;x)e2πijw dw. (13)

Generally, the integral in (13) is easier to evaluate than the integral in (12).
Failing this, a useful bound can be obtained by noting that

|H| < 2

e2πu − 1

∫ ∞
−∞

∣∣f(w + iu;x)
∣∣ dw. (14)

The factor e2πu appearing in the denominator will often facilitate a proof that
H is exponentially small.

Finally, we must consider V . Again assuming that the Schwarz reflection
principle (11) holds and setting v = u, we parametrize the contours in (9) by
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writing s = ±(Q+ 1
2
)± iw. In this way, we find that

V = −2 lim
Q→∞

∫ u

0

Im
[
f
(
Q+ 1

2
+ iw;x

)
− f
(
−Q− 1

2
+ iw;x

)] dw

1 + e2πw
. (15)

For most series of practical interest, f(s;x) → 0 as s → ∞, at least in the
vicinity of the real line, and we aim to use this to show that V = 0. A simple
strategy is to find an upper bound for the modulus of the term in square
brackets. That is, we write

M(Q) = max
0≤w≤u

∣∣∣∣Im[f(Q+ 1
2

+ iw;x
)
− f

(
−Q− 1

2
+ iw;x

)]∣∣∣∣,
and observe that

|V | ≤ 2 lim
Q→∞

M(Q)

∫ u

0

dw

1 + e2πw

≤ 1

π
lim
Q→∞

M(Q),

having replaced the denominator with e2πw to reach the last line. It then
remains to show that M(Q)→ 0 as Q→∞; the method for achieving this
will depend upon the particular form of the function f .

A variation of the above analysis allows us to deal with sums in which the
index ranges over the natural numbers. The analogue of (4) for this case is∫ ∞

0

h(s) ds = ∆s

[
h(0)

2
+
∞∑
j=1

h(j∆s)

]
+ E,

where once again, E represents an error that will disappear as ∆s→ 0. To
obtain additional terms and a bound for the error, we use a contour integral
similar to the left-hand side of (5) but with the path now as shown in Figure
2. Assuming f(s;x) is analytic inside the contour, the residue theorem yields∫

Λ

f(s;x)

e2πis − 1
ds =

Q∑
j=1

f(j;x). (16)

As before, the exponential in the denominator will prove useful in showing
that the integral along the lower edge is small for large v, and we use (6) to
rewrite the contributions from the upper half-plane in the form∫

Λ1,2,3

f(s;x)

e2πis − 1
ds =

∫
Λ1,2,3

f(s;x)

1− e−2πis
ds−

∫
Λ1,2,3

f(s;x) ds. (17)
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Figure 2: The closed contour Λ, consisting of the straight sections Λ1, . . . ,Λ6

and the semi-circle Λc. The black bar denotes the division between Λ6 and
Λ1 at s = Q+ 1

2
.

Some care must now be taken with limits. Since there is a pole at the origin
(unless it should happen that f(0;x) = 0), we cannot let ε → 0 in (17).
However, the last integral does not possess this singularity, so

lim
Q→∞

lim
ε→0

∫
Λ1,2,3

f(s;x) ds = −
∫ ∞

0

f(s;x) ds. (18)

Therefore, letting Q→∞ in (16) yields

∞∑
j=1

f(j;x) =

∫ ∞
0

f(s;x) ds+H +R + L, (19)

where H, R, and L denote contributions from the horizontal, left, and right
edges of Λ, respectively. That is,

H = lim
Q→∞

[∫
Λ2

f(s;x)

1− e−2πis
ds+

∫
Λ5

f(s;x)

e2πis − 1
ds

]
, (20)

R = lim
Q→∞

[∫
Λ1

f(s;x)

1− e−2πis
ds+

∫
Λ6

f(s;x)

e2πis − 1
ds

]
, (21)

and

L = lim
ε→0

[∫
Λ3

f(s;x)

1− e−2πis
ds+

∫
Λ4,c

f(s;x)

e2πis − 1
ds

]
. (22)
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The first of these can be treated following the procedure used in the previous
case; one need only change the lower limit of integration to zero in (10) and
(12)–(14) to obtain the relevant equations. Similarly, the contributions from
the right edges of Λ and Ω are the same. Therefore, if f(s;x) is real for
positive real s, then a simplified form for R is given by (15) with the second
term inside the square brackets omitted. However, the location of left edge is
now fixed, so we must deal with L in some other way. Parametrizing Λ3, Λ4,
and Λc by writing s = iw, s = −iw, and s = εeiθ, we find that

L = i lim
ε→0

[∫ u

ε

f(iw;x)

e2πw − 1
dw −

∫ v

ε

f(−iw;x)

e2πw − 1
dw −

∫ π/2

−π/2

εeiθf
(
εeiθ;x

)
exp(2πiεeiθ)− 1

dθ

]
.

(23)
If f(s;x) is analytic at s = 0, then the limit ε→ 0 commutes with the last
integral. The first two terms can also be simplified if f(s;x) is real for real
positive s. Setting v = u then leads to the result

L = −2

∫ u

0

Im[f(iw;x)]

e2πw − 1
dw − f(0;x)

2
. (24)

The remaining integral in (24) must be evaluated exactly, or at least
approximated, in order to gain an useful expansion for the series. One
possibility is to use a Maclaurin series. Thus, if

f(s;x) =
∞∑
j=0

aj(x)sj, (25)

then

L = − a0(x)

2
+ 2

∞∑
j=1

a2j−1(x)(−1)j
∫ u

0

w2j−1

e2πw − 1
dw. (26)

In principle, further progress can be made using repeated integration by parts,
because it follows from [4, equations (7.1) and (7.2)] that

Li0
(
e−2πw

)
=

1

e2πw − 1
and

d

dw
Lin
(
e−2πw

)
= −2π Lin−1

(
e−2πw

)
,

where Lin(·) represents the polylogarithm of order n. However, the resulting
expressions are complicated and unlikely to be useful. Alternatively, if it
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is possible to let u → ∞, we may use the much simpler result [2, equa-
tion 3.411(2)] ∫ ∞

0

w2j−1

e2πw − 1
dw = (−1)j+1B2j

4j
, j = 1, 2, . . . , (27)

where Bj represents a Bernoulli number. However, a word of caution is in
order here. To reach (26) from (25), we interchanged an infinite series with
an integration, and this procedure may not be formally valid if the integral is
improper. The effect of this can be observed from the fact that replacing u
with infinity in (26) and using (27) yields

L = − a0(x)

2
−
∞∑
j=1

a2j−1(x)
B2j

2j
. (28)

Since the coefficient function a2j−1(x) is arbitrary at this point, we cannot
say for certain whether the series on the right-hand side is convergent, but
in most cases it will be divergent, because the magnitude |B2j| grows very
rapidly with j. Nevertheless, using a finite number of terms may produce a
useful asymptotic representation for L, as we will see in our second example.

3 Examples.
We now apply the trapezoidal rule to the three example series from Part 1;
that is S(x) from (1) and then T (x) and F (x) from (3). In each case, x is
a positive parameter, and the initial form of the series converges rapidly for
small values. We seek alternative forms of the series that provide accurate
values for large x.

3.1 Even summand.

For the simple case of Poisson’s series S(x), we begin by writing

f(s;x) = e−s
2/x2 . (29)

As in Part 1, we take advantage of the fact that the summand is an even
function, writing

S(x) =
1

2

(
−1 +

∞∑
j=−∞

e−j
2/x2
)
. (30)
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We then use (29) in (7) to obtain

2S(x) + 1 = x
√
π +H + V, (31)

where now

H = 2 Re

∫ ∞
−∞

e−(w+iu)2/x2

e2π(u−iw) − 1
dw (32)

and

V = 4 lim
Q→∞

e−(Q+1/2)2/x2
∫ u

0

sin
(
(2Q+ 1)w/x2

) ew
2/x2

1 + e2πw
dw. (33)

The integral in (32) can be evaluated using (13). We find that

H = 2
∞∑
j=1

e−2πju Re

∫ ∞
−∞

e−(w+iu)2/x2e2πijw dw

= 2x
√
π
∞∑
j=1

e−(jπx)2 ,

having used the substitution w = t + i(πjx2 − u). In view of this, we can
choose any finite value for u. For example, with u = 1 we have

|V | ≤ 4 lim
Q→∞

e−(Q+1/2)2/x2
∫ 1

0

ew
2/x2

1 + e2πw
dw,

which clearly shows that V = 0. Rearranging (31) now yields (2).

3.2 A summand without symmetry.

We now consider the series T (x) from (3). To apply the trapezoidal rule here
we must use (19), because the index clearly cannot be extended to −∞ in a
manner similar to (30). The necessary integral is given in Part 1; we have∫ ∞

0

e−s
3/x3 ds = xΓ

(
4
3

)
, x > 0,

where Γ(·) represents the Gamma function [5, Chapter 5]. Consequently (19)
yields

T (x) = xΓ
(

4
3

)
+H +R + L, (34)
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with

H = 2 Re

∫ ∞
0

e−(w+iu)3/x3

e2π(u−iw) − 1
dw, (35)

R = 2 lim
Q→∞

e−(Q+1/2)3/x3
∫ u

0

e3w2(Q+1/2)/x3 sin

(
3w(Q+ 1

2
)2 − w3

x3

)
dw

1 + e2πw
,

(36)
and

L = − 1

2
− 2

∫ u

0

sin(w3/x3)

e2πw − 1
dw. (37)

Now
|H| < 2

e2πu − 1

∫ ∞
0

e−(w3−3wu2)/x3 dw,

and this can be bounded by setting u = x and then writing w = xt. In this
way, we find that

|H| < 2x

e2πx − 1

∫ ∞
0

e3t−t3 dt.

The remaining integral does not depend on x. It can be bounded by splitting
the integration path at t = 2. To the left of this point the integrand is
bounded above by e2, and to the right we have 3t− t3 < −t. Therefore

|H| < 2x

e2πx − 1
(2e2 + e−2).

Clearly this term is exponentially small for large x. For R we observe that the
magnitude of the integrand (with u = x) is bounded above by e3(Q+1/2)/xe−2πw.
Taking the limit Q→∞ then shows that R = 0. Finally, consider L. We can
derive an asymptotic expansion by writing the sine function as a Maclaurin
series. Repeating the calculation for the specific case of (37) turns out to be
slightly easier than using the general formulae (25) and (28). Thus, we have
the exact result

L = − 1

2
+ 2

∞∑
p=1

(−1)p

(2p− 1)!x6p−3

∫ x

0

w6p−3

e2πw − 1
dw,

and since we are aiming to find an approximation of T (x) for large x, we may
extend the upper limit to infinity to make the integration straightforward at
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the cost of causing the series to diverge. In this way, we obtain the asymptotic
formula

L = − 1

2
+

1

2

r∑
p=1

B6p−2

(2p− 1)! (3p− 1)x6p−3
+O

(
x−6r−3

)
,

having used (27). Using this in (34), we find that

T (x) = xΓ
(

4
3

)
− 1

2
+

1

2

r∑
p=1

B6p−2

(2p− 1)!(3p− 1)x6p−3
+O(x−6r−3), (38)

which is the expansion we found in Part 1.

3.3 A summand with a real singularity.

Finally, we tackle the series F (x) from (3). To apply the trapezoidal rule
in this case, we must overcome several technical difficulties associated with
complex logarithms. This calculation will lead us into some of the darker
recesses of the complex plane; anyone who shivers at the mention of a branch
cut should probably stop reading now. To avoid any ambiguity, we will use
the convention that ln(·) represents the real natural logarithm (which exists
only for positive real arguments), whereas

log z = ln |z|+ i arg z

is defined for z ∈ C \ {0} up to an additive factor 2jπi, j ∈ Z. Now, let

f(s;x) = log
(
1− e−s

2/x2
)
. (39)

Clearly there is a branch point at the origin in the s-plane. We place the
cut on the negative real axis and choose a branch so that f(s;x) is real for
positive real s. Expanding the exponential as a Maclaurin series shows that

f(s;x) = log(s2/x2) + log

(
1 +

∞∑
j=1

(−1)j

(j + 1)!
(s/x)2j

)
. (40)

The imaginary part of (39), which is the argument of the complex quantity
1−e−s

2/x2 , must vary continuously within the cut plane. Therefore, if s moves
from the positive real axis to the negative real axis, traversing a semicircle
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centered at the origin, ±2π is added to the imaginary part of f with the sign
depending on the orientation of the path. Consequently, a continuous branch
of f(s;x) that vanishes as s→ +∞ cannot vanish as s→ −∞. This causes
enormous complications if we extend the summation to include negative
indices as we did for Poisson’s series S(x). Instead we follow the approach
used for T (x), integrating around the contour Λ (Figure 2), so that we need
not be concerned with the behavior of f(s;x) in the left half of the s-plane.
In the right half-plane, there are branch points at s = s±j , where

s±j = x
√

2jπe±iπ/4 = x
√
jπ(1± i), j = 1, 2, . . . . (41)

We place branch cuts on the lines s = s±j ± iw, w > 0, and initially assume
that neither u nor v exceeds x

√
π so that all points s±j lie outside the contour

Λ and therefore do not interfere with the calculation. Since the configuration
of singularities is symmetric about the real axis, it is natural to set u = v,
after which the Schwarz reflection principle (11) applies for s ∈ Λ.

The next step is to substitute (39) into (19). It should be noted that (19)
depends on (18), which remains valid because the singularity of f(s;x) at the
origin is integrable. In this way, we find that

F (x) = − x
√
π

2
ζ
(

3
2

)
+H +R + L, (42)

where ζ(·) represents the Riemann zeta function [5, Chapter 25]. In (42), H,
R, and L are the contributions from the horizontal, right, and left edges of
the contour, given by (20)–(22), respectively, and we have used the fact that∫ ∞

0

ln
(
1− e−s

2/x2
)

ds = − x
√
π

2
ζ
(

3
2

)
,

which was derived in Part 1. Our strategy for evaluating the remaining terms
in (42) is to allow the contour to expand vertically as well as horizontally
in the limit Q→∞. It is then possible to evaluate H exactly, by summing
the contributions from the branch cuts emanating from the singularities at
s = s+

j . We can also evaluate L exactly, though it is necessary to return to
(23) in order to achieve this; (24) is not valid here because f(0;x) does not
exist. However, we must first find an appropriate value for u, by considering
the contribution from the right edge of Λ. A simplified expression for this is
given by (15) with the second term in the square bracket omitted (see Section
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2); thus

R = −2 lim
Q→∞

∫ u

0

Im
[
f
(
Q+ 1

2
+ iw;x

)] dw

1 + e2πw
.

On the path of integration, the imaginary part of f is the argument of the
complex quantity

1− e−(Q+1/2+iw)2/x2 = 1− e(w2−(Q+1/2)2−iw(2Q+1))/x2 ,

which clearly lies in the right half-plane if w < Q+ 1
2
. Moreover, since f(s;x)

is real for positive real s (so that the argument is zero), a continuous branch
can only be maintained by using the principal value (with imaginary part
in the interval (−π, π]) whenever w satisfies this inequality. Since the upper
bound for w is u, a natural choice is to set u = Q. The argument can then
be determined using the inverse sine function; thus

R = −2 lim
Q→∞

∫ Q

0

arcsin

(
e(w2−(Q+1/2)2)/x2 sin

(
w(2Q+ 1)/x2

)
|1− e(w2−(Q+1/2)2−iw(2Q+1))/x2|

)
dw

1 + e2πw
.

Then, by maximizing the modulus of the argument to the inverse sine function,
we find that

|R| ≤ 2 lim
Q→∞

arcsin

(
e(Q2−(Q+1/2)2)/x2

1− e(Q2−(Q+1/2)2)/x2

)∫ ∞
0

dw

e2πw

≤ 1

π
lim
Q→∞

arcsin

(
e−(Q+1/4)/x2

1− e−(Q+1/4)/x2

)
= 0.

(43)

Next consider L. Unlike the corresponding integral for T (x) (which is
(37)), this contribution depends on Q, because we are expanding the contour
vertically as well as horizontally. Therefore (23) becomes

L = lim
Q→∞

lim
ε→0

[
−2

∫ Q

ε

Im[f(iw;x)]

e2πw − 1
dw −

∫ π/2

−π/2

iεeiθf
(
εeiθ;x

)
exp(2πiεeiθ)− 1

dθ

]
.

To determine f(iw;x), we begin by observing that the argument of 1−e−(iw)2/x2

is fixed for w > 0. Then, if we allow s to traverse a small circular arc from
s = ε to s = εeiπ/2, (40) shows that the argument varies continuously from
zero to π. Therefore Im[f(iw;x)] = π in the above expression for L. For the
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Figure 3: The deformed contour Λ2, with x
√

3π > Q > x
√

2π. The dashed
lines represent branch cuts.

second integral, we expand the integrand as a series in ε using (40), retaining
only those terms that do not vanish as ε→ 0. The result is that

L = − lim
Q→∞

lim
ε→0

[
2π

∫ Q

ε

dw

e2πw − 1
+

1

2π

∫ π/2

−π/2
log
(
ε2e2iθ/x2

)
dθ

]
. (44)

After evaluating the integrals and taking the two limits, we arrive at the
result

L = ln(2πx). (45)

Finally, consider H. Applying the Schwarz reflection principle (11), we
find that

H = 2 Re

∫
Λ2

f(s;x)

1− e−2πis
ds. (46)

As Q is increased, the contour Λ2 “wraps” around the branch cuts emanating
from s = s+

j (see (41)). This is illustrated in Figure 3. The lowest point on
Λ2 is then fixed by the branch point s+

1 ; its imaginary part is x
√
π. Since

there is a factor e−2πis in the denominator of the integrand in (46), we may
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conclude that |H| is proportional to e−2π3/2x and so decreases exponentially as
x→∞. Using the values we have obtained for R and L, (42) now reproduces
the result calculated using the Euler–Maclaurin formula in Part 1. However,
we can go further and determine H exactly by reasoning as follows. Suppose
that Q exceeds x

√
jπ for some positive integer j. Denoting the diversion

around the branch cut emanating from s+
j by Λ+

j , we find that∫
Λ+
j

f(s;x)

1− e−2πis
ds =

∫ x
√
jπ+iQ

(1+i)x
√
jπ

f`(s;x)

1− e−2πis
ds−

∫ x
√
jπ+iQ

(1+i)x
√
jπ

fr(s;x)

1− e−2πis
ds, (47)

where the subscripts “`” and “r” denote evaluation on the left and right faces
of the branch cut, respectively. Now the only difference between f` and fr
is due to the change in argument that occurs as the contour encircles the
branch point. This circle is traversed clockwise, and 1− e−s

2/x2 has a simple
zero at s = s+

j , so it follows that

f`(s;x) = fr(s;x)− 2πi.

Consequently, (47) reduces to∫
Λ+
j

f(s;x)

1− e−2πis
ds = 2π

∫ Q

x
√
jπ

dw

1− e2πwe−ikj
, (48)

where
kj = 2

√
jπ3/2x,

and the substitution s = x
√
jπ + iw has been used. In view of (46), only

the real part of (48) contributes to H. This avoids any further technicalities
involving complex logarithms; indeed

Re

∫
Λ+
j

f(s;x)

1− e−2πis
ds = 2πRe

∫ Q

x
√
jπ

dw

1− e2πwe−ikj

= −Re
[
log
(
e−2πw − e−ikj

)]Q
x
√
jπ

= 1
2

ln

(
1− 2e−kj cos kj + e−2kj

1− 2e−2πQ cos kj + e−4πQ

)
.

(49)

The exact value for H is then obtained by taking the limit Q → ∞ and
summing over j (noting the factor 2 in (46)). That is,

H =
∞∑
j=1

ln
(
1− 2e−kj cos kj + e−2kj

)
. (50)
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In this last step, we have implicitly assumed that contributions from the
remaining horizontal parts of the contour (i.e., those between the branch cuts,
and the sections joining Λ2 to the vertical edges Λ1 and Λ3) disappear as
Q→∞. In some sense this is obviously true, because the integrand decays
exponentially as the contour is moved upwards. This might just be enough
to satisfy an applied mathematician, physicist or engineer. However, the
distance between adjacent branch points is

|s±j+1 − s±j | = x
√

2π
(√

j + 1−
√
j
)
,

and this tends to zero as j is increased. This means we cannot avoid the
appearance of a singularity either on or close to the path of integration as the
contour is moved upwards, which might alarm readers of a “pure” disposition.
A rigorous proof that the horizontal sections can indeed be disregarded is
provided in the supplemental material.

Finally, we piece together all of our results by substituting (43), (45), and
(50) into (42). Recalling the definition of F from (3), we arrive at the exact
result

F (x) =
∞∑
j=1

ln
(
1− e−j

2/x2
)

= ln(2πx)− x
√
π

2
ζ
(

3
2

)
+
∞∑
j=1

ln
(

1− 2e−2
√
jπ3/2x cos

(
2
√
jπ3/2x

)
+ e−4

√
jπ3/2x

)
. (51)

All of the terms appearing here are elementary, except the Riemann zeta
function, for which we need only the single value

ζ
(

3
2

)
=
∞∑
j=1

1

j3/2
= 2.612375348685488 . . . .

The series on the right-hand side of (51) converges very rapidly for large x
and its value is negligible relative to the other two terms unless x is small.
Retaining only the leading contribution to the series results in the three-term
approximation

∞∑
j=1

ln
(
1− e−j

2/x2
)

= ln(2πx)− x
√
π

2
ζ
(

3
2

)
− 2 cos

(
2π3/2x

)
e−2π3/2x

+O
(
e−(2π)3/2x

)
, (52)
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Figure 4: The function F (x), two-term approximation (obtained by discarding
the sum from the right-hand side of (51)), and three-term approximation
(52).

verifying our earlier prediction that |H| is proportional to e−2π3/2x, and also
confirming that the error in the formula we found in Part 1 is exponentially
small. Plots of the function F (x) and the two- and three-term approximations
are shown in Figure 4, for 0.35 ≤ x ≤ 0.65. The three-term approximation is
visually indistinguishable from the exact curve for x > 0.48. All three curves
are visually indistinguishable for x > 0.65.

Transformations for some other, similar, series can be obtained directly
from (51). For example if

F2(x) =
∞∑
j=1

ln
(
1− e−(2j−1)2/x2

)
and F3(x) =

∞∑
j=1

ln
(
1 + e−j

2/x2
)
,

then (following [1]),

F (x)− F (x/2) =
∞∑
j=1

[
ln
(
1− e−j

2/x2
)
− ln

(
1− e−(2j)2/x2

)]
= F2(x),
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and
F
(√

2x
)

+ F3

(√
2x
)

= F (x).

It is noted in [1] that both F2(x) and F3(x) are approximately linear for large
x. This follows directly from (52); indeed

F2(x) ≈ ln(2)− x
√
π

4
ζ
(

3
2

)
and F3(x) ≈ − ln 2

2
+
(
2−
√

2
)x√π

4
ζ
(

3
2

)
,

with exponentially small errors in both cases.

4 Concluding remarks.
We have considered two methods for finding asymptotic expansions of series
and products that contain a large (or small) parameter. Of the two, Euler–
Maclaurin summation is perhaps slightly simpler, in that it requires fewer
exact integrations. On the other hand, the trapezoidal rule also enables
us to derive exact relationships between certain series that have opposing
convergence properties, in the sense that one series converges rapidly for small
x (say) whereas the other converges rapidly for large x.

A final remark concerns series obtained by taking logarithms of infinite
products, as in our third example. It should not be thought that the ele-
mentary exact integrations that occurred when calculating the contribution
from the left edge of the contour Λ (see (44)–(45)) were due to chance, or a
contrived (or inspired) choice of example. Since real summands satisfy the
Schwarz reflection principle (11), only the imaginary part of f contributes to
the integrals in (23). In other words, the logarithm itself disappears, leaving
only the argument, which is constant. The same phenomenon facilitated the
exact determination of the branch cut contributions at the end of Section 3.
Here the difference between the logarithms on opposite faces of the cut is
constant, and this leads to the simple integration in (49). Thus the trapezoidal
rule offers a very promising general technique for analyzing infinite products.

We leave this subject (for now at least) with a challenge. Is it possible to
obtain exact transformations of series whose summand is not an even function,
such as T (x) in (3)? The best we could do, using either the Euler–Maclaurin
formula or the trapezoid rule, is the asymptotic formula (38). Might there be
something even better?
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A daunting proof.
In achieving the exact transformation of the series

F (x) =
∞∑
j=1

ln
(
1− e−j

2/x2
)

in the main part of the article, we assumed that

lim
Q→∞

∫
Λh
2

f(s;x)

1− e−2πis
ds = 0,

where
f(s;x) = log

(
1− e−s

2/x2
)
.

The contour Λh
2 consists of the union of horizontal sections of the contour Λ2,

which joins the point s = Q(1 + i) + 1
2
to s = iQ, and is diverted around the

branch cuts of f(s;x), as shown in Figure 1.
We now present a rigorous proof that this assumption is indeed correct.

The first step is to determine a bound for the imaginary part of the complex
logarithm. Since the branch is chosen so that f(s;x) is real for positive, real
s it follows that the principal value can be used except at points separated
from the positive real axis by a branch cut or a curve on which 1− e−s

2/x2 is
real and negative. To locate these curves, we simply write s = α+ iβ, and we
easily find that

α2 − β2 < 0 and αβ = jπx2, j ∈ Z. (1)
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Figure 1: The contour Λ2, with x
√

3π > Q > x
√

2π. The dashed lines
indicate the locations of the branch cuts, and the shaded gray areas are
regions in which arg(1− e−s

2/x2) may lie outside the interval (−π, π].
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Note that α = 0 corresponds to the imaginary axis, which is never crossed.
The curves in the upper right quadrant are given by (1) with j, α, and β
all positive, and β > α. In each case, α = β corresponds to a branch point,
because here we have s = s+

j , where

s±j = x
√

2jπe±iπ/4 = x
√
jπ(1± i), j = 1, 2, . . . . (2)

A sketch of the first four curves is shown in Figure 1. Next consider the
variation in arg(1− e−s

2/x2) as s passes along Λ2, moving from right to left
and diverting around the branch cuts as illustrated in Figure 1. Before the
first cut is reached, the argument must lie in the interval (−π, π). However,
as s climbs along the left face of a branch cut, it crosses at least one of the
curves defined in (1). The number of curves crossed is bounded above by
the number of branch points s+

j whose imaginary part satisfies Im s+
j ≤ Q,

which is the integer part of Q2/(x2π). Each crossing causes the argument
to move from the interval

(
pπ, (p + 2)π

)
to either

(
(p + 2)π, (p + 4)π

)
or(

(p− 2)π, pπ
)
, for some p ∈ Z. Each curve is then crossed a second time as

s moves horizontally and then down the right face of the next branch cut.
Before reaching the next branch point, s must pass back into the unshaded
region, so that the argument is again a principal value. Assuming a worst
case scenario in which the magnitude of the argument increases monotonically
as s ascends the left face of a cut gives an upper bound of π + 2Q2/x2.

Now consider the integral along Λh
2 (the contributions from the faces of

the branch cuts have already been included, and so are not important here).
Writing s = w + iQ and

Z(w;Q) = 1− exp
[
−(w + iQ)2/x2

]
,

we find that∫
Λh
2

f(s;x)

1− e−2πis
ds = −

∫ Q+1/2

0

ln |Z(w;Q)|+ i argZ(w;Q)

1− e2π(Q−iw)
dw. (3)

Multiplying the bound for the imaginary part of the numerator by the path
length, we see that∣∣∣∣∫ Q+1/2

0

argZ(w;Q)

1− e2π(Q−iw)
dw

∣∣∣∣ <
(
π + 2(Q/x)2

)
(Q+ 1

2
)

e2πQ − 1
,

which shows that this term vanishes as Q → ∞. For the remaining term,
we note that ln |Z| is continuous in (3) unless it should happen happen that
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Q = x
√
jπ for some natural number j, in which case there is a singularity

at w = Q. However, this singularity is logarithmic and therefore integrable.
To proceed, we seek simple bounds for the magnitude of ln |Z|. This may be
achieved by replacing |Z| with a larger value or a smaller value for |Z| > 1 or
|Z| < 1, respectively. Now,

|Z(w;Q)|2 = 1 + e2(Q2−w2)/x2 − 2e(Q2−w2)/x2 cos(2Qw/x2),

and therefore(
1− e(Q2−w2)/x2

)2 ≤ |Z(w;Q)|2 ≤
(
1 + e(Q2−w2)/x2

)2
, (4)

but it is difficult to determine which bound should be used throughout the
path in (3). Clearly |Z| > 1 when e(Q2−w2)/x2 > 2, so we define

w0 =
√
Q2 − x2 ln 2;

since we are to take the limit Q → ∞, we may assume that Q2 > x2 ln 2.
Then∣∣∣∣∫ w0

0

ln |Z(w;Q)|
1− e2π(Q−iw)

dw

∣∣∣∣ ≤
√
Q2 − x2 ln 2

e2πQ − 1
ln
(
1 + eQ

2/x2
)

(5)

≤
√
Q2 − x2 ln 2

e2πQ − 1

[
Q2

x2
+ ln

(
1 + e−Q

2/x2
)]
, (6)

which vanishes as Q→∞. On the remaining part of the path, from w = w0

to w = Q+ 1
2
, we can achieve a bound on the magnitude of ln |Z| by adding

together the bounds from (4). That is, it must be the case that∣∣ln |Z(w;Q)|
∣∣ ≤ ∣∣∣ln∣∣1− e(Q2−w2)/x2

∣∣∣∣∣+ ln
(
1 + e(Q2−w2)/x2

)
.

The second term on the right-hand side has no singularities, and is maximized
by taking w = w0. The argument used in (5)–(6) can be applied to show that
its contribution to the integral vanishes in the limit Q → ∞. For the final
term, we split the path again, to resolve the modulus signs. Thus

∣∣∣ln∣∣1− e(Q2−w2)/x2
∣∣∣∣∣ =

{
− ln

(
e(Q2−w2)/x2 − 1

)
if w0 ≤ w ≤ Q,

− ln
(
1− e(Q2−w2)/x2

)
if w > Q,
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from which it follows that∣∣∣∣∫ Q+1/2

w0

ln
∣∣1− e(Q2−w2)/x2

∣∣ dw

1− e2π(Q−iw)

∣∣∣∣
≤ 1

e2πQ − 1

∣∣∣∣∫ 0

w0−Q
ln
(
e−t(t+2Q)/x2 − 1

)
dt+

∫ 1/2

0

ln
(
1− e−t(t+2Q)/x2

)
dt

∣∣∣∣.
(7)

In the first integral on the right-hand side, the exponent lies between zero
and ln 2 so that the argument to the logarithm is positive and bounded above
by 1. A simplified bound may be obtained by minimizing t+ 2Q, replacing
this with w0 + Q. We then integrate by parts to remove the singularity at
t = 0. In this way, we find that∣∣∣∣∫ 0

w0−Q
ln
(
e−t(t+2Q)/x2 − 1

)
dt

∣∣∣∣ ≤ ∣∣∣∣∫ 0

w0−Q
ln
(
e−t(w0+Q)/x2 − 1

)
dt

∣∣∣∣ (8)

≤ w0 +Q

x2

∣∣∣∣∫ 0

w0−Q

t dt

1− et(w0+Q)/x2

∣∣∣∣. (9)

Using elementary calculus, it is not difficult to show that the function r(t) =
t/(1− eat) is monotonic, and r(0) = −1/a. Since a = (w0 +Q)/x2 > 0 in (9),
we also have r(t)→ −∞ as t→ −∞. Therefore the maximum modulus of
the integrand must occur at t = w0 −Q. Multiplying the maximum modulus
by the path length and simplifying, we eventually obtain the bound∣∣∣∣∫ 0

w0−Q
ln
(
e−t(t+2Q)/x2 − 1

)
dt

∣∣∣∣ < 2(Q− w0) ln 2 =
2(x ln 2)2

w0 +Q
.

The same process can be applied to the second integral in (7). In this case
we replace t + 2Q with 2Q, and after integrating by parts, the maximum
modulus for the integrand must occur at t = 0. The final result is that∣∣∣∣∫ 1/2

0

ln
(
1− e−t(t+2Q)/x2

)
dt

∣∣∣∣ ≤ 1

2

[
1− ln

(
1− e−Q/x

2)]
.

This shows that the term in square brackets in (7) remains bounded as
Q→∞, which completes the proof.
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