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The parameter εK describes CP violation in the neutral kaon system and is one of the most
sensitive probes of new physics. The large uncertainties related to the charm-quark contribution
to εK have so far prevented a reliable standard-model prediction. We show that CKM unitarity
enforces a unique form of the |∆S=2| weak effective Lagrangian in which the short-distance theory
uncertainty of the imaginary part is dramatically reduced. The uncertainty related to the charm-
quark contribution is now at the percent level. We present the updated standard-model prediction
εK = 2.16(6)(8)(15) × 10−3, where the errors in brackets correspond to QCD short-distance and
long-distance, and parametric uncertainties, respectively.

I. INTRODUCTION

CP violation in the neutral kaon system, parameterized
by εK , is one of the most sensitive precision probes of new
physics. For decades, the large perturbative uncertainties
related to the charm-quark contributions have been an
impediment to fully exploiting the potential of εK . In
this letter we demonstrate how to overcome this obstacle.

The parameter εK can be defined as [1]

εK ≡ eiφε sinφε
1

2
arg

(−M12

Γ12

)
. (1)

Here, φε = arctan(2∆MK/∆ΓK), with ∆MK and ∆ΓK
the mass and lifetime difference of the weak eigenstates
KL and KS . M12 and Γ12 are the Hermitian and anti-
Hermitian parts of the Hamiltonian that determines the
time evolution of the neutral kaon system. The short-
distance contributions to εK are then contained in the
matrix element M12 = −〈K0|L∆S=2

f=3 |K̄0〉/(2∆MK), up to
higher powers in the operator-product expansion. Both
M12 and Γ12 depend on the phase convention of the
Cabibbo–Kobayashi–Maskawa (CKM) matrix V . The
cancellation of the phase convention in Eq. (1) is man-
ifest if we use CKM unitarity to express the effective
three-flavor |∆S=2| Lagrangian in terms of the minimal
number of independent parameters. We therefore define
the Lagrangian with manifest CKM unitarity,

L∆S=2
f=3 = −G

2
FM

2
W

4π2

1

(λ∗u)2
QS2

{
f1 C1(µ)

+ iJ [f2 C2(µ) + f3 C3(µ)]
}

+ h.c. + . . . ,

(2)

in terms of the real Wilson coefficients Ci(µ), i = 1, 2, 3,
and four real, independent, rephasing-invariant param-
eters J , f1, f2, and f3 comprising the relevant CKM

∗Joachim.Brod@uc.edu
†Martin.Gorbahn@liverpool.ac.uk
‡Emmanuel.Stamou@epfl.ch

matrix elements. Here, λi ≡ V ∗isVid. The local four-quark
operator

QS2 = (sLγµdL)⊗ (sLγ
µdL) , (3)

defined in terms of the left-handed s- and d-quark fields,
induces the |∆S = 2| transitions. The ellipsis in Eq. (2)
represents |∆S=1| operators that contribute to the disper-
sive and absorptive parts of the amplitude via non-local
insertions, as well as operators of mass dimension higher
than six [1].

The normalization factor 1/(λ∗u)2 in Eq. (2) ensures
that the resulting expression of εK in Eq. (1) is phase-
convention independent if one accordingly extracts the fac-
tor 1/λ∗u from the |∆S=1| Hamiltonian which contributes
to Γ12 via a double insertion. It is evident in this decom-
position that C1 does not contribute to εK . Moreover, the
splitting into the real and imaginary part in Eq. (2) is
unique. Explicitly, we have J = Im(VusVcbV

∗
ubV

∗
cs) and

f1 = |λu|4 + . . . , where the ellipsis denotes real terms that
are suppressed by powers of the Wolfenstein parameter λ.

By contrast, the splitting of the imaginary part among
f2 and f3 is not unique. The choice f2 = 2Re(λtλ

∗
u) and

f3 = |λu|2 is particularly convenient in the PDG phase
convention. It maps Eq. (2) to the Lagrangian

L∆S=2
f=3 = −G

2
FM

2
W

4π2

[
λ2
uC

uu
S2 (µ) + λ2

tC
tt
S2(µ)

+λuλtC
ut
S2 (µ)

]
QS2 + h.c. + . . . ,

(4)

via the relations C uu
S2 ≡ C1, C tt

S2 ≡ C2, and C ut
S2 ≡ C3,

which are obtained by applying CKM unitarity and are
valid in the PDG phase convention. This form of the
effective Lagrangian, where the coefficient of C uu

S2 is real
and thus does not contribute to εK , has been suggested in
Ref. [2] as a better way to compute the matrix elements on
the lattice in the four-flavor theory, and it was speculated
that also the perturbative part may then converge better
(see also Refs. [3, 4]). Above, we showed that this minimal
form is essentially dictated by CKM unitarity; we will
see below that, indeed, both C2 and C3 (as opposed to
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C1!) have a perfectly convergent perturbative expansion.
This can be understood qualitatively by noting that C2
and C3 induce CP violation and thus require the presence
of all three quark generations, while C1 is dominated by
low-energy degrees of freedom. See also Ref. [2] for an
argument at the amplitude level.

Traditionally, however, the effective Lagrangian has
been given in a different form [5, 6],

L∆S=2
f=3 = −G

2
FM

2
W

4π2

[
λ2
cC

cc
S2(µ) + λ2

tC
tt
S2(µ)

+λcλtC
ct
S2(µ)

]
QS2 + h.c. + . . . ,

(5)

which in the PDG phase conventions can be obtained
from Eq. (2) via the relations CccS2 ≡ C1, CctS2 ≡ 2C1 − C3,
and CttS2 ≡ C1 +C2−C3. Here C1 artificially enters all three
coefficients, which then all contribute to εK . This is unfor-
tunate because the perturbative expansion of C1 exhibits
bad convergence, as shown in Ref. [7]. Trading the short
distance uncertainty in CccS2 for the long distance uncer-
tainty in the theory prediction of Re(M12) cannot reduce
the uncertainty – see Ref. [8], where only the uncertainty
from the two-pion contribution was considered.

Clearly, Eq. (4) can be directly obtained from Eq. (2)
by the replacement λu = −λc−λt. We will refer to Eq. (5)
as “c-t unitarity” and to Eq. (4) as “u-t unitarity”. It is
customary to define the renormalization-scale-invariant

(RI) Wilson coefficients ĈijS2 ≡ CijS2(µ)b(µ), ij = cc, ct, tt,
where the scale factor b(µ) is defined, for instance, in
Refs. [6, 9]. QCD corrections are then parameterized by
the factors ηtt, ηct, and ηcc, defined in terms of the Inami–

Lim functions S(xi, xj) (see Ref. [10]) by ĈttS2 = ηttS(xt),

ĈctS2 = 2ηctS(xc, xt), and ĈccS2 = ηccS(xc). Here, we de-
fined the mass ratios xi ≡ mi(mi)

2/M2
W with mi(mi)

denoting the RI MS mass. ηtt is known at next-to-leading-
logarithmic (NLL) order in QCD, ηtt = 0.5765(65) [11],
while the other two are known at next-to-next-to-leading-
logarithmic (NNLL) order, ηct = 0.496(47) [9] and
ηcc = 1.87(76) [7].

In the same way, we define the RI Wilson coef-
ficients and the QCD correction factors for the La-

grangian in Eq. (4), namely, Ĉ tt
S2 = ηttStt(xc, xt) and

Ĉ ut
S2 = 2ηutSut(xc, xt). Using Eqs. (4) and (5) and

the unitarity relation λc = −λu − λt, it is readily
seen that the modified Inami–Lim functions are given
by Sut(xc, xt) = S(xc) − S(xc, xt) and Stt(xc, xt) =
S(xt) + S(xc) − 2S(xc, xt). The latter relation implies
that ηtt coincides in u-t and c-t unitarity up to tiny cor-
rections of order O(m2

c/M
2
W ) ∼ 10−4, which we neglect,

writing Stt(xc, xt) = Stt(xt). In what follows, we show
that ηut = 0.402(5) at NNLL, with an order-of-magnitude
smaller uncertainty than ηct and ηcc.

II. ANALYTIC RESULTS

In this section we will show that all ingredients for
the NNLL analysis with manifest CKM unitarity of the

charm contribution to εK are available in the literature.
To establish the requisite relations, we display the effective
five- and four-flavor Lagrangian using both the traditional
c-t unitarity, giving [6, 9]

Leff
f=4,5 =

− 4GF√
2

( ∑

k,l=u,c

V ∗ksVld(C+Q
kl
+ + C−Q

kl
− )− λt

∑

i=3,6

CiQi

)

− G2
FM

2
W

4π2
λ2
tCS2QS2 − 8G2

FλcλtC̃7Q̃7 + h.c. . (6)

and u-t unitarity, giving

Leff
f=4,5 =

− 4GF√
2

( ∑

k,l=u,c

V ∗ksVld(C+Q
kl
+ + C−Q

kl
− )− λt

∑

i=3,6

CiQi

)

− G2
FM

2
W

4π2
λ2
tCS2QS2 − 8G2

F(λuλt + λ2
t )C̃7Q̃7 + h.c. (7)

The Wilson coefficients in Eqs. (7) and (6) are related via

Ci = Ci , CS2 = CS2 , C̃7 = −C̃7 , (8)

where i = +,−, 3, . . . , 6. Here, Q̃7 ≡ m2
c/g

2
sQS2, with

gs the strong coupling constant, while the remaining
operators (current–current and penguin operators) are
defined in Ref. [9]. The initial conditions for all the Ci
Wilson coefficients and C̃7, up to NNLO, can be found in
Refs. [9, 11–13].

It is evident that the renormalization-group evolution
of the coefficients Ci and Ci, as well as of CS2 and CS2, is
identical. We now show that also the mixing of the Ci into
C̃7 via double insertions of dimension-six operators can
be obtained from results available in the literature. To
this end we define the following short-hand notation for
the relevant |∆S=2| matrix elements of double insertions
of local operators OA and OB ,

〈OA, OB〉 ≡
i2

2!

∫
d4xd4y〈T{OA(x)OB(y)}〉 . (9)

With the Lagrangian in Eq. (6) and using
(V ∗csVud)(V

∗
usVcd) = −λ2

c−λcλt, the anomalous dimensions

for the mixing of two Cis into C̃7 can then be obtained
from the divergent part of the amplitude

M∆S=2
double insertions

∣∣
div

(10)

∝ λ2
t (〈QP , QP 〉+ 〈Quu, Quu〉+ 2〈QP , Quu〉)

∣∣
div

−λcλt
(
2〈QP , Qcc −Quu〉+ 〈Qcc, Qcc〉 − 〈Quu, Quu〉

)∣∣
div

= λ2
t (〈QP , QP 〉+ 〈Qcc, Qcc〉+ 2〈QP , Qcc〉)

∣∣
div

+λuλt
(
2〈QP , Qcc −Quu〉+ 〈Qcc, Qcc〉 − 〈Quu, Quu〉

)∣∣
div

.

We introduced the short-hand notations QP ≡
∑6
i=3 CiQi

and Qqq
′ ≡∑i=+,− CiQ

qq′

i . In the first equality we uti-
lized the observation that the divergence of the linear com-
bination of amplitudes proportional to λ2

c vanishes [14],

(〈Qcc −Quu, Qcc −Quu〉 − 2〈Quc, Qcu〉)
∣∣
div

= 0 . (11)
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In the second equality we used, in addition, the unitarity
relation λc = −λu−λt. We see that the divergent parts of
the amplitudes proportional to λcλt and λuλt are the same
up to a sign. Therefore, the corresponding anomalous
dimensions can be extracted from existing literature. In

the notation of Ref. [9] we have γ̃
(ut)
±,7 = −γ̃(ct)

±,7 , where
the superscripts “ut” and “ct” denote the results in u-
t and c-t unitarity, respectively. All other contributing
anomalous dimensions remain unchanged.

Note that in the second equality in Eq. (10), the am-
plitudes proportional to λ2

t involve the charm-flavored
current-current operators. This is related to the appear-
ance of an initial condition of the operator Q̃7 at the weak
scale proportional to λ2

t . This charm-quark contribution
to C tt

S2 will be neglected in this work, as discussed above.
In this approximation, C tt

S2 is identical to CttS2 and can be
directly taken from the literature [11].

Also the matching of the four- onto the three-flavor ef-
fective Lagrangian at µc changes in a simple way. Picking
the coefficient of λuλt, the matching of the Lagrangian
in Eq. (7) onto the one in Eq. (4) yields the condition

∑

i,j=+,−
Ci(µc)Cj(µc)

(
2〈Qcci , Qccj 〉

− 2〈Quci , Qcuj 〉 − 2〈Quui , Qccj 〉
)

(µc) (12)

+

6∑

i=3

∑

j=+,−
Ci(µc)Cj(µc)2〈Qi, Qccj −Quuj 〉(µc)

+ C̃7(µc)〈Q̃7〉(µc) =
1

32π2
C ut

S2 (µc)〈QS2〉(µc) .

Alternatively, selecting the coefficient of λcλt, the match-
ing of the Lagrangian in Eq. (6) onto the one in Eq. (5)
yields the condition

∑

i,j=+,−
Ci(µc)Cj(µc)

(
2〈Quui , Quuj 〉

− 2〈Quci , Qcuj 〉 − 2〈Quui , Qccj 〉
)

(µc) (13)

+

6∑

i=3

∑

j=+,−
Ci(µc)Cj(µc)2〈Qi, Quuj −Qccj 〉(µc)

+ C̃7(µc)〈Q̃7〉(µc) =
1

32π2
CctS2(µc)〈QS2〉(µc) .

and for the coefficient of λ2
c yields the condition

∑

i,j=+,−
Ci(µc)Cj(µc)

(
〈Qcci −Quui , Qccj −Quuj 〉

− 2〈Quci , Qcuj 〉
)
(µc) =

1

32π2
CccS2(µc)〈QS2〉(µc) .

(14)

Recalling Eq. (8), we see that C ut
S2 = 2CccS2 − CctS2, hence

we can extract also the matching conditions from the
literature.

In order to provide the explicit expressions, we param-

eterise the operator matrix elements as:

〈Q̃7〉 = r7〈Q̃7〉(0) , 〈QS2〉 = rS2〈QS2〉(0) ,

〈QiQj〉qq
′
(µc) =

1

32π2

m2
c(µc)

M2
W

rqq
′

ij,S2〈QS2〉(0) .
(15)

Here, the superscripts qq′ = ut, ct, cc denote the specific
flavor structures appearing in the double insertions in
Eqs. (12), (13), and (14), respectively. The matching
contributions are then given in terms of the literature
results by rutij,S2 = 2rccij,S2 − rctij,S2. It is interesting to note

that, due to the presence of a large logarithm log(mc/MW )
in the function Sut(xc, xt), only the NLO result for ηcc
of Ref. [15] is required. The remaining NNLO results can
be found in Refs. [6, 9].

III. NUMERICS

In Sec. II we extracted all the necessary quantities to
evaluate the λ2

t and λuλt contributions to εK at NLL
and NNLL accuracy, respectively. Here, we discuss the
residual theory uncertainties in u-t unitarity and com-
pare them to the traditional approach of c-t unitarity.
To estimate the uncertainty from missing, higher-order
perturbative corrections we vary the unphysical thresh-
olds µt, µb, and µc in the ranges 40 GeV≤µt≤320 GeV,
2.5 GeV≤µb≤ 10 GeV, and 1 GeV≤µc≤ 2 GeV. When
varying one scale we keep the other two scales fixed at
the values of the RI mass of the fermions, µi = mi(mi)
with i = t, b, c. The central values for the η parameters
are obtained as the average between the lowest and high-
est value of the three scale variations, and their scale
uncertainty as half the difference of the two values. The
leading, but small, parametric uncertainties of αs and mc

are obtained by varying the parameters at their respective
1σ ranges. We find

ηNLL
tt = 0.55(1± 4.2%scales ± 0.1%αs) , (16)

ηNNLL
ut = 0.402(1± 1.3%scales ± 0.2%αs ± 0.2%mc) .

Apart from the tiny correction of O(m2
c/M

2
W ) ∼ 10−4

ηtt is not affected by the different choice of CKM unitarity.
The difference in the scale uncertainty with respect to
Ref. [11] is mainly due to the larger range of scale variation
chosen here. By contrast, the residual scale uncertainty
of ηut is significantly less than the corresponding one in
ηct and ηct in c-t unitarity. To illustrate this, we show in

Fig. 1 the RI invariant Wilson coefficients Ĉ ut and Ĉct

as a function of the unphysical thresholds µt (left two
panels) and µc (right two panels).

To obtain the standard-model prediction for εK we
employ the Wolfenstein parameterization [16] of the
CKM factors in Eq. (4). In the leading approxima-
tion we find Im(λ2

t ) = −2λ10A4η̄(1 − ρ̄) + O(λ12) and
Im(λuλt) = λ6A2η̄ +O(λ10). Numerically, the neglected
terms amount to sub-permil effects and can be safely
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FIG. 1: Comparison of Wilson coefficients in u-t (1st and 3rd plot) and c-t unitarity (2nd and 4th plot). Shown is the residual
renormalization-scale dependence of the RI Wilson coefficients as a proxy for their theory uncertainty. In the two plots on the
left the five-flavour threshold, µt, is varied, while in the two on the right the three-flavour threshold, µc, is varied (see text for
further details).

neglected. Therefore, we can use the phenomenological
expression (cf. Refs. [5, 17, 18])

|εK | =κεCεB̂K |Vcb|2λ2η̄ (17)

×
(
|Vcb|2(1− ρ̄)ηttStt(xt)− ηutSut(xc, xt)

)
,

where Cε = (G2
FF

2
KMK0M2

W )/(6
√

2π2∆MK). We
write η̄ = Rt sinβ and 1 − ρ̄ = Rt cosβ, with
Rt ≈ (ξs/λ)

√
MBs/MBd

√
∆Md/∆Ms. Here, ξs =

(FBs

√
B̂s)/(FBd

√
B̂d) = 1.206(17) is a ratio of B-meson

decay constants and bag factors that is computed on
the lattice [19]. The kaon bag parameter is given by

B̂K = 0.7625(97) [19]. The phenomenological parameter
κε = 0.94(2) [18] comprises long-distance contributions
not included in BK . As input for the top-quark mass we
use the MS mass mt(mt) = 163.48(86) GeV. We obtain it
by converting the pole mass Mt = 173.1(9) GeV [16] to
MS at three-loop accuracy using RunDec [20]. All remain-
ing numerical input is taken from Ref. [16], in particular
the CKM input used is λ = 0.2243(5), |Vcb| = 0.0422(8),
and sin 2β = 0.691(17).

Using the η values in Eq. (16) and adding errors in
quadrature we find the standard-model prediction

|εK | =
(
2.161± 0.140Vcb ± 0.061param. ± 0.064ηtt

± 0.008ηut ± 0.027B̂K ± 0.052ξs ± 0.046κε
)
× 10−3 ,

=
(
2.161± 0.153param.+Vcb

± 0.076non-pert. ± 0.065pert.

)
× 10−3 ,

= 2.16(18)× 10−3 . (18)

We see that the perturbative uncertainty (∼ 3.0%) is
now of the same order as the combined non-perturbative
one (∼ 3.5%), while the dominant uncertainties origi-
nate from the parametric, experimental uncertainties
(∼7.1%). Moreover, the dominant perturbative uncer-
tainty no longer originates from ηct but from the top-
quark contribution, ηtt. Note that using the exclusive

determination |Vcb,excl| = 0.0403(8) [21] and the lattice
value κε = 0.923(6) [22] we find εK = 1.81(14)× 10−3 in
tension with the experimental measurement [23].

IV. DISCUSSION AND CONCLUSIONS

In this letter, we showed that a manifest implementation
of CKM unitarity in the effective |∆S=2| Hamiltonian
dramatically improves the convergence behaviour of the
perturbative series for its imaginary part, by removing
a spurious long-distance charm-quark contribution. In
this way, and using only known results in the literature,
we reduced the residual uncertainty of the short-distance
charm-quark contribution to the weak Hamiltonian by
more than an order of magnitude. The perturbative
uncertainty is now dominated by the missing NNLO cor-
rections to the top-quark contribution, as well as partially
known electroweak corrections at the percent level (see
Refs. [24–26]). The calculation of these corrections [27]
has the potential to bring the perturbative uncertainty
of εK down to the percent level, motivating a renewed
effort to compute long-distance effects using lattice QCD.
Our analysis reinforces the role of εK in global CKM fits
as the most important test of the SM among the kaon
FCNC processes.

By contrast, the real part of the |∆S=2| Hamiltonian
is dominated by up- and charm-quark contributions, and
their convergence is not improved. Hence, the calculation
of these contributions is a genuine task for lattice QCD, to
which a significant effort is devoted [2, 28, 29]. However,
our results have the potential to supply useful cross checks
for part of these calculations: By performing the matching
to the hadronic matrix elements for εK above the charm-
quark threshold we can obtain a prediction of these matrix
elements that can be directly compared to a future lattice
calculation. This could shed additional light onto the
lattice calculation of the kaon mass difference.
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