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Abstract: The identification of modal properties from field testing of civil engineering structures 
is becoming economically viable, thanks to the advent of modern sensor and data acquisition 
technology. Its demand is driven by innovative structural designs and increased performance 
requirements of dynamic-prone structures that call for a close cross-checking or monitoring of 
their dynamic properties and responses. Existing instrumentation capabilities and modal 
identification techniques allow structures to be tested under free vibration, forced vibration 
(known input) or ambient vibration (unknown broadband loading). These tests can be considered 
complementary rather than competing as they are based on different modeling assumptions in the 
identification model and have different implications on costs and benefits. Uncertainty arises 
naturally in the dynamic testing of structures due to measurement noise, sensor alignment error, 
modeling error, etc. This is especially relevant in field vibration tests because the test condition 
in the field environment can hardly be controlled. In this work, a Bayesian statistical approach is 
developed for modal identification using the free vibration response of structures. A frequency 
domain formulation is proposed that makes statistical inference based on the Fast Fourier 
Transform (FFT) of the data in a selected frequency band. This significantly simplifies the 
identification model because only the modes dominating the frequency band need to be included. 
It also legitimately ignores the information in the excluded frequency bands that are either 
irrelevant or difficult to model, thereby significantly reducing modeling error risk. The posterior 
probability density function (PDF) of the modal parameters is derived rigorously from modeling 
assumptions and Bayesian probability logic. Computational difficulties associated with 
calculating the posterior statistics, including the most probable value (MPV) and the posterior 
covariance matrix, are addressed. Fast computational algorithms for determining the MPV are 
proposed so that the method can be practically implemented. In the companion paper (Part II), 
analytical formulae are derived for the posterior covariance matrix so that it can be evaluated 
without resorting to finite difference method. The proposed method is verified using synthetic 
data. It is also applied to modal identification of full-scale field structures.      
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1. Introduction 

Modern sensor and data acquisition technology have allowed structural responses to be 

practically measured with reasonable quality. The vibration data of an as-built structure can be 

used for identifying its ‘modal properties’, which primarily consist of the natural frequencies, 

damping ratios and mode shapes. The modal properties are indispensable for structural health 

monitoring, model updating and damage detection [1][2][3]. Three types of tests are commonly 

performed for obtaining vibration data for modal identification. In an ambient vibration test, 

vibration data is obtained when the structure is in its working condition without artificial loading 

[4][5][6]. The input ambient loading arising from the environment and operational activities is 

not measured but is assumed to be broadband random. Economy is a significant advantage, 

although the signal-to-noise (s/n) ratio and hence the identification possibility/quality cannot be 

directly controlled. In a forced vibration test, artificial known excitation is applied to the 

structure [7][8][9][10]. The vibration level and hence the s/n ratio can be directly controlled and 

enhanced significantly. It is often more expensive because special equipment such as a high-

payload shaker is needed and greater risk management is required. In a free vibration test, 

vibration data is obtained when the structure is dominantly under free vibration. Although it still 

requires artificial excitation to initiate vibration of the structure to an adequate level, such 

excitation need not be measured and so it allows greater flexibility and puts less demand on 

equipment. 

Many modal identification approaches using free vibration data have been developed. The 

Ibrahim time domain method (ITD) makes use of generalized eigenvalue decomposition 

[11][12][13]. It was originally developed for displacement response data but later generalized for 

velocity and acceleration data through a state-space formulation [11][13]. The complex 

exponential method makes use of singular value decomposition [14]. The least square method is 

conceptually straightforward and it identifies the set of modal parameters as the one that 

minimizes a measure of fit between the theoretical and measured response in a least square sense 

[15][16].   

Proper orthogonal decomposition or the so-called Karhunen Loeve decomposition was used for 

statistical analysis of free vibration response data and identifying the mode shape vectors [17]. It 



3 
 

was later applied to response data under free vibration and harmonic excitations [18]. It was also 

applied to obtain proper orthogonal modes under proportionality assumption on the mass matrix 

[19]. The constraint was later removed, leading to the method MAFVFO (Modal Analysis by 

using Free Vibration Response Only) [20]. Based on the measured data, other kinematic 

quantities (e.g., displacement, velocity, acceleration) consistent with the data are determined by 

numerical differentiation/integration and are subsequently used for modal identification. The 

method is applicable for discrete and continuous mass systems and it has been extended to treat 

non-proportional damping [21]. 

Methods based on wavelet transforms have also been developed. Discrete wavelet transform 

(DWT) was combined with the Hilbert transform to determine the natural frequencies and 

damping ratios of a structure [22]. It was later extended to analyze free vibration response and 

earthquake response, where the equations of motion were determined by DWT to identify the 

modal parameters corresponding to different kinds of mother wavelet functions [23]. One 

drawback of DWT is its computational inefficiency. In view of this, methods based on 

continuous wave transform (CWT) were developed for modal identification based on the 

modulus and phase of the transform [24][25][26]. The Hilbert–Huang transformation [27], a 

general method for analyzing nonlinear and non-stationary signal analysis, has also been applied 

to modal identification with free vibration data for linear and nonlinear systems [28][29].  

Despite the abundance of the aforementioned methods, they are based on empirical statistical 

proxies (e.g., correlation functions) for identification and they do not account for the 

identification uncertainty of the modal parameters. The former implies that the method may not 

have utilized all information in the data for identification. The latter is especially relevant for 

field vibration data as there is less control on the test condition compared to laboratory data. In 

free vibration field tests, the measured data mainly consists of three parts: free vibration response, 

measurement noise and ambient vibration response. Existing identification methods often 

assume that the first two components dominate the measured data and ignore the effect of the last 

component. In reality, arising from the measurement noise and ambient component, the 

measured data exhibits a variety of spectral characteristics over its sampling bandwidth (i.e., up 

to the Nyquist frequency), many of which are irrelevant to the modes to be identified or are 

difficult to model. These issues call for a careful choice of assumptions in the identification 



4 
 

model and a fundamental formulation to account for uncertainty. Otherwise it may lead to 

significant bias or conclusions inconsistent with structural dynamics. 

In this work, a Bayesian statistical method based on the Fast Fourier Transform (FFT) of free 

vibration data is developed. It exploits the statistical properties of the FFT data to construct a 

posterior probability density function (PDF), providing a fundamental means for identifying the 

modal parameters as well as their uncertainty consistent with probability logic and modeling 

assumptions. As is common in Bayesian methods, computational difficulties are encountered 

when determining the posterior MPV and the associated covariance matrix. From first principles, 

determining the MPV requires solving a numerical optimization problem whose dimension 

grows linearly with the number of measured degrees of freedom (dofs). In view of this, 

computational strategies are developed by exploiting the mathematical structure of the problem 

in well-separated and closely-spaced mode situations. In the companion paper, the posterior 

covariance matrix of the modal parameters is investigated, where closed-form analytical 

expressions are derived for evaluation without resorting to finite difference method. Examples 

with synthetic data are also provided to verify the proposed theory. Field test data are used to 

illustrate the practical application of the method. 

2. Bayesian FFT modal identification 

Consider a structure initially excited by some artificial means and then left to vibrate ‘freely’. 

The measured (acceleration) data ),...,1( NjRn
j =∈y  during the free vibration phase generally 

consists of free vibration response jfx  due to the initial artificial excitation, ambient vibration 

response jax  due to unknown environmental disturbance and prediction error jε :  

 jjjj εxxy ++= af   (1)  

where N  is the number of sampling points; n  is the number of measured dofs. The prediction 

error accounts for the discrepancy between the measured response and the (theoretical) model 

response for given modal parameters. The FFT of jy is defined as 
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where  12 −=i ; t∆ is the sampling interval. For qNk ,...,3,2= , the FFT corresponds to frequency 

tNkk Δ/)1(f −= , with qN  being the frequency index at the Nyquist frequency, and equal to the 

integer part of 12/ +N . Let  

 n
kkk R 2]Im;[Re ∈= FFZ    (3) 

be an augmented vector of the real and imaginary parts of the FFT. In practice, only the FFT data 

confined to a selected frequency band dominated by the target mode(s) are used for statistical 

inference. Such FFT data are denoted by }{ kZ . 

Let θ denote the set of modal parameters to be identified, which includes four groups of 

parameters. The first group is },...,1:)(,,{ miif ii =Φζ , where if  and iζ  denote the natural 

frequency and damping ratio of the i -th mode, respectively; nRi ∈)(Φ  is the i -th mode shape 

vector confined to the measured dofs n ; m  is the number of modes to be identified. The second 

group is },...,1:,{ mivu ii = , where iu  and iv  are the initial acceleration and its derivative of the 

i -th modal free vibration response, respectively. The third group is mmR ×∈S , the (Hermitian) 

power spectral density (PSD) matrix of modal forces of ambient vibration response. The fourth 

one is eS , the PSD of prediction error (assuming independent and identically distributed channel 

noise). The ambient modal force and the prediction error are assumed to have a constant PSD in 

the selected frequency band. Note that in the ambient modal identification, the input excitation is 

usually assumed to be white noise, which corresponds to a constant PSD of modal force for all 

frequencies up to Nyquist frequency. In the proposed method, only the PSD is assumed constant 

in the resonance band of the mode only, which is often narrow. This assumption is less stringent 

and hence more robust. For the prediction error, since it mainly comes from measurement noise 

or modelling error, it is reasonable to be assumed as independent and identically distributed 

(i.i.d.) Gaussian white noise. The assumption for PSD of modal force and PSD of prediction 

error can also be referred to [30][31]. 

Using Bayes’ Theorem, the posterior PDF of θ  given the data is given by: 

 )|}({)(}){|( θZθZθ kk ppp ∝  (4) 
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where )(θp is the prior PDF that reflects the plausibility of θ  in the absence of data. Assuming a 

constant prior PDF (i.e., uninformative), the posterior PDF }){|( kp Zθ is directly proportional to 

the ‘likelihood function’ )|}({ θZkp .  

The likelihood function can be derived based on the following observations. First note that for a 

given θ  the free vibration response )(f θx j  can be determined and hence is fixed. It then follows 

from (1) that the difference )(f θxy jj  −  is distributed as the ambient vibration response with 

prediction error, whose statistical properties have been respectively specified by S  and eS  

(contained in θ ). For a given θ  the difference )(f θxy jj  −  is then a zero-mean stationary 

stochastic process, where for large N  its FFTs at different frequency indices are asymptotically 

independent and jointly Gaussian [32]. Their covariance matrix can also be derived analytically 

using random vibration theory, giving a closed-form expression in terms of the modal properties. 

In summary, for a given θ , }{ kZ  are independent and jointly Gaussian. Each kZ  has mean 

n
k R 2)( ∈θμ  given by the FFT of free vibration response and covariance matrix nn

k R 22)( ×∈θC  

given by the ambient response and prediction error. Consequently, the likelihood function is 

given by:  

 
)]}()[()]([

2
1exp{))((det)2()|}({ 12/1 θμZθCθμZθCθZ kkk

T
kk

k
k

n
kp −−−= −−−∏ π  (5)      

where det(.)  denotes the determinant; ]|[E)( θZθμ kk =  with ]|[E θ⋅ denoting the conditional 

expectation for a given θ ; )(θCk  is the covariance matrix of kZ [33]:  
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Here, mnRm ×∈= )](),...,2(),1([ ΦΦΦΦ  is the mode shape matrix; nn
n R 22

2
×∈I denotes the 

identity matrix; mm
k C ×∈H  is a transfer matrix whose ( i , j ) element is given by  

 1212 ]2)1[(]2)1[(),( −− −−+−= jkjjkikiikijk Sji βζββζβ iiH    (7) 
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where ijS is the ( i , j ) element of the PSD matrix of modal force S  due to ambient excitation; 

kiik f f/=β ; kf is the FFT frequency abscissa. 

The expression for )(θμ k  can be derived as follows. The acceleration of free vibration response 

is given by 

 ∑
=

=
m

i
fi tit

1
f )()()( η Φx  (8) 

where )(tfiη  is the i -th modal acceleration of free vibration response satisfying: 

 0)()(2)( 2 =++ ttt fiifiiifi ηωηωζη   (9) 

and iζ  is the damping ratio; ii fπω 2=  is the natural frequency (in rad/s) of  the i -th mode. 

Differentiating (9) twice gives again a homogeneous second-order differential equation of the 

variable )()( ttz fii η= , solving which yields 

 )()()( 21 tgvtgut iiiifi +=η  (10) 

where )0(fiiu η=  and )0(fiiv η= ; 

 )sin
1

(cos)(
21 ttetg di

i

i
di

t
i

ii ω
ζ

ζ
ωωζ

−
+= −

 (11) 

 tetg di
di

t

i

ii

ω
ω

ωζ

sin)(2

−

=  (12) 

and 21 iidi ζωω −= . Note that ig1  is the familiar single dof free vibration response with unit 

initial displacement and zero velocity; ig2 is the one with zero initial displacement and unit 
velocity. 

Substituting  (10) into (8) gives: 

 [ ]∑
=

+=
m

i
iiii tgvtguit

1
21f )()()()( Φx  (13) 
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For a given θ ,  )(θμ k  can then be obtained as an augmented vector of the real and imaginary 

parts of the FFT of  fx . Note that ig1 and ig2  depend on θ  through the natural frequency and 

damping ratio. The parameters iu and iv  specify the initial conditions of the free vibration 

component of the modal response only. They do not completely specify the initial conditions of 

the total modal response because the latter contains ambient vibration components which are 

unknown. 

To determine the MPV of the modal parameters, the likelihood function in (5) should be 

maximized. This is equivalent to minimizing the ‘negative log-likelihood function’ (NLLF): 

 [ ] [ ])()()(
2
1)(detln

2
1ln2ln

)|}({ln)(

1 θμZθCθμZθC

θZθ

kkk
T

k
kk

k
kff

k

nNnN

pL

−−+++=

−=

−∑∑π  (14) 

Direct numerical minimization of the NLLF is infeasible for two basic reasons [34]. First, )(θCk  

in (6) is close to being rank deficient (especially for good quality data) because it is dominated 

by the first term whose rank is at most 2m. Second, and more importantly, the number of 

parameters to be optimized, which is equal to the number of modal parameters in θ , can be quite 

large in applications. Specifically, taking into account the Hermitian nature of the PSD matrix of 

modal force S , the number of parameters in θ  is equal to  

 14 2 +++= mmnmn p  (15)  

The growth of pn  with the number of measured dofs n  is a major issue because the latter can be 

moderate to large in applications. For example, measuring tri-axially six locations and 

identifying two modes in a band gives 18=n , 2=m  and 49=pn . The growth of pn  with the 

number of modes m  is a secondary issue because m  only needs to include the modes in the 

selected frequency band, i.e., closely-spaced modes, which rarely exceeds three. 

In the remainder of this paper, we shall develop efficient methods for determining the MPV of 

the modal parameters. The development is separated into two cases, namely, well-separated 

modes and general multiple (possibly closely-spaced) modes. In the first case it is possible to 

obtain an analytical solution for the most probable mode shape, which in turn allows a very fast 
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iterative procedure. The case of general multiple modes (i.e., second case) is more complicated 

and it has not been possible to obtain an analytical solution for the most probable mode shape. 

To explore fast solutions, we consider the case when the ambient vibration component can be 

ignored (but measurement noise is still present). It turns out that in this case, the most probable 

mode shape can be determined analytically, which again results in an efficient algorithm for 

Bayesian modal identification. 

Note that the methods proposed are the extension of the work in [34]. As mentioned, in reality, 

the measured free vibration response consists of free vibration and ambient vibration responses. 

Since the free vibration response can be determined given modal parameters and is fixed, the 

difference between measured response and free vibration response will be distributed as the 

ambient vibration response with prediction error, based on which, a similar likelihood function 

can be constructed as shown in equation (14).  

3. Well-separated modes  

For well-separated modes, one can select a frequency band that is determined by a single mode 

of interest, so that m=1. In this case, the set of modal parameters θ  consists of the natural 

frequency f , damping ratio ζ ,  mode shape vector nR∈φ , PSD of modal force S , PSD of 

prediction error eS  and the initial modal acceleration u  and its derivative v . For simplicity in 

notation, we have dropped the mode index. 

3.1. Reformulation of  NLLF  

We reformulate the NLLF in (14)  in order to facilitate deriving the most probable mode shape, 

the MPV of initial modal acceleration u  and its derivative v . The idea is to rewrite the NLLF as 

a quadratic form of the mode shape vector φ . Note that φ  affects nn
k R 22)( ×∈θC  and 

n
k R2)( ∈θμ . Using eigenvector decomposition, the determinant and inverse of )(θCk   have 

been shown to be [34]:  

 22 ])1/[(2)(det n
eek

n
k SSSD += −θC  (16) 
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where 

 1222 ])2()1[(),( −+−= kkk fD ζββζ  (18)   

and kk f f/=β . On the other hand, taking FFT on (13) and noting that the LHS is just )(θμ k  

gives 

 n

k

k
k R

b
b 2

I

R)( ∈







=

φ
φ

θμ  (19)  

where kbR  and kbI denote the real and imaginary parts of kb , respectively; kb  is the FFT of the 

modal free vibration acceleration and is equal to 

 ∑
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−−
−+

∆
=
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j
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1

21 ])1)(1(2exp[)]()([2 iπ       ),...,1( Nk =  (20)  

Here, 1g  and 2g  are given by (11) and (12) , respectively, with the mode index ‘ i ’ omitted. 

Substituting (16), (17) and (19)  into (14) and using 1=φφT  gives, after algebra,  

])ImRe)(1(2))(1([

)ln(ln)1(ln)(

IR
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I
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where
 

 1)/1( −+= kek SDSa  (22)                 

 ∑ +=
k

k
T

kk
T

kd )ImImRe(Re FFFF  (23)      

 ∑ +=
k

T
kk

T
kkka )ImImRe(Re FFFFA  (24)     

The MPV of modal parameters minimizes the NLLF in (21) subject to the unit norm constraint: 
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 1=φφT  (25) 

To incorporate this constraint, we consider the following objective function when determining 

the MPV of modal parameters: 

 )1()()( −+= φφθθ TλLJ  (26) 

where λ  is a Lagrange multiplier .  

The significance of (21) is that it is a quadratic form of φ . This allows the MPV of φ  to be 
determined analytically, as shown next. 

3.2. Partial analytical solution for mode shape φ  

Differentiating J  with respect to φ  and setting it equal to zero yields 

 φqAφ λeS=+  (27) 

where  

 ∑ +−=
k

kkkkk bba )ImRe)(1( IR FFq  (28)  

Here, (25) and (27) form a ‘constrained eigenvalue problem’. It can be solved by defining an 

auxiliary vector which satisfies a standard eigenvalue problem [35][36][37] (details omitted 

here). As a result, the MPV of  φ  can be obtained as the upper half of the eigenvector 

(normalized to have unit norm) with the largest eigenvalue of the matrix nnR 22 ×∈G : 

 







=

AI
qqA

G
n

T

 (29) 

3.3. Partial analytical solutions for  u  and v  

According to the definition of kb  in (20), it can be rewritten in terms of u  and v  

 kkk vgugb 21 +=  (30) 

where  
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−
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j
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22 ])1)(1(2exp[)(2 iπ         ),...,1( Nk =  (32) 

are the FFT of 1g and 2g , respectively. 
 
Note that kg1  and kg2 are complex numbers. They can be expressed as 

 I
1

R
11 kkk ggg i+=  (33) 

 I
2

R
22 kkk ggg i+=  (34) 

where R
1kg , I

1kg , R
2kg and I

2kg are all real numbers. Then 

  R
2

R
1R Re kkkk vgugbb +==   (35) 

 I
2

I
1I Im kkkk vgugbb +==  (36) 

Substituting (35) and (36) into (21), differentiating with respect to u  and setting it equal to zero 

gives 
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      (37)                                                                                                                                                                                                                                                                                                                                                                                                                 

A similar operation for v  gives 
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 (38)                                                                                                                                                                                                                                                                                                                            

Solving (37) and (38) simultaneously for u  and v  gives their MPVs 
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where  
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k

kkkkk
T ggac )ImRe)(1( I

2
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223 FFφ  (45) 

Thus, the MPV of u  and v  can be expressed in terms of the remaining modal parameters to be 

identified. During numerical optimization these two quantities can be obtained once other modal 

parameters are optimized. 

3.4. Low channel noise approximation 

Before we present the algorithm for calculating the MPV of modal parameters we study the 

asymptotic behavior of the MPV when the channel noise is small, in the sense that 1/ <<ke SDS . 

It turns out that in this case closed-form expressions for the MPV are available for some of the 

modal parameters. These can be used as initial guesses for the fast algorithm to be presented in 

the next subsection. 

When 1/ <<ke SDS , we have  

 kek SDSa /1~ −  (46)  

 ∑ −−−
k

kke DSS DAA 11
0~  (47) 
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where  

 ∑=
k

kDA 0   (48) 

 T
kk

T
kkk FFFF ImImReRe +=D  (49)  

We first investigate the asymptotic behavior of the mode shape. Note from (28) that 

 ∑ +−−

k
kkkkke bbDSS )ImRe(~ IR

11 FFq  (50) 

This shows that the term Tqq  in the expression of G  in (29) is O( 2
eS ). As a result, G  is 

dominated by the diagonal blocks and is thus asymptotically block-diagonal, i.e.,  

 








0

0~
A

A
G  (51) 

This implies that the most probable mode shape will be asymptotically equal to the eigenvector 

of 0A  with the largest eigenvalue.  

To investigate the asymptotic MPV of eS , we apply the approximations in (46) and (47) to the 

NLLF in (21) . This gives, to the leading order,  

 e
T

eef SdSSNnL on  dependnot  do that terms)(ln)1(~ 0
1 +−+− − φAφ  (52) 

As the form xbxa /ln +  has a unique minimum at abx /= , the asymptotic MPV of eS  is given 

by 

 
f

T

e Nn
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)1(
~ˆ 0

−
− φAφ

 (53) 

Similarly, for S , we note that  

 
S
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)]ImRe(2[ln~ IR
2
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2
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+−+++ ∑ −− FFφφDφ
 (54) 

This yields the asymptotic MPV of S  as 
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When calculating kbR and kbI , the initial conditions u  and v  are indispensable. Applying the 

approximations in (46) , (41) to (45) can be written as 

 ∑ +−−

k
kkke ggDSSc ])()[(~ 2I

1
2R

1
11

11  (56) 

 ∑ += −−

k
kkkkke ggggDSScc )(~ I

2
I
1

R
2

R
1

11
2112  (57) 

 ∑ +−−

k
kkkkk

T
e ggDSSc )ImRe(~ I

1
R
1

11
13 FFφ  (58) 

 ∑ +−−

k
kkke ggDSSc ])()[(~ 2I

2
2R

2
11

22  (59) 

 ∑ +−−

k
kkkkk

T
e ggDSSc )ImRe(~ I

2
R
2

11
23 FFφ  (60) 

Substituting (56) to (60) into (39) and (40), after algebra, the asymptotic MPV û  and v̂  can be 

determined. The solution does not depend on S  or eS , because the factor 1−SSe  appears in all 

)3,2,1;2,1( == jicij  and so will be cancelled out in (39) and (40). 

Some comments regarding the asymptotic expressions are in order. The asymptotic MPV for φ  

depends only on the data and so it can be calculated directly from the data. The same is also true 

for eS . Interestingly, the asymptotic MPV of φ  and eS  are calculated in the same manner as 

their counterparts in ambient vibration test [34], although now the data also contains free 

vibration response. For S , u  and v , their expressions depend on the natural frequency and 

damping ratio.  

3.5. Fast algorithm 

The analytical MPVs of the mode shape and initial conditions in Sections 3.2 and 3.3 reduce 

substantially the number of variables to be numerically optimized in the MPV identification. The 

algorithm for obtaining the MPV of the modal parameters for a single mode in the selected 

frequency band is presented as follows. Recall that the modal parameters include the natural 
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frequency f , damping ratio ζ , mode shape φ , PSD of modal force S , PSD of prediction error 

eS , and initial conditions u  and v . 

The initial guess for the natural frequency can be picked from the spectrum calculated based on 

the data. The initial guess for the damping ratio may be nominally taken as 1% (say). The initial 

guesses for the remaining parameters can be taken as the low channel noise approximations 

presented in Section 3.4. With these initial guesses, the MPV of },,,{ eSSf ζ  can be determined 

by numerically minimizing the NLLF in (21) under the norm constraint 1=φφT . During 

minimization, u  and v  should be evaluated at their analytical MPVs in (39) and (40), 

respectively (it is suggested that they are evaluated inside the objective function in the 

optimization for easy convergence); φ  should be evaluated at its analytical MPV, being equal to 

the first half of the eigenvector (normalized with unit norm) with the largest eigenvalue of G  in 

(29). Upon convergence the MPV of φ  can be evaluated at the MPV of },,,,,{ vuSSf eζ . The 

flowchart of the method can be seen in Figure 1. 

4. General multiple modes 

For general multiple modes within the selected frequency band, closed-form analytical 

expression for the most probable mode shape has not been found. In fact, even in the case of 

ambient vibration data the fast algorithm developed so far is iterative [33]. Instead of developing 

an iterative procedure that is likely to be a cascaded and more complicated version of [33], we 

consider the case when the ambient vibration contribution in the data can be ignored. In this case 

we have been able to obtain a closed-form solution for the mode shape, leading to a fast 

algorithm for general multiple modes.  

Significant simplification results when the ambient vibration response ajx  in (1) is ignored. In 

the Bayesian identification framework this corresponds to setting the PSD matrix of modal force 

to be a zero matrix, i.e.,  

 0S =  (61) 

In this case, the matrix )(θCk  in (6) reduces to 
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 n
e

k
S

22
)( IθC =  (62) 

and the NLLF in (14) reduces to  

 ∑ −−++= −

k
kk

T
kkeeff SSnNnNL )]([)]([lnln)( 1 θμZθμZθ π  (63) 

We next write the summand in terms of the (complex-valued) FFT vector n
k C∈F  instead of the 

augmented vector n
kkk R 2]Im;[Re ∈= FFZ  as it is found to simplify algebra: 

 ∑ −−++= −

k
kkkkeeff SSnNnNL )](~[)](~[lnln)( *1 θθθ FFFFπ  (64) 

where ‘*’ denotes the complex conjugate transpose; )(~ θkF denotes the FFT of the theoretical free 

vibration acceleration fx in (13). 

In view of the mathematical structure of the NLLF, we separate the set of modal parameters into 

eS  and the remaining parameters };,...,1:,,,{' Φθ mivuf iiii == ζ . 

The NLLF can then be written as 

 )'(lnln),'( 1 θθ JSSnNnNSL eeffe
−++= π  (65) 

where 

 ∑ −−=
k

kkkkJ )]'(~[)]'(~[)'( * θθθ FFFF  (66) 

Direct minimization of ),'( eSL θ  with respect to eS  yields its MPV as 

 
f

e nN
JS )'(ˆ θ

=  (67) 

This equation shows that the MPV of eS  can be calculated when the MPV of other modal 

parameters are known. On the other hand, as ),'( eSL θ  depends on 'θ  only through )'(θJ , it can 

be easily seen from (65) that the derivative of ),'( eSL θ  with respect to 'θ  is equal to that of 

)'(θJ  multiplied by 1−
eS . This means that the MPV of 'θ  can be obtained by minimizing )'(θJ  

regardless of eS .  
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4.1. Most probable value for }  ;,...,1:,,,{ Φmivuf iiii =ζ  

As usual, the dependence of the )'(θJ  and hence the NLLF on if  or iζ  is implicitly nonlinear 

and so their MPV often need to be found by brute-force numerical optimization. However, it 

turns out that it is possible to obtain partial analytical solutions for the MPV of },{ ii vu  and Φ . 

This can be done by combining the initial condition and normalized mode shape into an 

unconstrained vector. The details are as follows. 

Let iu  and iv  be parameterized as  

 iii cu αsin=  (68) 

  iii cv αcos=  (69) 

Note that ic  and iα  can be easily recovered from iu  and iv : 

 22
iii vuc +=  (70) 

 
i

i
i v

u1tan −=α  (71) 

On the other hand, let 

 n
ic Rici ∈= )()( ΦΦ  (72) 

Since the norm of )(iΦ is equal to 1, i.e., 1)( =iΦ , ic ci =)(Φ  and so )(icΦ  is unconstrained. 

In terms of )(icΦ , )'(~ θkF  can be represented as 

 ∑
=

=
m

i
cikk ib

1
)()'(~ ΦθF  (73) 

where 

 ∑
=

−−
−+

∆
=

N

j
ijiijiik N

jktgtg
N

tb
1

21 ])1)(1(2exp[]cos)(sin)([2 iπαα   ),...,1( Nk =  (74) 

is a normalized counterpart of ikb (defined in (20) with the mode index ‘ i ’ added). 

Using the representation of )'(~ θkF  in (73), the set of modal parameters becomes 

 }  ;...1:, ,{' mn
ciii R,m, if ×∈== Φθ αζ  (75) 
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and there is no longer any constraint.  

We next derive an analytical solution for the MPV of )(icΦ  ),...,1( mi =  so that eventually only 

the remaining parameters }...1:, ,{ ,m, if iii =αζ  need to be numerically optimized.  

To facilitate derivation of the most probable mode shapes, we re-write (73) in a compact form: 

 :))((
)(

)1(
],...,[)'(~

1 cnk

c

c

nmknkk

m
bb ΦIb

Φ

Φ
IIθ ⊗=
















= F  (76) 

where 

 ],...,[ 1 mkkk bb=b  (77) 

is a complex 1-by-m row vector; ‘⊗ ’ denotes the Kronecker product; nm
c R∈:)(Φ  denotes the 

‘vectorization’ of mn
ccc Rm ×∈= )](),...,1([ ΦΦΦ  formed by stacking column-wise its columns, 

i.e.,  

 















=

)(

)1(
:)(

mc

c

c

Φ

Φ
Φ   (78) 

Substituting  (76) into (66) gives a quadratic form in :)( cΦ :   

 ∑+−=
k

kkiii
T

cciii
T

c ffJ FF *
21 }),,({:)(2:)})(,,({:)()'( αζαζ QΦΦQΦθ  (79) 

where  

 
mnmn

n
k

kkiii Rf ×∈⊗= ∑ IbbQ ])Re([}),,({ *
1 αζ  (80) 

 ∑∑ ∈⊗=⊗=
k

mn
kkknk

k
iii Rf )Re(])(Re[}),,({ **

2 FF bIbQ αζ  (81) 

As a standard result in linear algebra, minimizing the quadratic form in (79) with respect to 

:)( cΦ  yields the most probable mode shape in vectorized form: 

 }),,({}),,({:)ˆ( 2
1

1 iiiiiic ff αζαζ QQΦ −=  (82) 
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Note that 1Q  and 2Q  depend on },,{ iiif αζ  and so will :)ˆ( cΦ  in (82).  

After the MPV of :)( cΦ  has been obtained, the MPV of ic  can be determined as 

  )(ˆˆ ic ci Φ=    ),...,1( mi =  (83) 

The most probable mode shape normalized to unity is given by  

  )(ˆ)(ˆ)(ˆ 1
iii cc ΦΦΦ

−
=   ),...,1 ( mi =  (84) 

Evaluating )'(θJ  at the most probable mode shape :)ˆ( cΦ  gives a function in terms of only 

},,{ iiif αζ , which can be further minimized to yield their MPVs: 

 }),,({}),,({}),,({)(}),,({ 2
1

12
*

iiiiii
T

iii
k

kkiii ffffJ αζαζαζαζ QQQ −−= ∑ FF  (85) 

where the dependence of 1Q  and 2Q  on },,{ iiif αζ  have been emphasized. Note that the first 

term on the RHS of (85) is a constant, and so it need not be calculated during numerical 

optimization. The number of parameters that need to be optimized is only m3 , which does not 

depend on the number of measured dofs n .  

4.2. Fast algorithm 

The algorithm for obtaining the MPV of modal parameters for general multiple modes in the 

selected frequency band (ignoring ambient vibration in the identification model) is presented as 

follows. Recall that the modal parameters in this case are the natural frequencies }{ if , damping 

ratios }{ iζ , initial conditions },{ ii vu ),...,1 ( mi = , PSD of prediction error eS  and mode shape 

matrix mnR ×∈Φ  (with each column normalized to unity). The algorithm only involves numerical 

optimization of },,{ iiif αζ , where }{ iα  is involved in the parameterization of },{ ii vu  in (68) and 

(69). The MPV of the remaining parameters is recovered later. 

As in Section 3.5, the initial guesses for the natural frequencies }{ if  can be picked from the 

spectrum calculated based on the data. The initial guesses of the damping ratios }{ iζ  may be 
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nominally taken as 1% (say). The initial guesses for }{ iα can be taken uniformly random on 

]2,0[ π .  

1. Determine the MPV of },...,1:,,{ mif iii =αζ  by numerically minimizing J  in (85). 

2. Determine the MPV of },...,1:)({ miic =Φ  from (82), where }...1:, ,{ ,m, if iii =αζ  are 

evaluated at their MPVs obtained in Step 1. 

3. Determine the MPV of }{ ic  from (83); the MPV of },{ ii vu  from (68) and (69), 

respectively; the MPV of Φ  from (84); and the MPV of eS  from (67). 

The flowchart of the method is shown in Figure 2. 

5. Conclusions 

A frequency-domain Bayesian framework for modal identification has been developed to 

identify the most probable values (MPVs) of modal parameters using free vibration data. Due to 

the computational difficulties in the process of optimization, two different cases are considered 

to determine the MPVs efficiently. The first one considers the ambient vibration data in the 

model, but is only applicable for well-separated modes. The second case ignores the ambient 

vibration and models it as prediction error, but it is applicable to general multiple (possibly 

closely-spaced) modes. In both cases, analytical solutions for the mode shapes have been 

obtained in terms of other parameters, so that the growth of computational effort with the number 

of measured dofs is effectively suppressed. When ambient response is ignored, the likelihood 

function can be simplified significantly, but when the free vibration response is relatively small 

compared with the ambient vibration, there may be some effect on the identified results, which 

will be investigated in the companion paper.  The companion paper also investigates the 

posterior uncertainty of the modal parameters in terms of their posterior covariance matrix. It 

verifies the developed methods and applies them to field test data as well. 
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Figure Captions 

Figure 1 Flowchart of well-separated mode case  

Figure 2 Flowchart of general multiple modes case 
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Figure 2 Flowchart of general multiple modes case 
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