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Abstract: A Bayesian statistical framework has been developed for modal identification using 

free vibration data in the companion paper [1]. Efficient strategies have been developed for 

evaluating the most probable value (MPV) of the modal parameters in both well-separated mode 

and general multiple mode cases. This paper investigates the posterior uncertainty of the modal 

parameters in terms of their posterior covariance matrix, which is mathematically equal to the 

inverse of the Hessian of the negative log-likelihood function (NLLF) evaluated at the MPVs. 

Computational issues associated with the determination of the posterior covariance matrix are 

discussed. Analytical expressions are derived for the Hessian so that it can be evaluated 

accurately and efficiently without resorting to finite difference method. The proposed methods 

are verified with synthetic data and then applied to field vibration test data. 
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1. Introduction 

In addition to the most probable value (MPV) of the modal parameters, a Bayesian identification 

approach also yields their posterior uncertainties, which is a fundamental quantification of their 

remaining uncertainties in the presence of the data and consistent with modeling assumptions 

[2]-[6]. Quantifying the uncertainties is especially relevant in the field testing setting because the 

identification results are subjected to a variety of uncertainties, e.g., channel noise, unknown 

environmental disturbances, unknown environmental changes, modeling error associated with 

the identification model [7]-[10].  

Fast Bayesian methods for calculating the posterior uncertainties of identified modal parameters 

based on ambient and forced data have been developed and applied in practice recently 

[5][11][12][13]. In Part I of this work [1], efficient methods have been developed for evaluating 

the MPV of modal parameters using free vibration data in both well-separated mode and general 

multiple mode cases. In this paper the posterior covariance matrix of the modal parameters is 

investigated and it can be calculated as the inverse of the Hessian of the negative log-likelihood 

function (NLLF) evaluated at the MPV of modal parameters. Computational issues exist in the 

evaluation of the inverse and they will be discussed first. Analytical expressions for the Hessian 

will be derived so that it can be evaluated accurately and efficiently without resorting to finite 

difference method. The proposed methods will be verified using synthetic data. Parametric 

studies will be performed with respect to effects of channel noise and ambient vibration levels. 

Application to field data will also be presented to illustrate the applicability of the proposed 

methods.  

This paper is organized as follows. In Section 2, the computational issues associated with 

evaluating the posterior covariance matrix for modal parameters are addressed. Section 3 

presents the analytical expressions for the Hessian of the NLLF in well-separated mode case. In 

Section 4, the analytical expressions for the Hessian of the NLLF in general multiple modes case 

are investigated. The verification using synthetic data are presented in Section 5. In Section 6, 

the proposed methods are applied in the field data, including two footbridges situated in 

Singapore and Hong Kong respectively. The paper is concluded in Section 7. Section 8 shows 

some derivation used in the analytical expressions of Section 3.  
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2. Computational issues 

The basic computational issues associated with evaluating the posterior covariance matrix for 

modal parameters arise from the norm constraint of the mode shapes. The issues have been 

investigated in [5] and they are briefly outlined here.  

Recall that the mode shapes },...,1:)({ miRi n =∈Φ  are subjected to unit norm constraint, i.e.,  

 1)()(||)(|| 2 == iii T ΦΦΦ  (1) 

These constraints have been taken into account in the determination of MPV. One strategy to 

correctly reflect the constraint in the determination of the Hessian of the NLLF is to write the 

mode shape explicitly in normalized form. That is, let  

 )(||)(||)( 1 iii ΦΦΦ −=  (2) 

and then it is clear that 1||)(|| =iΦ  regardless of )(iΦ . For the determination of Hessian, the 

mode shape )(iΦ  contained in the expression of the NLLF in (14) of the companion paper [1] 

should be replaced by )(iΦ  so that the NLLF can be differentiated with respect to the free 

parameters in )(iΦ  without any constraint. By this construction, the resulting NLLF will be 

invariant to the scaling of )(iΦ . Correspondingly the Hessian of the NLLF will be singular along 

the directions },...,1:)({ mii =Φ . It will thus have m  zero eigenvalues along the eigen-directions  

},...,1:)({ mii =Φ  and is therefore not invertible. However, it can be reasoned that this 

singularity is immaterial to the evaluation of the posterior covariance matrix, because the mode 

shape uncertainties are orthogonal to such directions by definition. Let },...,1:{ pi ni =λ  and 

},...,1:{ p
n

i niR p =∈w  be respectively the eigenvalues (in ascending order) and eigenvectors of 

the Hessian matrix of the NLLF at the MPV. Then the Hessian has the eigenvector representation  
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since 0...1 === mλλ . Ignoring the singular directions, the posterior covariance matrix as the 

inverse of LH  is evaluated as 

 ∑
+=

−=
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T
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1

1 wwC λ  (4) 

Next, we shall present the terms in the Hessian matrix of the NLLF. The discussion is separated 

into two sections as the NLLF for well-separated modes and general multiple modes (ignoring 

ambient vibration) is somewhat different and involves a different set of modal parameters. In 

order to have a better understanding, the derivatives of the following formulations are consistent 

with the ones in other papers about Bayesian methods developed by the same group. 

3. Hessian for well-separated modes 

For well-separated modes, i.e., a single mode in the selected frequency band, the NLLF is given 

by (21) of the companion paper [1] (in terms of normalized mode shape). 
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where nR∈φ denotes the mode shape vector. 

The Hessian matrix can be determined by the second derivatives of the NLLF with respect to 

parameter set },,,,,,{ φvuSSf eζ , whose dimension is )6()6( +×+ nn . The details for calculating 

the Hessian matrix are presented as follows. For simplicity we denote the variable under 

differentiation by a superscript in parenthesis. Only the derivatives of the NLLF L  are presented 

here. The derivatives of other parameters, e.g., )( ff
ka , are given in the Appendix. 

The second derivative of L with respect to f  is given by 
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The expression of )(ζζL is similar to )( ffL . 

The second derivative of L with respect to S  is given by 
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The second derivative of L with respect to eS  is given by 
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The second derivative of L with respect to u  is given by 
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The expression of )(vvL is similar to )(uuL . 

The second derivative of L with respect to φ  is given by 
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where the ),( 21 rr ),...,1,( 21 nrr = entry of P is given by  
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where Rr ∈1
φ denotes the 1r -entry of mode shape vector φ ; the second derivative )(

21 rr φφ
φ can be 

calculated according to (52).  

The cross derivative of L with respect to f  and ζ   is given by 
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The cross derivative of L with respect to f  and S   is given by 
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The expression of )( SL ζ is similar to )( fSL . 

The cross derivative of L with respect to f  and eS   is given by 
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The expression of )( eSL ζ is similar to )( efSL . 

The cross derivative of L with respect to f  and u   is given by 
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The expression of )( uL ζ  is similar to )( fuL . 

The cross derivative of L with respect to f  and v   is given by 
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The expression of )( vL ζ  is similar to )( fvL . 

The cross derivative of L with respect to S  and u   is given by 
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The expression of 
)(SvL  is similar to )(SuL . 

The cross derivative of L with respect to eS  and u   is given by 
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The expression of )( vSeL  is similar to )( uSeL . 

The cross derivative of L with respect to eS  and S   is given by 
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The cross derivative of L with respect to f  and φ   is given by 
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The expression of )( φζL is similar to )( φfL . 

The cross derivative of L with respect to S  and φ   is given by 
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The cross derivative of L with respect to eS  and φ   is given by 
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The cross derivative of L with respect to u  and φ   is given by 
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The expression of )( φvL is similar to )( φuL . 

4. Hessian for general multiple modes (ignoring ambient vibration) 

For general multiple modes (ignoring ambient vibration), the NLLF is given by (66) of the 

companion paper [1] (in terms of normalized mode shapes). 

 )'(lnln),'( 1 θθ JSSnNnNSL eeffe
−++= π  (24) 

where 
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and mnRΦ ∈:)(  denotes the ‘vectorization’ of )](,),1([ mΦΦΦ = , formed by stacking 

column-wise its columns, i.e., 
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and mnmnR ×∈1Q  is given by 
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The derivatives with respect to  },...,1:,,,{ mivuf iiii =ζ  and eS  are presented next. Due to the 

complication of the posterior uncertainty of mode shape, independent discussion will be given 

later.  

4.1. Derivatives of },...,1:,,,{ mivuf iiii =ζ  and eS  

Recall that 'θ  is given by   

 }  ;1:, , ,{' mn
iiii R,m, iRvuf ×∈=∈= Φθ ζ  (33) 

As the prediction error eS  has a different role from other parameters, it is separately treated. 
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Let the variable z  represent any one of the parameters in 'θ . The cross derivative of the NLLF 

with respect to z  and eS  comes only from the third term of the right hand side (RHS) of (24). 

This gives 

 )(2)( z
e

zS JSL e −−=  (34) 

At the MPV of z , 0)( =zJ  and so 0)( =ezSL . This means that the cross derivatives of NLLF with 

respect to 'θ  and eS  are equal to zero. Thus LH  is a block-diagonal )14( ++ mnm -square 

matrix with the following structure: 
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where )4()4( mnmmnm
J R +×+∈H  is the Hessian of )'(θJ . The corresponding posterior covariance 

matrix C  is then also a block-diagonal matrix given by 
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The posterior covariance matrix of 'θ  and the variance of eS  can thus be evaluated separately. 

The latter is simply equal to the reciprocal of )( eeSSL : 
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where eŜ is the MPV of eS ; n  is the number of measured degree of freedoms (dofs); fN  is the 

number of frequency components in the selected frequency band. It remains to calculate the 

Hessian of J  with respect to 'θ , i.e., JH .  

The posterior uncertainties of }, , ,{ iiii vuf ζ  are all scalars, but the mode shape is a matrix, and 

so it is convenient to separate 'θ  into two groups of parameters }, , ,{ iiii vuf ζ  and :)(Φ . The 

first term on the RHS of )'(θJ  in (25) is written more explicitly as 
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where ‘• ’ denotes an entry-by-entry multiplication of the subject matrices; ][⋅Σ  denotes the sum 

of all entries in the argument matrix;  and  

 mm
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The second term on the RHS of )'(θJ  in (25) is written as 

 )()Re(2)Re()(2}),,,({:)(2
11

*
2 ibbivuf

m

i k

*
kik

m

i k
kik

T
iiii

T ΦΦQΦ ∑∑∑∑
==

−=−=− FFζ  (40) 

Substituting (38) and (40) into (25), it can be re-written as 

 ∑∑∑∑ ∑ +−







•=

= k
kk

m

i k

*
kik

T

k
k ibJ FFF *

1
)()Re(2)()Re()'( ΦΦΦBθ  (41) 

Let iz  denote iii uf  , ,ζ  or iv , mi ,...,1= . The first derivative of )'(θJ  is given by         

 ∑∑ ∑ −







•=

k

*
k

z
ik

T

k

z
k

z ibJ iii )()Re(2)()Re( )()()( ΦΦΦB F  (42) 

The second derivative of )'(θJ  is given by 

 ∑∑ ∑ −







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k

*
k

zz
ikij

T

k

zz
k

zz ibJ jijiji )()Re(2)()Re( )()()( ΦΦΦB Fδ  (43) 

where ijδ  is the Dirac Delta function, equal to 1 if ji =  and zero otherwise.  

Note that kB  in (39) is a Hermitian matrix, whose first two derivatives are given by 

 T
ik

z
ikki

z
ik

z
k

iii bb ebbeB *)(*)()( +=  (44) 
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i
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z
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z
ikij

z
jk

z
ik

zz
k diagbdiagbbbbb jijijijiji EbbEEEB +++= δ  (45) 
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where m
i R∈e  denotes a column vector with the i -th entry being the only non-zero entry equal 

to unity; mm
ij R ×∈E  denotes a matrix with the ( ji, )-entry being the only non-zero entry equal to 

1; mm
i R ×∈E  denotes a matrix with the i -th column being the only non-zero column whose 

entries are all equal to 1; and )(⋅diag  denotes a diagonal matrix formed by the argument vector.  

4.2. Derivatives of Φ  

The cross derivative between iz  and 
11srΦ  (the ),( 11 sr -entry of Φ , where nr ,...,11 =  and 

ms ,...,11 = ) based on (41) is equal to 

 ∑∑ ∑ −







•=

k

Φ*
k

z
ikis

ΦT

k

z
k

Φz irisrisri ibJ
)()()()()(

1

1

1111 )()Re(2)()Re( ΦΦΦB Fδ  (46)  

and its second derivative with respect to the components of Φ  is 

 ∑∑ ∑ −







•=

k

ΦΦ*
kksss

ΦΦT

k
k

ΦΦ srsrsrsrsrsr sbJ
)(

1
)()(

1211

121

22112211 )()Re(2)()Re( ΦΦΦB Fδ  (47) 

where the derivatives of ΦΦT are given by [5] 

 )()()(
111111)( srsrsr ΦTTΦΦT ΦΦΦΦΦΦ +=  (48)  

 )()()()()()()(
22111122221122112211)( srsrsrsrsrsrsrsrsrsr ΦΦTΦTΦΦTΦTΦΦΦΦT ΦΦΦΦΦΦΦΦΦΦ +++=  (49)  

where )(
11srΦΦ  is a n -by- m  matrix with the 1s -th column being the only non-zero column equal 

to  

 )]([)()( 1
1

1
)(

1 111

11 sΦss srr
Φ sr ΦeΦΦ −= −    (50)  

where 
11srΦ  denotes the ),( 11 sr entry of Φ . The cross derivative of the mode shape matrix between 

mode shape components of different modes is zero, i.e., 

 mn
ΦΦ srsr

×= 0Φ
)(

2211  for 21 ss ≠  (51) 
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For the same mode 1s , 
)(

1211 srsr ΦΦ
Φ  is a n -by- m  matrix with the 1s -th column being the only non-

zero column equal to 

 ])()3[()()(
211112211211

1211
1

2
1

)(
1 rsrrsrrrsrsr

ΦΦ
ΦΦsΦΦss srsr eeΦΦΦ −−−= − δ  (52)  

5. Verification with synthetic data 

Consider a 5-storied shear frame with floor plan measuring mm 5.05.0 × . Assuming rigid floor 

diaphragm, the shear frame has a uniform inter-story stiffness of 100 mkN /  in x direction, 125 

mkN /  in y direction. Each floor has a mass of 50 kg  and moment of inertia of 2.083 2mkg ⋅ . It 

is targeted to obtain modal properties in the translational and torsional directions of this structure. 

The fundamental natural frequency is calculated to be 2.03 Hz. Classical damping is assumed 

with a damping ratio of 1% in all modes. Biaxial horizontal acceleration measurement with a 

sampling rate of 100Hz is assumed to be available at the locations shown in Figure 1. Therefore, 

there are total 60 dofs measured with 12 dofs for each floor.   

5.1. Nominal case 
We first consider a nominal case, based on which further discussions are expanded later. The 

frame is always subjected to ambient excitation at all the floor levels modeled by independent 

and identically distributed (i.i.d.) Gaussian white noise in the x, y and torsional directions, with a 

one-sided root power spectral density (PSD) of 4103 −× , 4103 −× HzN / and 
410375.0 −× HzNm / , respectively. An impulse is given to the fifth floor of this structure to 

produce free vibration with initial displacement and velocity of fifteen modes shown in Table 1. 

Note that in the simulation, the responses at the 12 dofs on each floor were calculated from the 

simulated responses from two translational and one torsional dofs at the center of each floor 

based on the rigid floor assumption. The initial conditions of the free vibration response depend 

on the norm of the mode shape. In this study, they are calculated by setting the norms of the 

mode shapes contained the 15 dofs at the center of all 5 floors equal to unity. 

Acceleration data of 60 seconds duration is generated. The measured acceleration is 

contaminated by measurement noise modeled by i.i.d. Gaussian white noise with a root spectral 
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density of 3 Hzg /µ  in every channel. According to Parseval equality, the integral (or area) of 

the spectral density over all frequencies is equal to the variance. Therefore, the standard 

derivation of the measurement noise is equal to 2/se fS , where eS is the PSD of prediction 

error and sf  is the sampling frequency.  The time history of data is shown in Figure 2. Figure 3 

shows the root PSD and root singular value (SV) spectra of the data. The SV spectra is used for 

locating the initial guess of the natural frequency and the frequency band for modal identification, 

where the number, the dot and the line denote the mode number, the initial guess of natural 

frequency, and the selected frequency band, respectively. Modal identification is performed for 

each band separately. 

5.1.1 Well-separated modes (Method I) 

Figure 4 summarizes the modal properties (MPV) of Modes 1 to 6. The dots on the 1st to 5th 

floors show the measured locations, while those on the ground floor are always fixed. Table 2 

and Table 3 show the ‘exact’ modal parameters used in generating the data and the MPV of the 

identified modal parameters with the associated posterior uncertainty, respectively. The MPVs 

are close to their exact values in a manner consistent with their posterior coefficient of variation 

(c.o.v.= standard derivation / MPV). For the PSD of prediction error eS , the exact values in the 

synthetic example only include the channel noise in the ambient conditions. There is an apparent 

bias in the identified values because they include smearing effects from unaccounted modes. A 

similar effect may occur in the initial conditions. The identified values of initial modal 

acceleration u  and its derivative v  are generally in the same order of magnitude with the exact 

ones.  

The last two columns in Table 3 show the Modal Assurance Criteria (MAC) between the 

identified and exact mode shapes and the quantity 1-EMAC (Expected MAC) to describe the 

posterior uncertainty of mode shape [14]. The closer the value of EMAC to unity, the smaller the 

posterior uncertainty will be.  The EMAC values in all the modes are also quite close to 1, which 

indicates that the posterior uncertainties of the identified mode shapes are very small. Overall, it 

is concluded that the posterior uncertainties of the natural frequency, damping ratio and mode 

shape are very small, even if only 60 seconds data is used. Figure 5 shows the root PSD of 
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measured data and theoretical root PSD corresponding to the MPV, which shows a good 

agreement. 

5.1.2 General multiple modes (Ignoring ambient vibration) (Method II) 

As mentioned before, Method II that ignores ambient vibration is applicable for general multiple 

modes. In this verification, the first three modes are included in the same band for modal 

identification. For consistency, in this band, its lower and upper values are equal to the lower 

value of the frequency band of Mode 1 and the upper value of the frequency band of Mode 3 in 

Method I, respectively. Modes 4 and 5 are also included in the same band. The way to select the 

lower and upper values of the band is similar, i.e., they are equal to the lower value of the 

frequency band of Mode 4 and the upper value of the frequency band of Mode 5 in Method I, 

respectively. Mode 6 is identified separately with the same band as the case in Method I. Table 4 

shows the MPV of the identified modal parameters and their posterior uncertainty. It should be 

noted that, although the MPVs in Table 4 are similar to those in Table 3, the same is not true for 

the c.o.v.s. In particular, the c.o.v.s in Table 4 are generally smaller than those in Table 3. This 

difference is due to the different assumptions made in the identification models of two methods. 

This demonstrates the importance of the assumption used and the interpretation of posterior 

uncertainty results. In the present case, those c.o.v.s in Table 3 are a better reflection of reality 

because there is less modeling error. Comparing the PSD of prediction error in Table 3 and Table 

4 with the exact values in Table 2, the results of the first five modes identified using Method II 

are more close to the exact values. This is because the modal identification process was divided 

into two parts in Method II (i.e., the first three modes were in one frequency band and identified 

simultaneously; the fourth and fifth modes were in another frequency band and identified 

simultaneously) while all modes were identified individually in Method I. When two or three 

modes are identified simultaneously, the effects of uncounted modes will be reduced, which 

leads to the reduction in the PSD of prediction error during modal identification. This argument 

is supported by the result from the sixth identified mode, which was identified separately in both 

Methods I and II and the PSD of prediction error were in the same order of magnitude in both 

methods. Figure 6 shows the root PSD of measured data and the theoretical root PSD 

corresponding to the MPV, which also show a good agreement.  
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5.2. Parametric study of Method II  
In the process of vibration test and modal identification, there are lots of factors that may 

influence the accuracy of the data collected, and consequently the modal identification accuracy. 

Since in Method II, the ambient vibration response is modeled to be prediction error, it is worth 

investigating the effects of measurement noise and ambient vibration levels on the identified 

modal parameters using synthetic data. 

5.2.1 Effect of measurement noise 

To investigate the effect of the measurement noise and check the model considered, six noise 

levels are considered from lower to higher in terms of their PSD value: /Hzg109 212−× , 

/Hzg1090 212−× , /Hzg10450 212−× , /Hzg10900 212−× , /Hzg101800 212−× , and /Hzg104500 212−× . 

The first level corresponds to the nominal case that has been investigated in Section 5.1.  

When studying the effect of noise level, in order to remove the influence of the unmodeled 

ambient vibration part, no ambient vibration response is simulated in the data used. The effect of 

ambient vibration will be discussed separately in Section 5.2.2. Figure 7 summarizes the results 

for different channel noise levels. In the figure, the identification result is shown with a dot at the 

MPV and an error bar shows the +/- two posterior standard deviations. The dashed line denotes 

the exact values of the corresponding identified modal parameters. Although the identified 

MPVs of higher noise have a lower accuracy than the typical case, they are relatively stable and 

close to their exact values. The main difference lies in the posterior uncertainty. The posterior 

c.o.v.s of natural frequencies and damping ratios grow gradually for all the six modes with the 

noise level. There is no significant bias observed in the figure even when the noise is relatively 

high, in the sense that the corresponding posterier probability density function implied by the 

error bars covers the exact value. This indicates that the consideration of the prediction error in 

the proposed theory is capable of addressing the channel noise effect. 

5.2.2 Effect of ambient vibration  

Recall from the theory of Method II that ambient vibration response is not explicitly modeled in 

the formulation but is absorbed in the prediction error, for which only a simple channel noise 

model is adopted. The effect of ambient vibration on the modal identification results may be 
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significant and is investigated in this section. In the synthetic data the loading always consists of 

the ambient force, and thus modeling error already exists in the nominal case. To further 

investigate the ambient vibration effect, different ambient load levels in terms of a one-sided root 

spectral density of normal case multiplied by 0.0001, 0.001, 0.01, 0.1, 1 and 2 separately are 

considered. 

Figure 8 summarizes the results for different ambient vibration levels. When the ambient 

excitation increases, the posterior c.o.v. only changes slightly. Some bias is seen when the 

ambient excitation is large, as reflected by the systematic departure of the error bar from the 

dashed line in the figure. Here, the dashed line is the exact value for reference. The apparent bias 

can be attributed to the fact that the effect of the ambient load is not explicitly accounted for in 

the identification model, but is only ‘gross-overed’ into the prediction error eS  . 

6. Field applications 

6.1 Tanjong Rhu Bridge 

The first structure is the Tanjong Rhu suspension bridge as shown in Figure 9, which spans 

across Kallang River in Singapore. It is about 130m long with 80m main span and two 25m side 

spans, and 4m wide. Fourteen locations are measured with accelerometers and acceleration data 

are acquired at a sampling rate of 100 Hz. At the time of instrumentation, only four sensors were 

available. Six setups were then designed to cover all the locations of interest. Free vibration 

response is generated by human excitation, with two persons jumping on the bridge at near the 

natural frequency and at the locations where the mode shape component is large. Four modes are 

focused, i.e., VS1 and VS2 (the first two symmetric bending modes), VA1 (the first asymmetric 

bending mode), TS1 (the first torsional mode). The jumping excitation generally continued for 

about two minutes, after which, about 60 seconds structural response is recorded. The detailed 

field test and dynamic characteristics of the bridge have been previously presented [15].  

Figure 10 shows a typical time history of the free acceleration response of Mode VA1. Figure 11 

shows its root PSD and SV spectra. The results in terms of their MPV identified by the proposed 

method considering ambient vibration response (Method I) are summarized in Figure 12. The 

values in the subfigures denote the averaged natural frequency and damping ratio of all setups. 
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The thin and thick lines denote the undeformed and deformed shape of the bridge. The dots show 

the measured locations. Note that these mode shapes are assembled by a global least square 

method [16] using the individual mode shapes in different setups. The mode shapes identified by 

the method ignoring ambient vibration response (Method II) are similar, whose MAC values 

with the counterparts identified using Method I are over 0.99. Table 5 and Table 6 show the 

identified results of Setup 1 of all the four modes under investigation using Methods I and II, 

respectively. The properties in other setups are similar. Figure 13 shows the root PSD of 

measured data and the theoretical root PSD corresponding to the MPV using Method I, which 

shows a good agreement. The picture for Method II is similar. 

Although the MPVs of modal parameters identified using Methods I and II are close to each 

other, the posterior uncertainties corresponding to Method I are obviously different from those in 

Method II. Again, this is because the two methods have different assumption about the prediction 

error. The model of Method I with ambient vibration response considered is a better one, 

although it is more complicated. However, this does not render Method II dispensable, because it 

can handle both closely-spaced and well-separated modes.  

Figure 14 to Figure 17 show the identified natural frequencies and damping ratios (using Method 

I) corresponding to different setups of Modes 1 to 3, respectively. From the error bars, it is found 

that the modal parameters change with different setups, especially for the natural frequencies of 

VS1 and VA1. The results identified using the least square method mentioned in [15]  are similar 

to those identified using proposed method. This may be because that the data in different setups 

were measured at different time. The properties of the bridge may have a little change during a 

whole day. The error bars only reflect the accuracy of the parameters in each setup but they do 

not necessarily predict the identification results in the next setup. These figures should be viewed 

with both a Bayesian and frequentist perspectives [17]. 

6.2  CityU bridge 

The second subject structure is a concrete pedestrian bridge situated at the entrance of the City 

University of Hong Kong (CityU) as shown in Figure 18. It measures 55 m  long by 12.8 m  

wide. The footbridge has three spans. In this study, only the second span of a 20 m  segment is 
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instrumented. Figure 19 shows the detailed setup plan for the test. The number next to each 

sensor is the dof number. Only the vertical acceleration is measured at each location. Guralp 

CMG5T forced-balanced tri-axial accelerometers (only vertical channel used), indicated by 

circles, are used for Locations 1, 2, 3, 7, 9, 10. The remaining locations are measured with 

Kistler K8330 uniaxial accelerometers, indicated by squares. The Guralp sensor has a higher 

accuracy than the Kistler sensor, which means that it can provide higher s/n ratio data and be 

used in the locations where the structure response is relatively small or the noise level is 

relatively large.  

The bridge is excited by an electro-magnetic shaker indicated by a triangle in Figure 19. That is, 

the shaker first generates the excitation to the bridge for a while, and then when it is turned off, 

the free vibration will occur. The frequency of the excitation can be changed by altering the 

frequency of input voltage by Labview software on a laptop. Note that in the beginning, a 

frequency sweep forced vibration test with more than ten exciting frequencies around each mode 

of interest is performed; in every frequency, sinusoidal excitation continues for about one minute, 

after which free vibration response is recorded. Digital data is acquired at a sampling rate of 

2048Hz with 24 bit resolution. It is later decimated by 16 to a sample rate of 128 Hz for analysis 

and modal identification. Ten-minute of ambient data is first collected to roughly locate the 

dominant bands of the first few modes of interest. Modes are expected near 4.69 Hz (Mode 1), 

6.67 Hz (Mode 2) and 10.96 Hz (Mode 3). Three groups of measured free vibration data 

corresponding to the three modes respectively are collected and used for modal identification.  

Figure 20 shows the time history of Setup 1 for Mode 1, where free vibration response can be 

observed obviously. Figure 21 shows the root PSD and SV spectra, where the selected band of 

Mode 1 is indicated. Table 7 and Table 8 show the modal parameters corresponding to Setup 1 of 

three modes identified by Methods I and II, respectively. The parameters identified from other 

setups will be discussed later. The identified natural frequencies using the two methods are quite 

close to the values observed from the SV spectra. The damping ratios range between 0.8% to 

2.4% with a c.o.v. of 1% to 32%. It is worth mentioning that the posterior uncertainties of the 

natural frequency, damping ratio and mode shape of Mode 3 are much bigger than those in 

Modes 1 and 2. This is because the free vibration response used to identify Mode 3 is not large, 
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as shown in Figure 22. The results of Method II (Table 8) for Mode 3 are potentially biased 

because it ignores the ambient vibration, which is not negligible here.  

The mode shapes of the three modes identified using Method II from Setup 1 in terms of their 

MPV are shown in Figure 23. The first and third modes are bending modes in the vertical 

direction forming half sine and a whole sine wave, respectively. The second mode is a torsional 

mode. To further check the accuracy of modal parameters identified, Figure 24 shows the root 

PSD of measured data and the root PSD corresponding to the MPV. The mode shapes identified 

by Method I are almost the same with that in Method II with the MAC values over 0.99. 

Recall that in each mode, more than 10 groups of free vibration data with different exciting 

frequency are recorded, based on which, the effect of exciting frequency is investigated. Figure 

25 to Figure 27 show the natural frequencies and damping ratios identified by Method I 

corresponding to different excitation frequencies of Modes 1 to 3, respectively. It is seen that 

from the middle to both sides of the figures, the error bars tend to increase for either natural 

frequency or damping ratio. This is because the exciting frequencies near the middle of x axis are 

closer to the natural frequency of the subject mode; although the input forces all have similar 

magnitude. The free vibration responses when the shaker operates at near resonance are much 

larger than those off resonance.  

7. Conclusions 

In this work, a Bayesian formulation for modal identification using free vibration data has been 

presented, which can not only identify the most probable values (MPVs) of modal parameters of 

interest, but also analytically calculate the associated posterior uncertainties of the modal 

parameters. Two different cases, i.e., well-separated modes considering the ambient vibration 

response and general multiple (probably closely-spaced) modes ignoring the ambient vibration 

response, have been considered in the development of fast algorithms. Using free vibration data, 

Bayesian modal identification can be performed efficiently and practically even on site. 

Synthetic data and field data have been used to illustrate the proposed method. In the former data 

used, by modal identification using data with different noise and ambient vibration levels, it was 

discovered that the posterior uncertainties of modal parameters are influenced by the noise and 
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ambient vibration levels. When s/n ratio of the free vibration data is high, the posterior c.o.v. of 

modal parameters can be significantly smaller than their ambient counterparts. The posterior 

uncertainty calculated using Method I (considering ambient response) tends to be larger than that 

obtained using Method II (ambient response is modeled as noise), due to the different models 

used. Although the two methods can give reasonable results, they have different characteristics. 

Method I can work better in the case with significant ambient vibration since it is considered in 

the theory. Fast algorithm however has only been developed for well-separated modes because 

the mathematical structure of the likelihood function is much more complicated for multiple 

modes. By absorbing ambient vibration into the prediction error (therefore approximate), the 

mathematical structure in Method II is much simpler and so it allows fast algorithms to be 

developed in general for multiple modes.  
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Appendix 

1. Derivatives of ka  

The quantity ka  is encountered frequently, whose derivatives with respect to },,,{ eSSf ζ  will 

be discussed. The general form of the derivatives with respect to any variables 1z and 2z can be 

presented firstly. 
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Base on the definition of general form, only the three terms, i.e., )(1 1)( z
ka− , )(1 2)( z

ka −  and 

)(1 21)( zz
ka− need to be determined. 

The first derivative of 1−
ka  are given by 
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The second derivative of 1−
ka  are given by 
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The cross derivative of 1−
ka  are given by 
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where the derivatives of kD  can be found in [11]. 

2. Derivatives of kbR  and kbI  

Note that the derivatives of kbR  and kbI are the k-th entries of the derivatives of Rb  and Ib , 

respectively, which are presented as follows. 
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where ]Re[⋅ and ]Im[⋅ denote the real and imaginary parts, respectively; )FFT(⋅ denotes the fast 
Fourier Transform (FFT) whose definition is similar to (2) in the companion paper. The 
expressions of )(

R
ζb and )(

I
ζb are similar to )(

R
fb and )(

I
fb , respectively. 
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The expressions of )(
R
ζζb and )(

I
ζζb are similar to )(

R
ffb and )(

I
ffb , respectively. 
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The expressions of )(
R

ub ζ and )(
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ub ζ are similar to )(
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fub and )(
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fub , respectively. 
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The expressions of )(
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vb ζ are similar to )(
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fvb , respectively. 
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In the above expressions, the derivatives of the entries of 1g and 2g at time ),...,1( Njt j = are 

given as follows.  

The first derivative of )(1 jtg with respect to f  is given by 
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The first derivative of )(1 jtg with respect to ζ  is given by 
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The second derivative of )(1 jtg with respect to f  is given by 
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The second derivative of )(1 jtg with respect to ζ  is given by 
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The cross derivative of )(1 jtg with respect to f andζ  is given by 
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The first derivative of )(2 jtg with respect to f  is given by 
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The first derivative of )(2 jtg with respect to ζ  is given by 
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The second derivative of )(2 jtg with respect to f  is given by 
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The second derivative of )(2 jtg with respect to ζ  is given by 
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The cross derivative of )(2 jtg with respect to f andζ  is given by 
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Figure Captions 

Figure 1 Typical floor plan with measured dofs  

Figure 2 Time history, nominal case, synthetic data 

Figure 3 Root PSD and SV spectra, nominal case, synthetic data 

Figure 4 Identified modal parameters, nominal case, synthetic data 

Figure 5 Root PSD spectrum fitting, Method I; solid line represents the measured data, dash line 
represents the data calculated using identified parameters; the line denotes the selected frequency 
band 

Figure 6 Root PSD spectrum fitting, Method II; solid line represents the measured data, dash line 
represents the data calculated using identified parameters; the line denotes the selected frequency 
band 

Figure 7 Effect of noise levels, synthetic data (dot: MPV; error bar: +/- 2 standard deviation), 
Method II 

Figure 8 Effect of ambient vibration levels, synthetic data (dot: MPV; error bar: +/- 2 standard 
deviation), Method II 

Figure 9 Overview of Tanjong Rhu Suspension Bridge 

Figure 10 Time history of a typical setup of Mode VA1  

Figure 11 Root PSD and SV spectra of a typical setup of Mode VA1 

Figure 12 Mode shapes of all the modes under investigation 

Figure 13 Root PSD spectrum fitting, Setup 1, VA1; solid line represents the measured data, 
dash line represents the data calculated using identified parameters; the line denotes the selected 
frequency band 

Figure 14 Error bar of natural frequency and damping ratio, VS1 

Figure 15 Error bar of natural frequency and damping ratio, VA1 

Figure 16 Error bar of natural frequency and damping ratio, VS2 

Figure 17 Error bar of natural frequency and damping ratio, TS1 

Figure 18 Overview of CityU Bridge 

Figure 19 Setup plan of CityU Bridge 
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Figure 20 Time history of Setup 1, Mode 1 

Figure 21 Root PSD and SV spectra, Mode 1, Setup 1, CityU bridge 

Figure 22 Time history of Setup 1, Mode 3 

Figure 23 Mode shape, Setup1, Modes 1, 2, 3 

Figure 24 Root PSD spectrum fitting, Setup 1, Mode 1; solid line represents the measured data, 
dash line represents the data calculated using identified parameters; the line denotes the selected 
frequency band 

Figure 25. Error bar of natural frequency and damping ratio with excitation frequencies, Mode 1 

Figure 26. Error bar of natural frequency and damping ratio with excitation frequencies, Mode 2 

Figure 27. Error bar of natural frequency and damping ratio with excitation frequencies, Mode 3 
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Figure 1 Typical floor plan with measured dofs 
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Figure 2 Time history, nominal case, synthetic data 
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Figure 3 Root PSD and SV spectra, nominal case, synthetic data 
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Figure 4 Identified modal parameters, nominal case, synthetic data 
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Figure 5 Root PSD spectrum fitting, Method I; solid line represents the measured data, 
dash line represents the data calculated using identified parameters; the line denotes 

the selected frequency band 
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Figure 6 Root PSD spectrum fitting, Method II; solid line represents the measured 
data, dash line represents the data calculated using identified parameters; the line 

denotes the selected frequency band 
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Figure 7 Effect of noise levels, synthetic data (dot: MPV; error bar: +/- 2 standard 
deviation), Method II 
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Figure 8 Effect of ambient vibration levels, synthetic data (dot: MPV; error bar: +/- 2 

standard deviation), Method II 
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Figure 9 Overview of Tanjong Rhu Suspension Bridge 
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Figure 10 Time history of a typical setup of Mode VA1  
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Figure 11 Root PSD and SV spectra of a typical setup of Mode VA1 
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           Mode 1 

 
           Mode 2 

 
          Mode 3 

 
         Mode 4 

Figure 12 Mode shapes of all the modes under investigation 
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Figure 13 Root PSD spectrum fitting, Setup 1, VA1; solid line represents the 
measured data, dash line represents the data calculated using identified parameters; 

the line denotes the selected frequency band 
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Figure 14 Error bar of natural frequency and damping ratio, VS1 
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Figure 15 Error bar of natural frequency and damping ratio, VA1 
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Figure 16 Error bar of natural frequency and damping ratio, VS2 
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Figure 17 Error bar of natural frequency and damping ratio, TS1 
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Figure 18 Overview of CityU Bridge 
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Figure 19 Setup plan of CityU Bridge 
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Figure 20 Time history of Setup 1, Mode 1 
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Figure 21 Root PSD and SV spectra, Mode 1, Setup 1, CityU bridge 
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Figure 22 Time history of Setup 1, Mode 3 
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Figure 23 Mode shape, Setup1, Modes 1, 2, 3 
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Figure 24 Root PSD spectrum fitting, Setup 1, Mode 1; solid line represents the 

measured data, dash line represents the data calculated using identified parameters; 
the line denotes the selected frequency band 
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Figure 25. Error bar of natural frequency and damping ratio with excitation 

frequencies, Mode 1 
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Figure 26. Error bar of natural frequency and damping ratio with excitation 

frequencies, Mode 2 
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Figure 27. Error bar of natural frequency and damping ratio with excitation 
frequencies, Mode 3 
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Table 1 Initial conditions, Displacement: m; Velocity: 10-3 m/s 

Mode 1   2  3 4   5  6  7  8  9 10  11   12 13   14  15 
Dis. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vel. 0.36 0.36 0.86 0.33 0.33 0.79 0.27 0.27 -0.20 -0.20 -0.10 0.66 -0.10 -0.47 -0.24 
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Table 2 Exact values of modal parameters for synthetic data 

Mode 
f  

(Hz) 

ζ  

(%) 

S  

)/Hzg

10(
2

12−  

eS  

)/Hzg
10(

2

12−  

u  
)10( 3 g−  

v  
)/10( 3 sg−  

1 2.026 1.00 2.24 9.00 -0.023 -14.5 
2 2.265 1.00 2.24 9.00 -0.026 -18.1 
3 2.977 1.00 2.10 9.00 -0.026 -24.2 
4 5.914 1.00 2.24 9.00 -0.061 -113.4 
5 6.612 1.00 2.24 9.00 -0.068 -141.8 
6 8.691 1.00 2.10 9.00 -0.070 -189.7 
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Table 3 Identified parameters for synthetic data (Method I) 

Mode γ  

f  ζ  S  eS  u  v  Φ  

MPV 
(Hz) 

c.o.v. 
(%) 

MPV 
(%) 

c.o.v. 
(%) 

MPV 

)/Hzg
10(

2

12−  
c.o.v. 
(%) 

MPV 

)/Hzg
10(

2

12−  
c.o.v. 
(%) 

MPV 
)10( 3 g−  

c.o.v. 
(%) 

MPV 
)/10( 3 sg−  

c.o.v. 
(%) 

MAC 
1-EMAC 

410−  

1 3657 2.026 0.034 0.99 3.46 1.49 32 155.74 2.9 -0.008 255 -14.6 1.8 0.9999 9.2 
2 6361 2.264 0.044 0.99 4.46 2.66 28 114.09 3.1 -0.072 38 -17.3 2.3 0.9999 6.8 
3 15069 2.977 0.036 0.99 3.61 1.56 25 54.30 2.7 -0.039 59 -24.1 1.8 0.9999 3.7 
4 4390 5.915 0.023 0.96 2.43 1.56 21 168.67 2.1 -0.053 76 -112.7 1.3 0.9999 4.3 
5 6233 6.611 0.024 1.04 2.30 1.72 19 116.68 2.0 -0.053 81 -142.7 1.3 0.9999 2.9 
6 2707 8.687 0.032 1.00 3.22 1.92 21 272.47 2.1 -0.084 84 -185.1 2.1 0.9999 8.8 
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Table 4 Identified parameters for synthetic case (Method II) 

Mode γ  

f  ζ  eS  u  v  Φ  

MPV 
(Hz) 

c.o.v. 
(%) 

MPV 
(%) 

c.o.v. 
(%) 

MPV

)/Hzg
10(

2

12−  
c.o.v. 
(%) 

 MPV 
)10( 3 g−  

c.o.v. 
(%) 

MPV  
)/10( 3 sg−  

c.o.v. 
(%) 

MAC 
1-EMAC 

( 410− ) 

1 12633 2.026 0.006 0.99 0.6 50 1.4 -0.008 69.7 -14.8 0.4 0.9997 2.9 
2 12633 2.265 0.006 1.02 0.6 50 1.4 -0.055 10.5 -18.0 0.4 0.9999 2.8 
3 12633 2.976 0.007 0.98 0.7 50 1.4 -0.051 12.7 -24.5 0.5 0.9991 3.3 
4 9518 5.916 0.005 0.95 0.5 67 1.4 -0.003 351.6 -112.1 0.3 0.9997 1.6 
5 9518 6.612 0.005 1.03 0.5 67 1.4 -0.061 19.6 -142.0 0.3 0.9998 1.6 
6 2119 8.685 0.012 0.99 1.2 299 2.1 -0.150 21.3 -187.2 0.9 0.9999 9.8 
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Table 5 Identified parameters for Tanjong Bridge (Method I) 

Mode γ  

f  ζ  S  eS  Φ  

 MPV 
(Hz) 

c.o.v. 
(%) 

MPV  
(%) 

c.o.v. 
(%) 

MPV 

)/Hzg
10(

2

9−

  

c.o.v. 
(%)  

MPV 

)/Hzg
10(

2

9−  
c.o.v. 
(%) 

1-EMAC 

( 410− ) 

VS1 9411 1.126 0.50 0.83 66 28.57 34 10.15 18 0.4 
VA1 1292 1.578 0.15 0.64 24 0.28 32 1.29 17 0.5 
VS2 22059 2.404 0.76 1.61 58 10.42 46 4.51 17 1.1 
TS1 3148 3.088 0.05 0.37 14 0.31 40 34.35 18 1.3 
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Table 6 Identified parameters for Tanjong Bridge (Setup1) (Method II) 

Mode γ  

f  ζ  eS  Φ  

 MPV 
(Hz) 

c.o.v. 
(%) 

MPV  
(%) 

c.o.v. 
(%) 

MPV 

)/Hzg
10(

2

9−  
c.o.v. 
(%) 

1-EMAC 

( 410− ) 

VS1 633 1.132 0.05 0.25 18.7 247.19 15.8 11.5 
VA1 711 1.579 0.02 0.45 4.7 15.71 12.2 6.3 
VS2 743 2.415 0.09 0.48 14.4 210.74 15.1 75.4 
TS1 541 3.087 0.02 0.34 6.3 273.60 10.2 10.0 
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Table 7 Identified parameters for CityU Bridge (Method I) 

Mode γ  

f  ζ  S  eS  Φ  

 MPV 
(Hz) 

c.o.v. 
(%) 

MPV  
(%) 

c.o.v. 
(%) 

MPV 

)/Hzg
10(

2

12−   
c.o.v. 
(%)  

MPV 

)/Hzg
10(

2

12−  
c.o.v. 
(%) 

1-EMAC 

( 410− ) 

1 17817 4.682 0.05 1.23 3.8 4.01 25.4 23.24 7.4 0.2 
2 20737 6.640 0.02 0.87 2.3 2.04 36.0 168.39 8.5 0.4 
3 52 10.993 0.62 2.34 31.4 5.13 40.4 42.98 8.6 36.2 
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Table 8 Identified parameters for CityU Bridge (Method II) 

Mode γ  

f  ζ  eS  Φ  

 MPV 
(Hz) 

c.o.v. 
(%) 

MPV  
(%) 

c.o.v. 
(%) 

MPV 

)/Hzg
10(

2

12−

 

c.o.v. 
(%) 

1-EMAC 

(
410−

) 

1 19875 4.686 0.008 1.13 0.7 63.17 7.1 0.5 
2 13423 6.642 0.006 0.84 0.8 258.46 8.2 0.6 
3 64 11.042 0.103 0.84 8.7 94.85 8.2 108.4 
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