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Controlling Lead Times and Minor Ordering Costs in the
Joint Replenishment Problem with Stochastic Demands
under the Class of Cyclic Policies

Abstract

In this paper, we consider the periodic review joint replenishment problem
(JRP) under the class of cyclic policies. For each item, the demand in the
protection interval is assumed stochastic. Moreover, a fraction of shortage is
lost, while the other quota is backordered. We further suppose that lead times
and minor ordering costs are controllable. These decision variables should not
be neglected in the task of optimizing inventory systems, as their control may
lead to substantial benefits. The problem concerns determining the cyclic re-
plenishment policy, the lead times, and the minor ordering costs in order to
minimize the long-run expected total cost per time unit. We established a num-
ber of properties of the cost function, which permit us to derive two heuristic
algorithms. A lower bound on the minimum cost is obtained, which helps us
evaluate the effectiveness of the proposed heuristics. Numerical experiments
have shown that the first algorithm is more effective, although computationally
more onerous. The second heuristic seems to be able to reach slightly worse
solutions, but in a considerably less time.

Keywords: Inventory; Joint replenishment problem; Stochastic; Optimization;
Heuristics; Lower bound

1. Introduction

In practical contexts, the coordination of replenishments among several items
often leads to economic benefits. Examples may include the case of several
products that are ordered from the same supplier or that are processed on
the same piece of equipment (Nilsson & Silver, 2008). The problem related to
the optimization of coordinated inventory replenishment policies among several
items is typically referred to the joint replenishment problem (JRP).

The cost structure of the JRP is characterized by two ordering (or setup)
cost components, i.c., a major ordering cost and a minor ordering cost. The
major component is independent of the variety of items ordered and is borne at
each replenishment cycle. The minor component depends on the variety of items
ordered within a given ordering cycle. Because of the major cost component,
group replenishments may lead to substantial cost savings, which potentially
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grows as the major ordering cost increases (Khouja & Goyal, 2008). Hence, in
the JRP it is possible to exploit economies of scale (Kiesmiiller, 2010).

The JRP has been widely studied in literature. The reader is referred
to Khouja and Goyal (2008) for a review of papers published in the period
1989-2005. Since then more papers have been published. These works can be
classified into two main groups, depending on whether the demand is supposed
to be stochastic or not: deterministic JRP and stochastic JRP.

With regard to the first group, we can cite, for example, the following con-
tributions. Porras and Dekker (2006) derived an exact solution method to
approach the basic JRP problem with a minimum order quantity constraint.
Under the assumption that shortages are not allowed, Hoque (2006) developed
an exact algorithm for the problem with limited storage and transport capacit-
ies, and a budget constraint. Bayindir et al. (2006) considered a production
environment with variable production costs, in the hypothesis that shortages
are fully backordered. Robinson et al. (2007) presented several alternative
heuristics to solve the JRP with dynamic demand. Olsen (2008) extended the
basic model to consider interdependent minor ordering costs, and then solved
the problem with an evolutionary algorithm. Moon et al. (2008) integrated
the basic formulation with the supplier selection problem, taking into account
quantity discounts. Narayanan and Robinson (2010a) presented two heuristic
algorithms to solve the capacitated, dynamic lot-sizing JRP. Tsao and Sheen
(2012) studied a two-actor, multi-item supply chain with a credit period and
weight freight cost discounts. Zhang et al. (2012) developed a JRP model with
complete backordering, where demands of some minor items are correlated with
that of a major item. Amaya et al. (2013) presented a new heuristic approach
based on linear programming to solve the JRP with resource constraints. Tsao
and Teng (2013) developed two heuristic algorithms to solve the JRP with trade
credit. Wang et al. (2012a; 2012b; 2013) used artificial intelligence techniques
to approach the deterministic JRP. Paul et al. (2014) studied a JRP model that
takes into account a random percentage of defective units in each replenishment
and price discounts. Konur and Schaefer (2016) extended the basic problem by
adding a second objective function that is related to environmental perform-
ance. Mohammaditabar and Ghodsypour (2016) proposed an integrated joint
replenishment and supplier selection problem with a capacity constraint, which
is approached using the direct grouping strategy.

In the stochastic JRP group, we can include the following works. Tsai et
al. (2009) presented an approach to cluster items according to the correlation
between their demands. Items are then managed using the can-order policy.
Kiesmiiller (2010) compared two different continuous review policies assum-
ing that each item demand follows a compound renewal process, and that the
total amount of products to be ordered is constrained. Narayanan and Robin-
son (2010b) carried out a study to evaluate the performance of nine lot-sizing
heuristics in a dynamic rolling horizon system, where demands are Gaussian.
Tanrikulu et al. (2010) developed a continuous review policy that takes into ac-
count a limited transportation capacity, assuming that each item demand follows
a Poisson process. Feng et al. (2015) analysed a discounted cost model in which



demands are correlated. Qu et al. (2015) approached the location-inventory
problem under two different strategies, i.e., coordinated and independent replen-
ishments, under the assumption that shortages are fully backordered. Finally,
Braglia et al. (2016a; 2016b; 2017) studied various extensions of the JRP to
take into account different aspects, such as backorders-lost sales mixtures, con-
trollable lead time, investments to reduce the major ordering cost, or adopting
distribution-free approach.

In classical production/inventory models, such as the economic production
quantity (EPQ) and the economic order quantity (EOQ) models, the lead time
and ordering/setup cost are considered as constants, i.e., as “givens”. However,
Silver (1992) recommended to treat the “givens” as decision variables, rather
than as fixed parameters, so as to represent more realistic problem formulations.
He also presented two numerical examples to show the benefits of changing a
“given”. We will explore this idea in the context of stochastic JRP.

In many practical circumstances, lead time can be shortened at the expense
of an additional cost. In other words, lead time can be controllable. The
extra cost of reducing lead time can be ascribed, for example, to administrat-
ive, transportation and supplier’s speed-up costs (Huang, 2001). The just-in-
time (JIT) philosophy suggests that, if lead time is reduced, several benefits
can be achieved, such as lower investment in inventory, better product qual-
ity, less scrap, reduced storage space requirements, higher flexibility, increased
productivity, and improved competitive position of the company (Hariga, 2000;
Ouyang et al., 2002; Chuang et al., 2004; Lin, 2009; Glock, 2012). The concept
of controllable lead time has been widely endorsed in the inventory management
literature. The reader is referred to, e.g., Ouyang et al. (1996); Huang (2001);
Lin (2009); Glock (2012); Sarkar and Moon (2014).

Further actions, other than shortening lead time, can be tackled to reach
JIT goals. One of these initiatives is concerned with the setup/ordering cost
reduction, which can be achieved in practice by means of various activities, such
as procedural changes, specialized equipments acquisition and workers training
(Leschke, 1996; Chuang et al., 2004). As observed in literature, decreasing the
setup/ordering cost permits to improve quality and flexibility, lower investment
in inventory, and increase effective capacity (Porteus, 1986; Nasri et al., 1990;
Leschke & Weiss, 1997; Chuang et al., 2004). Setup cost coutrol has been
a topic of interest for many researchers in the field of production/inventory
management. The reader is referred, for example, to Chuang et al. (2004); Lin
(2009); Shu and Zhou (2014); Sarkar and Moon (2014); Sarkar et al. (2015).

The mixture of backorders and lost sales is an issue that production/inventory
models should not neglect. This is particularly true when demand is stochastic.
In fact, as Wang and Tang (2014) observed, a backorders-lost sales mixture
can model different purchasing behaviours of customers when facing a stock-
out: some of them may wait until demand is satisfied (such demands are back-
ordered); while others may be impatient and not willing to wait (such demands
are lost). The importance of this aspect is shown by the number of research-
ers that have included a mixture of backorders and lost sales in their produc-
tion/inventory models (see, e.g., Ouyang et al. (1996); Lodree (2007); Lin



(2009); Sarkar and Moon (2014); Castellano (2016)).

From the above literature review on stochastic JRP, we can see that little
work has been done to consider lead time shortening, setup/ordering cost re-
duction, and backorders-lost sales mixtures simultaneously in the context of
JRP. We therefore propose a novel periodic review stochastic JRP model that
includes all these features. That is, in addition to the standard decision vari-
ables of the JRP (i.e., basic cycle time along with review period and target
level of each item), the proposed model takes into account backorders-lost sales
mixtures, controllable lead times, and investments to reduce the minor ordering
costs. This optimization problem is approached under the class of cyclic policies.
The objective is to determine the cyclic replenishment policy, the length of lead
times and the minor ordering costs that minimize the long-run expected total
cost per time unit. Due to the number of decisions and the nature of features
considered at the same time, the problem under consideration is particularly
challenging.

It is well-known that the simpler deterministic JRP is NP-hard (Arkin et
al., 1989) and that obtaining the optimal policy may be computationally pro-
hibitive for large problems (Khouja & Goyal, 2008). Being an extension of the
classical deterministic JRP, we can deduce that our problem is at least equally
complex to the deterministic JRP. Consequently, developing an efficient heur-
istic optimization method is recommended for the problem we propose (Silver,
2004).

To optimize the considered inventory system, we will propose two alternative
heuristics. A lower bound on the minimum cost is derived and a procedure for
its calculation is provided. Extensive numerical experiments are carried out to
compare the heuristic solutions with the developed lower bound.

To summarize, the contributions of the study are as follows:

1. A periodic review stochastic JRP model with backorder-lost sales mix-
tures, controllable lead times and controllable minor ordering costs is for-
mulated;

2. Two heuristic solution methods to approach the optimization problem
under the class of cyclic policies are developed;

3. A lower bound on the minimum cost along with its calculation method is
provided;

4. Extensive numerical experiments are conducted to evaluate the effective-
ness of the proposed heuristics.

To the best of our knowledge, the aspects included into the present work have
never been previously considered in literature. See Table 1 for a comparison
between our study and others.

TABLE 1 HERE

The rest of the paper is organized as follows: Section 2 introduces the model
and formalizes the problem; Section 3 proposes the first heuristic algorithm;



Section 4 presents the second solution approach; Section 5 is devoted to the
development of a lower bound on the minimum cost; Section 6 presents numer-
ical experiments; finally, Section 7 concludes the paper and indicates further
research.

2. Model formulation and problem definition

The mathematical model uses the following notation:



Decision variables:

T Basic cycle time, i.e., time interval between orders (time units).

L, Length of lead time of item n (time units).

Zn Safety factor of item n.

R, Target level of item n. An equivalent decision variable to z,.

kn Integer multiplier of item n.

an Minor ordering cost of item n (money/order).

Parameters:

A Major ordering cost (money/order).

N Number of items, i.e., n =1,2,...,N.

B Unit holding cost rate of item n (money/quantity unit/time
unit).

Pn Fixed penalty cost per unit shortage of item n (money/quantity
unit).

Tn Marginal profit per unit of item n (money/quantity unit).

Bn Fraction of shortage (i.e., the demand during the stockout

period) of item n that will be lost.

On Standard deviation of the demand rate of item n (quantity
unit/time unit).

D, Average demand rate of item n (quantity unit/time unit).

Random variables:

X Demand of item n within its protection interval, i.e., within the
period k,T + L.

Functions and operators:

f(-) Standard normal probability density function (p.d.f.).

F (-) Standard normal cumulative distribution function (c.d.f.).

G (1) Standard normal loss function.

E[] Mathematical expectation.

s Maximum between 0 and z, i.e., 7 = max {0, z}.
(Il Euclidean norm.

Sets:

R Real numbers.

Ry Positive real numbers.
N Natural numbers.

We make the following assumptions:

1. The random variables X1, X5, ..., Xy are independent.

2. Inventory of item n is reviewed every k, T time units. A sufficient quantity
is ordered up to the target level R,,, and the order lot arrives after L,, time
units. For each item, there is no more than a single order outstanding.

3. The target level of item n is given by R,, = Dy, (knT + Lp)+ 2000 VERT + L,



for n =1,2,...,N. The first addendum is the average demand during the
protection interval, while the second one is the safety stock.

4. For each n, the random variable X,, is Gaussian with mean and standard
deviation given by D, (k,T + L) and o,vk,T + L., respectively.

5. For each n, shortages are allowed and partially backordered with ratio
1 — B,. The fraction of shortage with ratio g, is lost.

6. The time horizon is infinite.

Several authors have pointed out that the lead time of an item can be supposed
to be made of several components, such as setup time, process time, and queue
time (Silver & Peterson, 1985; Liao & Shyu, 1991; Tersine, 2002). This observa-
tion makes it possible to assume that lead time be negotiable and controllable.
That is, each component may be reduced with an additional charge. This ap-
proach to controlling lead time was originally proposed by Liao and Shyu (1991).
They noted that the extra cost to shorten lead time may consist of the following
three components:

1. Administrative costs (e.g., overtime payments, part-time employee wages
for order preparation, etc.);

2. Transport costs (e.g., shipping time, freight charge for transiting items
from the supplier, etc.); and

3. Supplier speed-up costs (e.g., setup costs, extra investments, etc.).

In particular, Liao & Shyu (1991) assumed that lead time can be decomposed
into several components, each one having a different piecewise linear crashing
cost function for lead time reduction. They further assumed that each com-
ponent may be reduced to a given minimum duration. Over the years since its
introduction, numerous scholars have endorsed this model for controlling lead
time (see, e.g., Ouyang et al. (1996); Huang (2001); Chuang et al. (2004); Lin
(2009); Glock (2012); Sarkar and Moon (2014); Soni and Patel (2015)).

In this paper, we assume that the lead time of each item can be controlled
according to the same assumptions as in Liao & Shyu (1991). This is a licit
approach as the above observations about lead time can clearly be adapted
to any single- or multi-item inventory system, independently of the particular
replenishment policy adopted. Moreover, we assume that the lead time of item
n is different from, and independent of, that of item p, for p # n. Clearly,
this permits us to generalize the case in which all items have the same lead
time (which represents a special condition). Namely, our model can readily be
reduced to the circumstance where all items are characterized by the same lead
time. Note that two or more items may experience the same or different lead
times depending on whether, for example, they are procured from the same or
different suppliers. In the literature, it is possible to find papers on stochastic
JRP where lead times are equal (see, e.g., Tsai et al. (2009); Kiesmiiller (2010))
or not (see, e.g., Tanrikulu et al. (2010); Qu et al. (2015)).

In particular, it is supposed that the lead time L, of item n is made up of
M,, mutually independent, deterministic and constant components. The generic
mth component has a minimum duration by, ,, a normal duration s, ,, and a



crashing cost per time unit ¢y, ,, with ¢1., < c2p < ... < cp,,,n. Components
are crashed one at a time starting with the component of least ¢, and so
on. If L, , is the length of lead time with components 1,2, ...,m crashed to
their minimum durations, then L, , = Lo, — (S1,n — b1,n) — (S2,n — b2.5) —
o = (Smyn — bmyn), where Lo, = > smpn. For Ly € [Lypn, Lin—1,n], m =
1,2,..., M, the lead time crashing cost U, (L) relevant to item n can be ex-
pressed as follows:

Un (Ln) = Cmn (Lm—l,n - Ln) + Cl,n (Sl,n - bl,n)
+CZ,n (52,n - bZ,n) + ...+ Cm—1,n (Sm—l,n - bm—l,n) . (1)

We can note that U, (Ly) is a piecewise-linear, decreasing function defined in
the interval [Las, n,Lo.n], where it is also continuous and convex.

We further assume that the minor ordering cost a, of item n, for n =
1,2,..., N, is controllable through a capital investment I, (a,,), which is a convex
and strictly decreasing function of a,. The investment I, (a,) is required to
reduce the minor ordering cost from the original level «,, to a target level a,,
with 0 < a, < a,. For example, I, (a,) may be regarded as an investment
of purchasing a more efficient vehicle, or an investment in new technology to
facilitate the transport. The function I, (ay) is the one-time investment cost
whose benefits will extend to the long-term future. Hence, if 7,, is the annual
fractional cost of capital investment (e.g., the interest rate), then 7,1, (ay) is
the annual cost of the investment. In this paper, we consider a logarithmic
investment function:

I, (an) = iln (a_n) ,0<an <ap, forn=1,2,...,N, (2)
On (2%
where 6, is the percentage decrease in a,, per money unit increase in investment.
An early analytical treatment of investments to reduce setup cost is owed to
Porteus (1985). The logarithmic investment function has been widely adopted
in literature (see, e.g., Chuang et al. (2004); Lin (2009); Shu and Zhou (2014);
Sarkar and Moon (2014); Sarkar et al. (2015)).
Under the above assumptions and notation, the long-run expected total cost
per time unit relevant to the single and independent item n (whose review period
is Ty,) is expressed as follows:

Cn (anaTna Zn; Ln) = TnIn (an) + Cn (arw Tn» Zn; Ln) ) (3)

where the first term represents the investment cost to reduce the minor ordering
cost for item n; letting @, = pp, + TnfFn,

D, T,
Cn(an:TnvznaLn) = hn( +Zn0-n\/Tn+Ln+ﬁnaann+LnG(zn))

2
n _n / Un Ln
+;l—,_ + ,71T-,_O'n Tn + LnG (zn) + T(—) (4)



Equation (4) includes the inventory holding cost, the minor ordering cost, the
shortage cost, and the lead time crashing cost. Equation (4) can be derived in
a similar way to Annadurai and Uthayakumar (2010).

The cost function C,, (an, Ty, 2n, Lyn) (ie., Eq. (3)) can readily be extended
to the N-items case, i.e., to the JRP formulation. If we let k = (k1, k2, ..., kn),
z = (z1,%2,..,2N), @ = (a1,a2,...,an), and L = (L1, Lo, ..., L), the long-
run expected total cost per time unit for a family of N items under the JRP
framework is

N
C(T,a,k,z,L) = % + 3 Cn (T an, kn, 20, Ln) (5)
n=1

where the first term is the major ordering cost component and C, (T, an, kn, 2n, Ln) =
Cn (an, kp T, 2, Ly,). Just as a clarification, we have defined T, as the review
period of item n when it is managed independently of the other items. When
item n is instead managed in coordination with the others according to the JRP
framework, its review period is k,, T, i.e., it is an integer multiple of a (common)
base period T

The objective is to find the cyclic replenishment policy, the length of lead
times and the minor ordering costs that minimize Eq. (5). This problem can
be formalized as follows:

(P) min C(T,a,k,z,L),
(T,a,k,z,L)
s.t. T >0,

Ln (S [LIL[,,,,n»LOm] VTL,
0<ap <apVn,

z e RV,

k ¢ NV,

This problem has never been investigated before. Moreover, the global optimal
solution to problem (P) is evidently difficult to obtain. We turn to develop two
effective heuristic algorithms.

We conclude this section with a proposition that establishes some useful
properties of the cost function, which can facilitate the development of heuristic
algorithms.

Proposition 1. C (T, a,k,z, L) satisfies the following properties:

1. With fized (T, a,z,k), C (T,a,k,z,L) is concave in L.

2. With fized (T,k,z,L), C(T,a,k,z,L) is convez in a. Moreover, the only
stationary point of C (T,a,k,z,L) with respect to a, is given by a, =
G, (knT) = EnknT, for each n, where &, = 3=

With fized (a,k,L), C (T,a,k,z,L) is convezx in (T,z).

4. With fized (k,L) and a,, = an, (k,T), C (T, a,k,z,L) is convezx in (T,z).

w



5. With fived (T,a,k,L) and hy, (1 — ) < ”" 2 for eachn, C (T, a,k,z, L) —
+o0 as ||z]] — +oo.

6. With fived (T, a,z,L) and relazing the integrality constraint onk, C (T, a,k,z,L) —
+00 as k tends to the boundary of ]Rf.

Proof. Point No. 1. If we take the second-order partial derivative of Cy, (T, an,, kn, 2n, Ln)
with respect to Ly, with Ly, € [Lyn, Lim—1,,], we have:

0? on
BLQC (T, an, kn, 2n, Ln) = —

7?77/
I h (o 4 BuC (20) + G (2) | <0,
TRl A

which is valid for m = 1,..., M,, and for n = 1,2, ..., N. Hence, the concavity of
C (T,a,k,z,L) in L, Wlth ﬁxed (T a, z,k), is proved.

Point No. 2. Noting that aa 2= Cn (T, an, kn,y 20y L) = 5 a2 > 0, for each n,
we can readily deduce that C' (T ak,z, ,L) is convex in a, with fixed (T,k,z,L).
The only stationary point in a,, of C (T a, k,z,L) can be found solving the equa-
tion 88 C (T, a,k,z,L) = 0 with respect to a,, which gives a,, = @, (k,T) =
EnknT f01 each n.

Pomt No. 3. Note that Annadurai and Uthayakumar (2010) proved that
a function structurally identical to C, (an,Tn, 2n, L) is convex in (T, z,), for
fixed (an, Lyp). Since convexity is invariant under affine maps, we can affirm that
Cn (T, an, kn, 20, Ly) is convex in (T, z,,), for fixed (a,,, ky,, L,,). This is evidently
true for each n. If we also observe that % is convex in T, then the convexity of
C (T,a,k,z,L) in (T,z), with fixed (a,k,L), can readily be deduced.

Point No. 4. We first observe that, for a, = an (knT), Cn (T, an, kn, 2n, Ln)
becomes:

Ch (T kn,zn, L ) €n ln( ) +€n +C (T: knyznaLn)a

EnknT

where

A k,TD,
Ch (T7 kn:zn7Ln) = h, ( D) + 2000V E T+ Ly + BponV En T + LG (Zn)>
T n Ln
TUn\/ knT + LnG (2,) + Uk'(T )

Note that C,, (T, kp,y 2n, L) is convex in (k,T, z,), with fixed L, (this follows,
e.g., from Annadurai and Uthayakumar (2010)). If we recall that convexity is
invariant under affine maps, we can deduce that C, (T, kn, zn, L) is convex in
(T, zn), with fixed (kn, Ly). In addition, &, In (#) + &, is convex in T, for
fixed ky. Hence, Cy, (T, an, kn, zn, L) is convex in (T, z,), with fixed (ky, Ly)
and a, = Gy, (k,T). This is evidently true for each n. In conclusion, observing

that % is convex in T, we can conclude that C' (T, a,k,z,L) is convex in (T, z),
with fixed (k,L) and a,, = a, (k,T), for each n.

10



Finally, the limit properties given in the last two points are relatively easy
to observe, and their proof is therefore omitted. O

Note that the assumption made at the fifth point of Proposition 1 is reason-
able. In fact, over the inventory replenishment cycle, the unit holding cost can
be assumed, in practice, smaller than the unit shortage cost.

3. The first heuristic algorithm

The properties of C (T, a,k,z,L) given in Proposition 1 permit us to make
the following useful observations to approach problem (P). First, we can note
that the minimum of C (T, a, k,z, L) in L is given by a vector L whose nth com-
ponent L,, belongs to %, = {L,, ., : m =0,1,..., M, }. That is, the minimum
of C(T,a,k,z,L) in L,,, with L,, € [Ly n, Lim—1,n], for each n, is located on one
of the endpoints of the interval [Ly, n, Lym—1,n]. We can therefore write that

min C(T,ak,z,L) = min{ min C (T,a,k,z,i) : Ly € %”nVn} .
(T,a,k,z,L) (T,a,k,z,)
(6)
In accordance to Eq. (6), problem (P) is therefore reduced to solve the following

sub-problem for each vector L:

(P1) min  C(T,ak,zL),

(T,a,k,z)
s.t. T>0,
0<ay <apVn,
z e RV,
k e NV,

Note that the number of all vectors L is given by [, (M, +1).

Although it is difficult to prove that C (T, a k, z, L) is convex in (T, a, k, z),
Proposition 1 allows us to approach problem (P1) according to the following
relation:

min C (T, a, k,z,i) =min%, (7)
(T,a,k,z)

where % = {(Irpin)C (T, a, k,z, E) ke NN}. Evidently, it is practically im-

$a7z

possible to evaluate min C (T Ja,k, z, E) for each k € NV when N is large (we

(T,a,z)
recall that L is fixed in problem (P;)). It therefore needs a heuristic procedure
to explore the space of vectors k. We here propose a method that aims at de-

termining ( 7Iﬂnin)C’ (T, a, k,z, I:) for vectors k by gradually increasing its norm,
.a,z

11



starting with the unitary vector, which is of the least norm. The process con-
tinues as long as ( :Ipnin)C (T ,a, k. z, L) decreases. We note that the minimum
\a,z

of C (T,a,k,z,L) in (T,a,z), with fixed (k,L), can be obtained by solving the
first-order conditions for optimality.
By making use of the above observations, we can propose a heuristic al-

gorithm below, which gives a heuristic solution (T, a*, k*,z*, L*), and the cost
C* = C (T*,a* k* z*,L*), to problem (P):

Algorithm 1.
Step 1. Set € « 0.

Step 2. For each vector L do Steps 2.1-2.3.
Step 2.1. Setizl, CZ‘Z]., C¢_1=0.
Step 2.2.  While C; # C;—1 AND stopping criterion is not satisfied, do Steps 2.2.1-2.2.4.
Step 2.2.1.  Set # < {k: k, €{1,2,...,i} Yn} and Z; < 0.
Step 2.2.2.  For each k € J, do Steps 2.2.2.1-2.2.2.6.
Step 2.2.2.1.  If stopping criterion is satisfied, then go to Step 2.2.3.
Step 2.2.2.2.  Set a,, < @y, (k,T), for each n, and P, <+ {1,2,...,N}.
Step 2.2.2.3.  Set Do + 0, and (ﬂ,i,) + argminC (T,a,k,z,L).
T,z
Step 2.2.2.4.  If 21 =0, then set a; = (&1’1,6(1;2’1‘,)...,&]\[’1‘) and go to Step 2.2.2.7;
otherwise, go to Step 2.2.2.5.
Step 2.2.2.5. For eachn € 24, if 0 < a, (knﬂ) < au,, then set Gp,; < Gy (knﬂ),
otherwise, set y ; < apn and Do < P U {n}.
Step 2.2.2.6.  If Zo = 0, then set &; = (G1,4,a2,-..,an ) and go to Step 2.2.2.7;
otherwise, set Z1 < D1 \ Do, apn < an (knT), for each n € 21, and
Qp < Q, for each n € Dy, then go to Step 2.2.2.3.
Step 2.2.2.7.  Set f, « iU {c (T,L-,éi,k, zlf;)}
Step 2.2.3. Set C; < min Z; and (T}, a},k;,z},L) < argmin Z;.
Step 2.2.4. Seti<+ i+ 1.
Step 2.3.  Set € < € U {C (T}, a} k;.z;,L)}.
Step 3. Set (T*,a* k* z* L*) + argmin%, and C* + min%.

Steps 2.1-2.2 deal with problem (P;). At Step 2.2.1, we define the subspace
# of NN where the search method aims to find a heuristic solution to min % .
Note that, according to the heuristic procedure concerning the minimization
over % , subspace # is updated at each iteration, so as to include vectors k
with gradually increasing norm. Algorithm 1 carries on with this sub-routine as
long as it is possible to obtain increasingly smaller values of (min)C (T, a, k,z, E)

T,a,z
(or until stopping criterion is satisfied). In this regard, at Step 2.2 Algorithm
1 checks whether the minimum costs obtained in two consecutive iterations
coincide; if so, the heuristic to find min %, for fixed L, ends. Note that a
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stopping criterion is required since it is not possible to prove that the heuristic
to find min % will end in a finite time.

We then observe that Steps 2.2.2.2-2.2.2.6 are concerned with the minimiz-
ation of C (T, a,k,z,L) in (T, a,z), for fixed (k,L). Although this problem can
be approached by solving the first-order conditions for optimality, it is required
that the constraint 0 < a, < a,, for each n, be satisfied. To understand the
logic behind the procedure at Steps 2.2.2.2-2.2.2.6, it may be useful to consider
a simple example with two items. Let T*, a* = (af,a}), and z* = (2], 23) be
the solution to the problem of minimizing C (T, a, k,z, E) in (T, a,z), for fixed
(k,L). Let T, a = (a1.a2), and 2 = (1, %2) be the solution to the first-order
conditions for optimality in (7,a,z). Note that, thanks to Proposition 1, we

can affirm that C (T, a,k,z, E) admits only one stationary point (T, a, i) Once

(T ,a, i) is determined, the solution (T*,a*,z*) can be obtained according to
the following cases:

1. If @1 < apand as < ag, then we put (T, a*,z*) = (T,é,i).

2. If a1 > ajand as < ag, then we put a; = oy and calculate the new T, as,
and z, for a1 = ay. If a2 < ag, then we put T* = T, a] = a1, a5 = as,
and z* = z. Otherwise, we set as = ag and calculate the new T and Z,
for a1 = a7 and as = s, which permit to attain the solution 7% = T,
aj] = a1, a5 = ag, and z* = z.

3. If a1 < ajand do > s, then it is necessary to proceed similarly to the
previous case.

4. If a1 > ajand ae > ag, then we put a; = a1 and as = ae, and calculate
the new 7" and 2, which gives the solution T* = T, a] = o1, a5 = ag, and
z* = z.

The minimization problem at Step 2.2.2.3 can be approached by a standard
constrained nonlinear minimization algorithm, or by a metaheuristic algorithm.
Note that the first-order conditions for optimality in (7',z) cannot be solved in
closed form. Hence, only a numerical technique can be used.

With regard to the computational complexity of Algorithm 1, it is not pos-
sible to obtain an estimate or an upper bound. More precisely, while it is
possible to observe that the minimization in (T, a,z) of C (T,a,k,z,L), with
fixed (k,i), may require, at most, N + 1 iterations (i.e., instructions between
Steps 2.2.2.2-2.2.2.6 may be repeated, at most, N + 1 times), we cannot give an
a priori estimate of the time (i.e., of the number of iterations) that the heur-
istic approaching the minimization over % would need. In fact, this heuristic
is complex (mainly because of the combinatorial nature of the optimization in
k) and computational results are strongly dependent on parameter values, as
extensive numerical experiments have shown later on.

However, note that we have included a stopping condition at Step 2.2. This
permits us to assure that the heuristic approaching the minimization over % ter-
minates within the time limit imposed by the stopping condition. It is possible
to implement different stopping criteria. For example, (i) the maximum number

13



of iterations performed to explore the space of vectors k, or (i) the maximum
“extension” of vectors k, where the “extension” of a vector can be evaluated
according to its norm (e.g., Manhattan, Euclidean, or a different p-norm) or to
the largest value that each component of the vector can take. Moreover, it is
possible to observe that the heuristic solution in (T, a, k,z,i), with fixed L,
must be determined for [[,, (M, + 1) different vectors L. In Section 6, we will
present the results of extensive numerical experiments aimed to evaluate the
computational efficiency of Algorithm 1 over a quite large number of problems.

Numerical tests have shown that Algorithim 1 is effective. However, the same
tests have pointed out that this algorithm may be computationally onerous for
large problems. In the next section, we therefore present a computationally
more efficient heuristic to approach problem (P).

4. The second heuristic algorithm

The second heuristic proposed to approach problem (P) is based on a sim-
plified expression of C' (T, a,k, z, L), which is obtained by means of the passages
below described. The first-order condition for optimality of C (T, a,k,z,L) in
Zpn gives:

iC’(T,a,k,z,L) =0& 2z, =z, (k1) , forn=1,2,...,N,

Oz,
where
Zp (knT)=F7 11— h—”l =F 1 (1= X(ET)). (8)
ﬁnhn + ﬁ-nkn_T
In Eq. (8), we have put A (k,T) = Bhfi‘%’ and F~!(-) represents the

quantile function of the standard normal distribution. From Eq. (8), we have

1= F(z0) = A (kaT). (9)

1If we recall that G (z) = f (z) —z (1 — F (x)) (Zipkin, 2000), we can substitute
A(knT) to 1 — F(z,) (according to Eq. (9)) in Cp (T, an, kn, 2n, Lyn), which
becomes, after some algebraic manipulations,

hr Dr,

Cn(T,an, kn,Ly) = Ly (an) + —= (an + Uy (L)) + knT

knT
t0nf (Zn (knT)) VEnT + Ln (Bnhn + ﬁ'nﬁ> , forn=1,2,..,N.

Equation (5) can finally be rewritten as follows:

N
C(T,ak,L) Z (T, @, iy L) - (10)

'ﬂltb
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The proposed second heuristic works on C (T, a, k, L) and is inspired by the
improved version of the original Silver’s algorithm for the deterministic JRP
(Kaspi & Rosenblatt, 1983). However, our heuristic algorithm approaches a
more general and more complex problem than the original deterministic formu-
lation: we deal with the stochastic JRP with lead times and minor ordering
costs that are controllable. Below, we describe how the heuristic solution can
be obtained. Finally, the second heuristic algorithm will be formalized.

Let us consider a fixed vector L. For each n, let *T}, be the minimum of
Ch (T, an,kn,I_/n) in k,T. Note that *T;, should be obtained by minimizing
Cy (T, an, kn,Ly) in (k,T,ay), which can easily be done according to the ob-
servations given in Section 3. The item with the smallest *T,, is the one that
needs to be replenished most often; that is, its replenishment frequency is the
highest. If we denote such item with index n = 1, then we can put k; = *k; = 1,
and Eq. (10) can be rewritten as follows:

h1Dy

C(T,akL) = %+7111(a1)+i(a1+U1(131))+ kT

kT

touf (31 () VT + Iy (Ml N ﬂ)

kT
hnD,

N
1 _
+ Z |:Tn-[n (an) + ((ln + U”l (L”)) + knT
n=2

TenT

‘anf (Zn (knT)) kT + I_/n <5nhn + lj%)} . (11)

1If we replace a,, with a, (k,T), for each n, then Eq. (11) becomes

T &k T kT 2

+oif (21 (k7)) Vi T + Ly (ﬁ1h1 + I:_1T>
N

+
n=2

Un(Ln) = hnD,
Fonf (Zn (knT)) VEnT + L </5nhn + ﬁ—")] . (12)

_ U (L
C(T,k,L) = é+§1ln< it )+€1+ 1( 1)+h1D1]€1T

an
&nln (ﬁnknT)+§n+ T + 5 kT
k,T

We would observe that the following arguments concern the case in which
an = ap, (k,T), for each n, which is actually the initial stage of the heuristic.
Note that the below passages are still valid in the case in which a; = a; (k;T)
and a; = ay, for any 4,7 € {1,2,..., N} with ¢ # j.

Let us relax the integrality constraint on k,, with n = 2,3,..., N. If we
now take the partial derivatives of C (T, k, E) with respect to 17" and k,,, with
n = 2,3,...,IN, and then impose the first-order conditions for optimality, we
obtain:
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0 . A & U (L) h1Dy
arC (TR =~ - ThTg

hik17 =
+o1 { |:21 (ki T) (1—17T1_\/ k1T + Ly

BrhikiT + 71)
k1

s (0 7)
! Gy (T) VBT + 11 |

! _
n Un(Ln hnDy,
+Z{ﬁ_ (Lo)

Ny kn T =
+Ton { {Zn (k. T) —ﬂ_ Vk, T+ Ly,

(ﬁnhnknT + 7Tn)
k,

| (i)
(awﬂwvﬁfii}}:m (13)

+f (21 (k1 T))

[ (zn (kaT)

ﬂ-n
_mwf

0 - ¢n Un(Ln) hnDp
a—knC(T,k,L) _H_ k%T +T 5

hnT7, =
+on { |:Zn (knT> —ﬂ._ vV kT + Ly

(6n Rk T + 7T'n)

. T T
G (k”T»z\/m (ﬁ”h” knT>
;"Tf(n(k ) VEn T+L}—0 (14)

forn=2,3,...,N.

If we now multiply Eq. (14) by kT" and then substitute into Eq. (13), we get
the equation
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A & U (L) h1Dy

Y0 = w7~ e th—3
_ hiki7 =
kT)———Vk T+ L
+01{{Z1( 1 )(51h1k1T+7_T1) 11+ Ly
k1

+f (21 (k1T))

S S <5lh1 + ﬂ)
2V kT + Ly kT
—%f (1 (aT)) VI T + L} =0.

We can note that Y (7') coincides with the derivative with respect to T of
Ch (T, al,kl,l_q), with a1 = @; (k&17T), plus the term —T%. Recall that ki is
a parameter, in this circumstance, and not a decision variable. Proposition 1
permits us to argue that the equation Y (7') = 0 admits only one solution (in
T), which will be denoted by T

If we replace T with 7' in Eq. (14) and then multiply it by %, we can see

that the solution in knT coincides with *T;,, which means that knT =*T,, for
n=2,3,...,N. Since *T),, for each n, has been previously determined, we can
put k, = —TT# and qn, = |kyn |, for n =2,3,..., N. According to the unimodality
of C, (T, an,k’n,f/n) in T,, = k,T, we take g, instead of ¢, + 1 if and only if
Ch (T, an,qn,zn) <Cp, (T, Qny Qn + 1,I_,n), with a, = @y (k,T"). In this case,
we have *k,, = ¢, otherwise *k,, = ¢, + 1. We remind the reader that we have
initially put k1 = *k = 1.

The near-optimal value *T of T (for a given L, and for a, = a, (k,T),
with n = 2,3,..., N, and k; = *k; = 1) can now be evaluated by taking into
consideration the integer values *k,, for n = 2,3,..., N, just calculated. In
particular, *T" is obtained by solving Eq. (13) in T, once k, has been replaced
by *k,, for each n.

As *T has been determined, it is necessary to verify whether 0 < @,, (*k,*T") <
oy, or not, for each n. If this constraint is not satisfied by some item, we can
denote the set %, that contains all these items. According to the observations
in Section 3, we set a, = g, for each n € %, and a, = @, (k,T), for each
n ¢ %,. The solution procedure must then restart to calculate new *T" and
*kn, for n = 2,3, ..., N, keeping the value of *k; unchanged. This sub-routine is
repeated as long as, at the end of the pth run of the algorithm, a,, (*k,*T) > o,
for any n that has not been included into %, at the end of iteration p— 1. Note
that 25 changes in each iteration. This cycle is concluded in the iteration that
ends with 25 = (), giving in output the sub-optimal value *a,, of a,, for each n,
along with *T" and *k,,, for n = 2,3, ..., N, obtained in the last run.

If, at the end of the first iteration of the sub-routine, it turns out that %, = 0,
then that the constraint 0 < @, (*k,*T") < v, is satisfied by all items. Thus, we
can put *a, = a, (*k,*T), for each n, and further iterations are not required. In
Figure 1, we summarize the decision process that should be followed to obtain
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the heuristic solution s = (*T,*a, *ko, *k3, ..., *ky), for fixed L and for a given
*k1, where *a = (*aq, *ag, ..., *an).

FIGURE 1 HERE

We remind the reader that the above procedure has been initialized by im-
posing that the item with the highest replenishment frequency, denoted by
n = 1, has unitary multiplier; that is, we have put *k; = 1. With this
*ky (and for a fixed L), we have then calculated the corresponding solution

s = (*T(1>, *a(l), *kél), *k:gl), *kr(ll)>, where the superscript would emphas-

ize that s(!) is referred to *k; = 1. We should now investigate whether a greater
value of *k; may lead to a better solution s than s(!), or not. To do this, once
s(1) has been determined, a new solution s (corresponding to *k; = 2) should
be found, and we must check if the cost relevant to (8(2),* I<;1) is smaller than,
or equal to, that corresponding to (s(V),*ky). If so, we proceed by searching
for a new solution s(®, whose cost should be compared with that of s(?). This
process ends when we obtain a solution s(") whose cost is greater than that of
s(r=1). When this occurs, we take (s("=1) * k), with *k; = r — 1, as heuristic
solution to the problem of minimizing C (T, a,k,L), with fixed L.

Finally, according to Eq. (6), the entire previously described procedure
should be repeated for each vector L to find the heuristic solution (7%, a*, k*, z*, L*),
and the related cost C*, to problem (P). The complete algorithm is formalized
below:

Algorithm 2.
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Step 1.  Set € «+ 0.
Step 2. For each vector L, do Steps 2.1-2.6.

Step 2.1.
Step 2.2.
Step 2.3.

Step 2.4.
Step 2.5.
Step 2.6.
Step 2.7.
Step 2.8.

Step 2.9.

Step 2.10.
Step 2.11.

Step 2.12.

Step 2.13.

Step 2.14.

Step 2.15.

Initialize stopping condition.

For each n, calculate *T), as the minimum in k,T of Cp (T, an, kn, Ly).
Let n =1 be the index of the item with the smallest *T,,. Set *k1 =1
and *C = +o0o.

Set by, < an (knT), for each n, ki <* k1, and 71 < {1,2,..., N}.

Set Do <+ 0 and an, < an, for each n.

Calculate T as the solution in T of the equation % [% + C4 (T,al, k]_,.z/]_)] =0.
Forn=2,3,...,N, set q, < {%—J .

Forn=2,3,...,N, if

Cn (T,an,qn,fm) <C, (T, Gny Qn + l,f/n), then set *ky < qn;
otherwise, set *k, < qn, + 1.

Let *k = (*k1, *ko, ..., *kn). Calculate *T' as the solution in T of the
equation B%C (T, a,* k, I:) =0.

If 91 = 0, then go to Step 2.13; otherwise, go to Step 2.11.

For eachne€ 21, if 0 < a,, "k, -* T) < ay, then set

*ap < Gp (Fkn - T); otherwise, set *an < o, and Po < Do U {n}.

If 2o = 0, then go to Step 2.13; otherwise, set 21 < D1 \ Do,

G < Gn (knT), for each n € 21, and an < o, for each n € Pa, then
go to Step 2.5.

Let *a = (*a1,*ay,...."an). If C (*T,*a,*k,L) < *C, then set

T« *T, *k < *k, *a + *a.

IfC (*T,* a* k,I_J) < *C AND stopping condition is not satisfied, then
set *C «+ C (*T,* a,* k, i) and *k1 <* k1 + 1, and go to Step 2.4;
otherwise, go to Step 2.15.

Set ¢+ ¢ U{C (“Ta"kL)}.

Step 3. Set (T*,a*, k*L*) + argmin%, C* + min¥, and z;; < z, (k:T*),
for each n.

We can observe that:

e Steps 2.6-2.9 deal with the minimization in (7, ks, ks, ..., kn), with fixed

(a,ki,L).

e Steps 2.4-2.13 consider the minimization in (7, a, ko, ks, ..., kn ), with fixed

(k1,L).

e Steps 2.1-2.14 find the heuristic solution in (7', a, k), with fixed L.

Similarly to Algorithm 1, it is not possible to give an estimate or an upper
bound to the computational requirements of Algorithm 2. While the number
of iterations to approach the minimization in (7, a, ko, ks, ..., kn), with fixed
(lcl, I:), is at most equal to N+1, the time (i.e., the number of iterations) needed
to obtain the heuristic solution in (T, a, k), with fixed L, is strongly dependent
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on parameter values and nothing can a priori be said. Note that Algorithm 2
includes a stopping condition at Step 2.14, which is initialized at Step 2.1. This
permits us to assure that the heuristic approaching the minimization in (7', a, k),
with fixed L, terminates within the time limit imposed by the stopping criterion.
Moreover, it is not possible to prove that the sub-routine concerned with the
optimization in (T, a,k), with fixed L, will converge in a finite time. Although
several stopping criteria may be adopted, a reasonable termination criterion is
to specify the largest value that *k; can take. We finally remind the reader
that the heuristic solution in (7', a,k, L), with fixed L, must be determined for
I1,, (M,, + 1) different vectors L.

5. A lower bound on the minimum cost

The cost of the solution obtained from a heuristic algorithm is an upper
bound to the minimum cost obtained solving problem (P) exactly. Since this
minimum cost is unknown, a lower bound is, therefore, useful to evaluate the
effectiveness of both heuristics. We will provide a lower bound according to the
following procedure. We first allocate the joint (i.e., major) ordering cost A to
each item in such a way that the sum of the allocated costs over items is less
than or equal to the original cost A. The sum of Zf,\;l Cn (T, an, kn, 2n, Ly)
plus the single-item costs derived from partitioning A among the items gives
a lower bound for the total system cost, i.c., for C (T, a,k,z,L). This lower-
bound cost function has the property to be separable in items so that it can be
minimized one item at a time. Note that this joint-cost allocation scheme, as
originally proposed by Atkins and Iyogun (1987; 1988), has also been adopted,
for example, by Viswanathan (1997) in the case of the JRP under a continuous-
review policy with full backlogging.

Let ¢, > 0, for each n, such that Zn 1 ¢n = 1. If ¢y, is the fraction of the
joint ordering cost A that is allocated to item n, then it is possible to prove
that, for a given ¢ = (¢1, @2, ..., ®n), the cost function

nJ

N

A

= E min (ansTny 2n, Ln)
(an JTny2zn,Lin)

Mz

J(p) = IIllIl

(a,Ty,T:

Ty, zn, n):|

is a lower bound on min C(T,a,k,z,L). Note that the second equal-

T,a,k,z,L

ity follows from the fact that Zgzl {‘@EA ' (s Ty 20, Ln)] is separable in

items. Evidently, the set {J (@) : pn >0, 25:1 On = 1} defines a class of lower

bounds. The problem concerned with finding the best, or the highest, lower
bound within the class of lower bounds can be stated as (Atkins & Iyogun,
1987; 1988; Iyogun & Atkins, 1993)



@ max J(9)
st. ¢n>0,Vn,

N
n=1

We now prove that J* = mdz)LXJ (¢) is the desired lower bound for mln C (T,a,k,z,L)

(T,ak,z
and then we give an algorithm to approach problem (Q) that is based on the
procedure proposed by Atkins and Tyogun (1988).

Pro OSitiOIl 2. J¥isa lOﬂ)C’I’ bound on min C T, a k Z.L .
) b ) ) ’
T,ak,z,L

Proof. For any ¢, with ¢, > 0, for each n, such that ZnN:1 ¢n = 1, we have

min  C(T,a,k,z,L)
(T,a,k,z,L)

N

A
= i C T n»kny ny n
waﬂzLﬂ’+g; “ z )

A
- (TakzL)Zd)n +ZC (T an?knvznyLn)

n=1

> .. T g v .
o (TakzL)anT—i_z:: Tan’k’fhznan)

Since the above relations are valid for any vector ¢, it is evidently true that

. d)n
(T;lligLC’(TakzL)>mgx (TakZL)Z +ZC’ (T, an, kny 20y L) | -

If we also consider that, by relaxing the integrality constraint on k,,, for each n,
we have

S on A N4 g
k__ z:: w (T ans by 2y L) > min ;¢nT—n+nZ::lCn(an,Tn,zn,Ln),

min
T (811, T2, T2, L) 2=

(Tak.zL) 4

then we can write

N A N

O (T,ak,2,L) > i = Cra (an, T, 2, L) | = .
pmin C(Ta,k z,L) > max <a,T17T§mnTn,zL>;¢"Tn+n§ 0 (@n. Ty Zny L)

This completes the proof. O
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The following algorithm defines a procedure to approach problem (Q) so as
to find the solution ¢* = (¢7, 93, ..., ¢&) = arg maxJ (¢):
¢

Algorithm 3.

Step 1. Set ¢, =0 and ¢}, +— ¢y,

Step 2. Minimize Cy, (an, T, 2n, Ln) i (an, T, 2n, Ly), for each n. Let T} be
the minimum in Ty, for each n.

Step 3. Relabel items in nondecreasing order, i.e., let n =1 be the item with
the smallest T); and n = N be the item with the highest T, . Set
n* < n=1.

Step 4. For each n=1,2,....,n", increase the allocated fraction ¢, A and
minimize ¢TA + Cy (an, Ty, 20, Ly) in (ayn, Ty, 2n, Ly). Let T, be the
mainimum in 1,.

Step 5. For eachm =1,2,...,n%, z'an =Ty« 1, then set ¢}, < ¢, and go to
Step 6; otherwise, go to Step 4.

Step 6. If ZZ=1 ¢n = 1, then STOP; otherwise, set n* <— n*+1 and go to Step
4.

It is worth noting that problem (Q) can also be approached with a meta-
heuristic algorithm, such as the simulated annealing.

6. Numerical study

In this section, we evaluate the performance of Algorithm 1 and Algorithm
2 in terms of computational time and solution quality. We have carried out two
different series of experiments. The first one considers smaller problems and the
objective is to solve problem (P). The second one considers larger problems and
the objective is to solve a sub-problem of problem (P). That is, in this second
case, the purpose is the optimization of C (T, a,k,z,L) for a given vector L.
As the reader will note in this section, Algorithm 1 may become computation-
ally onerous for large problems. Therefore, to ease the experimental compar-
ison, which exploits a standard computing platform, it is practical reducing the
problem complexity. Since the optimization over L is a standard combinatorial
optimization problem approached with an exhaustive search method and the
proposed heuristics do not differ in how the minimum in L is searched, we have,
therefore, considered the simpler problem where L is a parameter, rather than
a decision variable. The reader will also note that this choice does not change
the relative performance between the heuristics that is observed in both series
of experiments. Because of the time required to approach problem (P) for large
problems, the number of instances in the first series of experiments is smaller
than in the second one.

Experiments have been executed on a PC with an Intel® Core™ i3 processor
at 3.10GHz and 4GB of RAM memory. Moreover, MATLAB® R2013b has been
used as computing environment. In each problem, Algorithms 1 and 2 adopt
the following stopping criterion:
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e In Algorithm 1, the multiplier of each item cannot be larger than 30;

e In Algorithm 2, the multiplier of the item with the highest replenishment
frequency cannot be larger than 30.

Both heuristics have been compared with a specifically developed benchmark
algorithm, i.e., a hybrid genetic algorithm (HGA), which works as follows. The
genetic algorithm (GA) included into Optimization Toolbox™ has been used to
solve the following (sub-)problem for each vector L:

min € (T a,k, E) :
st. keNV,

where (T, é) is the vector (T, a) that minimizes C (T, a, k, I:), for fixed (k, I:).

To find (T, é), we have used the same procedure described in Section 3 (see,

e.g., the routine between Steps 2.2.2.2-2.2.2.6 of Algorithm 1). GA has been
implemented with default parameter values, except those listed below that have
been tuned with preliminary tests:

Population size: 15 N;

Elite count: 0.2 - population size];

Crossover fraction: 0.6;

Migration direction: both;

Maximum generations number: 10 - N;

Stall generations limit: 8 - N.

In the first series of experiments, we take into account three values of N: N =
4,5,6. The lead time of each item is supposed to be made of three components
(i.e., m = 1,2,3 for each n). Parameter values belong to the ranges shown in
Table 2. Table 3 shows the specific values that the parameters take. For these
problems, we provide the selected parameter values and the obtained solutions
so as to permit comparisons the reader may be interested to do.

Table 4 gives the results of this first round of experiments. We can first note
that the greatest absolute percentage error (APE), evaluated with respect to the
lower bound, is 1.9%, which has been achieved in problem P2 by Algorithm 2.
In this problem, APE is 1.8% for Algorithm 1 and HGA. In the other problems,
APE is always smaller than 1% for either heuristic algorithm. The best solutions
have been obtained by Algorithm 1 and HGA. Algorithm 2 has found a slightly
worse solution in problems P2 and P5. Since Algorithm 1 has always found the
same solution as HGA (Algorithm 2 in problems P1, P3, and P4 only), it is
reasonable that it has reached the optimum in each problem.
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If we now consider the computational time, we can observe that Algorithm
2 is more efficient than both Algorithm 1 and HGA. Moreover, while Algorithm
2 seems to be less sensitive to variations in parameter values (for a given value
of N), Algorithm 1 shows a notable variability in the computational time. In
this regard, note that, for N = 5, the computational time of Algorithm 1 in
problem P3 is two orders of magnitude greater than in problem P4.

In conclusion, we may affirm that Algorithm 2 seems promising from the
practical perspective. In fact, the cost difference between the solutions obtained
by Algorithm 1 and Algorithm 2 is negligible. Moreover, Algorithm 2 has turned
out to be computationally more efficient than Algorithm 1.

TABLE 2 HERE

TABLE 3 HERE

TABLE 4 HERE

Similar conclusions can be drawn from the second series of experiments,
whose results are given in Table 5. We remind the reader that these tests are
concerned with solving a sub-problem of problem (P), where L is a parameter
rather than a decision variable. Note that, for N > 6, Algorithm 1 has not
been taken into consideration. In fact, its computational time grows fast as
N increases, up to unpractical values in some cases. We can observe that, in
general, HGA seems preferable to Algorithm 1 for several reasons: (1) HGA
is able to converge, on average, more quickly (especially for N > 5); (2) the
computational time of HGA is less variable, for fixed N; and (3) HGA and
Algorithm 1 have always found the same solution in all generated problems.
However, in terms of the computational requirements, Algorithm 2 has shown
the best performance: if we observe, for example, the case with N = 9, the
percentage of computational time reduction is, on average, more than 99.2%.

Now, consider the performance in terms of APE with respect to the lower
bound. Although, in general, the efficiency is decreasing as N increases, the
APE achieved by all heuristics is always below 5%. This permits us to say that
their solutions appear to be fairly efficient. In conclusion, if we also note that,
in terms of APE, Algorithm 2 differs from HGA (or from Algorithm 1) by 0.9%
at most, we may conclude that Algorithm 2 seems practically preferable.

TABLE 5 HERE
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7. Conclusions

This paper investigated the periodic review JRP under stochastic demands
with backorders-lost sales mixtures. Lead times and minor ordering costs were
assumed to be controllable. The objective was to find the cyclic replenishment
policy, the length of lead times and the minor ordering costs that minimize the
long-run expected total cost per time unit.

To approach this problem, we presented two heuristic algorithms. The per-
formance of these algorithms was evaluated in comparison with a lower bound
on the minimum cost and a specifically developed benchmark algorithm called
hybrid genetic algorithm (HGA). Numerical experiments showed that the second
heuristic (i.e., Algorithm 2) is practically preferable. In fact, it appeared, on av-
crage, computationally faster than the others, and this advantage is even more
evident as the size of problems becomes larger. For example, if we consider
the case with N = 9, the percentage of computational time reduction was, on
average, more than 99.2%. Moreover, the APE of Algorithm 2, with respect
to the lower bound, was smaller than 5% in all generated problems, and the
performance with respect to HGA (or Algorithm 1) was, at most, 0.9% worse.

Future researches may be devoted to the following questions. Is it possible
to extend the model presented in this paper, e.g., continuous lead time? How to
analytically compare the performance of the proposed heuristics with the global
optimal solution in terms of solution quality and computational efficiency?
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Table 1. Comparison among the contributions of different authors.
Table 2. Values assigned to parameters in each problem.

Table 3. Values that parameters take in each problem in the first series of
experiments.

Table 4. Results of the comparative analysis in the first series of experiments.
Within brackets, the APE with respect to the lower bound is shown.

Table 5. Results of the comparative analysis in the second series of experiments.
Within brackets, the APE with respect to the lower bound is shown.

List of figure captions

Figure 1. Decision process to find the heuristic solution for fixed (*kq, I:).
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Table 2

Parameters Values

A Random in [150, 250]
hy, Random in [1, 25]
DPn Random in [20, 70]
T, Random in [80, 150]
i Random in [0.1, 0.9]
D, Random in [100, 2000]

o,/D, Random in [0.01, 0.40]
Oy Random in [150, 250]
Ty 0.1 (identical for each n)
1/0, Random in [4000, 7000]
Spn Random in [17, 25]
bm.n Random in [7, 15]
Cln Random in [0.1, 1.0]
Con Random in [1.6, 3.4]
Cin Random in [4.2, 6.2]

Table 2. Values assigned to parameters in each problem.
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Table 5

Computational time (sec.) Cost of solution
1;2;110: {)J:))lvlv:(li‘ Algorithm 1 Algorithm 2 HGA Algorithm 1 Algorithm 2 HGA
14524 <1 <1 12 14837 (2.1%) 14837 (2.1%) 14837 (2.1%)
14842 <1 <1 14 15079 (1.6%) 15079 (1.6%) 15079 (1.6%)
17759 <1 <1 11 17790 (< 1%) 17790 (< 1%) 17790 (< 1%)
15925 7 <1 18 15937 (< 1%) 15940 (< 1%) 15937 (< 1%)
4 15120 <1 <1 13 15167 (< 1%) 15167 (< 1%) 15167 (< 1%)
10267 137 <1 19 10290 (< 1%) 10290 (< 1%) 10290 (< 1%)
11357 10 <1 19 11400 (< 1%) 11400 (< 1%) 11400 (< 1%)
11212 27 <1 18 11262 (< 1%) 11271 (< 1%) 11262 (< 1%)
8950 3 <1 17 9178 (2.5%) 9178 (2.5%) 9178 (2.5%)
10215 <1 <1 37 10268 (< 1%) 10268 (< 1%) 10268 (< 1%)
9923 16 <1 33 10006 (< 1%) 10054 (1.3%) 10006 (< 1%)
13624 14 <1 31 13648 (< 1%) 13723 (< 1%) 13648 (< 1%)
15109 48 <1 33 15502 (2.6%) 15502 (2.6%) 15502 (2.6%)
5 10104 4 <1 29 10541 (4.3%) 10541 (4.3%) 10541 (4.3%)
10215 <1 <1 33 10268 (< 1%) 10268 (< 1%) 10268 (< 1%)
9923 13 <1 29 10006 (< 1%) 10054 (1.3%) 10006 (< 1%)
13624 12 <1 26 13648 (< 1%) 13723 (< 1%) 13648 (< 1%)
10464 3 <1 21 10613 (1.4%) 10649 (1.8%) 10613 (1.4%)
12626 66 <1 41 13172 (4.3%) 13181 (4.4%) 13172 (4.3%)
27988 451 <1 43 28907 (3.3%) 29165 (4.2%) 28907 (3.3%)
13230 68 <1 49 13356 (< 1%) 13356 (< 1%) 13356 (< 1%)
20761 7 <1 34 20923 (< 1%) 20923 (<1%) 20923 (< 1%)
6 19597 7 <1 31 19848 (1.3%) 19856 (1.3%) 19848 (1.3%)
10502 17332 <1 46 10557 (< 1%) 10613 (1.1%) 10557 (< 1%)
21075 <1 <1 37 21969 (4.2%) 21969 (4.2%) 21969 (4.2%)
15483 85 <1 53 15822 (2.2%) 15867 (2.5%) 15822 (2.2%)
27723 <1 <1 32 27907 (< 1%) 27907 (< 1%) 27907 (< 1%)
27468 - <1 59 - 28008 (2.0%) 27905 (1.6%)
25408 - <1 73 - 25729 (1.3%) 25599 (< 1%)
13986 - <1 97 - 14048 (< 1%) 14016 (< 1%)
24809 - <1 78 - 25866 (4.3%) 25819 (4.1%)
7 20677 - <1 71 - 20830 (< 1%) 20822 (< 1%)
21255 - <1 85 - 21413 (< 1%) 21376 (< 1%)
23939 - <1 61 - 24701 (3.2%) 24668 (3.0%)
20867 - <1 69 - 21232 (1.7%) 21209 (1.6%)
20894 - <1 66 - 21743 (4.0%) 21692 (3.8%)
24950 - <1 74 - 25899 (3.8%) 25864 (3.7%)
28454 - <1 95 - 29036 (2.0%) 29009 (2.0%)
28154 - <1 113 - 29409 (4.4%) 29341 (4.2%)
25616 - <1 80 - 25908 (1.1%) 25862 (1.0%)
8 24326 - <1 73 - 24828 (2.1%) 24753 (1.8%)
23484 - <1 101 - 24119 (2.7%) 23998 (2.2%)
18078 - <1 97 - 18163 (<1%) 18163 (< 1%)
17299 - <1 94 - 17348 (< 1%) 17348 (< 1%)
26844 - <1 100 - 28050 (4.5%) 28007 (4.3%)
22964 - <1 123 - 23607 (2.8%) 23559 (2.6%)
18891 - <1 125 - 19177 (1.5%) 19177 (1.5%)
19797 - <1 126 - 20632 (4.2%) 20601 (4.1%)
28626 - <1 132 - 29709 (3.8%) 29590 (3.4%)
9 22736 - <1 140 - 23175 (1.9%) 23157 (1.8%)
22591 - <1 141 - 23079 (2.2%) 22970 (1.7%)
13258 - <1 133 - 13552 (2.2%) 13549 (2.2%)
21933 - <1 126 - 22703 (3.5%) 22635 (3.2%)
25922 - <1 136 - 26693 (3.0%) 26655 (2.8%)

Table 5. Results of the comparative analysis in the second series of experiments. Within brackets,
the APE with respect to the lower bound is shown.
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Figure 1. Decision process to find the heuristic solution for fixed (*kl,f) .




