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Abstract

Background: SARS-CoV-2 is a recently emerged respiratory pathogen that has significantly impacted global human
health. We wanted to rapidly characterise the transcriptomic, proteomic and phosphoproteomic landscape of this
novel coronavirus to provide a fundamental description of the virus’s genomic and proteomic potential.

Methods: We used direct RNA sequencing to determine the transcriptome of SARS-CoV-2 grown in Vero E6 cells
which is widely used to propagate the novel coronavirus. The viral transcriptome was analysed using a recently
developed ORF-centric pipeline. Allied to this, we used tandem mass spectrometry to investigate the proteome and
phosphoproteome of the same virally infected cells.

Results: Our integrated analysis revealed that the viral transcripts (i.e. subgenomic mRNAs) generally fitted the
expected transcription model for coronaviruses. Importantly, a 24 nt in-frame deletion was detected in over half of
the subgenomic mRNAs encoding the spike (S) glycoprotein and was predicted to remove a proposed furin
cleavage site from the S glycoprotein. Tandem mass spectrometry identified over 500 viral peptides and 44
phosphopeptides in virus-infected cells, covering almost all proteins predicted to be encoded by the SARS-CoV-2
genome, including peptides unique to the deleted variant of the S glycoprotein.

Conclusions: Detection of an apparently viable deletion in the furin cleavage site of the S glycoprotein, a leading
vaccine target, shows that this and other regions of SARS-CoV-2 proteins may readily mutate. The furin site directs
cleavage of the S glycoprotein into functional subunits during virus entry or exit and likely contributes strongly to
the pathogenesis and zoonosis of this virus. Our data emphasises that the viral genome sequence should be
carefully monitored during the growth of viral stocks for research, animal challenge models and, potentially, in
clinical samples. Such variations may result in different levels of virulence, morbidity and mortality.
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Background
Since the emergence of severe acute respiratory syn-
drome coronavirus-2 (SARS-CoV-2) as a human patho-
gen at the end of 2019, the virus has spread globally,
causing almost 11.1 million confirmed cases of COVID-
19 and over half a million deaths as of the 7 July 2020
[1]. Although vaccines are under rapid development to
prevent SARS-CoV-2 infection, little is known of either
the immune correlates of protection or the ability of the
virus to avoid the host immune response through muta-
tion and recombination [2].
The genome sequence of SARS-CoV-2 was rapidly de-

termined and revealed the virus is most closely related
to bat coronavirus RaTG13 and clusters phylogenetically
with SARS-CoV, which emerged in 2002, in the genus
Betacoronavirus of the family Coronaviridae [3, 4]. Based
on homology to other known coronaviruses [3, 4], the
genome sequence was used for viral transcript prediction
and the annotation of ORFs. Coronaviruses use a com-
plex strategy to express their genetic information [5, 6],
involving a process of discontinuous transcription during
minus-strand RNA synthesis that is regulated by defined
transcription regulatory sequences (TRS) [7]. Similar, to
other coronaviruses, the SARS-CoV-2 29.9 kB RNA gen-
ome contains two large ORFs, ORF1a and ORF1ab, pre-
dicted to be initially translated into the polyproteins,
pp1a and pp1ab that arises by programmed (− 1) riboso-
mal frameshifting (Fig. 1a). The polyproteins are post-
translationally processed by viral encoded proteases to
produce 16 proteins that are conserved between corona-
viruses and proposed to function in the synthesis of viral
RNA and immune evasion [8]. During viral genome rep-
lication a set of “nested” subgenomic mRNAs are pro-
duced that are predicted to encode the structural
proteins spike (S), envelope (E), membrane (M) and nu-
cleocapsid (N) and at least nine small accessory proteins,
some of which are unique to SARS-CoV-2 [3, 4]. The
subgenomic mRNAs have a common 5′ leader sequence
and are 3′ co-terminal with a polyA tail derived from
the viral genome.
Recently, the SARS-CoV-2 transcriptome has been

examined using direct RNAseq (dRNAseq) [9, 10]. Fur-
thermore, a recent proteomic study showed that a num-
ber of the predicted viral proteins are produced in
infected cells, but not all of the predicted viral proteins
were detected [11]. We pioneered the use of combining
transcriptomics and proteomics to study viral infections
in vitro and in vivo, initially using the well characterised
respiratory virus, adenovirus but also respiratory syncyt-
ial virus and highly pathogenic zoonotic viruses such as
Hendra virus [12–14]. More recently, we have focussed
on the latest technologies to study the transcriptome of
viruses, including direct RNA sequencing on nanopore
devices using long read length sequencing. In particular,

we developed an ORF-centric pipeline to analyse the
very large amounts of transcriptomic data generated by
dRNAseq [15]. This pipeline was first used on data gen-
erated from adenovirus-infected cells. The approach rap-
idly reproduced transcript maps that correlated highly
with the previously described transcriptome maps of
adenovirus, which have been carefully curated over sev-
eral decades.
The SARS-CoV-2 subgenomic mRNAs encoding the

structural proteins and their expression profiles are of
particular interest as the encoded proteins are likely tar-
gets of a protective immune response. The coronavirus S
glycoprotein is present as a homotrimer, protruding
from the surface of the virion. It is a key determinant of
viral tropism and the major antigenic target [16, 17].
The S glycoprotein is a class I fusion protein comprised
of two domains, S1 and S2, responsible for receptor
binding and the fusion of viral and cellular membranes
respectively [18, 19]. The S glycoprotein of coronaviruses
is primed for cell entry by host cell proteases that cleave
the protein at one or more positions. Cleavage of a “S1/
S2” site at the boundary of the S1 and S2 domains oc-
curs for some coronaviruses whilst cleavage at an “S2”
site is common to all coronaviruses and results in activa-
tion of a highly conserved fusion peptide immediately
downstream of the S2 site [20–22]. Although the SARS-
CoV-2 S glycoprotein shares 97% identity with that of
bat coronavirus RaTG13 [4], an important difference is
the presence of a four amino acid insertion (681PRRA684)
at the S1/S2 junction that introduces a potential furin-
like cleavage site [23, 24]. The furin cleavage site is also
not found in other “lineage B” betacoronaviruses includ-
ing SARS-CoV, but has been detected in betacorona-
viruses in other lineages, suggesting that this region has
arisen during natural evolution [25].
Here, we used a combined transcriptomics and proteo-

mics approach to produce a correlated transcriptome
and proteome map of SARS-CoV-2 in the African Green
monkey kidney cell line Vero E6. This cell line is rou-
tinely used to propagate viruses from clinical samples as
well as to generate stocks of virus for academic research,
drug susceptibility testing and vaccine challenge studies.
Our results show a close correlation between the pre-
dicted viral transcriptome and proteome maps as well as
novel transcripts that encoded for proteins detected by
tandem mass spectrometry. Finally, evidence was gath-
ered for an in-frame deletion inside the S glycoprotein
that removed the proposed furin cleavage site.

Methods
Virus growth and assay
Vero E6 (ATCC® CRL 1586™) cells were cultured at
37 °C in Dulbecco’s modified Eagle’s medium (DMEM,
Gibco™, ThermoFisher) supplemented with 10% foetal
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bovine serum (FBS), penicillin (100 units/ml) and
streptomycin (100 μg/ml). All work with infectious
SARS-CoV-2 strain England/2/2020 (VE6-T), isolated by
Public Health England (PHE), was done inside a class III

microbiological safety cabinet in a containment level 3
facility at the University of Bristol. A SARS-CoV-2 stock
was produced by infecting Vero E6 cells at a multiplicity
of infection (MOI) of 0.01 and incubating the cells for

Fig. 1 Overview of nanopore inferred transcriptome. a The classical transcription map of coronaviruses adapted for SARS-CoV-2. The genome is itself
an mRNA which when translated gives rise to polyproteins pp1a and, upon a ribosomal frameshift, pp1ab. These polyproteins are proteolytically
processed down to a range of non-structural proteins termed nsp1–16, some of which will form the viral replication-transcription complex (RTC). The
RTC then generates subgenomic mRNA which canonically contains a sequence present at the 5′ end of the viral genome known as the leader
sequence. The 3′-end of the leader sequence has a motif, the transcription regulatory sequence (TRS), and there are similar sequences which precede
each of the functional ORFs downstream of the replicase gene (pp1ab). This TRS in the leader associates with one of the TRS regions present adjacent
to each of the other functional ORFS and this mediates discontinuous transcription between the two during minus-strand RNA synthesis. These
minus-strand RNA molecules are used as templates to generate positive sense mRNA, and in this manner, the remaining ORFs on the viral genome
are placed 5′ most on the resulting subgenomic mRNAs and are subsequently translated. Orange boxes represent structural proteins and yellow boxes
represent accessory proteins. b The total read depth across the viral genome for all reads; the maximum read depth was 511,129. c The structure of
only the dominant transcript that codes for each of the identified ORFS. Only transcripts that start inside the leader TRS sequence are considered here.
The rectangles represent mapped nucleotides and the arrowed lines represent regions of the genome that are not transcribed during the generation
of mRNAs. To the right is noted the 5′ most ORF encoded in the transcript; in parenthesis we note how many individual transcripts were observed.
Transcrits coding for proteins we subsequently detected by MS/MS are coloured in green
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72 h. The culture supernatant was clarified by centrifu-
gation and stored in aliquots at − 80 °C. The titre of the
stock was determined by preparing 10-fold serial dilu-
tions in Eagle’s minimal essential medium (MEM;
Gibco™, ThermoFisher) supplemented with 2% FBS. Ali-
quots of each dilution were added to 1 × 104 Vero E6
cells in the same medium in each of 12 wells of a 96-
well plate. Plates were incubated at 37 °C for 5–7 days
and then examined for cytopathic effect. The TCID50

was calculated according to the method of Reed and
Muench [26].

RNA extraction for direct RNA sequencing
Extraction and sequencing was done as previously de-
scribed [15]. Briefly, total RNA was extracted using TRI-
zol™ reagent (#15596026, Ambion) and the RNA
extracted as per the manufacturer’s recommendations
but with 3 × 70% ethanol washes. After resuspension in
RNAse-free water, the RNA was polyA enriched and se-
quenced immediately using SQK-RNA002 kits and
MIN106D R9 version flow cells (Oxford Nanopore
Technologies).

Data analysis, characterisation of viral transcripts
To cope with the very wide range of transcripts, and to
enable grouping of transcripts into classes, our previ-
ously described ORF-centric data analysis pipeline was
utilised [15]. The transcripts were mapped to the viral
genome with minimap2, and the mapping data was used
to try to identify transcription regulatory sequences
(TRS) and the sites where the transcript meets the polyA
tail at the end of the genome. This is complicated by the
repetitive nature of the leader and body TRS and thus
mapping software struggles to determine where the
breakpoint should map. Canonical and non-canonical
junction sites were also identified, which the software re-
fers to as splice acceptor/donor sites as it was originally
used to describe spliced adenovirus transcripts. This
script produces tables indicating where on the genome
and how often in the data each junction occurs. Subse-
quently, nearby events are grouped together for simpli-
city of analysis. Once this is complete, the software then
assigns each transcript to a “transcript group” depending
on its pattern of TRS, junction sites and poly A locations
and counts how many transcripts belong to each tran-
script group. Nanopolish [27] was used to determine the
polyA length of each sequenced transcript and subse-
quently a simple average polyA length was calculated for
each transcript group alongside the standard deviation.
A second in-house script determined which known

features are present in each transcript group and gener-
ated pseudo-transcripts based on the viral genome se-
quence to remove nanopore sequencing errors. The
script examined each pseudo-transcript to determine

what features it has, using a user-specified list of canon-
ical features or ORFs on the viral genome (Add-
itional file 1). It also produced GFF files that allow the
user to visualise only the dominant transcript coding for
each ORF as well as GFF files describing the whole range
of transcripts coding for any given ORF. In addition, an
analysis counting the final number of transcripts belong-
ing to each translated feature was produced. The pipe-
line generated an ORF-centric view of the viral
transcriptome—classifying transcripts according to the
encoded viral proteins.

RNA extraction for sequencing of the suspected deletion
region
To prepare intracellular SARS-CoV-2 RNA, total cellular
RNA containing SARS-CoV-2 RNA was extracted from
the Vero E6 cells used for viral stock production using
TRIzol™ Reagent (Invitrogen™, ThermoFisher) following
the manufacturer’s instructions. Viral RNA was ex-
tracted from cell culture supernatants using a QIAamp
Viral RNA Mini Kit (Qiagen) according to the manufac-
turer’s instructions. Approximately 3 kb RT-PCR prod-
ucts covering the S gene deletion were amplified from
the viral RNA using the gene specific primers F9newF
and F9newR (5′-TAAGGTTGGTGGTAATTATAATTA
CCTG-3′ and 5′-AAAATAGTTGGCATCATAAAG-
TAATGGG-3′) and a SuperScript™ IV One-Step RT-
PCR System (Invitrogen™, ThermoFisher). A region
spanning the deletion was sequenced using primers
Wu_24_L and Wu_24_R (5′-TTGAACTTCTACATGC
ACCAGC-3′ and 5′-CCAGAAGTGATTGTACCCGC-
3′).

Total proteome analysis
Protein lysates were prepared from the Vero E6 cells
used for viral stock production. The cells were harvested
in 4X Laemmli buffer (BioRad) and heated to 95 °C for
15 min. A 25-μl aliquot of the sample was separated
using SDS-PAGE and the gel lane cut into 20 slices. The
slices were reduced (10 mM DTT, 56 °C, 30 min), alky-
lated (100 mM iodoacetamide, room temperature, 20
min) and digested with trypsin (0.5 μg trypsin per slice,
37 °C, overnight). This whole process was repeated with
chymotryptic digestion (0.5 μg chymotrypsin per slice,
25 °C, overnight). The resulting tryptic and chymotryptic
peptides were fractionated using an Ultimate 3000 nano-
LC system in line with an Orbitrap Fusion Lumos mass
spectrometer (Thermo Scientific). In brief, the peptides
from each gel slice in 1% (vol/vol) formic acid were
injected onto an Acclaim PepMap C18 nano-trap col-
umn (Thermo Scientific). After washing with 0.5% (vol/
vol) acetonitrile 0.1% (vol/vol) formic acid, peptides were
resolved on a 250 mm × 75 μm Acclaim PepMap C18 re-
verse phase analytical column (Thermo Scientific) over a
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150 min organic gradient, using 7 gradient segments (1–
3% solvent B over 1 min, 3–15% B over 58 min, 15–
32%B over 58 min, 32–40%B over 5min, 40–90%B over
1 min, held at 90%B for 6 min and then reduced to 1%B
over 1 min) with a flow rate of 300 nl min−1. Solvent A
was 0.1% formic acid and solvent B was aqueous 80%
acetonitrile in 0.1% formic acid. Peptides were ionised by
nano-electrospray ionisation at 2.2 kV using a stainless-
steel emitter with an internal diameter of 30 μm (Thermo
Scientific) and a capillary temperature of 250 °C.
All spectra were acquired using an Orbitrap Fusion

Lumos mass spectrometer controlled by Xcalibur 3.0
software (Thermo Scientific) and operated in data-
dependent acquisition mode. FTMS1 spectra were col-
lected at a resolution of 120,000 over a scan range (m/z)
of 375–1550 (for tryptic peptides) or 325–1500 (for chy-
motryptic peptides), with an automatic gain control
(AGC) target of 4E5 and a max injection time of 50 ms.
Precursors were filtered according to charge state (to in-
clude charge states 2–7), with monoisotopic peak deter-
mination set to peptide and using an intensity threshold
of 1E3. Previously interrogated precursors were excluded
using a dynamic window (40s ± 10 ppm). The MS2 pre-
cursors were isolated with a quadrupole isolation win-
dow of 0.7 m/z. ITMS2 spectra were collected with an
AGC target of 2E4, max injection time of 35 ms and
HCD collision energy of 30%.
A targeted analysis was performed to confirm the

identification of the S protein deletion specific peptide
(QTQTIASQSIIAY) identified by a single peptide spec-
tral match (PSM) in the initial analysis of chymotryptic
peptides. However, there were changes to the acquisition
workflow. Precursors were filtered according to charge
state (to include charge state 2) and previously interro-
gated precursors were excluded using a dynamic window
(2 s ± 10 ppm). A targeted mass was specified with m/z
712.3759 and z = 2.

Phosphoproteome analysis
Six 30 μl aliquots of the infected cell total protein lys-
ate were separated by SDS-PAGE until the dye front
had moved approximately 1 cm into the separating
gel. Each gel lane was excised as a single slice and
subjected to in-gel tryptic digestion as above but
using 1.5 μg trypsin per slice. The resulting peptides
were subjected to TiO2-based phosphopeptide enrich-
ment according to the manufacturer’s instructions
(Pierce). The flow-through and washes from the
TiO2-based enrichment were then subjected to
FeNTA-based phosphopeptide enrichment, again ac-
cording to the manufacturer’s instructions (Pierce).
The phospho-enriched samples were evaporated to
dryness and then resuspended in 1% formic acid prior
to analysis by nano-LC MSMS using an Orbitrap

Fusion Lumos mass spectrometer (Thermo Scientific)
as above.

Data analysis
The raw data files were processed using Proteome Dis-
coverer software v2.1 (Thermo Scientific) and searched
against the UniProt Chlorocebus sabaeus database
(downloaded March 2020; 19,525 sequences), an in-
house “common contaminants” database and a custom
SARS-CoV-2 protein database using the SEQUEST HT
algorithm. Peptide precursor mass tolerance was set at
10 ppm, and MS/MS tolerance was set at 0.6 Da. Search
criteria included oxidation of methionine (+ 15.995 Da),
acetylation of the protein N-terminus (+ 42.011 Da) and
methionine loss plus acetylation of the protein N-
terminus (− 89.03 Da) as variable modifications and car-
bamidomethylation of cysteine (+ 57.021 Da) as a fixed
modification. For the phosphoproteome analysis, phos-
phorylation of serine, threonine and tyrosine (+ 79.966
Da) was also included as a variable modification.
Searches were performed with full tryptic or chymotryp-
tic digestion and a maximum of 2 missed cleavages were
allowed. The reverse database search option was enabled
and all data was filtered to satisfy a false discovery rate
(FDR) of 5%.

Data availability
The fastq files and ThermoFisher .raw files are available
on zenodo.org under the following doi's: https://doi.org/
10.5281/zenodo.3722580 for the fastq data [28], https://
doi.org/10.5281/zenodo.3722604 for the phosphoproteo-
mics .RAW files [29], https://doi.org/10.5281/zenodo.
3722590 for the total proteome .RAW files (slices 1–10
of 20) [30] and https://doi.org/10.5281/zenodo.3722596
for the total proteome .RAW files (slices 11–20 of 20)
[31]. The proteomics data has also been deposited at
PRIDE (PXD018241) [32] and the transcriptomics data
at the European Nucleotide Archive (PRJEB39337) [33].

Results
Complete characterisation of a novel and dangerous
pathogen at a molecular level is fundamental. Although
analysis of the SARS-CoV-2 genome enables high confi-
dence prediction of potential transcripts and ORFS,
there is a pressing need to have the predictions con-
firmed and novel transcripts identified and assessed for
biological significance and their role in virulence and
pathogenesis. At the same time, there is also a need for
independent confirmation that viral transcripts are
expressed, which can be achieved by tandem mass
spectrometry-based proteomics. In this way, we have
provided direct observation of the whole range of viral
proteins expressed in SARS-CoV-2-infected cells and
helped resolve ambiguities in the transcriptomic data.
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Finally, the identification of phosphorylation sites pro-
vided an invaluable list of potential therapeutic targets
based on kinase inhibitors. Using proteomics informed
by transcriptomics (PIT) [12] on duplicate infected cells
offers a rapid and high resolution approach to these key
molecular virology questions.

Overview of dRNAseq outputs
Long read length sequencing using an Oxford Nanopore
MinION on polyA+ RNA from cells infected with
SARS-CoV-2 was used to characterise viral RNA species.
This technique has recently been used to study herpes
viruses, coronaviruses and adenovirus transcriptomes
[15, 34, 35]. In total, 1,588,330 sequences were base
called and passed QC; of those, 527,401 were mapped to
the BetaCoV/England/02/2020 genome using minimap2
(Fig. 1b). In addition, an average polyA tail length for
each transcript was generated using nanopolish [27] and
this information was added to the analysis pipeline. A
cutoff of a 20 nt minimum polyA length was employed
and 386,903 transcripts passed this test. Finally, the data
from the analysis pipeline was tabulated describing the
structure of transcripts, how often they were observed,
what features were present on each transcript and the
location of the dominant transcription start sites and
junctions (Additional files 2, 3, 4 and 5: Tables S1- S4).
Accurately determining the 5′ end of direct RNAseq
transcripts has been shown to be problematic [15, 35,
36]. The accepted model for coronavirus transcription
(Fig. 1a) proposes that all viral mRNAs have a common
5′ end [37] and the analysis herein was further restricted
to those transcripts that met this criterion. This import-
ant step reduces the total number of identified full
length subgenomic mRNA molecules to 72,124 and en-
ables an overview of the viral transcriptome of those
transcripts that have an authentic 5′ end—transcripts
that do not are most likely a result of degradation, a
problem with dRNAseq that has also been previously
noted [15, 27, 35]. Figure 1c illustrates a transcription
map of those transcripts that start at the expected loca-
tion and have a known ORF as the 5′ most ORF. In
Fig. 1c, only the dominant transcript for each ORF is
shown; thus, there may be transcripts with structural dif-
ferences that code for the same ORF but this figure illus-
trates the structure of the dominant transcript only. This
approach was used by us previously to successfully re-
capitulate the highly complex adenovirus transcriptome
de novo [15]. Transcripts that could express all of the
predicted ORFs were present, including for the newly
predicted ORF10 [3]. However, only one ORF10 tran-
script was detected, and as previously suggested [9, 10],
the status of this as a functional mRNA needs further in-
vestigation. Moreover, non-canonical TRS joining events
were detected leading to, for example, apparently bone

fide subgenomic transcripts coding for ORF7b, as was
also recently reported by Kim et al. [10]. Accurate map-
ping of the junction between the canonical leader and
body TRS sequences is problematic as the two sequences
are effectively repeated in the viral genome. Mapping
algorithms cannot confidently determine a junction
breakpoint within repetitive sequences like the TRS se-
quences, and this is further confounded by the error
prone nature of dRNAseq. The full range of identified
transcripts (and their structure) that could code for any
given ORF is, however, compiled by the pipeline (Add-
itional file 4: Table S3). Moreover, identification and as-
signment of individual transcripts by our ORF-centric
pipeline is not affected by this as it classifies transcripts
by 5′ most ORF. Detailed information on the transcripts
with a 5′ UTR consistent with the model of coronavirus
mRNA expression that would also code for a predicted
protein are shown in Table 1. Also reported are the
average polyA tail lengths of each transcript group.
These are consistent with recently reported findings for
SARS-CoV-2 [10].

Novel deletion in the S glycoprotein
Manual inspection of the transcripts aligned to the virus
genome revealed a large number of reads that aligned to
the gene encoding the S glycoprotein but included a 24
nt deletion. This was predicted to result in a deletion of
9 aa, encompassing the proposed furin-like cleavage site
(Fig. 2a) with the replacement of a single isoleucine resi-
due. Indeed, there were a large number of transcripts
coding for this deleted S glycoprotein that had both a
polyA tail > 20 nt and a start at the proposed transcrip-
tion start location, more than the full length S glycopro-
tein (Table 1). To confirm this finding and examine if
the deletion was present in the original stock samples at
the PHE reference laboratory, the region was PCR amp-
lified from the virus passaged at Bristol or from the ori-
ginal stock. These amplified fragments were sequenced
using the Sanger method. This revealed that the Bristol
stock was indeed a mixture of genomes but the deleted
transcript was not detectable in the original stock. Sub-
sequent examination of a very high quality dataset re-
ported recently by Kim et al. [10] did not detect any
evidence of similar significant deletions in the S glyco-
protein in their data. However, their dataset contained a
spontaneous deletion within the region of the genome
coding for the E protein resulting in a 9 aa in-frame de-
letion in almost two thirds of the mapped transcripts
(Additional file 6: Figure S1a). Similarly, in one of the
datasets reported by Taiaroa et al. [9], there is a 10 nt
deletion near the 3′ end of the viral genome outside of
any reading frame, the significance of which is unknown
(Additional file 6: Figure S1b).
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Proteomic detection of known SARS-CoV-2 proteins
Tandem mass spectrometry was utilised to detect as
many viral peptides and phosphopeptides as possible
(Additional file 7: Table S5). Table 2 illustrates the num-
bers of peptides found for each of the predicted ORFs.
Notably, whilst most of the ORFs detected were also
confirmed in the recent report by Bojkova et al. [11],
there were some differences. Whilst we could not detect
peptides from ORF9b as described by Bojkova et al.,
peptides corresponding to the ORF9a protein were iden-
tified. This leaves only the E, ORF7b and ORF10 pro-
teins to be detected by mass spectrometry. In addition,
peptides unique to proteolytically processed components
of the viral replicase polyprotein pp1ab, namely nsp4,
nsp9, nsp12, nsp13, nsp14 and nsp15, were identified in-
dicating that these important processing steps occurred
as predicted (Table 3).
Initially, no unique peptides corresponding to the

novel deleted version of the S glycoprotein were de-
tected by tandem mass spectrometry. However, a typ-
ical tryptic digest of this region would generate a very
large peptide which would not be detectable within
the standard mass range used for analysis. Accord-
ingly, samples were digested using chymotrypsin and
the analysis repeated revealing a single spectra which
matched to the peptide corresponding to the deleted

version of the S-glycoprotein, but only when using a
5% false discovery threshold. However, this did pro-
vide an accurate m/z ratio and ionisation status for
this peptide, enabling a targeted search which identi-
fied nine PSM’s with high confidence (i.e. FDR 1%)
that corroborate the expression of the deleted spike
protein (Additional file 6: Figure S2 and Add-
itional file 8: Table S6).

Proteomic detection of previously unknown viral proteins
In Table 1, we note that approximately 14% of tran-
scripts do not code for a known ORF and are col-
lated under the heading “none from list”. In
principle, this is a large body of transcripts that
could code for novel proteins. As we have shown be-
fore, transcriptomics and proteomics can be com-
bined to explore this question more deeply and
provide an unbiased evaluation of the proteome of
viruses and higher eukaryotes [12, 13, 39]. We used
our ORF-centric pipeline to remove errors in the
nanopore sequence data and generate a list of pos-
sible ORFs by translating the first ORF present on
every transcript sequenced [15].
Using this list of predicted, and potentially novel,

proteins revealed a large number of possible proteins
which do not correspond to the standard list of pre-
dicted viral proteins. In the majority of cases, they ap-
peared to be transcripts with rare and unusual
structures likely resulting from rare rearrangements of
the viral genome or potentially during subgenomic
mRNA synthesis. However, in some cases, the transla-
tion of specific classes of relatively abundant tran-
scripts was supported by direct peptide evidence. In
particular, multiple versions of the N protein with
distinct small internal deletions were detected and
more than 20 transcripts that could encode for these
proteins were also identified (Additional file 9: Table
S7). A schematic of such a deletion in the N protein
is shown, indicating the peptide that was identified by
tandem mass spectrometry to support the observed
transcripts (Fig. 2c).

Phosphoproteomic analysis of SARS-CoV-2 proteins
Allied to an analysis of viral peptides, the phosphoryl-
ation status of viral proteins was investigated as this
could reveal potential targets for licenced kinase inhibi-
tors. Phosphopeptides corresponding to locations on the
N, M, ORF 3a, nsp3, nsp9, nsp12 and S glycoprotein
were detected (Table 4). The detection of phosphoryl-
ation sites on the S glycoprotein has not been previously
noted and may be of significance in the context of vac-
cines based on this protein; the location of these sites is
illustrated (Fig. 3). The location of the phosphorylation
sites on the proteins listed is illustrated in Fig. 4, and

Table 1 Count of transcripts where the 5′ most ORF is a
recognised ORF

Feature Count Percent of
total

Average poly A
length of the
dominant transcript

Total of all features 72,172

N 27,882 38.6327 55

None from list 10,453 14.4834 58

M 10,367 14.3642 55

ORF 7a 5162 7.1523 60

ORF 7b 4786 6.6313 61

ORF 3a 3449 4.7788 56

ORF 6 2649 3.6703 56

ORF 8 1447 2.0049 57

E 930 1.2885 56

ORF 9a 530 0.7343 56

S glycoprotein Bristol deletion 86 0.1191 55

S glycoprotein 33 0.0457 54

ORF 3b 6 0.0083 43

ORF 9b 6 0.0083 56

ORF 10 2 0.0027 51

Only transcripts that start to map within the expected leader TRS are
considered. For each transcript group, the average polyA length is also shown
for the dominant transcript that codes for the indicated ORF. Note that around
14% of transcripts do not apparently code for a known ORF, noted as “none
from list”
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Fig. 2 Deletions within the viral mRNAs encoding the S glycoprotein and N protein. a The read depth over the region deleted in the S glycoprotein
together with information on the sequence in the region and the translation in all three frames. b A clustal alignment of four proteins over this region,
wild type SARS-CoV, wild type SARS-CoV-2, the artificially deleted version of the wild type SARS-CoV-2 S glycoprotein as reported in Walls et al. [38]
and finally the predicted sequence of the deleted protein described here. Highlighted in yellow is the sequence of the unique peptide generated by
chymotrypsin digest of the protein which was identified by tandem mass spectrometry. The positions of predicted protease cleavage sites [23] at the
S1/S2 boundary are shown. c A proposed deletion in the N protein predicted by multiple aligned transcripts and subsequently identified in trypsin
digested protein samples as indicated by the unique peptide highlighted in yellow

Table 2 Peptide counts for viral proteins

Protein name Unique
peptides

PSMs Polyprotein 1ab
component

Unique
peptides

PSMs Polyprotein 1ab
component

Unique
peptides

PSMs

N 70 4152 nsp1 10 59 nsp10 5 18

S glycoprotein 76 1984 nsp2 41 277 nsp12 40 146

Polyprotein 1ab 323 1816 nsp3 105 850 nsp13 24 70

M 16 250 nsp4 19 105 nsp14 18 34

ORF 3a 8 119 nsp5 9 54 nsp15 20 50

ORF 9a 14 86 nsp6 5 20 nsp16 13 37

ORF 8 3 33 nsp7 4 13

ORF 7a 4 23 nsp8 8 61

ORF 6 2 3 nsp9 4 20

For each protein, the total number of unique peptides is indicated alongside how many PSMs support the peptides identified. In the case of the viral polyprotein
pp1ab, we also list how many peptides uniquely mapped to each nsp region
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additional models of the phosphorylation sites on the N-
terminal RNA-binding domain of the N protein are
shown in Fig. 5.

Discussion
This integrated analysis of the SARS-CoV-2 transcrip-
tome and proteome revealed significant findings, in par-
ticular, the identification of an eight aa deletion in the
SARS-CoV-2 S glycoprotein that potentially effects pro-
tein cleavage, cell tropism and infectivity. The corona-
virus S glycoprotein is made as a larger precursor that
must be primed by cleavage using host cell proteases to
enable subsequent viral entry [40]. For different corona-
viruses, cleavage can occur at one or more sites (termed
the S1/S2 and S2′ sites) depending on the host cell and
the amino acid consensus sequences present at each site,
with major repercussions on host cell tropism and
pathogenesis [20]. The SARS-CoV S glycoprotein has a
single arginine residue at the S1/S2 site (Fig. 2b) that fa-
cilitates cleavage by a number of proteases including
trypsin, cathepsin L and TMPRSS11D [41–43] and a
consensus sequence for trypsin and/or elastin cleavage
at the S2′ site [21, 44]. By comparison, SARS-CoV-2 has
a four amino acid insertion (680SPRR683) in the S glyco-
protein that results in the generation of a furin-like

cleavage site (682RRAR685) at the S1/S2 boundary that is
not present in other lineage B betacoronaviruses, includ-
ing SARS-CoV and the highly related bat coronavirus
RaTG13 [23]. Moreover, analysis of a cryo-EM structure
of the S glycoprotein showed that the SPRR insertion
creates a disordered solvent exposed loop [24] that pro-
trudes from the trimer surface (Fig. 3a). It has been pro-
posed that this region is more available to host cell
proteases for processing [24]. The presence of a furin-
like cleavage site at the S1/S2 boundary results in cleav-
age of the SARS-CoV-2 S glycoprotein before viral exit
from the cell, whereas the S glycoprotein of corona-
viruses such as SARS-CoV, lacking a S1/S2 furin cleav-
age site, exit the cells with the S glycoprotein largely
uncleaved, necessitating cleavage prior to or during cell
entry [21, 38, 45].
The SARS-CoV-2 S glycoprotein deletion identified in

this study removes the furin cleavage site, but also
Arg685 (corresponding to SARS-CoV Arg667) required
for cleavage of the SARS-CoV S glycoprotein. However,
the sequence 694AYT/M697 (numbering of undeleted S
glycoprotein, cleavage shown by “/”; Fig. 2b) is still
retained and has been identified as a second potential
S1/S2 protease cleavage site for SARS-CoV downstream
of the basic Arg667 residue [23, 42] suggesting that either

Table 3 Peptides unique to processed proteins

Protein Contributing PSMs Sequence identified

SARS2_pp1ab_nsp4 2 ALNDFSNSGSDVLYQPPQTSITSAVLQ

SARS2_pp1ab_nsp9 1 NNELSPVALR

SARS2_pp1ab__nsp12 4 SADAQSFLNR

SARS2_pp1ab__nsp12 1 YWEPEFYEAMYTPHTVLQ

SARS2_pp1ab__nsp13 2 AVGACVLCNSQTSLR

SARS2_pp1ab__nsp14 2 AENVTGLFK

SARS2_pp1ab__nsp15 1 SLENVAFNVVNK

The polyprotein pp1ab is processed into matured smaller proteins nsp1–16 during infection; this table indicates which unique peptides were identified that could
only arise as a result of full polyprotein processing

Table 4 Phosphopeptide counts

Protein Number of distinct identified
phosphorylation sites

Location of phospho sites Number of
contributing PSMs

N 20 S2, S105, T141, S176, S180, S183, S184, T391, S78, S79, T76,
S206, T205, S23, T24, T166, S194, S201, S202, T198

74

M 5 S211, S212, T208, S213, S214 43

S glycoprotein 13 S1261, S1161, S1196, T791, Y789, S459, S816, S349, T240,
S31, T29, S637, S640

21

nsp3 5 S794, S661, T504, S1826, S660 16

ORF 3a 0 QGEIKDATPSDFVR 1

nsp9 1 S5 1

nsp12 0 GFFKEGSSVELK 1

Listed for each protein is the number of distinct phospho sites identified along with the locations and amino acid modified as well as how many contributing
PSMs there are in total. Each named site has confidence of at least 70% as defined by the PhosphoRS node of Proteome Discoverer software. For proteins ORF3a
and nsp12, no distinct site could be identified despite a phosphorylated peptide being found; in these cases, the peptide sequence is provided
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Fig. 3 A space filled model of the wild type SARS-CoV-2 S glycoprotein in a trimeric form using the sequence of a the native or b spike deletant
virus, in which the aa’s 679NSPRRARSV687 have been replaced with isoleucine. The model was built using a cryo-EM structure (6VSB.pdb) of the S
glycoprotein in the prefusion form (25). Each of the monomers is coloured differently. The loop containing the furin cleavage site (or the
shortened loop in the deleted version in b) is indicated in red. The positions of phosphorylation sites identified by mass spectrometry and surface
located were mapped on the native structure and shown in yellow in a

Fig. 4 Schematic of the location of phosphorylation sites. Proteins M, N, NSP3, NSP9 and S glycoprotein are shown as we have accurate phospho-site
data for these proteins. For each location, we indicate the amino acids (S, T or Y) and the amino acid numbering. The S glycoprotein is shown as S1
and S2 to illustrate where the sites would be relative to the major cleavage site on the wild type S glycoprotein
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the deleted SARS-CoV-2 S glycoprotein could be cleaved
at this site or only use the S2′ site for cleavage. Recently,
pseudoviruses expressing the SARS-CoV-2 S glycopro-
tein and the corresponding S glycoprotein with the furin
cleavage site removed at the S1/S2 boundary (residues
680SPRR683 removed) were made and their ability to me-
diate entry to Vero E6 and BHK-21 cells expressing
hACE2 compared [38]. Deletion of the furin cleavage
site enhanced the entry of the corresponding pseudo-
virus into Vero E6 cells but diminished entry into
hACE2 BHK-21 cells. Although the engineered deletion
differed from the naturally occurring deletion described
here, this observation suggests that the naturally occur-
ring deletion (in cell culture) enhances the ability of the
virus to enter Vero cells and was selected for during pas-
sage in Vero E6 cells, a cell line that lacks a working type
I interferon response. This has clear implications for the
use of Vero cells to propagate and grow large batches of
the virus for research and especially virus batches grown
for use in vaccine challenge studies. Moreover, it also
raises the possibility that even virus stocks which have
been carefully assayed for homogeneity could still spon-
taneously generate this deletion during animal challenge
studies—particularly in non-human primates and per-
haps especially in animals from the Chlorocebus genus.
Thus, vaccine studies will need to carefully monitor the

homogeneity of the challenge virus throughout the study
period. Indeed, the functional impact of this kind of de-
letion is already beginning to emerge from recent pre-
print data. For example, viruses carrying the deletion in
the S glycoprotein reported in this study may well be at-
tenuated in vivo in NHPs as this type of furin deletion
virus has been shown to exhibit reduced pathogenicity
in a hamster disease model [46]. The early emergence of
a viral population carrying a deletion in the S glycopro-
tein that removes the furin cleavage site within an indi-
vidual challenge animal could give the false impression
that an individual animal had a mild infection. Given
that animal studies are required to use the smallest
number of animals needed for statistical significance,
just one such event could confound the study. Since our
initial findings were reported by pre-print archive, other
teams have detected deletions in the S glycoprotein that
remove the furin cleavage site at low levels alongside
wild type S glycoprotein sequences in clinical samples
[47]. Other teams have also reported the emergence of
this type of deletion and other mutations at this location
in independent cell culture based experiments [48]. This
independent cell culture passage analysis concluded that
viruses containing deletions in the S glycoprotein, that
removed the furin cleavage site, result in a large plaque
phenotype in Vero E6 cells and that this mutation is

Fig. 5 Modelling phosphorylation on the RNA binding domain of N protein. The positions of phosphorylation sites identified by mass spectrometry
were mapped on the x-ray crystal structure of the N-terminal RNA binding domain of the N protein (aa residues 47–173) from SARS-CoV-2 (6YVO.pdb).
The four monomer units in one asymmetric unit are distinctly coloured and shown as side (a, b) and top (c, d) views as ribbon (left hand figures) and
space filling models (right hand figures)
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strongly and frequently selected for in Vero E6 cells.
These observations raise the potential that in vivo, there
are a subset of host cells where the deletion variant has
a selectable advantage over the wild type. However, it is
important to note that even where these types of dele-
tions have been reported in clinical samples, they do not
appear to dominate in vivo as there is still relatively little
global variation reported in viral genomes including the
S glycoprotein at this time [49].
In addition to the S glycoprotein deletion, we were also

able to find an additional significant deletion, in high-
quality data recently deposited by Kim et al. [10], in the re-
gion of the E protein. This deletion removes one of the pri-
mer sites recently recommended as a first-line screening
tool [50]. This finding reinforces the potential of the virus
to incur unexpected spontaneous deletions in viral genes
during passaging that are hard to predict and detect. A re-
cent analysis showed that deletion of ORF8 from human
clinical isolates is possible [51] and our data shows that
novel SARS-CoV-2 viruses containing deletions or even in-
sertions can arise naturally and successfully propagate. As
the virus continues to spread and potentially comes under
selective pressure from the host response in humans, vac-
cines and antiviral drugs in the future, vigilance will be re-
quired to detect novel rearrangements/deletions.
Coronaviruses use a distinctive complex mechanism for
genome replication that needs to be considered during bio-
informatic analysis of their genomes relative to viruses
causing other epidemics and pandemics where the principle
driver of viral change would be single nucleotide polymor-
phisms and/or small (< 3 nt) insertions/deletions. If the
plasticity of the SARS-CoV-2 genome follows the same
pathway as HCoV-NL63 [52], then different isolates will
emerge through recombination and this may result in re-
peat infection as protection will not be effective.
The detection of numerous phosphorylation sites within

critical viral proteins is another key resource. The phosphor-
ylation of the N protein of multiple coronaviruses is well
known [53–57], and the phosphorylation sites identified lie
in either the N-terminal RNA-binding domain or interdo-
main linker [58]. Mapping of the phosphorylation sites on
an x-ray structure of the SARS-CoV-2 N-terminal RNA-
binding domain showed they were surface located (Fig. 5).
However, we believe this is the first report providing evi-
dence of phosphorylation of the coronavirus proteins M,
nsp3 and S. These are all membrane bound proteins. M pro-
tein is critical in forming the viral particle, nsp3 is a key
multifunctional component of the replication/transcription
machinery and S protein is the major attachment protein re-
spectively [59]. The phosphorylation sites identified on the S
glycoprotein may be important in assembly of the trimer.
Residues T29, S31, S349, T791 and S816 are all surface lo-
cated, whilst T240 sits underneath a disordered loop which
when phosphorylated will add negative charge which may

influence loop conformation. Residues Y789 and (perhaps to
a lesser extent) T791 sit at the subunit interface and may be
involved in controlling trimer assembly. S637 and S640 lie
in a modelled loop but are nevertheless potentially interest-
ing. They are close together in sequence and in the loops
modelled for the compact folds these model well as hairpins.
In the chain with the extended domain, the same loop
models in an extended form. This would be consistent with
phosphorylation at S637 and S640 forcing the hairpin apart.
Thus, these amino acids are worth exploring as potential
control points for spike conformational changes from com-
pact to an extended form. Overall, the identification of pro-
tein phosphorylation sites is notable but some caveats are
needed here and of course the status and functional signifi-
cance of these sites will take considerable time to independ-
ently validate and investigate by point mutation and/or
biochemical techniques. However, identifying phosphoryl-
ation sites on multiple viral proteins is a valuable starting
point for rational investigation of clinically licenced kinase
inhibitors as antiviral drugs as has previously been observed
for SARS-CoV [60].
Transcriptomically, our findings broadly agree with

those recently reported [9, 10]. Our assessment of polyA
tail length is in line with both the data reported for
SARS-CoV-2 [10] and for data on bovine coronavirus
[61] although the role and significance of this data is un-
clear in either viral system. One area of difference is in
the abundance of each transcript where we disagree with
Kim et al. [10]; however, our ORF-centric pipeline as-
sessment of individual transcript abundance does
broadly agree with Taiaroa et al. [9] and the recent re-
port of SARS-CoV-2 mRNA abundance determined by
Northern blot [48].

Conclusions
This integrated transcriptomic and proteomic dataset is
a rich resource for research teams building a picture of
this novel virus as it enables an accurate overview of the
transcription profile and adds significant new direct ob-
servational data for the viral proteins. Critically, it pro-
vides direct observation of both transcripts and proteins
and potential phosphorylation sites and highlights this
virus’s potential to mutate via genomic recombination/
deletions. This latter observation has potential to directly
affect vaccine challenge studies and may have a role to
play as the pandemic progresses and vaccines or antivi-
rals are widely deployed.
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A table of the number of times transcripts were detected that would
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Additional file 3: Table S2. Transcript structure and ORF assignment
table. A table outlining the distinct structures of transcripts, how many
times a particular type of transcript was detected and which ORFS the
transcripts could code for. Only transcripts that start within the leader
TRS are considered.

Additional file 4: Table S3. Transcript structure and ORF assignment
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of transcripts, how many times a particular type of transcript was
detected and which ORFS the transcripts could code for. In this case all
transcripts are listed irrespective of where the transcription start is
mapped to.

Additional file 5: Table S4. Start locations and internal transcript
boundaries. A list of the number of ties a genome location is used as a
transcript start, transcript stop or is noted at the location of a transcript
boundary (akin to an exon-intron boundary).

Additional file 6: Figures S1 and S2. Supplementary figures detailing
in Figure S1 the location of deletions in other reported direct RNAseq
data and in Figure S2 the MS/MS spectra for the peptide unique to the
furing cleavage site deletion variant.

Additional file 7: Table S5. A list of unique peptides detected by MS/
MS and their parent protein.

Additional file 8: Table S6. Peptide identification report from MS/MS
based search of Chymotrypsin digested proteins.

Additional file 9: Table S7. Location and alignments of N protein
peptides resulting from rare deletions within N gene.
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