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Abstract: A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially 

subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell 

lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in 

a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes 

were identified in different genomic regions. Furthermore, different sequential variants were 

revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned 

nucleotide changes found within the whole genome sequences of the new variants were present 

alongside the nucleotide sequence of the parental strain, which was represented as a minority 

quasispecies. These observations further imply that TBEV exists as a heterogeneous population that 

contains virus variants pre-adapted to reproduction in different environments, probably enabling 

virus survival in ticks and mammals. 
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1. Introduction 

Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus in the family 

Flaviviridae, is endemic in many parts of Europe and Asia and causes serious, even fatal encephalitis 

in humans [1]. AS with other flaviviruses, TBEV is an enveloped virus with single-stranded RNA of 

positive polarity. The RNA genome of TBEV is about 11 kb in length and encodes a single large 

polyprotein flanked by 5’ and 3’ untranslated regions (UTR) of variable sizes. Following translation, 

the viral polyprotein is cleaved by viral and cellular proteases into three structural proteins, namely 

capsid (C), membrane (M, derived from its precursor prM), and envelope (E) proteins, as well as 

seven nonstructural proteins, namely NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 [2].  

In nature, tick-borne flaviviruses are maintained through a transmission cycle involving an 

ixodid tick vector and a vertebrate host. The virus can persist in ticks throughout their lifespan, 

enabling virus transmission for years after the initial infection [3]. Although the majority of the 

evolutionary life of the virus is spent in the tick vector, transmission to a vertebrate host is required 
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to ensure the survival of the virus in natural foci [4,5]. Since arthropod and vertebrate species are 

only distantly related, flaviviruses have to be very adaptable to persistently infect the arthropod host, 

yet also to replicate quickly in vertebrates upon transmission. Host alternations presumably select 

for a virus population that is well adapted to both host systems [6,7]. However, the mechanisms that 

allow efficient replication in the new host after host switch have not yet been elucidated.  

One possible explanation for the adaptability of RNA viruses and their rapid evolution is the 

presence of quasispecies. Quasispecies are dynamic distributions of non-identical but closely related 

mutant and recombinant viral genomes existing as one population in a single host. Quasispecies 

result from the high error rates of most RNA virus-encoded RNA-dependent RNA polymerases, as 

well as from short viral generation times and large population sizes [8]. They are subjected to a 

continuous process of genetic variation, competition, and selection, and act as a unit of selection [9–

11]. The diversity of viral quasispecies has been shown to be both host- and virus-dependent [12,13], 

and is a critical determinant of virus fitness [14,15]. A genetically diverse virus population would 

seem to have an adaptive advantage due to the pre-existence of variants that may have a higher rate 

of reproduction in a novel or changing environment [16]. The existence of quasispecies was 

previously described for several mosquito-borne flaviviruses [17–19]. There is growing evidence 

from field studies [16,20] and laboratory experiments [21–23] that the same is true for TBEV. 

Serial passage of viruses in cell culture in certain cases produces cell-adapted mutant viruses. 

Many reports state that virus adaptation to cell lines results in reduced virulence in vivo [24–26]. 

However, the mechanism by which cell-adapted flaviviruses undergo attenuation in vivo is unclear.  

In this study, we serially subcultured the highly virulent TBEV strain Hypr in parallel in 

mammalian porcine kidney stable (PS) cells [27] and in the tick cell line IRE/CTVM19 [23,28], 

producing three new viral variants. The biological properties of these new variants were investigated 

in a mouse model and compared to each other, as well as to the parental virus. In addition, complete 

nucleotide sequences of all these variants were analyzed and differences were appraised as potential 

genetic determinants important for replication in either the tick or the mammalian host. The 

correlation between virulence and observed genome changes is discussed.  

2. Materials and Methods  

2.1. Cell Lines and Viruses 

Porcine kidney stable (PS) cells [27] were cultured at 37 °C in L-15 (Leibovitz) medium (PAA 

Laboratories, Austria) supplemented with 3% newborn calf serum (Sigma-Aldrich, Darmstadt, 

Germany), 2 mM L-glutamine (Sigma-Aldrich, Darmstadt, Germany) and 100 IU/mL penicillin, 100 

μg/mL streptomycin, and 0.25 μg/mL amphotericin B (Sigma-Aldrich, Darmstadt, Germany). The 

tick cell line IRE/CTVM19 [28] derived from Ixodes ricinus embryos was grown at 28 °C in L-15 

(Leibovitz) medium supplemented with 10% tryptose phosphate broth, 20% foetal bovine serum, 2 

mM L-glutamine and 100 IU/mL penicillin, 100 μg/mL streptomycin, and 0.25 μg/mL amphotericin 

B (Sigma-Aldrich, Darmstadt, Germany). The Czech prototype TBEV strain Hypr was originally 

isolated from the blood of a 10-year-old child diagnosed with tick-borne encephalitis in 1953 [29]. 

Subsequently, the strain was propagated through 4 mouse brain passages and used directly as the 

parental virus strain in our experiments.  

2.2. Passage Series and Plaque Size Measurement 

The parental virus (designated as 0 P) was serially passaged in PS or IRE/CTVM19 cells forty 

times, producing two new viral variants (40 PS and 40 IRE). Since TBEV produces permanent 

infection of the tick cells, a third variant was derived by long-term propagation without passage in 

tick cells for one month and designated as LT IRE. For a passage series, PS and IRE/CTVM19 cells 

were seeded in 24-well plates (106 and 105 cells/well respectively) and infected with 103 PFU of the 

parental virus. The cells were then grown at the respective appropriate temperatures in an 

atmosphere of 5% CO2. After four days of cultivation, the cells were harvested, frozen at −70 °C to 

release intracellular viral particles, then the suspension was clarified by centrifugation (2500× g for 5 
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min at 4 °C). Subsequently, 100 ul of the supernatant was used as inoculum for the next passage. 

Plaque morphology and virus titers were determined by plaque assay on PS cells, as described 

previously [30]. After washing with saline (0.9% NaCl w/v), the cells were fixed and stained using 

naphthalene black solution (0.1% naphthalene black in 6% acetic acid solution) for 45 min, 

subsequently washed with water, then air-dried. During propagation in PS cells, titers of the virus at 

4 days post infection fell gradually between passages 20 and 30 due to the increased replication rate 

of the virus, early onset of cytopathic effect, and thus faster depletion of the cells. Thereafter, the 

passage interval in PS cells was shortened to two days.  

To assess the evolution of the plaque size during the passaging history, the plaque sizes in 

passage numbers 5, 10, 20, 30, 35, and 40 in both cell lines and in LT IRE were measured using ImageJ 

software (NIH, USA, version 1.52a) [31] and compared to the 0 P plaque size. The diameters of a 

minimum of 20 randomly chosen discrete plaque samples per viral variant were measured in 

duplicate and mean value sizes were plotted and compared statistically. 

2.3. Virulence Assays 

Virulence assays for all viral variants were performed in adult CD1 mice (TBEV-susceptible 

strain of mice, females, body weight 15–20 g; AnLab Prague, Czech Republic). Groups of 9 mice were 

inoculated subcutaneously with 100 PFU of the 0 P, 40 PS, 40 IRE, or LT IRE viruses. Survival rates 

were recorded daily for a period of 30 days post inoculation (p.i.). 

Laboratory animals were used in compliance with all relevant national legislation and 

regulations of the European Union. The experiments were approved by the Committee on the Ethics 

of Animal Experiments of the Institute of Parasitology of the Biology Centre of the Czech Academy 

of Sciences of the Czech Republic. 

2.4. Virus Replication in The Mouse Model 

Groups of 15 adult CD1 mice (females, body weight 15–20 g) were inoculated subcutaneously 

with 100 PFU of viruses 0 P, 40 PS, or 40 IRE. At different time points p.i., two mice from each group 

were anesthetized and euthanized. Samples of blood, spleen, and brain were collected. Organs were 

individually homogenized using a TissueLyser II (Qiagen) and prepared as 20% (spleen) or 33% 

(brain) (w/v) suspensions. The suspensions were clarified by centrifugation at 16,000× g for 10 min at 

4 °C. Blood samples were allowed to clot for 30 min at room temperature and serum samples were 

obtained by centrifugation at 1000× g for 5 min at 4 °C. Samples were analyzed by quantitative reverse 

transcription–PCR (qRT-PCR). 

2.5. Quantitative RT-PCR 

The number of virus genome copies was determined by qRT-PCR (TaqMan). Viral RNA was 

extracted from serum and organs using a QIAamp Viral RNA Mini Kit (Qiagen). The cDNA was 

synthesized using a First Strand cDNA Synthesis Kit (Fermentas). Real-time PCR quantitative 

analysis was performed using the absolute quantification method, whereby the sample 

concentrations were determined using a standard curve derived from measurements of serial 

dilutions of a TBEV sample with a known titer. All samples and standards were analyzed in triplicate. 

The following primers and probe were used: E(F), ACA CGG GAG ACT ATG TTG CCG CA (nt 1409-

1431); E(R), CCG TTG GAA GGT GTT CCA CT (nt 1606-1587) [32]; and probe, BHQ1-FAM, ACG 

CCA CTA GCG ACC CTG CAC AAC A. The qRT-PCR was carried out in a Rotor Gene 3000 

instrument (Corbett Research, Cambridge, United Kingdom) using an amplification protocol 

consisting of enzyme activation steps at 95 °C, 10 min; followed by 45 cycles of 95 °C, 15 sec 

denaturation; and 60 °C, 30 sec annealing–synthesis steps. 

2.6. Statistical Analysis 

Statistical evaluation of plaque size of TBEV viral variants in comparison to the parental strain 

Hypr 0 P were tested in GraphPad Prism 8 software using the Kruskal-Wallis test followed by Dunn’s 
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post hoc test corrected for multiple comparisons. Statistical significance of differences in virus growth 

in sera and organs and the assessment of relative survival rates was evaluated using Statistica 

(StatSoft CR, Prague, version 9.). The Fisher’s Least Significant Difference (LSD) post hoc test was 

used. Statistical significance was accepted at p < 0.05. 

2.7. Genome Analysis 

The viral genome was transcribed into cDNA as described above and amplified by PCR using 

overlapping sets of TBEV-specific primers (Supplementary Table S1) [33]. Sequencing was carried 

out directly from purified PCR products. Sequencing data were processed using MEGA software, 

version 4 [34]. The sequences were aligned with ClustalW software in MEGA. Modeling of 3D 

structures of the modified TBEV E protein was done in GENO3D (http://geno3d-pbil.ibcp.fr) and 

SwissPdbViewer (Basel, Switzerland, version 4.1.0) [35–37] using the E protein structure obtained by 

crystallography (PDB: 1SVB) [38]. Different model variants were compared using Swiss Model 

Structure Assessment (http://swissmodel.expasy.org). The best performing model was used for 

visualization of the amino acid substitutions by DeepView and Swiss-PdbViewer (Basel, Switzerland, 

version 4.1.0) [39]. 

2.8. Viral Genome Variability 

To study viral genome variability within individual isolates and the potential presence of 

quasispecies, PCR products were cloned using a CloneJET PCR Cloning Kit (Fermentas). Plasmid 

isolation was performed with a GeneJETTM Plasmid Miniprep Kit (Fermentas). Purified plasmid DNA 

was then sequenced directly using the pair of universal primers surrounding the vector cloning site. 

3. Results 

3.1. Changes in Growth Characteristics During Passaging 

The growth characteristics of TBEV strain Hypr (0 P) were evaluated over 40 serial passages in 

mammalian (PS) and tick (IRE/CTVM19) cells. Viral titers and plaque sizes of new viral variants were 

estimated by plaque assay at every 5th passage (except at passage numbers 15 and 25). The titer of 

the parental virus at the beginning was 3 × 104 PFU/mL (Figure 1). After an initial increase in virus 

titers in both cell lines, the titer in IRE/CTVM19 cells remained more or less constant, about 106–107 

PFU/mL, while the titer in PS cells was more variable, ranging from 105–108 PFU/mL. Between 

passages 20 and 30, virus replication rates in PS cells increased substantially, resulting in a 

pronounced cytopathic effect and decrease in the virus titer due to depletion of the host cells at the 

end of the 4-day incubation period. Thereafter, the passage interval in PS cells was shortened to two 

days to compensate for the replication rate increase, which led to a subsequent titer increase (Figure 

1).  
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Figure 1. Viral replication kinetics during serial passages of tick-borne encephalitis virus parental 

strain Hypr in mammalian porcine kidney cells (PS) (dark line with triangles) and in the tick cell line 

IRE/CTVM19 (light line with circles). The titer was determined using plaque assay and viruses were 

sampled once at the indicated passage levels per virus variant. 

While the plaque size of the virus selected in PS cells did not change dramatically (in 40 PS the 

mean plaque size was 1.1 mm and over 60% of plaque samples had a diameter above 1.0 mm) in 

comparison to the parental virus (mean plaque size 1.6 mm and over 60% of plaque samples with 

diameter above 1.0 mm), the plaque size of the virus selected in IRE/CTVM19 cells changed 

considerably (Figure 2, Supplementary Figure S1). From the 30th passage, the plaque samples were 

approximately half the size of the plaque samples of the parental strain (in 30 IRE the mean plaque 

size was 0.8 mm and more than 70% of plaque samples had a diameter below 1.0 mm) (Figure 2A,B; 

Supplementary Figure S1). The plaque sizes did not change further up to the 40th passage, which 

was then used for further analysis (Figure 2C). After the final passage, the derived TBEV variants 

were designated 40 PS and 40 IRE for the mammalian and tick cell lines, respectively.  

 

Figure 2. Plaque size and morphology in mammalian porcine kidney (PS) cells during serial 

passaging of tick-borne encephalitis virus variants in PS and IRE/CTVM19 tick cells. (A) Plaque size 

of the parental strain 0P. (B) Difference in plaque size between 30 PS (left) and 30 IRE (right). (C) 

Difference in plaque size between 40 PS (left) and 40 IRE (right). (D) Plaque samples of LT IRE after 

continuous propagation for a month in the IRE/CTVM19 cell line. Well diameter captured in the 

photographs is 16 mm. 

A third experimental TBEV variant (LT IRE) was derived by long term continual propagation in 

IRE/CTVM19 cells for a period of one month to simulate virus adaptation to permanent infection of 

tick vectors. From the initial inoculum, the titer of LT IRE increased slightly up to 9 × 104 PFU/mL. In 

the plaque assay, a mixture of small and large plaque samples was observed (mean plaque size 1.5 

mm and 75% of plaque samples had a diameter above 1.0 mm; Figure 2D). The size of the large plaque 
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samples corresponded to the plaque size of the parental virus strain, while small plaque samples 

corresponded to plaque samples of 30 IRE and 40 IRE variants. 

By applying specific cultivation conditions to the TBEV Hypr strain, three virus variants adapted 

to tick and mammalian cells were derived, exhibiting either altered replication rate in cell culture or 

altered plaque morphology. 

3.2. Virulence Assay in the Mouse Model 

Different plaque size of variants obtained under the three different modes of propagation 

indicated that biological properties of such viruses could vary. To test this hypothesis, we performed 

a virulence assay in a mouse model. Mice were inoculated subcutaneously with 100 PFU of viral 

variants or parental strain. A significantly longer median survival time and lower mortality rate were 

observed in mice inoculated with 40 PS in comparison to 0 P-, 40 IRE-, and LT IRE-inoculated mice 

(Fisher’s LSD, p < 0.05). Moreover, 66% of mice survived the challenge with 40 PS, whereas only 11–

33% of mice survived infection with the remaining strains (Figure 3). By challenging laboratory mice 

with individual TBEV variants, different virulence levels and outcomes of the disease were observed. 

 

Figure 3. Survival curve of CD1 mice after subcutaneous inoculation with 100 PFU of parental TBEV 

strain 0 P (dark line with diamonds) or virus variants 40 IRE (light line with circles), 40 PS (dark line 

with triangles), and LT IRE (light line with squares). Mice infected with 40 PS had significantly 

prolonged median survival times and lower mortality rates when compared to other viral strains. 

Statistical significance was tested using Fisher’s Least Significant Difference (LSD) post hoc test (* p < 

0.05). 

3.3. Virus Replication in the Mouse Model 

To investigate the cause of the differences in the survival rate of mice inoculated with the TBEV 

variants, the dynamics of virus replication in the mouse model were determined. CD1 mice were 

challenged with 100 PFU of TBEV parental strain, 40 PS, or 40 IRE variants, then samples were 

collected daily for eight days from two individuals (except from day 7, when only one individual was 

sampled). Virus loads in the blood, spleen, and brain were estimated by qRT-PCR (Supplementary 

Figure S2). In all groups of mice, the virus was first detected in blood 2–3 days p.i., followed by 

infection of organs (spleen) at days 3–4 p.i. (Supplementary Figure S2A,B). In mice inoculated with 

40 PS, a lower level of virus amplification in blood and tissues was observed compared with mice 

inoculated with 0 P or 40 IRE. However, the viruses differed markedly in their dissemination to the 
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brain. In 0 P- and 40 IRE-infected mice, the virus was present in the brain by the 5th day p.i. and the 

viral titer increased during the following two days. In mice challenged with 40 PS, the virus was 

detected for the first time on the 8th day and in one individual only (Supplementary Figure S2C). 

Due to the limited size of the experimental groups, statistical evaluation of these data was not 

possible. Results from this experiment are in concordance with the virulence assay results. The viral 

variant adapted by serial passaging in mammalian cells showed markedly lower neuroinvasiveness 

than the parental strain or the variant passaged in tick cells.  

3.4. Sequence Changes Associated with Adaptation to Mammalian or Tick Cell Lines 

To identify genetic changes associated with adaptation to mammalian or tick cell lines and 

altered neuroinvasiveness in mice, almost the entire viral genome (10,835 bp) was sequenced for the 

parental virus and for all three new viral variants (40 PS, 40 IRE, and LT IRE). The sequences were 

submitted to the NCBI GenBank database under the following accession numbers: parental strain: 

MT228627; 40 PS: MT228628; 40 IRE: MT228625; LT IRE: MT228626. No insertions or deletions were 

observed in any of the variants. Whole genome sequence analysis revealed 20 single-nucleotide 

changes, 12 of which were non-conservative at the level of amino acids (Table 1). The highest number 

of changes compared to the parental virus sequence was recorded in 40 PS (11 nucleotide 

substitutions, 6 amino acid substitutions). One or more of these substitutions could be responsible 

for the lower virulence of 40 PS. The 40 IRE variant differed from 0 P in nine nucleotide positions and 

four amino acids. The least-altered sequence was LT IRE, with only three nucleotide and two amino 

acid substitutions. 

Table 1. Genetic differences between the parental tick-borne encephalitis virus (0 P) and individual 

new variants (40 PS, 40 IRE, and LT IRE) based on a comparison of full genome sequences. (UTR 

stands for “untranslated regions”) 

Genome Region 
Nucleotide Substitution Amino Acid Substitution 

Substitution TBEV Variant Substitution TBEV Variant 

5′ UTR G (52) → A  40 IRE   

Protein C A (315) → G  40 IRE   

Protein prM C (101) → T  40 IRE Thr (34) → Ile  40 IRE 

Protein E 

A (913) → G  40 PS Thr (305) → Ala  40 PS 

C (1078) → T  40 PS Pro (360) → Ser 40 PS 

A (1411) → T  LT IRE Met (471) →Leu  LT IRE 

Protein NS1 
G (169) → A  40 IRE Val (57) → Ile  40 IRE 

G (237) → A  40 PS   

Protein NS2A T (605) → C  40 PS Val (202) → Ala 40 PS 

Protein NS2B G (97) → A  40 IRE Val (33) → Met 40 IRE 

Protein NS3 
T (978) → C  40 PS, 40 IRE   

A (1314) → G  LT IRE   

Protein NS4B 

C (240) → T  40 PS   

G (253) → T  40 IRE Ala (85) → Ser 40 IRE 

T (262) → A  40 PS Phe (88) → Ile 40 PS 

Protein NS5 

G (333) → A  40 PS, 40 IRE   

A (529) → C  LT IRE Thr (177) → Pro LT IRE 

C (2332) → T  40 PS Leu (778) → Phe 40 PS 

A (2588) → G 40 PS Asn (863) → Ser 40 PS 

3′ UTR T (282) → C  40 PS, 40 IRE   

To evaluate the potential impacts of nucleotide substitutions on virulence, the locations of the 

alterations in the least-virulent variant 40 PS was investigated in detail. Amino acid substitutions 

were found in the NS2A and NS4B proteins (one substitution each) and in the NS5 and E proteins 

(two substitutions each). Because of several crucial functions of the E protein in the viral life cycle, 
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mutations in this protein were analyzed more closely. The substitution Thr (305) → Ala was situated 

in the region connecting domain I with domain III (DI–DIII linker). The second substitution Pro (360) 

→ Ser was placed close to the region with a probable function in binding to a cell receptor (Figure 4). 

 

Figure 4. Locations of amino acid substitutions in the TBEV variant 40 PS mapped on the three-

dimensional structure of flavivirus E protein (PDB: 1SVB). Domain I—red, domain II—yellow, 

domain III—green, fusion loop—violet.  

3.5. Presence of Quasispecies 

Considering the hypothesis of viral adaptation to different environments due to selection from 

co-existing sequential variants (quasispecies), we tried to identify the sequence variability within our 

viral variants. Four important parts of the genome were cloned, namely the C protein gene (333 bp), 

5’ UTR (132 bp), 3’ UTR (458 bp), and part of the gene coding E protein (796 bp), then between 5 and 

13 individual clones per virus variant were sequenced (Figure 5). Nucleotide sequence variability 

was observed in both coding sequences and the 5’ UTR. On average, the highest nucleotide diversity 

was observed in the non-coding 5’ UTR (0.4–0.9%). Frequencies of nucleotide changes in the 

remaining genome regions varied from 0.1% to 0.4% and from 0.3% to 0.4% in C and E protein 

regions, respectively. 

Most of the nucleotide substitutions were found only in a single clone within one viral variant. 

However, some of the changes were detected in several colonies independently. In the case of 

position 52 in the 5’ UTR of variant 40 IRE, eight clones carried adenine, while only two carried 

guanine, as in the parental strain. Interestingly, guanine in this position was observed in all colonies 

obtained from other viral variants. Consensus nucleotide sequences created from the clone sequences 

showed 100% identity with the full genome sequence (Figure 5A). Further on in the genome, a 

synonymous substitution within the C protein sequence of 40 IRE in position 315 was detected. Seven 

clones had guanine in this position, while in the four remaining colonies adenine was present (Figure 

5B). Similarly, variability was found in the E protein sequence of 40 PS in position 913. While this 

variant had guanine within its consensus genome sequence and sequences of two colonies, a third 

colony displayed adenine, the same as all colonies of the other viral variants (Figure 5C). To conclude, 

here we demonstrate the intra-population nucleotide variability contained within individual TBEV 

variants derived from the parental virus by long-term specific cell line cultivation constraints, which 

indicates the existence of quasispecies. 
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Figure 5. Comparison of partial nucleotide sequences of (A) 5’UTR, (B) C protein, and (C) E protein 

among clones derived from parental tick-borne encephalitis virus (0 P) and virus variants 40 PS, 40 

IRE, and LT IRE. Numbers in parentheses represent the frequency of a particular substitution among 

the sequenced clones. Dots represent conserved nucleotides, letters indicate substitutions. 

4. Discussion 

Closely related viral strains may produce a considerably different course of infection in the host 

[40,41]. Detailed information on particular determinants of virulence at the molecular level would 

allow a better understanding of the infectious process leading to optimization of disease treatment 

or development of attenuated vaccines. In the current study, by adapting TBEV to different cell lines 

in vitro, we have obtained strains of TBEV differing in growth characteristics in cell culture, as well 

as pathogenicity in a mouse model. We attempted to track back the differences in biological 

properties among these strains to changes at the genome and amino acid levels. 

The first apparent difference between the newly prepared variants was in plaque size. While the 

variant adapted to tick cells (40 IRE) produced plaque samples of approximately half the size of the 

parental strain, the variant adapted to mammalian cells (40 PS) produced plaque samples of the same 

size as the parental strain. Similar observations were reported for strains of Siberian subtype TBEV 

passaged in ticks and tick cell lines [22]. Nevertheless, the assumption that the production of larger 

plaque samples in cell culture is associated with increased virulence in vertebrates [42] was not 

confirmed in our virulence experiments in the mouse model. Similar results were obtained in the case 

of the mutant TBEV Oshima 5–10 strain [24] and related Langat and dengue viruses [43]. Similarly, 

the small plaque phenotype is not necessarily associated with reduced virulence (neuroinvasiveness) 

in a vertebrate animal model, as described for the Siberian subtype of TBEV using small plaque 

purified clones [22]. 

Frequently described changes related to reduction in TBEV plaque size and attenuation in vivo 

are mutations in the E protein resulting in an increase of its positive charge, subsequently leading to 

an increased affinity to glycosaminoglycans, particularly heparan sulphate [21,22,24,25,44]. A 

combined effect of multiple amino acid substitutions on the small plaque phenotype was suggested 

previously [45]. Interestingly, no amino acid substitutions were found in the E protein sequence of 

the 40 IRE that produced a small plaque phenotype. Apparently, different mechanisms may result in 

small plaque phenotypes (including innate immune responses) [46]. 

The course of infection with the individual viral variants corresponded to the results of the 

virulence assay in laboratory mice. The onset of viraemia from the parental strain and viral variants 

40 PS and 40 IRE occurred in the blood on days 2–3 after infection, and in the spleen on days 3–4. 

However, the titer of the 40 PS variant was lower than that of the other two viruses. We speculate 

that these differences could have been caused by incapacitation of 40 PS in the preceding steps of 

pathogenesis, either affecting its ability to replicate in the hypodermis [47], infect dendritic cells, or 

spread to the draining lymph nodes [2,48]. Following replication in the blood and internal organs, 

TBEV overcomes the hematoencephalic barrier to reach the brain. If the virus is sufficiently 

neurovirulent, it causes encephalitis [49]. Both of the more virulent variants (0 P and 40 IRE) were 

detected in mouse brains soon after their presence in blood (by the 5th day p.i.), then their titers rose 

steeply to the 7th day p.i. The 40 PS variant was first detected in the brain on the 8th day, the last day 
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of the experiment. By comparing the spread of the virus in the blood and tissues to the virulence 

assay results, we found out that time of death of the mice correlated with high virus burden in the 

brain. Differences in the degree of virulence between 0 P, 40 IRE, and the attenuated variant 40 PS 

can be attributed to the lower efficiency of viral replication, demonstrated by the lower level of 

viraemia, prior to entry into the brain (lower neuroinvasiveness). Lower neuroinvasiveness was also 

described as a cause of lower virulence in previous studies [24,43]. 

Full genome sequences were acquired for the three variants of the virus, as well as for the 

parental strain. The frequency of substitutions was higher in the mammalian cell-line-passaged 

viruses in comparison to tick-cell-derived variants. This might reflect the faster reproduction cycle in 

mammalian cells in comparison to tick cells. An increased number of replication cycles gives an error-

prone TBEV NS5 viral polymerase a higher chance of introducing a mutation into the genome. 

Comparing biological properties, the variant most different from the parental virus was 40 PS. 

Two amino acid substitutions were found in the E protein. Particular attention was paid to these 

because of important roles that this protein plays in the viral life cycle. The mutation Thr (305) → Ala 

was located in the region connecting domain I with domain III (DI–DIII linker). During TBEV entry 

into the host cell and virion uncoating in the endosome, E protein is exposed to acidic pH, and 

important conformational changes occur in this region, enabling domain III to take a correct position 

in the E protein trimer [50]. Therefore, we assume that the mutation, even if it did not affect charge 

distribution, could influence the spatial interactions between E protein monomers, and consequently 

all the processes of virion fusion with the endosome membrane and release of viral RNA into the 

cytoplasm. 

Virulence could also possibly be influenced by the second E protein mutation (Pro (360) → Ser) 

in domain III, since it is close to the region that is supposed to have a role in cell receptor binding. 

The receptor domain has not yet been exactly defined, and therefore some participation of amino 

acids in proximity to the receptor binding site cannot be completely excluded. Previously, several 

single-nucleotide changes that influence virulence were identified in domain III. In the TBEV 

genome, such changes were found at positions 384 [51], 310 [52], and 368 [53]. All these mutations 

were associated with lower virulence in mice. 

Another amino acid change in 40 PS was Val (202) → Ala in the NS2A protein. This protein is a 

membrane-associated part of the flavivirus replication complex [54]. NS2A participates in virion 

assembly and release of infectious particles from host cells. A significant effect on virion assembly 

was proven for mutations within the restriction site [55] and mutations distorting hydrophobic 

domains [56]. The mutation in 40 PS was located in the N-terminus, and both original and mutated 

amino acids were hydrophobic, thus both of the two above-mentioned mechanisms are unlikely to 

be involved in the viral attenuation observed in the present study. Moreover, the NS2A protein is 

generally one of the least-conserved proteins in the TBEV genome [57]. Another amino acid change 

in 40 PS was found in the NS4B protein at position Phe (88) → Ile. NS4B is a transmembrane protein 

with a poorly defined function that colocalizes with TBEV membrane NS proteins and takes part in 

replication complex formation and ER membrane invagination [43,58,59]. However, this mutation 

was possibly related to the adaptation of 40 PS to PS cells. The last two amino acid substitutions were 

found in the region encoding the NS5 protein, in positions Leu (778) → Phe and Asn (863) → Ser. 

This highly conserved bifunctional protein works as a methyltransferase and RNA-dependent RNA 

polymerase [60]. The catalytic domain of the RNA-dependent RNA polymerase lies in position 270–

900 and includes six highly conserved regions [61]. Both amino acid changes in 40 PS were found in 

the catalytic domain of the viral RNA polymerase but outside of conserved regions, so they probably 

had no influence on its function. 

The variant 40 IRE showed almost the same virulence for laboratory mice as the parental virus, 

even though it differed from 0 P in nine nucleotide substitutions and four amino acid changes. This 

variant also differed from all the others in terms of plaque morphology. One amino acid mutation 

was found in position Thr (34) → Ile in the prM protein. This mutation destroyed the only potential 

glycosylation site in the prM protein, Asn-X-Thr. The prM protein plays an important role as a 

chaperonin of E protein [62]. Goto and co-workers found that mutations in the glycosylation site of 
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prM caused a considerable decrease of secretion of “virus-like particles” in comparison to the 

glycosylated variant [63]. Thus, the mutation in prM could cause accumulation of virions in cells, 

slower viral spread from cell to cell, and consequently smaller plaque samples in PS cell culture. The 

mutation Ala (85) → Ser found in NS4B could relate to the adaptation of 40 IRE to tick cells. As 

mentioned before, mutations in this protein possibly participate in adaptation to specific host 

organisms [43]. The two remaining mutations, Val (57) → Met in the NS1 protein and Val (33) → Met 

in the NS2B protein, are unlikely to contribute to the phenotype we observed. A mutation in the 

replication-participating protein NS1 lay neither in any of the 12 conserved cysteines nor in the 

potential glycosylation site, which is a key region linked to defects of RNA and limited virus 

production in the case of a related flavivirus [64]. The NS2B protein creates a stable complex with the 

NS3 protein and serves as a co-factor of NS2B-NS3 serine protease [65]. Position 33 lies outside of the 

47 amino acid residues of the central part of the protein involved in this co-factor activity [66]. 

The variant LT IRE showed a partly attenuated phenotype in comparison with the parental 

virus. This could have been conferred by two nucleotide substitutions that affected amino acid 

sequences. The first, Met (471) → Leu, was located in the E protein outside the main ectodomain in a 

so-called stem–anchor region that participates in binding of E protein to the cell membrane, in 

interactions with prM protein, and in pH-dependent conformational changes [67]. Position 471 is 

specifically included in the region serving as protein anchorage to the cell membrane (“anchor”). 

Some stem–anchor region mutations have been reported previously as a result of TBEV adaptation 

to tick cells. Mutation at position 426 was responsible for lower virulence for laboratory mice [21]. In 

another study, mutation at position 496 influenced viral neuroinvasiveness [68]. Thus, it is possible 

that the mutation at position 471 of E protein conditioned the partial viral attenuation that we 

observed. The second amino acid change in LT IRE was found in the NS5 protein, in position Thr 

(177) → Pro, which falls within a functional domain of methyltransferase. Previous studies showed 

that single-nucleotide mutations in NS5 protein influence viral attenuation, but that these mutations 

rather participate in the cumulative effect of single mutations, where the biggest influences are from 

changes in E protein, while mutations in NS5 merely contribute to attenuation [68,69]. 

Mutations in proteins and in non-coding regions could influence viral pathogenesis [70,71]. In 

our study, both non-coding regions showed higher nucleotide variability in comparison to coding 

regions. Untranslated regions participate with their secondary structures in regulation of viral 

replication, translation, and packaging. Therefore, multibase deletions in particular influence the 

virulence and viability of the virus [70,71]. However, the extent of attenuation depends on the 

particular conserved region affected [71]. Previously, single-nucleotide mutations in the 5’ UTR 

related to the production of smaller plaque samples have been described [21,72]. Therefore, it is 

possible that mutation G (52) → A in 40 IRE resulted in the production of small plaque samples, the 

only phenotypic trait where this variant differed from all the others. 

The T (282) → C mutation in the 3’ UTR was shared by 40 PS and 40 IRE variants, which differed 

in plaque size and virulence in vivo. Involvement of this particular mutation in newly acquired 

phenotypic traits in these variants is, thus, unclear. This mutation lies in the terminal 190 nucleotide 

region that forms the conserved 3’stem loop. This secondary structure is required for viral RNA 

cyclization and replication, and was also identified as an important determinant of virulence [73]. In 

the related West Nile virus, single-nucleotide mutations in a region responsible for cyclization have 

impaired the replication efficiency of the virus or plaque size [74]. However, the specific cyclization 

sequence in TBEV has not yet been defined. Thus, the implications of our findings cannot be 

confirmed without further investigation. 

In summary, both amino acid changes in the E protein of the 40 PS probably contribute to lower 

virulence in vivo, while the mutation in the NS4B protein most likely arose as a consequence of viral 

adaptation to PS cells. An underlying role of the structural genes in the pathogenicity for mice was 

reported previously [75]. Small plaque production by 40 IRE might be the consequence of mutations 

in the prM protein and 5’ UTR, while the mutation in the NS4B protein arose most likely as a 

consequence of viral adaptation to tick cells. In order to determine the exact contribution of each of 

these amino acid changes to the virus phenotype, each of the mutations observed in this study should 
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be investigated individually or in combination using mutated TBEV infectious clones. Results from 

several studies dealing with attenuated viral strains indicate that viral adaptation to a specific 

environment does not happen only on the basis of actual random mutations. It is more likely that the 

adapted variant is selected from an already existing set of sequential variants—quasispecies [16,21–

23,76]. To explore the variability within the individual viral variants, we used cloning and sequencing 

of parts of the 5’ UTR, E protein, and C protein, focusing on nucleotide variability in positions in 

which we documented changes by whole genome sequencing. Several independent clones were used 

to minimize the possibility of accidental nucleotide substitutions caused by the error rate of Taq 

polymerase during PCR amplification [77]. Several mutations were found in more than one colony 

per viral variant. 

The mutation (G (52) → A) in the 5’ UTR and the non-conservative mutation in the E protein 

(Thr (305) → Ala) may play roles in virus adaptation to different environments. In both cases, the 

same situation was observed. In the viral variant in which nucleotide variability was detected, the 

minor base was identical to whole genome sequences of the remaining viral variants, as well as to all 

their colonies. Very similar results were obtained with the Langat virus [43], West Nile virus [18], and 

the Siberian subtype of TBEV [22]. Thus, it is possible that after the emergence of a new mutation that 

is advantageous in a new environment, the original variant is retained by a certain mechanism, albeit 

at a lower frequency. This assumption corresponds with results of previous experiments, in which 

new viral variants of TBEV were obtained after serial passaging in ticks or tick cell lines, which 

produced a mixture of small plaque samples and plaque samples of original size in mammalian cell 

culture. After plaque purification and sequencing, nucleotide changes unique to the virus producing 

small plaque samples and to phenotypic revertants were detected [21,22]. Phenotypic variability after 

serial passaging of TBEV in ticks was also observed in the study by Labuda and co-workers [76]. In 

another study [78], two virulent variants were obtained from a naturally attenuated TBEV strain after 

five passages in mice or a single passage in PS cells. These variants had identical nucleotide 

substitutions in their genomes. 

Unfortunately, we cannot be sure which of the mutations found in our study provides a selective 

advantage within a certain environment and which are just equivalent alternatives without any 

influence on viral traits. The mutation in the E protein, causing the change of amino acid in the 

connection of domains I and III, probably influences the protein function, as discussed above. The 

mutation in the 5’ UTR seems to have some importance because the ratio among the clones (8:2) 

shows strong dominance of A over G. The direct relationship of a single-nucleotide change in the 5’ 

UTR to the change in phenotypic traits, specifically to plaque size, is less probable, as other authors 

emphasize the cumulative effect of single-nucleotide changes and their combinations on viral traits 

[43,45,79]. The substitutions found in our study confirm some changes from a previously published 

list of mutations involved in changes in virulence and other biological properties of TBEV and other 

flaviviruses [73], and even contribute further evidence of such involvement. Such information may 

be particularly important for genetic comparisons with sequences acquired from newly isolated 

TBEV field strains and viruses sequenced directly from ticks or clinical samples. 

To conclude, serial passaging and long-term persistent infection of tick cell lines do not result in 

attenuation of TBEV in a vertebrate host. Plaque size in mammalian cells is not directly linked to the 

virulence of a viral strain. There are mechanisms ensuring maintenance of a certain level of genotypic 

and phenotypic variability during an adaptation process, which allow rapid selection of adapted 

variants from a pre-existing pool of viral variants (quasispecies). 

Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/12/8/902/s1: Table 

S1: List of sequencing primers used to amplify overlapping regions of the TBEV genome. Figure S1: TBEV plaque 
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Replication of mammalian-cell- and tick-cell-derived variants of TBEV in mice.  
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