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Abstract 

Every few years an earthquake of high magnitude occurs around the globe resulting in 

collapsed structures with people trapped inside them. The seismic research method has 

the potential to detect physical movement or signals by measuring vibration due to 

structure – borne sound using seismic sensors. The placement and positioning of these 

sensors is critical for the successful detection of the survivors and prediction models 

could be developed and used as a tool to assist in the decision making of the rescue 

teams. This thesis investigates the potential to use Statistical Energy Analysis (SEA) 

to model the vibration transmission between structural members of a collapsed 

reinforced concrete building in order to find trapped survivors.  

Experimental Modal Analysis (EMA) was carried out to validate finite element models 

of reinforced concrete beam junctions with surface-to-surface contact conditions 

which are used to investigate the normal contact stiffness between reinforced concrete 

beams. It is shown that the contact stiffness follows a lognormal distribution and that 

the mean value could be used as approximation of the contact stiffness in beam 

junctions.   

An ensemble of 30 random beam junctions was generated for Monte Carlo simulations 

with Finite Element Method (FEM) that allowed Experimental Statistical Energy 

Analysis (ESEA) to be used to determine Coupling Loss Factors (CLFs) between the 

two beams. These were compared with CLFs calculated using an analytical model 

based on a lump spring connector (LSC). It was shown that close agreement 

(difference within 5 dB) was achieved only for bending waves or torsional waves 

between FEM ESEA and the analytical model up to the frequency where half the 

bending or torsional wavelength equalled the longest side of the contact area. When 

all wave types were combined, reasonable agreement (difference within 10 dB) can be 

achieved at frequencies below 900 Hz.  

FEM, SEA path analysis and general SEA matrix solutions were used to estimate 

vibration transmission in piles of beams using both FEM ESEA CLFs and CLFs from 

an analytical model of a lump spring connector. It was shown that SEA is more 

accurate when the number of transmission paths increases and that reasonable 

agreement is achieved between SEA and FEM up to 700 Hz for the majority of the 

beams in the piles.  

Additionally, an ensemble of 30 randomly damaged beam-to-column junctions was 

generated using a Monte Carlo simulation with FEM. This allows an assessment of 

ESEA with two or three subsystems to be used to determine the CLFs between the 

beam and the column considering either only bending modes or the combination of all 

modes. It is shown that the bending modes are dominating the dynamic response of 

the junctions over the combination of all the modes and that the uncertainty of 

predicting the CLFs using FEM ESEA is sufficiently low that it should be feasible to 

estimate the coupling even when the exact angle between the beam and the column is 

unknown. In addition, the use of two instead of three subsystems for the junction 

significantly decreases the number of negative coupling loss factors in FEM ESEA 

indicating that the two-subsystem model provides a reasonable basis on which to build 

an SEA model. 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

                                                           For the one who changed my perspective on life, 

for Νεφέλη. 

  



v 

 

Acknowledgements 

I would like to gratefully acknowledge the funding provided by the Institute for Risk 

and Uncertainty of the University of Liverpool and the Engineering and Physical 

Sciences Research Council (EPSRC).  

I would like to thank my supervisor, Professor Carl Hopkins, for his support, advice, 

and guidance over the years of this PhD. Carl was always available to me for 

discussing any matter that concerned me.     

I would like also to thank Dr Gary Seiffert for his help in the experimental work of 

this thesis and for his positive vibe and attitude.  

I would like to gratefully acknowledge Prof. Barry M. Gibbs for our discussions 

regarding acoustics and life in general.   

Special thanks to my colleagues in the Acoustics Research Unit, Xiaoxue Shen, 

Nazmiye Gulenay Yilmaz and especially Alessia Frescura for their support during  the 

writing up of this thesis.         

I would like to thank my family and especially my brother Avgoustinos Filippoupolitis 

who had my back during the last one and a half years.  

Last but not least, I would like to gratefully acknowledge Dr. Eleni-Eva Toumbakari. 

Eleni was the supervisor of my undergraduate thesis and was the first person who 

believed in me and my research skills.   

 

 

 

 



vi 

 

 

 

 

 

 

  



vii 

 

Contents 

 

Abstract ....................................................................................................................... iii 

Acknowledgements ...................................................................................................... v 

Contents ..................................................................................................................... vii 

List of Symbols ......................................................................................................... xiii 

List of Abbreviations................................................................................................ xvii 

List of Figures ........................................................................................................... xix 

List of Tables......................................................................................................... xxxiii 

1. Introduction .......................................................................................................... 1 

1.1 Background and motivation .......................................................................... 1 

1.2 Literature review ........................................................................................... 3 

1.2.1 Collapse patterns in reinforced concrete buildings after earthquakes .... 3 

1.2.2 Finite Element Method ........................................................................... 6 

1.2.3 Statistical Energy Analysis .................................................................... 9 

1.2.4 Experimental Statistical Energy Analysis ............................................ 10 

1.3 Aims ............................................................................................................ 12 

1.4 Thesis layout ................................................................................................ 13 

2. Experimental work ............................................................................................. 15 

2.1 Introduction ................................................................................................. 15 

2.2 Experimental work ...................................................................................... 15 



viii 

 

2.2.1 Reinforced concrete beams .................................................................. 15 

2.2.2 Test setups ............................................................................................ 16 

2.2.3 Experimental modal analysis ............................................................... 19 

2.2.4 Dynamic stiffness measurement for the rubber material according to ISO 

9052 -1 21 

2.3 Conclusions ...................................................................................................... 23 

3. Theory and modelling ........................................................................................ 24 

3.1 Introduction ................................................................................................. 24 

3.2 Finite Element Method ................................................................................ 24 

3.2.1 Analysis methods ................................................................................. 24 

3.2.2 FEM modelling of the experimental setups ......................................... 29 

3.2.3 Validation criteria used to assess FEM and EMA ............................... 32 

3.2.4 Numerical experiments with FEM ....................................................... 34 

3.3 Statistical Energy Analysis .......................................................................... 45 

3.3.1 Classical SEA ....................................................................................... 45 

3.3.2 Experimental SEA ................................................................................ 48 

3.3.3 Theoretical models for Coupling Loss Factors .................................... 52 

3.4 Conclusions ...................................................................................................... 56 

4. Experimental validation of finite element models  representing stacked concrete 

beams with unbonded surface contacts ...................................................................... 57 

4.1 Introduction ................................................................................................. 57 



ix 

 

4.2 Individual beams ......................................................................................... 58 

4.2.1 Material properties ............................................................................... 58 

4.2.2 Frequencies .......................................................................................... 59 

4.2.3 Mode shapes ......................................................................................... 59 

4.3 Junctions of two beams (surface-to-surface contact) .................................. 63 

4.3.1 Normal contact stiffness ....................................................................... 63 

4.3.2 Eigenfrequencies .................................................................................. 63 

4.3.3 Mode shapes ......................................................................................... 64 

4.3.4 Spatial-average transfer mobility ratio ................................................. 67 

4.4 Junction of three beams (surface-to-surface contact) .................................. 69 

4.4.1 Normal contact stiffness derived from model updating ....................... 69 

4.4.2 Eigenfrequencies .................................................................................. 70 

4.4.3 Mode shapes ......................................................................................... 71 

4.4.4 Spatial-average transfer mobility ratio ................................................. 74 

4.5 Junction of two beams (edge-to-surface contact) ........................................ 76 

4.5.1 Eigenfrequencies .................................................................................. 76 

4.5.2 Mode shapes ......................................................................................... 77 

4.5.3 Spatial-average transfer mobility ratio ................................................. 78 

4.6 Conclusions ................................................................................................. 79 

5. Vibration transmission between reinforced concrete beams with surface-to-

surface contact conditions .......................................................................................... 81 



x 

 

5.1 Introduction ................................................................................................. 81 

5.2 Mode types .................................................................................................. 82 

5.3 Mode count .................................................................................................. 83 

5.4 Assessment of the FEM driving-point mobilities ........................................ 85 

5.4.1 Assessment of damping ....................................................................... 85 

5.4.2 Simply supported condition ................................................................. 87 

5.4.3 Free support condition.......................................................................... 88 

5.4.4 Discussion ............................................................................................ 90 

5.5 Bending and torsional wavelength ............................................................ 107 

5.6 Comparison of coupling loss factors from lump spring theory and FEM 

ESEA 108 

5.6.1 Simply supported condition ............................................................... 109 

5.6.2 Free supported condition .................................................................... 111 

5.7 Conclusions ............................................................................................... 114 

6. Vibration transmission in piles of reinforced concrete beams with surface-to-

surface contact conditions ........................................................................................ 116 

6.1 Introduction ............................................................................................... 116 

6.2 Path analysis .............................................................................................. 118 

6.2.1 Pile 1a ................................................................................................. 118 

6.2.2 Pile 1b ................................................................................................ 123 

6.2.3 Discussion .......................................................................................... 128 



xi 

 

6.3 Pile 1a - Comparison between SEA and FEM .......................................... 128 

6.3.1 Simply supported beams .................................................................... 128 

6.3.2 Free supports ...................................................................................... 131 

6.4 Pile 1b – Comparison between SEA and FEM ......................................... 134 

6.4.1 Simply supported beams .................................................................... 134 

6.4.2 Free support ........................................................................................ 137 

6.5 Piles 1a and 1b – Discussion ..................................................................... 139 

6.6 Pile 2 – Comparison between SEA and FEM ........................................... 140 

6.6.1 Simply supported beams .................................................................... 140 

6.6.2 Free supports ...................................................................................... 143 

6.7 Pile 2 – Discussion .................................................................................... 146 

6.8 Conclusions ............................................................................................... 146 

7. Vibration transmission in damaged reinforced concrete beam-to-column 

junctions ................................................................................................................... 148 

7.1 Introduction ............................................................................................... 148 

7.2 Mode count ................................................................................................ 149 

7.3 Comparison of coupling loss factors from FEM ESEA and wave approach 

(bending waves only) for the rigid T-junction ..................................................... 150 

7.4 Coupling loss factors from FEM ESEA for damaged and rigid T-junctions

 152 

7.4.1 Two subsystems ................................................................................. 152 



xii 

 

7.4.2 Three subsystems ............................................................................... 155 

7.5 Conclusions ............................................................................................... 159 

8. Conclusions ...................................................................................................... 161 

8.1 Introduction ............................................................................................... 161 

8.2 Main findings ............................................................................................ 161 

8.3 Future work ............................................................................................... 165 

A. MAC values for experimental setups J1 and J2 ............................................... 166 

• Setup J1 ......................................................................................................... 166 

• Setup J2 ......................................................................................................... 166 

B. SEA matrix solution for piles 1a, 1b and 2 ...................................................... 167 

• Pile 1a ............................................................................................................ 167 

• Pile 1b ........................................................................................................... 168 

• Pile 2 ............................................................................................................. 169 

C. Path analysis of pile 2 ...................................................................................... 170 

References ................................................................................................................ 185 

 

 

 

 

 



xiii 

 

List of Symbols  

cB,b Phase velocity for the propagating bending waves on a solid 

beam (m/s) 

cL,b Phase velocity of a beam for quasi-longitudinal waves (m/s) 

f Frequency (Hz) 

fck Characteristic crushing strength of concrete (N/mm2) 

fms Mass – spring resonant frequency (Hz) 

fyk Characteristic yield strength of steel (N/mm2) 

h Depth (m) 

i √-1, integer 

j Integer 

k  Spring stiffness (N/m) 

m Mass (kg) 

t Time (s) 

u Displacement (m) 

v Velocity (m/s) 

x Coordinate position (cm) 



xiv 

 

y Coordinate position (cm) 

  

A FEM data 

C Structural damping (Ns/m), contact area (cm2) 

E Young’s modulus (N/m2), energy (J) 

F Force (N) 

K Stiffness (N/m) 

L Length (m) 

LC,max Length of the longest side of the surface-to-surface contact 

area (m) 

M Mass (kg) 

N Mode count, number of nodes, positions, samples, etc. 

S Cross-sectional area of a beam (m2) 

W Power (W) 

X Experimental data 

YA,FEM FEM driving-point mobility for combination of bending, 

torsional and longitudinal modes (m/Ns) 



xv 

 

YB,FEM FEM driving-point mobility for excitation of bending modes 

(m/Ns) 

YB,Inf Driving-point mobility of a thin beam of infinite extent for 

excitation of bending waves in the central part of the beam 

(m/Ns) 

Yc Mobility of a point spring connection (m/Ns)  

Ydp Driving-point mobility (m/Ns) 

YR Spatial-average transfer mobility ratio (dB) 

YT,FEM FEM driving-point mobility for excitation of torsional modes 

(m/Ns) 

  

ζ Damping ratio (-) 

ηii Internal loss factor for subsystem i (-) 

ηij Coupling loss factor from subsystem i to subsystem j (-) 

θ Rotation angle (degrees) 

λB Bending wavelength (m) 

λT Torsional wavelength (m) 

ν Poisson’s ratio (-) 



xvi 

 

ρ Density (kg/m3) 

ρs  Surface density (kg/m2) 

τ Transmission coefficient (-) 

φΑ Translational degrees of freedom for the FEM mode shapes 

(m) 

φΧ Translational degrees of freedom for the experimental mode 

shapes (m) 

ω Angular frequency (radians/s) 

  

Φ Mode of vibration (-) 

  

  

  

  

 

 

 

 

 



xvii 

 

List of Abbreviations 

B32 Abaqus quadratic linear beam element 

C3D20R Abaqus continuum three-dimensional quadratic element with 

20 nodes and reduced integration 

CLF Coupling Loss Factor 

DOF Degrees of Freedom 

EMA Experimental Modal Analysis 

ESEA Experimental Statistical Energy Analysis 

FEM Finite Element Method 

FFT Fast Fourier Transform 

LSC Lump Spring Connector 

MAC Modal Assurance Criterion 

NFPA National Fire Protection Association (USA) 

PMAC Partial Modal Assurance Criterion 

PMVR Partial Modal Vector Ratio 

SEA Statistical Energy Analysis 

SPRING1 Abaqus spring element between a node and ground, acting in 

a fixed direction 



xviii 

 

SPRING2 Abaqus spring element between two nodes, acting in a fixed 

direction 

USAR Urban Search and Rescue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xix 

 

List of Figures 

Figure 1-1 Collapse patterns in reinforced concrete buildings: (a) complete pancake 

[15], (b) offset pancake [16], (c) mid-story [17] and (d) lean-to collapse [18]. ........... 4 

Figure 1-2 Discontinuities in reinforced concrete structural members [19]. ............... 5 

Figure 1-3 Simplified collapse patterns using beams and columns: (a) pancake and (b) 

lean-to collapse............................................................................................................. 6 

Figure 2-1 Structural details of the experimental samples (units: millimetres). ........ 16 

Figure 2-2 Test setups of the beam junctions: (a) Setup J1, (b) Setup J2, (c) Setup J3, 

(d) Setup J4, (e) Setup J5 – Plan view and (f) Setup J5 – Side view (units: millimetres). 

The red markers indicate the positions of the accelerometers (see Table 2-1). ......... 18 

Figure 2-3 Test equipment and transducers for test setups: (a) I3, (b) J3, (c) J4 and (d) 

J5. ............................................................................................................................... 20 

Figure 2-4 Measurement setup for the dynamic stiffness of the rubber material. ..... 22 

Figure 2-5 Driving-point mobility for the rubber sample. ......................................... 23 

Figure 3-1 FEM model of test setup J5. The purple circles indicate the SPRING2 

elements used for modelling the interaction between beams 1 and 2, purple squares 

indicate the SPRING1 elements that approximate the aluminium support and purple 

triangles indicate the SPRING1 elements that approximate the rubber support. ....... 30 

Figure 3-2 FEM model of test setup J2. The purple squares indicate the SPRING1 

elements that approximate the aluminium support and the purple line indicates the 

surface-to-surface contact between beams 1 and 2. ................................................... 31 

Figure 3-3 Geometry and reinforcement details of beams SS1 (top) and SS2 (bottom).

 .................................................................................................................................... 35 



xx 

 

Figure 3-4 Example FEM model showing the surface-to-surface connection between 

beams SS1 and SS2. ................................................................................................... 35 

Figure 3-5 Excitation positions for the calculation of the driving-point mobilities of 

beams SS1 (top) and SS2 (bottom). ........................................................................... 36 

Figure 3-6 Pile 1a consists of seven beams with surface-to-surface contact conditions.

 .................................................................................................................................... 37 

Figure 3-7 Pile 1b consists of seven beams with surface-to-surface contact conditions.

 .................................................................................................................................... 37 

Figure 3-8 Pile 2 consists of 14 beams with surface-to-surface contact conditions: (a) 

layers 1 – 4 and (b) layers 4 – 6. ................................................................................ 39 

Figure 3-9 FEM models of pile 1a and pile 1b consisted of seven beams arranged in 

three layers. ................................................................................................................ 41 

Figure 3-10 FEM model of the pile 2 consisted of 14 beams arranged in six layers. 42 

Figure 3-11 Geometry and reinforcement details of: (a) an undamaged and (b) a 

damaged beam-to-column junction (units: millimetre).............................................. 43 

Figure 3-12 Cross-section details of the reinforced concrete members that for the 

junctions: (a) beam and (b) column (units: millimetre). ............................................ 44 

Figure 3-13 FEM model of a rigid beam-to-column T-junction. The orange symbols 

indicate the positions of the simple supports. ............................................................ 44 

Figure 3-14 FEM model of a damaged beam-to-column T-junction. The orange 

symbols indicate the positions of the simple supports. .............................................. 45 

Figure 3-15 Schematic diagram of a N-subsystem SEA model showing only direct 

coupling. ..................................................................................................................... 46 



xxi 

 

Figure 3-16 Relative beam positions in the ensemble of junctions. .......................... 49 

Figure 3-17 Division of the beam-to-column junctions in: (a) two and (b) three ESEA 

subsystems. The red lines indicate the surfaces where the rain-on-the-roof excitation 

is applied and the response is measured. .................................................................... 52 

Figure 3-18 Subsystem numbering for the beam-to-column T-junction for the 

application of the wave approach. .............................................................................. 54 

Figure 4-1 Comparison of FEM against experimental eigenfrequencies for Setups I1, 

I2 and I3. .................................................................................................................... 59 

Figure 4-2 MAC values for FEM model of Setup I1: (a) in-plane bending modes, (b) 

out-of-plane bending modes and (c) torsional modes. ............................................... 60 

Figure 4-3 MAC values for FEM model of Setup I2: (a) in-plane bending modes, (b) 

out-of-plane bending modes and (c) torsional modes. ............................................... 61 

Figure 4-4 MAC values for FEM model of Setup I3: (a) in-plane bending modes, (b) 

out-of-plane bending modes and (c) torsional modes. ............................................... 62 

Figure 4-5 Comparison of FEM against experimental eigenfrequencies for Setups J1, 

J2 and J3. .................................................................................................................... 64 

Figure 4-6 MAC values for FEM model of Setup J3. ................................................ 65 

Figure 4-7 PMAC values for FEM model of Setup J3............................................... 66 

Figure 4-8 FEM mode shapes of Setup J3: (a) Mode 12 at 1782.3 Hz and (b) Mode 18 

at 2418.8 Hz. The legends show the normalized out-of-plane modal displacements. 66 

Figure 4-9 PMVR values for FEM model of Setup J3. The green and red straight lines 

indicate difference levels of 5 and 10 dB respectively while the empty column 

indicates an unidentified mode pair. .......................................................................... 67 



xxii 

 

Figure 4-10 Spatial-average transfer mobility ratio between the beams of setup J3: (a) 

YR21,1 and (b) YR12,2. ................................................................................................... 68 

Figure 4-11 Lognormal probability distribution fitted to the dataset of the normal 

contact stiffness. ......................................................................................................... 70 

Figure 4-12 Comparison of FEM model No.1 and 2 against experimental 

eigenfrequencies for Setup J4. ................................................................................... 70 

Figure 4-13 MAC values for Setup J4: (a) FEM model No.1 and (b) FEM model No.2.

 .................................................................................................................................... 72 

Figure 4-14  PMAC values for Setup J4: (a) FEM model No.1 and (b) FEM model 

No.2. ........................................................................................................................... 72 

Figure 4-15 PMVR for FEM models No.1 and 2 with Setup J4: (a) PMVR12, (b) 

PMVR13 and (c) PMVR23. .......................................................................................... 73 

Figure 4-16 Spatial-average transfer mobility ratio for the beams in setup J4: (a) YR21,1, 

(b) YR31,1, (c) YR12,2, (d) YR32,2, (e) YR13,3 and (f) YR23,3. ........................................... 75 

Figure 4-17 Comparison of FEM against experimental eigenfrequencies for Setup J5.

 .................................................................................................................................... 76 

Figure 4-18 MAC values for FEM model of Setup J5. .............................................. 77 

Figure 4-19 PMAC values for FEM model of Setup J5............................................. 78 

Figure 4-20 PMVR values for FEM model with Setup J5. ........................................ 78 

Figure 4-21 Spatial-average transfer mobility ratio for the beams in setup J5: (a) YR21,1, 

(b) YR12,2. .................................................................................................................... 79 



xxiii 

 

Figure 5-1 Types of global modes: (a) bending modes, (b) torsional modes and (c) 

combination of bending and torsional modes. The legends show the normalized out-

of-plane modal displacements. ................................................................................... 82 

Figure 5-2 Average mode count for bending, torsional and combination of all modes 

of the 30 beam junctions when simply supported. ..................................................... 84 

Figure 5-3 Average mode count for bending, torsional and combination of all modes 

of the 30 beam junctions with free support conditions. ............................................. 84 

Figure 5-4 Beam SS1 (simply supported) – Ratio of the real part of the driving-point 

mobilities (FEM using bending modes only to infinite beam theory) along with the 

95% confidence intervals for two different internal loss factors. .............................. 86 

Figure 5-5 Beam SS1 (simply supported) – Ratio of the magnitude of the driving-point 

mobilities (FEM using bending modes only to infinite beam theory) along with the 

95% confidence intervals for two different internal loss factors. .............................. 86 

Figure 5-6 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for simply supported beam SS1 for 

excitation of bending waves only. X and Y axis indicate the grid of the measuring 

positions of YB,FEM. ..................................................................................................... 91 

Figure 5-7 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for simply supported beam SS2 for 

excitation of bending waves only. X and Y axis indicate the grid of the measuring 

positions of YB,FEM. ..................................................................................................... 92 

Figure 5-8 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for simply supported beam SS1 for 



xxiv 

 

excitation of torsional waves only. X and Y axis indicate the grid of the measuring 

positions of YT,FEM. ..................................................................................................... 93 

Figure 5-9 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for simply supported beam SS2 for 

excitation of torsional waves only. X and Y axis indicate the grid of the measuring 

positions of YT,FEM. ..................................................................................................... 94 

Figure 5-10 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for simply supported beam SS1 for 

combination of all types of waves. X and Y axis indicate the grid of the measuring 

positions of YA,FEM. ..................................................................................................... 95 

Figure 5-11 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for simply supported beam SS2 for 

combination of all types of waves. X and Y axis indicate the grid of the measuring 

positions of YA,FEM. ..................................................................................................... 96 

Figure 5-12 Ratio of the real part of the driving-point mobilities (FEM to infinite beam 

theory) along with the 95% confidence intervals for beam SS1 (top) and beam SS2 

(bottom) when they are simply supported. ................................................................. 97 

Figure 5-13 Ratio of the magnitude of the driving-point mobilities (FEM to infinite 

beam theory) along with the 95% confidence intervals for beam SS1 (top) and beam 

SS2 (bottom) when they are simply supported. ......................................................... 98 

Figure 5-14 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for the free supported beam SS1 for 

excitation of bending waves only. X and Y axis indicate the grid of the measuring 

positions of YB,FEM. ..................................................................................................... 99 



xxv 

 

Figure 5-15 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for the free supported beam SS2 for 

excitation of bending waves only. X and Y axis indicate the grid of the measuring 

positions of YB,FEM. ................................................................................................... 100 

Figure 5-16 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for the free supported beam SS1 for 

excitation of torsional waves only. X and Y axis indicate the grid of the measuring 

positions of YT,FEM. ................................................................................................... 101 

Figure 5-17 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for the free supported beam SS2 for 

excitation of torsional waves only. X and Y axis indicate the grid of the measuring 

positions of YT,FEM. ................................................................................................... 102 

Figure 5-18 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for the free supported beam SS1 for 

combination of all types of waves. X and Y axis indicate the grid of the measuring 

positions of YA,FEM. ................................................................................................... 103 

Figure 5-19 Contour plots of the ratio of the real part of the driving-point mobilities 

(FEM to infinite beam theory in decibels) for the free supported beam SS2 for 

combination of all types of waves. X and Y axis indicate the grid of the measuring 

positions of YA,FEM. ................................................................................................... 104 

Figure 5-20 Ratio of the real part of the driving-point mobilities (FEM to infinite beam 

theory) along with the 95% confidence intervals for beam SS1 (top) and beam SS2 

(bottom) with free-free support conditions. ............................................................. 105 



xxvi 

 

Figure 5-21 Ratio of the magnitude of the driving-point mobilities (FEM to infinite 

beam theory) along with the 95% confidence intervals for beam SS1 (top) and beam 

SS2 (bottom) with free-free support conditions. ...................................................... 106 

Figure 5-22 Bending wavelength of beams SS1 and SS2. The red line indicates the 

length of the longest side, LC,max=0.45 m of the contact area. .................................. 107 

Figure 5-23 Torsional wavelength of beams SS1 and SS2. The red line indicates the 

length of the longest side, LC,max=0.45 m of the contact area. .................................. 108 

Figure 5-24 Comparison of FEM ESEA (bending modes) and the analytical model 

(LSC) coupling loss factors η12 and η21. The error bars denote the 95% confidence 

intervals. ................................................................................................................... 110 

Figure 5-25 Comparison of FEM ESEA (torsional modes) and the analytical model 

(LSC) coupling loss factors η12 and η21. The error bars denote the 95% confidence 

intervals. ................................................................................................................... 110 

Figure 5-26 Comparison of FEM ESEA (combination of all modes) and the analytical 

model (LSC) coupling loss factors η12 and η21. The error bars denote the 95% 

confidence intervals. ................................................................................................ 111 

Figure 5-27 Comparison of FEM ESEA (bending modes) and the analytical model 

(LSC) coupling loss factors η12 and η21. The error bars denote the 95% confidence 

intervals. ................................................................................................................... 113 

Figure 5-28 Comparison of FEM ESEA (torsional modes) and the analytical model 

(LSC) coupling loss factors η12 and η21. The error bars denote the 95% confidence 

intervals. ................................................................................................................... 113 



xxvii 

 

Figure 5-29 Comparison of FEM ESEA (combination of all modes) and the analytical 

model (LSC) coupling loss factors η12 and η21. The error bars denote the 95% 

confidence intervals. ................................................................................................ 114 

Figure 6-1 Coupling loss factors η12 and η21 with 95% confidence intervals from FEM 

ESEA for beams with simply supported and free support conditions at the end of each 

beam. ........................................................................................................................ 117 

Figure 6-2 Coupling loss factors η12 and η21 resulted from an analytical model based 

on a lump spring connector using driving-point mobilities of an infinite beam and 

FEM. ........................................................................................................................ 117 

Figure 6-3 Difference between the energy ratio, E1/E2, from the SEA matrix solution 

and path analysis (pile 1a). ....................................................................................... 119 

Figure 6-4 Difference between the energy ratio, E1/E3, from the SEA matrix solution 

and path analysis (pile 1a). ....................................................................................... 120 

Figure 6-5 Difference between the energy ratio, E1/E4, from the SEA matrix solution 

and path analysis (pile 1a). ....................................................................................... 120 

Figure 6-6 Difference between the energy ratio, E1/E5, from the SEA matrix solution 

and path analysis (pile 1a). ....................................................................................... 121 

Figure 6-7 Difference between the energy ratio, E1/E6, from the SEA matrix solution 

and path analysis (pile 1a). ....................................................................................... 122 

Figure 6-8 Difference between the energy ratio, E1/E7, from the SEA matrix solution 

and path analysis (pile 1a). ....................................................................................... 122 

Figure 6-9 Difference between the energy ratio, E1/E2, from the SEA matrix solution 

and path analysis (pile 1b)........................................................................................ 124 



xxviii 

 

Figure 6-10 Difference between the energy ratio, E1/E3, from the SEA matrix solution 

and path analysis (pile 1b)........................................................................................ 125 

Figure 6-11 Difference between the energy ratio, E1/E4, from the SEA matrix solution 

and path analysis (pile 1b)........................................................................................ 125 

Figure 6-12 Difference between the energy ratio, E1/E5, from the SEA matrix solution 

and path analysis (pile 1b)........................................................................................ 126 

Figure 6-13 Difference between the energy ratio, E1/E6, from the SEA matrix solution 

and path analysis (pile 1b)........................................................................................ 127 

Figure 6-14 Difference between the energy ratio, E1/E7, from the SEA matrix solution 

and path analysis (pile 1b)........................................................................................ 127 

Figure 6-15 Difference between the energy ratios from FEM and SEA with CLFs from 

FEM ESEA (combination of bending, torsional and longitudinal modes). ............. 130 

Figure 6-16 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with infinite beam mobilities). ....................................... 130 

Figure 6-17 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with FEM mobilities). .................................................... 131 

Figure 6-18 Difference between the energy ratios from FEM and SEA with CLFs from 

FEM ESEA (combination of bending, torsional and longitudinal modes). ............. 132 

Figure 6-19 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with infinite beam mobilities). ....................................... 133 

Figure 6-20 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with FEM mobilities). .................................................... 133 



xxix 

 

Figure 6-21 Difference between the energy ratios from FEM and SEA with CLFs from 

FEM ESEA (combination of bending, torsional and longitudinal modes). ............. 135 

Figure 6-22 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with infinite beam mobilities). ....................................... 136 

Figure 6-23 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with FEM mobilities). .................................................... 136 

Figure 6-24 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from FEM ESEA (combination of bending, torsional and longitudinal modes).

 .................................................................................................................................. 138 

Figure 6-25 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with infinite beam mobilities). .................... 138 

Figure 6-26 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with FEM mobilities). ................................. 139 

Figure 6-27 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from FEM ESEA (combination of bending, torsional and longitudinal modes) – 

Excitation  on subsystem SS1. ................................................................................. 142 

Figure 6-28 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with infinite beam mobilities) – Excitation on 

subsystem SS1. ......................................................................................................... 142 

Figure 6-29 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with FEM mobilities) – Excitation  on subsystem 

SS1. .......................................................................................................................... 143 



xxx 

 

Figure 6-30 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from FEM ESEA (combination of bending, torsional and longitudinal modes) – 

Excitation  on subsystem SS1. ................................................................................. 144 

Figure 6-31 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with infinite beam mobilities) – Excitation on 

subsystem SS1. ......................................................................................................... 145 

Figure 6-32 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with FEM mobilities) – Excitation  on subsystem 

SS1. .......................................................................................................................... 145 

Figure 7-1 Comparison of the average mode count of the 30 damaged junctions with 

the mode count of the rigid T-junction for out-of-plane bending modes and 

combination of all mode types. ................................................................................ 149 

Figure 7-2 Comparison of FEM and the analytical (wave approach) coupling loss 

factors η12 and η21. .................................................................................................... 151 

Figure 7-3 Comparison of FEM and the analytical (wave approach) coupling loss 

factors η13 and η31. .................................................................................................... 151 

Figure 7-4 Comparison of FEM and the analytical (wave approach) coupling loss 

factors η23 and η32. .................................................................................................... 152 

Figure 7-5 Coupling loss factors η12 and η21 resulted from FEM ESEA with two 

subsystems with bending only (B) and the combination of all modes (A). The error 

bars denote the 95% confidence intervals. ............................................................... 154 

Figure 7-6 Damaged junctions – Percentage of negative CLFs η12 and η21 resulted from 

FEM ESEA with two subsystems with bending only (B) and the combination of all 

modes (A). ................................................................................................................ 154 



xxxi 

 

Figure 7-7 Coupling loss factors η12 and η21 resulted from FEM ESEA with three 

subsystems with bending only (B) and the combination of all modes (A). The error 

bars denote the 95% confidence intervals. ............................................................... 157 

Figure 7-8 Coupling loss factors η13 and η31 resulted from FEM ESEA with three 

subsystems with bending only (B) and the combination of all modes (A). The error 

bars denote the 95% confidence intervals. ............................................................... 157 

Figure 7-9 Coupling loss factors η23 and η32 resulted from FEM ESEA with three 

subsystems with bending only (B) and the combination of all modes (A). The error 

bars denote the 95% confidence intervals. ............................................................... 158 

Figure 7-10 Damaged junctions – Percentage of negative CLFs resulted from FEM 

ESEA with three subsystems with bending modes only (B).................................... 158 

Figure 7-11 Damaged junctions – Percentage of negative CLFs resulted from FEM 

ESEA with three subsystems with the combination of all modes (A). .................... 159 

Figure A-1 MAC values for FEM model of Setup J1. ............................................. 166 

Figure A-2 MAC values for FEM model of Setup J2. ............................................. 166 

Figure C-1 Difference between the energy ratio, E1/E2, from the SEA matrix solution 

and path analysis. ..................................................................................................... 171 

Figure C-2 Difference between the energy ratio, E1/E3, from the SEA matrix solution 

and path analysis. ..................................................................................................... 172 

Figure C-3 Difference between the energy ratio, E1/E4, from the SEA matrix solution 

and path analysis. ..................................................................................................... 173 

Figure C-4 Difference between the energy ratio, E1/E5, from the SEA matrix solution 

and path analysis. ..................................................................................................... 174 



xxxii 

 

Figure C-5 Difference between the energy ratio, E1/E6, from the SEA matrix solution 

and path analysis. ..................................................................................................... 175 

Figure C-6 Difference between the energy ratio, E1/E7, from the SEA matrix solution 

and path analysis. ..................................................................................................... 176 

Figure C-7 Difference between the energy ratio, E1/E8, from the SEA matrix solution 

and path analysis. Combination of paths No. 1-5 and No. 1-16 result in identical 

curves. ...................................................................................................................... 177 

Figure C-8 Difference between the energy ratio, E1/E9, from the SEA matrix solution 

and path analysis. ..................................................................................................... 178 

Figure C-9 Difference between the energy ratio, E1/E10, from the SEA matrix solution 

and path analysis. ..................................................................................................... 179 

Figure C-10 Difference between the energy ratio, E1/E11, from the SEA matrix solution 

and path analysis. ..................................................................................................... 181 

Figure C-11 Difference between the energy ratio, E1/E12, from the SEA matrix solution 

and path analysis. ..................................................................................................... 182 

Figure C-12 Difference between the energy ratio, E1/E13, from the SEA matrix solution 

and path analysis. ..................................................................................................... 183 

Figure C-13 Difference between the energy ratio, E1/E14, from the SEA matrix solution 

and path analysis. ..................................................................................................... 184 

 

 

 

 



xxxiii 

 

List of Tables 

Table 2-1 Accelerometers and excitation positions per setup (see Figure 2-2). ........ 21 

Table 3-1 Material properties. .................................................................................... 34 

Table 3-2 Geometry of the beams of pile 1 (counter-clockwise angles are positive).38 

Table 3-3 Contact areas between the beams of pile 1a. ............................................. 38 

Table 3-4 Contact areas between the beams of pile 1b. ............................................. 38 

Table 3-5 Geometry of the beams of pile 2 (counter-clockwise angles are positive).40 

Table 3-6 Contact areas between the beams of pile 2. ............................................... 40 

Table 4-1 Material properties of beams 1, 2 and 3. ................................................... 58 

Table 4-2 Normal contact stiffness values determined from model updating for the 

surface-to-surface contacts in setups J1, J2 and J3. ................................................... 63 

Table 6-1 Transmission paths to beams SS2 to SS7 through the pile 1a shown in Figure 

3-6 for power input to beam SS1 (grey shading indicates the strongest path). ........ 119 

Table 6-2 Transmission paths to beams SS2 to SS7 through pile 1b shown in Figure 

3-7 for power input to beam SS1 (grey shading indicates the strongest path). ........ 123 

Table C-1 Transmission paths to beam SS2 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 170 

Table C-2 Transmission paths to beam SS3 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 171 

Table C-3 Transmission paths to beam SS4 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 172 



xxxiv 

 

Table C-4 Transmission paths to beam SS5 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 173 

Table C-5 Transmission paths to beam SS6 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 174 

Table C-6 Transmission paths to beam SS7 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 175 

Table C-7 Transmission paths to beam SS8 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 176 

Table C-8 Transmission paths to beam SS9 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 177 

Table C-9 Transmission paths to beam SS10 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 178 

Table C-10 Transmission paths to beam SS11 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 180 

Table C-11 Transmission paths to beam SS12 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 181 

Table C-12 Transmission paths to beam SS13 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 182 

Table C-13 Transmission paths to beam SS14 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). .................... 183 



1 

 

1. Introduction 

1.1 Background and motivation 

Every few years an earthquake of high magnitude occurs around the globe resulting in 

collapsed structures with people trapped inside them. When victims are trapped inside 

a collapsed building, the challenge is to detect and locate survivors within a period of 

time that will allow them to be rescued. An uninjured healthy adult with a supply of 

fresh air has a high probability of survival if the rescue occurs within 72 hours of the 

entrapment [1]. After 72 hours the survival rate is decreasing and without access to 

water the victims are unlikely to survive for more than 5-6 days ( [1], [2]). However, 

important variables affect the survivability including the structure type and void space 

formation, the cause of the structural collapse, the survival location in the building and 

the speed and sophistication of available urban search and rescue (USAR) capabilities 

[3].  

In a canine search, up to three dogs use their sense of smell to search the entire site 

individually or in pairs to detect potential victims trapped inside rubble. This USAR 

technique is considered as the most effective and it is time efficient [4]. However, the 

main disadvantages are the limited  availability and operational time of the canines as 

long as their stress-sensitivity [5]. Other USAR techniques include the use of optical 

sensors such as video, infrared and thermal cameras and/or acoustical sensors (e.g. 

microphones, probes) mounted on either a bendable cable or a telescopic rod or 

recently on robots. Although these techniques offer a direct communication between 
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the rescuers and the trapped survivor, their efficiency depends on the existence of voids 

inside the rubble ( [4], [6]). 

Airborne sound from survivors tends to be highly attenuated by layers of rubble and 

requires the existence of air paths for propagation to the surface. For this reason, there 

is greater potential to detect physical movement or signals by measuring vibration due 

to structure-borne sound (i.e. seismic research method). In a seismic search, a small 

number of seismic sensors are moved over a regular grid so that the operators can be 

certain they have searched the entire site. The placement and positioning of these 

sensors is critical for the successful detection of the survivors. However, grid spacing 

and sensor placement are often decided simply by checking whether it is possible to 

detect transients generated by the operators in an adjacent grid area on the surface in 

places where the structure is safe to walk [4]. This can be misleading because 

horizontal propagation of vibration across the surface of a collapsed structure is not 

necessarily indicative of propagation into the depths of a collapsed structure. In 

addition, if the search area is not completely silent the seismic sensors will detect 

signals from other sources of vibration and not only from a trapped survivor. This will 

possibly make the operator to fail to detect or locate the survivor [4]. 

To address this problem, it is proposed that prediction models could be developed and 

used as a tool to assist in the decision making of the rescue teams. Deterministic 

models such as Finite Element Method (FEM) [7] are not efficient for modelling 

collapsed buildings which are complex systems with a high degree of uncertainty (e.g. 

the collapse pattern and the size, the distribution and the contact conditions between 

the debris). To predict vibration transmission in collapsed buildings, there is potential 

to develop models based on Statistical Energy Analysis (SEA) as these can account 

for the inherent uncertainty in describing modal features of component parts of a 
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structure [8]. In addition, SEA models are much more efficient in terms of the 

computational time needed compared with FEM. Therefore, this thesis investigates 

whether SEA could be used to model vibration transmission between the structural 

members of a collapsed reinforced concrete building.  

1.2 Literature review 

This section reviews the literature related to the main topics in this thesis. 

1.2.1 Collapse patterns in reinforced concrete buildings after earthquakes 

According to NFPA 1670 [9], in buildings there are five main types of collapse 

patterns: (a) lean-to, (b) cantilever, (c) pancake, (d) V-shape and (e) A-frame collapse. 

In heavy floor structures such as the reinforced concrete buildings the most frequent 

earthquake collapse patterns that lead in trapped survivors are: (a) the pancake and (b) 

the lean-to collapse.  

In a complete pancake collapse (see Figure 1-1a) the column-floor joints fail, the 

columns fracture and the floors are collapsing on top of each other. Specifically, a 

complete pancake collapse results in a large pile of debris [10]. When the columns are 

strong enough not to fracture, the floors can project laterally as they fall forming the 

offset pancake collapse pattern as it is shown in Figure 1-1b. The mid-story collapse 

(see Figure 1-1c) is a sub-category of the pancake collapse as the “pancaking” is 

restricted to one or more intermediate floors of the building [11]. The pancake collapse 

patterns decrease the probability of survival due to the limited number of the formed 

void spaces and the difficulty of the rescue teams to reach the potential survivors [10].    

A lean-to collapse (see Figure 1-1d) occurs when the one end of a floor is supported 

by a fragmented structural member or debris whereas the opposite end stays connected 

to a column [12]. The angle between the anchored floor and the column  is usually 
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between 45 and 55 degrees and the connection is made only via the yielded steel 

reinforcement [13]. The lean-to collapse pattern is often combined with the pancake 

collapse [11] and creates voids of triangular shape where potential survivors could be 

found [14].   

Due to a catastrophic earthquake event and regardless the collapse pattern, the 

structural members of a reinforced concrete building (i.e. beams, columns and slabs) 

develop individual fractures which lead to the formation of concrete discontinuities 

along their length. The fragmented parts are connected via the yielded steel 

reinforcement as it is shown Figure 1-2.   

   
                                 (a)                                                          (b) 

   
                                 (c)                                                          (d) 

Figure 1-1 Collapse patterns in reinforced concrete buildings: (a) complete pancake 

[15], (b) offset pancake [16], (c) mid-story [17] and (d) lean-to collapse [18].  
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Figure 1-2 Discontinuities in reinforced concrete structural members [19]. 

This thesis investigates vibration transmission using FEM and SEA across structural 

elements that approximate: (a) the pancake collapse pattern and (b) the lean-to collapse 

pattern with the simplification that only beams and columns are considered, rather than 

plates representing floors or walls. This facilitates the experimental work as large 

facilities would be needed for full-scale reinforced concrete slabs. By producing 

experimentally validated models of reinforced concrete beams it should be feasible to 

extend the work in the future to plates. In the simplified pancake collapse pattern (see 

Figure 1-3a), reinforced concrete beams are randomly piled on top of each other 

without any bonding material whereas in the simplified lean-to collapse pattern (see 

Figure 1-3b), a reinforced concrete beam is connected to a column only via the yielded 

steel reinforcement. 

 

 

 

 



6 

 

 

(a) 

 

(b) 

Figure 1-3 Simplified collapse patterns using beams and columns: (a) pancake and (b) 

lean-to collapse. 

 

1.2.2 Finite Element Method  

The Finite Element Method is a computational technique used to obtain approximate 

solutions of boundary value problems in engineering. The method was first applied in 

the late 1940s for analysis of airframe structures. During the 1960s and 1970s it was 

extended to applications in plate bending, shell bending, pressure vessels and general 

three-dimensional problems in elastic structural analysis as well as to fluid flow and 

heat transfer [20]. More recently the method was extended to cover multiphysics [21].  

For heavyweight buildings, the Finite Element Method has mainly been used for 

modelling the linear and non-linear dynamic behaviour of heavyweight buildings 

made of masonry (e.g. [22], [23]) and reinforced concrete (e.g. [24], [25]). The main 

advantage of using FEM is the capability to model complex structures by 
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approximating their geometry and boundary conditions using line (spring/beam) 

elements, area (shell/plate) elements and volume (solid) elements [26]. The main 

limitation of FEM is that the accuracy of the method depends on the size and the type 

of the element used. In structural dynamics, there is strong relationship between the 

wave frequency and finite element size [27]. In literature, it is suggested that there 

should be at least six elements per wavelength ( [27], [28], [29]). In high frequency 

problems, typically over 500 Hz [30], this could either significantly increase the 

computational time or even make the problem impossible to be solved by a desktop 

computer. However, recent advances in computer hardware allows the solution of 

detailed finite element models of millions of degrees of freedom [31].            

1.2.2.1 Modelling of reinforced concrete beams and columns 

Various methods are available in the literature for the FEM modelling of reinforced 

concrete beams and columns. The most popular procedure is the use of solid elements 

for the concrete part of the member and the use of truss elements for the reinforcement 

(e.g. [32], [33], [34]). Truss elements have one degree of freedom per node, can sustain 

only axial deformation and cannot propagate bending waves [20]. Thus, they are not 

appropriate for modelling the steel reinforcement in the damaged concrete beams of 

this thesis. The 3D smeared approach approximates the steel bars using solid elements 

with equivalent properties calculated as weighted averages of the properties of 

reinforcement and concrete [34]. However, this method is not applicable to beams with 

concrete discontinuities. Other researchers used a combination of solid and beam 

elements [33]. Beam elements can sustain bending wave motion and this approach is 

adopted for modelling the reinforced concrete members in this thesis.  
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1.2.2.2 Modelling of piles of beams 

For concrete beams it is reasonable to assume that they will remain in contact whilst 

undergoing vibratory motion. However, there are other engineering applications where 

vibration is transmitted between lightweight structural elements that are not rigidly 

bonded together which results in them being in two distinct states, in contact and out-

of-contact. For example, Ervin [35] studied impacts between two orthogonal pinned-

pinned beams by modelling a point connection between them using an elastic spring. 

Springs can be used to model complex connections between structural elements (e.g. 

[36], [37], [38]) and their stiffness can be determined analytically or by model updating 

[39] against experimental results. Research has been carried out on the investigation 

of the vibration of coupled beams when aligned parallel to each other when connected 

with uniformly distributed translational springs (e.g. [40], [41], [42], [43], [44]). 

However, the literature rarely considers the dynamics of beam systems where the 

beams are connected along their length rather than at the ends. The exception is Ervin 

[35] that showed contact stiffness affects the eigenfrequencies and mode shapes of a 

system of two beams. The Finite Element Method [20] allows study of the dynamic 

behaviour of unbonded contacts using elastic spring contacts. However, this requires 

an estimate of the normal contact stiffness which is not commonly available in the 

literature. Therefore, this thesis investigates the normal contact stiffness between 

reinforced concrete beams by experimentally validating FEM models. 
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1.2.3 Statistical Energy Analysis 

Statistical Energy Analysis was introduced in 1959 and is a framework analysis for 

predicting the transmission of sound and vibration in built-up structures by using a 

statistical approach based on energy flow between weakly coupled parts of the system 

of interest, called subsystems. SEA calculates the response variables in terms of 

averages and variances over frequency and space thus it is not possible to obtain the 

exact response at a precise location and frequency [8]. The main advantage compared 

to deterministic methods such as FEM is the ability to deal with high frequency 

problems where the modal density is high without increasing the number of the degrees 

of freedom in the model ( [30], [45]).   

1.2.3.1 Subsystem definition 

Subsystems are defined by their ability to store modal energy [46]. Craik [47] defines a 

subsystem as a group of modes with the same properties that will have the same modal 

energies for all sources of excitation. A beam can support bending waves (in-plane and 

out-of-plane), longitudinal waves and torsional waves and can be represented in an SEA 

model by using one subsystem for each wave type. However, there are many situations 

where only bending waves could be considered and a single subsystem should be sufficient 

[48].  

The piles in this thesis consist of beams which are not rigidly bonded together; hence 

it is reasonable to assume that each beam represents one subsystem. However, since it 

is unknown what types of modes will be excited, this thesis investigates whether it is 

possible to consider one type of wave motion (bending waves) or whether two or more 

types of wave motion can be considered simultaneously (bending and torsional waves).  

Rigid T-junctions in heavyweight buildings are mainly modelled using SEA with three 

subsystems (e.g. [48], [49]). To the knowledge of the author, limited work has been 



10 

 

carried out on damaged T-junctions where the connection between the beam and the 

column is made only via the yielded steel reinforcement; hence this thesis investigates 

whether these junctions should be modelled using two or three subsystems and whether 

it is possible to only consider bending waves or whether two or more types of wave 

motion could be considered simultaneously (e.g. bending and torsional waves). 

1.2.3.2 Coupling between structural subsystems 

In SEA, the coupling between two subsystems is defined using the Coupling Loss 

Factor (CLF) which represents the rate of energy transfer out of a subsystem to another 

[8].  

Point connections between parallel plates (e.g. wall ties, resilient mounts or bridged 

screeds), between plates and beams (e.g. screws, nails or bolts) and between  beams 

are very common [46]. Simple models to quantify the power flow across a single point 

connection make use of the driving-point mobility of the plates or beams and the 

mobility of the point connection ( [50], [8]). A resilient point connection could be 

modelled using a simple linear spring. The analytical model based on a lump spring 

connector (LSC) is assessed in this thesis for modelling the contact condition between 

the beams in a pile.  

1.2.4 Experimental Statistical Energy Analysis  

Experimental Statistical Energy Analysis (ESEA) could be used in complex coupling 

situations and/or between complex subsystems to determine CLFs when they are not 

available or difficult to measure [51]. The standard approach of ESEA relies on the 

power injection method where the coupling loss factors are determined by the 

inversion of the power balance equations [52]. ESEA and FEM could be combined to 

determine the CLFs of the entire system by using the FEM calculated energies of each 
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subsystem into the inversed system response matrix for excitation of each subsystem 

individually [8]. The efficiency of the method decreases for large number of 

subsystems [8] and to avoid the result of negative CLFs the subsystems must be weakly 

coupled [46]. ESEA could also work when the subsystems have low modal overlap 

and low mode counts [49].  

In this thesis, FEM ESEA is used to determine the CLFs in beam junctions with 

surface-to-surface contact conditions and in damaged beam-to-column junctions when 

either only one type of wave motion is considered or two or more types of wave motion 

can be considered simultaneously.  
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1.3 Aims 

The main aims of this thesis are: 

1. To experimentally validate FEM models of non-bonded concrete beams when in 

contact with each other and identify a suitable contact stiffness value for surface-

to-surface or edge-to-surface contact conditions. 

2. To assess the potential to use SEA to model vibration transmission between two 

reinforced concrete beams when they are stacked on top of each other and 

investigate are (a) whether it is possible to only consider one type of wave motion 

(bending waves) or whether two or more types of wave motion can be considered 

simultaneously (bending and torsional waves) and (b) whether analytical models 

based on lump spring connectors can be used to model the contact condition. 

3. To investigate whether SEA could be used to model vibration transmission in piles 

of more than two reinforced concrete beams when they are stacked on top of each 

other. 

4. To assess the potential to use SEA to model vibration transmission in damaged 

beam-to-column junction and investigate (a) whether the number of the 

subsystems affects the validity and accuracy of FEM ESEA and (b) whether it is 

possible to only consider one type of wave motion (e.g. bending waves) or 

whether two or more types of wave motion could be considered simultaneously 

(e.g. bending and torsional waves). 
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1.4 Thesis layout 

The layout of the chapters in this thesis is as follows. 

Chapter 2 describes the experimental work carried out on individual reinforced 

concrete beams and beam junctions. 

Chapter 3 presents the theory and the numerical models used in this thesis.  

Chapter 4  investigates the normal contact stiffness between reinforced concrete beams 

by experimentally validating FEM models of beam junctions where the beams are 

stacked on top of each other without any bonding material and the interaction between 

the beams is modelled by using either linear elastic contacts or linear elastic springs.  

Chapter 5 assess the potential to use SEA to model vibration transmission between two 

reinforced concrete beams when they are stacked on top of each other. Numerical 

experiments with FEM are used to create an ensemble of beam junctions for a Monte 

Carlo simulation to allow use of FEM SEA to determine CLFs between the beams. 

These are compared with the CLFs from an analytical model of a lump spring 

connector. 

Chapter 6 applies SEA to two piles of reinforced concrete beams. SEA path analysis 

is carried out to quantify and assess the strength of the transmission paths between the 

beams and the general SEA matrix solution is used to estimate the energy ratios 

between the beams of the piles using: a) FEM ESEA CLFs and b) the CLFs from an 

analytical model of a lump spring connector. SEA predictions are compared against 

the results of FEM models. 

Chapter 7 assesses the potential to use SEA to model the vibration transmission in 

seismic damaged reinforced concrete beam-to-column junctions. The FEM model of 

a rigid T-junction is validated against the wave theory in terms of CLFs that only 
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consider bending wave motion. A concrete discontinuity is then introduced at the 

connection of the beam with the column and the resulting FEM model is used to carry 

out numerical experiments with FEM to create an ensemble of damaged beam-to-

column junctions for a Monte Carlo simulation. This allows use of ESEA to determine 

CLFs between the beam and the column.   

Chapter 8 summarises the main conclusions and provides suggestions for further work. 
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2. Experimental work 

2.1 Introduction 

This chapter describes the experimental work which has been carried out on individual 

reinforced concrete beams and beam junction used for validating the predictive 

approaches in chapters 3 – 6.  

2.2 Experimental work 

2.2.1 Reinforced concrete beams  

The experimental samples consist of three reinforced concrete beams with the same 

dimensions; these were 2.4 m in length with a rectangular cross-section of 200 × 300 

mm. A Class 25/30 concrete (C25/30) with a characteristic cylinder crushing strength 

(fck) of 25 MPa and cube strength of 30 MPa was selected for casting the beams. 

C25/30 concrete is commonly used in the construction industry [53]. Grade 500 steel 

(S500) with a characteristic yield strength (fyk) of 500 MPa was selected for the 

reinforcement. Grade 500 has replaced Grade 250 and Grade 460 reinforcing steel for 

construction works [53].  

As indicated in Figure 2-1, beam 1 is reinforced with four longitudinal steel bars of 16 

mm diameter (4H16) whereas beams 2 and 3 are reinforced with eight longitudinal 

steel bars of 16 mm diameter (8H16). The transverse reinforcement consists of 8 mm 

diameter stirrups placed at 200 mm centres (H8/200) along beams 1, 2 and 3. Beam 3 
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was designed to have a 100 mm wide discontinuity in the centre to simulate an 

(idealised) fracture that could occur in a collapsed building (see section 1.2.1). 

 

Figure 2-1 Structural details of the experimental samples (units: millimetres). 

2.2.2 Test setups 

The test setups for the beams were arranged so that they could be tested individually 

in isolation and when forming a junction with surface-to-surface or edge-to-surface 

contact conditions. Note that the term edge-to-surface is used because an edge on one 

beam makes a line connection across the surface area of the other beam. 

2.2.2.1 Individual beams 

Setups I1, I2 and I3 refer to isolated beams 1, 2 and 3 respectively when suspended 

from a crane using polyester slings. These beams are assumed to have free support 
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conditions which avoids any additional uncertainty in the model updating process 

when modelling boundary conditions. The slings were assumed to have negligible 

effect on the dynamic response. The beams were orientated so that bending wave 

motion occurred across the longer dimension of the cross-section (i.e. 300 mm 

thickness). 

2.2.2.2 Junctions 

For the beam junctions, it was necessary to support the lower beam (beam 1). Hence 

setup I4 was created with beam 1 orientated such that bending wave motion was across 

the shorter dimension of the cross-section (i.e. 200 mm thickness) and the lower 

surface rested upon a square-section solid aluminium bar (25×25 mm) at each end. 

This aluminium bar rested on two concrete blocks (each 440×215×100 mm) stacked 

on top of each other; this was necessary to elevate them 200 mm above the ground for 

the operation of the crane that moved the beams.  

Setups J1 - J5 (see Figure 2-2) were selected to investigate the effect of: (a) the contact 

area, (b) the relative position and the angle between the beams, (c) the contact type 

(surface-to-surface or edge-to-surface) and (d) the number of the beams on the 

dynamic behaviour of the junctions.  

Setups J1, J2 and J3 were formed after placing beam 2 on top of beam 1 in setup I4 to 

create a surface-to-surface contact condition. In setups J1 and J2, the angle between 

the beams is equal to 90° but the beams are in contact at different positions along the 

length (see Figure 2-2a and b). In Setup J3 the two beams are at an angle of 41°; this 

angle was determined by the available space in the laboratory (see Figure 2-2c). 
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Figure 2-2 Test setups of the beam junctions: (a) Setup J1, (b) Setup J2, (c) Setup J3, 

(d) Setup J4, (e) Setup J5 – Plan view and (f) Setup J5 – Side view (units: millimetres). 

The red markers indicate the positions of the accelerometers (see Table 2-1). 
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In setup J4, beam 3 was placed on top of setup J3 to create a pile of three beams with 

surface-to-surface contact conditions – see Figure 2-2d. Beams 2 and 3 form a cross 

for reasons of stability since there are no supports at their ends.  

Setup J5 is identical to setup J2 except for the inclination angle of ≈9° between the two 

beams. To create edge-to-surface contact conditions, one end of beam 2 was elevated 

by 600 mm using six stacked aggregate concrete blocks with 30 mm thick rubber 

(60 mm length) to isolate beam B from the concrete blocks (see Figure 2-2e and 2f). 

The stiffness of the rubber material was measured according to ISO 9052-1 [54] (see 

section 2.2.4). 

2.2.3 Experimental modal analysis 

Experimental Modal Analysis (EMA) is used to identify the material properties, 

damping and the modal characteristics of the individual beams and the beam junctions 

using FFT analysis with 1 Hz frequency lines. Brüel & Kjær Pulse Reflex software 

was used for signal processing and EMA. As it is shown in Figure 2-3, the beams were 

excited using an impact hammer (Brüel & Kjær Type 8200) and the response was 

measured using accelerometers (Brüel & Kjær Type 4371). The transducers were 

connected to an FFT analyser (Brüel & Kjær Type 3050-A-060) via a Nexus 

Conditioning Amplifier (Brüel & Kjær Type 2692).   

To avoid altering the natural frequencies of the test setups when removing and 

remounting the accelerometers at different positions, the roving hammer technique 

was selected over the roving accelerometers technique for modal testing. The 

accelerometers remained at fixed positions (see red markers in Figure 2-2) whilst the 

impact hammer was moved along a mesh of excitation points with spacing between 

0.10 and 0.20m.  
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Table 2-1 shows the number of the accelerometers and the number of the excitation 

positions for each setup. Only out-of-plane acceleration was measured, except in 

setups I1, I2 and I3 where the response was measured in all three coordinate directions.  

    
                                       (a)                                                                    (b) 

    
                                       (c)                                                                    (d) 

Figure 2-3 Test equipment and transducers for test setups: (a) I3, (b) J3, (c) J4 and (d) 

J5.  
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Table 2-1 Accelerometers and excitation positions per setup (see Figure 2-2).  

Test 

setup 

Description Accelerometers Hammer positions 

In-

plane1 

Out-of-

plane2 

In-

plane 

Out-of-

plane 

I1 Beam 1 – sling supports 2 1 128 78 

I2 Beam 2 – sling supports  2 1 128 78 

I3 Beam 3 – sling supports 4 2 160 84 

I4 Beam 1 – aluminium supports - 3 - 100 

J1 
Junction of two beams (1&2) 

(surface-to-surface) 
- 3 - 171 

J2 
Junction of two beams (1&2) 

(surface-to-surface) 
- 3 - 171 

J3 
Junction of two beams (1&2) 

(surface-to-surface) 
- 3 - 167 

J4 
Pile of three beams (1,2&3) 

(surface-to-surface) 
- 4 - 242 

J5 
Junction of two beams  (1&2) 

(edge-to-surface) 
- 3 - 171 

2.2.4 Dynamic stiffness measurement for the rubber material according to 

ISO 9052 -1  

Figure 2-4 shows the measurement setup for the dynamic stiffness of the rubber 

material which was used in setup J5 for isolating beam 2 from the concrete blocks (see 

section 2.2.2.2). This corresponds to a mass – spring system where a sample of rubber 

material with dimensions 200 x 200 mm is placed on a rigid concrete cube and an 8 

kg steel load plate with the same dimensions is installed on the top of the rubber 

material.  

According to ISO 9052 Part 1 [54], between the rubber material and the steel load plate 

should exist a sheet of a waterproof material and a layer of plaster of Paris to remove 

any surface irregularities and ensure excitation over the entire surface of the sample. 

 
1 In plane transducer = excites/measure the response in a direction parallel to the ground plane 
2 Out-of-plane transducer = excites/measure the response in a direction normal to the ground 

plane 
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However, in this measurement the steel load plate was directly attached to the rubber 

material.     

    

Figure 2-4 Measurement setup for the dynamic stiffness of the rubber material. 

An impact hammer (Brüel & Kjær Type 8200) was used to measure the input force 

and  an accelerometer (Brüel & Kjær Type 4371) was positioned slightly off centred 

to measure the vertical vibration of the load plate. The excitation force was applied to 

the centre of the load plate so that there is only a vertical component to the vibration. 

The transducers were connected to an FFT analyser (Brüel & Kjær Type 3050-A-060) 

via a Nexus Conditioning Amplifier (Brüel & Kjær Type 2692). All the signal 

processing was carried out using Brüel & Kjær Pulse Reflex using FFT analysis with 

0.3125 Hz frequency lines. 

The resonant frequency, fms, of the mass – spring system is given by [46], 

𝑓𝑚𝑠 =
1

2𝜋
√

𝑘

𝑚
 (2.2.1) 

where k is the stiffness of the rubber sample and m the mass of the steel load plate. 
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For lightly damped systems the resonant frequency can be determined by the peak in 

the magnitude of the driving-point mobility, Ydp [46]. Figure 2-5 shows the magnitude 

of the driving-point mobility in the frequency range from 20 to 500 Hz. The peak 

occurs at 59.06 Hz. By replacing this value in Eq. (2.2.1), the stiffness k of the rubber 

material was calculated equal to 27512887.25 N/m3. 

 

Figure 2-5 Driving-point mobility for the rubber sample. 

2.3 Conclusions 

Experimental Modal Analysis was carried out using the roving hammer technique to 

determine the dynamic characteristics of individual reinforced concrete beams and 

beam junctions with surface-to-surface and edge-to-surface contact conditions. The 

results of the experimental work will be used for validating the predictive approaches 

in chapters 3 – 6.  
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3. Theory and modelling 

3.1 Introduction 

This chapter describes (a) Finite Element Method and (b) Statistical Energy Analysis 

as predictive methods used in this thesis. 

3.2 Finite Element Method  

The fundamental concept of FEM is to divide the domain of interest (e.g. a structure) 

into a finite number of simple sub-domains (elements) and uses numerical methods 

(interpolation and integration) to construct an approximation of the solution over the 

collection of sub-domains [55]. With this approach, problems with complex geometry, 

complex boundary conditions or other complexities are possible to find an 

approximate solution whereas this was not possible before using analytical methods.  

Today, many commercial finite element analysis software packages are available for 

use on personal computers to obtain solutions to large problems in static and dynamic 

analysis, heat transfer, fluid flow, electromagnetics, seismic response and acoustics. 

For the finite element models of beams in this thesis the finite element software 

Abaqus was used with the programs Abaqus/Standard and Abaqus/CAE (version 

6.14). All FEM models in this thesis used Abaqus software (Version 6.14) [56].   

3.2.1 Analysis methods 

3.2.1.1 Eigenvalue analysis 

Natural frequencies and mode shapes of vibration of a mechanical system were 

determined using eigenvalue analysis based on the elastic (stiffness, K) and inertia 

(mass, M) characteristics of the system [20].  
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The results of the eigenvalue analysis (i.e. eigenfrequencies and mode shapes) are used 

in this thesis for the validation and updating of the finite element models.   

For a multi-degree of freedom system (N-DOF), the eigenvalue problem can be written 

as [57], 

 [[𝐾] − 𝜔𝑛
2[𝑀]]{𝛷𝑛} = 0   (3.2.1) 

 

where [𝐾] is the stiffness matrix of the system, [𝑀] is the mass matrix of the system, 

𝜔𝑛 is the natural angular frequencies of vibration and {𝛷𝑛} is the matrix of the natural 

modes of vibration.  

The natural angular frequencies of an N-DOF system can be obtained by solving        

Eq. 3.2.2 [57]. This equation has N roots and each root corresponds to one independent 

natural angular frequency, 𝜔𝑛 of the system.  

 𝑑𝑒𝑡[[𝐾] − 𝜔𝑛
2[𝑀]] = 0   (3.2.2) 

 

Inserting the N natural angular frequencies, ωn of the system in Eq. (3.2.1) gives Ν 

independent vectors of the natural modes of vibration, {𝛷𝑛}. The natural modes, {𝛷𝑛} 

and {𝛷𝑟} corresponding to different natural angular frequencies, ωn and ωr must satisfy 

the following orthogonality criterion [57],     

 {𝛷𝑛
𝑇}[𝐾]{𝛷𝑟} = 0                  {𝛷𝑛

𝑇}[𝑀]{𝛷𝑟} = 0 (3.2.3) 

 

Orthogonality makes the modal solutions independent and the corresponding mode 

shapes normal. It also makes the infinite set of modal solutions a complete set, or a 

basis, so that any arbitrary response can be formed as a linear combination of these 

normal mode solutions [58]. 
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In Abaqus/Standard the default eigenvalue extraction method is Lanczos. This was 

used in the frequency range from 1 to 3200 Hz to extract the eigenfrequencies and the 

mode shapes of: (a) the individual beams and beam junctions in chapters 4 and 5, (b) 

the pile of beams in chapters 4 and 6 and (c) the beam-to-column junctions in chapter 

7. The upper frequency limit of 3200 Hz had to be established since Lanczos solver 

was resulting to spurious modes for the beam elements of the reinforcement bars above 

that frequency.    

3.2.1.2 Mode-based steady-state dynamic analysis 

Steady-state dynamic analysis provides the steady-state amplitude and phase of the 

response of a system due to harmonic excitation at a given frequency. Usually such 

analysis is done as a frequency sweep by applying the loading at a series of different 

frequencies and recording the response [56]. 

For a multi degree of freedom system that exhibits harmonic excitation, the equation 

of motion can be written as [59], 

 ⌈𝑀⌉{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑢} = {𝑓}exp (𝑖𝜔𝑡)   (3.2.4) 

 

where {𝑢} is the column matrix of nodal displacements, ⌈𝑀⌉ is the mass matrix, [𝐶] is 

the damping matrix, [𝐾] is the stiffness matrix, {𝑓}exp (𝑖𝜔𝑡)  is the column matrix of 

equivalent harmonic nodal forces and 𝜔 is the angular frequency of the harmonic 

forces. 

In this thesis, the mode-based steady-state analysis was chosen over other types of 

steady-state dynamic analyses which are available in Abaqus/Standard (e.g. direct-

solution and subspace) because it is computationally cheaper while the user can select 

the number and the type of the modes that participate in the analysis. However, when 
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frequency-dependent material damping is involved the mode-based steady-state 

analysis offers less accurate solutions [56]. 

In a mode-based steady-state dynamic analysis the response is based on modal 

superposition techniques where the modes of the system must first be extracted using 

the eigenfrequency extraction procedure.  

The modal mass matrix, [�̅�], the modal damping matrix, [𝐶̅] and the modal stiffness 

matrix, [�̅�] of the system are given by [59], 

 

[�̅�] = [𝛷𝑇][𝑀][𝛷]   
[𝐶̅] = [𝛷𝑇][𝐶][𝛷] 
[�̅�] = [𝛷𝑇][𝐾][𝛷] 

 

 

(3.2.5) 

 

where [𝛷] is the matrix of the eigenmodes, [𝑀] is the mass matrix, [𝐶] is the damping 

matrix and [𝐾] is the stiffness matrix of the system.  

If Eq. (3.2.3) is satisfied and using the formulas of Eq. (3.2.5) the solution of Eq. (3.2.4) 

can be expressed in the form [59], 

 {𝑢} = [𝛷][[𝛬] − 𝜔2[𝐼] + 𝑖𝜔[𝐶̅]]
−1

[𝛷]𝛵{𝑓}exp (𝑖𝜔𝑡)     (3.2.6) 

 

where {𝑢} is the column matrix of nodal displacements, [Φ] is the matrix of the 

eigenmodes, [Λ] is the diagonal matrix of the angular frequencies of the system equal 

to [�̅�], [𝐼] is the unit matrix, [𝐶̅] is the modal damping matrix, ω is the angular 

frequency of the harmonic forces and {𝑓}exp (𝑖𝜔𝑡) is the column matrix of equivalent 

harmonic nodal forces.   

For the beam junctions in chapter 4, mode-based steady-state dynamic analysis was 

used to calculate vibration transmission between the beams in test setups J3, J4 and J5. 

Only the experimentally validated modes were included into the mode-based analysis. 
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The nodes of the top surface of the beams were excited sequentially by applying a unit 

perpendicular force over a 100 mm square grid which approximately corresponds to 

the hammer positions used in EMA.  

In chapter 5, mode-based steady-state dynamic analysis was used to calculate the 

driving-point mobilities of the individual beams and the dynamic response of the beam 

junctions up to 3200 Hz considering (a) the out-of-plane bending modes, (b) the 

torsional modes and (c) the combination of all modes (bending, torsional and others).  

In chapter 6, mode-based steady-state dynamic solver to calculate the dynamic 

response of the piles up to 3200 Hz when considering the combination of all modes.  

For the beam-to-column junctions in chapter 7, mode-based steady-state dynamic 

analysis was used to calculate the dynamic response of the beam-to-column junctions 

up to 3200 Hz considering (a) out-of-plane bending modes and (b) the combination of 

all modes.  

The direct damping based on the modal damping identified in the experimental work 

was used for the dynamic analyses of chapter 4. For the numerical experiments, the 

damping ratio, ζ, was set to be equal to 0.05 except for the steady-state analyses of 

section 5.4.1 where two values of damping ratios were considered: (a) ζ=0.05 and (b) 

ζ=0.005. A damping ratio of 5% is commonly recommended for the seismic design of 

reinforced concrete structures [60] and represents all sources of damping associated 

with yielding of members including any structural damping due to cracking of concrete 

members and energy dissipation during pre-yield cycles [17]. A damping ratio of 0.5% 

approximates internal losses in fully cracked reinforced concrete members without 

yielded reinforcements [61].  
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3.2.2 FEM modelling of the experimental setups  

3.2.2.1 Beams 

The concrete and the steel bars were modelled using solid element C3D20R (20 nodes) 

and beam element B32 (3 nodes) respectively. Both elements were selected to have 

interpolation functions of the same order (quadratic) to avoid a reduction in accuracy 

[20]. In addition, quadratic elements were found to be more accurate than linear 

elements thus they were preferred in this thesis. The element mesh had dimensions of 

25 mm along the length of the beam and 20 mm over the beam cross-section to fulfil 

the requirement of at least six quadratic elements per bending wavelength up to 

3200 Hz [28]. 

3.2.2.2 Aluminium supports 

The linear spring element, SPRING1 was used to approximate the elastic support that 

the square aluminium bars provide to beam 1 – see Figure 3-1. The stiffness of the 

springs was estimated to be 4.1E05 N/m after model updating against the experimental 

results for beam 1 on the aluminium supports (setup I4). Numerical trials with different 

spring stiffness values were carried out until the lowest eigenfrequency (bending 

mode) from FEM and measurements were identical to one decimal place (193.8 Hz).  
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Figure 3-1 FEM model of test setup J5. The purple circles indicate the SPRING2 

elements used for modelling the interaction between beams 1 and 2, purple squares 

indicate the SPRING1 elements that approximate the aluminium support and purple 

triangles indicate the SPRING1 elements that approximate the rubber support. 

3.2.2.3 Rubber support  

The linear spring element, SPRING1 (indicated by purple triangular markers in Figure 

3-1) was selected from the element library of Abaqus to approximate the elastic 

support that the rubber material provides to beam 2 in setup J5. The stiffness of each 

of the springs was estimated to be 3236.8 N/m.  

3.2.2.4 Surface-to-surface contact 

The unbonded contact between the beams (see Figure 3-2) was modelled using the 

surface-to-surface contact algorithm of Abaqus/Standard and was defined to have 

elastic normal behaviour. When a contact is used in a linear perturbation step (such as 

in the eigenfrequency and steady-state analysis) the contact remains “closed” during 

the analysis when the starting condition is also closed [56]. Initial checks on the models 

confirmed that using a surface-to-surface contact with elastic normal behaviour during 

a linear perturbation step is equivalent to using an array of linear springs between the 

nodes of the two surfaces of the contact. 
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Figure 3-2 FEM model of test setup J2. The purple squares indicate the SPRING1 

elements that approximate the aluminium support and the purple line indicates the 

surface-to-surface contact between beams 1 and 2. 

The normal contact stiffness for each mode pair in setups J1, J2 and J3 was determined 

through model updating to give eigenfrequencies within 2% of the EMA 

eigenfrequencies.  

3.2.2.5 Edge-to-surface contact 

The linear spring element, SPRING2, was used to model the interaction between the 

edge nodes of beam 1 and the nodes along the lower surface of beam 2 in Setup J5 – 

see Figure 3-1. For every pair of coupled nodes, one horizontal and one vertical spring 

(acting in the X and Y directions respectively) were used to approximate a spring with 

a line of action normal to the lower surface plane of beam 2. The mean value of this 

stiffness was the same as determined from the surface-to-surface contact. 
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3.2.3 Validation criteria used to assess FEM and EMA 

3.2.3.1 Mode shape criteria 

The Modal Assurance Criterion (MAC) is used to assess the correlation between mode 

shapes from FEM and EMA using [62] 

𝑀𝐴𝐶(𝐴, 𝑋) =
|{𝜑𝑋}T{𝜑𝐴}∗|2

({𝜑𝑋}T{𝜑𝑋}∗)({𝜑𝐴}T{𝜑𝐴}∗)
 (3.2.7) 

where A indicates FEM, X indicates the experiment, {X} and {A} are the column 

vectors of the degrees of freedom for the experimental and FEM mode shapes 

respectively (superscript T indicates the transpose) and {X}* and {A}* are the 

complex conjugate of vectors {X} and {A} respectively. 

MAC values close to 1 indicate well correlated modes while MAC values close to 0 

indicate uncorrelated modes [63]. In the literature (e.g. [64], [65]), MAC values above 

0.9 correspond to good correlation whereas MAC<0.7 indicate weak correlation.  

An important limitation of MAC is that it is sensitive to large values and insensitive to 

small values [66]. Therefore, if one subset of the modal vector is significantly larger 

than the remaining subset of the modal vector, then the MAC value will be mainly 

determined by the former subset and any lack of correlation related to the latter will 

not be identified by MAC. In this thesis, a subset is defined as the vector containing 

the degrees of freedom for each of the beams that form a junction. To overcome this 

problem, the Partial Modal Assurance Criterion (PMAC) [67] can be used to give 

insight into individual subsets of the modal vector by applying Eq. (3.2.7) to each 

subset separately. For two coupled beams it is feasible to consider the degrees-of-

freedom on each beam as one subset. However, MAC and PMAC only describe 

correlation between the mode shapes and do not consider the relative response between 
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different parts of the model. This is essential to assessing the connection between the 

beams in this thesis because it is necessary to check that the model correctly describes 

vibration transmission across the springs that are used to model the unbonded contact 

condition. The proposal in this thesis is to introduce an additional criterion, the Partial 

Modal Vector Ratio (PMVR) for which the results in chapter 4 will be used to establish 

PMVR values that indicate close or reasonable agreement between FEM and 

measurements. The PMVR is defined as the ratio in decibels of the squared modal 

vectors from EMA relative to FEM. For two subsets of the complete modal vector i 

and j, PMVR is given by 

            𝑃𝑀𝑉𝑅(𝐴, 𝑋)𝑖,𝑗 = |10 log10 ((
⟨|{𝜑𝑋}𝑖|

2⟩

⟨|{𝜑𝑋}𝑗|
2
⟩
) (

⟨|{𝜑𝐴}𝑖|
2⟩

⟨|{𝜑𝐴}𝑗|
2
⟩
)⁄ )| (3.2.8) 

where{A} and {X} are subsets of the modal vectors for FEM and EMA respectively 

from beams i and j. 

3.2.3.2 Spatial-average transfer mobility ratio 

Using point force excitation, a ratio of spatial-average transfer mobilities can be used 

to assess vibration transmission between two different beams in a junction. Using data 

from EMA or FEM, the spatial-average transfer mobility ratio, YRji,i, for two beams i 

and j, with force excitation on i is given by 

𝑌𝑅𝑗𝑖,𝑖 = 10log10 (
(
1
𝑁

∑ |
𝑣𝑗

𝐹𝑖
|
2

𝑁
𝑘=1  )

(
1
𝑁

∑ |
𝑣𝑖

𝐹𝑖
|
2

𝑁
𝑘=1  )

) (3.2.9) 

where v is the velocity, F is the force, m is the mass, N represents the number of nodes 

in the FEM model or the number of accelerometer positions used in EMA.  
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3.2.4 Numerical experiments with FEM 

Based on the experimentally validated FEM models, numerical models were created 

with FEM. This section describes the FEM models used in these numerical 

experiments. 

3.2.4.1 Material properties 

Table 3-1 shows the physical and mechanical properties of the materials used in the 

FEM models of the numerical experiments in chapters 5 – 7. These represent the 

average of the values determined from the experimentally tested beams given in 

chapter 4 (see section 4.2.1). 

Table 3-1 Material properties. 

Material Density, ρ (kg/m3) 
Young’s modulus, 

E (N/m2) 

Poisson’s ratio, 

ν (-) 

Concrete 2287 34.7E09 0.2 

Steel 7800 200E09 0.3 

 

3.2.4.2 Junctions of two beams 

The junctions of chapter 5 consist of two reinforced concrete beams, SS1 and SS2 (see 

Figure 3-3). SS1 is the lower beam of the junction with 6.0 m length, 0.3 m width and 

0.2 m depth. SS2 is the upper beam of the junction with 5.0 m length, 0.2 m width and 

0.3 m depth. Both beams are reinforced with four longitudinal steel bars of 16 mm 

diameter. The transverse reinforcement of both beams consists of 8 mm diameter 

stirrups placed at 200 mm centres along the beams. 
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Figure 3-3 Geometry and reinforcement details of beams SS1 (top) and SS2 (bottom). 

The solid element C3D20R (20 nodes) and the beam element B32 (3 nodes) were 

selected from the element library of Abaqus [56] to model the concrete and the steel 

bars respectively (see Figure 3-4). The mesh density fulfils the requirement for at least 

six elements per wavelength in structural and vibroacoustic problems [28]. The beams 

were either simply supported or free at both ends. 

 

Figure 3-4 Example FEM model showing the surface-to-surface connection between 

beams SS1 and SS2. 
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The interaction between the two beams was modelled using an elastic contact in the 

normal direction as described in detail in section 3.2.2.4. In chapter 4, it will be shown 

that the contact stiffness follows a log-normal distribution with a mean value equal to 

7.038E08 N/m and this value will be used for the elastic contact in the numerical 

experiments with FEM in chapter 5.  

For calculating the driving-point mobilities of the individual beams SS1 and SS2, the 

upper surface of beam SS1 and the lower surface of beam SS2 were excited using a 

unit force (perpendicular to the surface) on 124 and 104 nodes respectively, indicated 

by the red markers in Figure 3-5. 

 

Figure 3-5 Excitation positions for the calculation of the driving-point mobilities of 

beams SS1 (top) and SS2 (bottom). 

3.2.4.3 Piles of beams 

Table 3-2 to Table 3-4 give the details of the geometry for piles 1a and 1b. Each colour 

in Figure 3-6 and Figure 3-7 indicates a different layer of beams. The shaded surfaces 

show the connection areas (using the colours of the two layers) between the beams of 

the pile using surface-to-surface contacts. The only difference between piles 1a and 1b 

is the one additional contact, C10 between beams SS2 and SS5. 
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Figure 3-6 Pile 1a consists of seven beams with surface-to-surface contact conditions. 

 

Figure 3-7 Pile 1b consists of seven beams with surface-to-surface contact conditions. 
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Table 3-2 Geometry of the beams of pile 1 (counter-clockwise angles are positive). 

 SS1 

SS2 

SS3 SS4 SS5 SS6 SS7 Pile 

1a 

Pile 

1b 

Length (m) 6.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 

Width (m) 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.3 

Depth (m) 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 

Centroid 
x (m) -1.4 2.4 1.8 0.0 -1.6 -0.5 -1.8 1.4 

y (m) 0.9 0.2 1.4 0.0 0.9 2.4 0.4 1.3 

Angle (degrees) 50 -30 -75 0 -15 20 -59 35 

 

Table 3-3 Contact areas between the beams of pile 1a. 

C1 

(cm2) 

C2 

(cm2) 

C3 

(cm2) 

C4 

(cm2) 

C5 

(cm2) 

C6 

(cm2) 

C7 

(cm2) 

C8 

(cm2) 

C9 

(cm2) 

783.2 662.0 1200.0 1200.0 1076.4 699.1 783.2 861.9 611.0 

 

Table 3-4 Contact areas between the beams of pile 1b. 

C1 

(cm2) 

C2 

(cm2) 

C3 

(cm2) 

C4 

(cm2) 

C5 

(cm2) 

C6 

(cm2) 

C7 

(cm2) 

C8 

(cm2) 

C9 

(cm2) 

C10 

(cm2) 

783.2 662.0 1200.0 621.2 1076.4 699.1 783.2 861.9 611.0 602.3 

 

Table 3-5 and Table 3-6 present the geometry of pile 2. Each colour in Figure 3-8 

indicate a different layer of beams, whereas the shaded surfaces show the connection 

areas between the beams of the pile using surface-to-surface contacts.  
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(a) 

 

(b) 

Figure 3-8 Pile 2 consists of 14 beams with surface-to-surface contact conditions: (a) 

layers 1 – 4 and (b) layers 4 – 6. 
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Table 3-5 Geometry of the beams of pile 2 (counter-clockwise angles are positive). 

 SS1 SS2 SS3 SS4 SS5 SS6 SS7 

Length (m) 5.0 5.0 6.0 6.0 6.0 5.0 5.0 

Width (m) 0.2 0.2 0.3 0.3 0.3 0.2 0.2 

Depth (m) 0.3 0.3 0.2 0.2 0.2 0.3 0.3 

Centroid 
x (m) -3.6 -5.3 -6.4 -3.2 -2.2 -4.8 -2.4 

y (m) -0.2 1.4 0.6 0.3 1.3 -0.2 0.8 

Angle (degrees) 15 0 -55 90 80 15 0 

 SS8 SS9 SS10 SS11 SS12 SS13 SS14 

Length (m) 6.0 6.0 5.0 5.0 5.0 6.0 6.0 

Width (m) 0.3 0.3 0.2 0.2 0.2 0.3 0.3 

Depth (m) 0.2 0.2 0.3 0.3 0.3 0.2 0.2 

Centroid 
x (m) -3.8 0.0 -2.4 -4.0 -2.9 -4.2 -1.0 

y (m) 1.2 0.0 0.2 1.1 2.6 0.6 1.5 

Angle (degrees) 50 -30 0 -15 20 -59 35 

 

Table 3-6 Contact areas between the beams of pile 2. 

C1 

(cm2) 

C2 

(cm2) 

C3 

(cm2) 

C4 

(cm2) 

C5 

(cm2) 

C6 

(cm2) 

C7 

(cm2) 

C8 

(cm2) 

C9 

(cm2) 

C10 

(cm2) 

C11 

(cm2) 

783.2 662.0 1200.0 662.0 783.2 1200.0 1046.1 699.1 1200.0 783.2 861.9 

C12 

(cm2) 

C13 

(cm2) 

C14 

(cm2) 

C15 

(cm2) 

C16 

(cm2) 

C17 

(cm2) 

C18 

(cm2) 

C19 

(cm2) 

C20 

(cm2) 

C21 

(cm2) 

C22 

(cm2) 

611.0 621.2 933.4 554.2 640.4 609.2 621.2 600.0 638.5 732.5 662.0 

 

The experimentally validated FEM models of the beam junctions with surface-to-

surface contact conditions were used as a basis for creating finite element models of 

three piles with: (a) seven reinforced concrete beams (Pile 1a and 1b) and (b) 14 

reinforced concrete beams (Pile 2), arranged in three and six layers respectively (see 

Figure 3-9 and Figure 3-10).  The piles were arranged to give multiple transmission 

paths between the layers of the beams and trying to avoid the overlapping of 

connection areas directly above each other. The ends of the beams were assumed to be 



41 

 

free or simply supported. More information regarding the FEM modelling and the 

interaction between the beams of the piles is given in section 3.2.4.1. 

 
(a) 

 
(b) 

Figure 3-9 FEM models of pile 1a and pile 1b consisted of seven beams arranged in 

three layers. 
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Figure 3-10 FEM model of the pile 2 consisted of 14 beams arranged in six layers. 

In piles 1 and 2, all the nodes of the lower surface on beam SS1 were excited using 

rain-on-the-roof excitation (i.e. forces with unity magnitude and random phase). In 

both piles the out-of-plane response was extracted on all the nodes of the lower surface 

of the beams of each pile. 

3.2.4.4 Beam-to-column junctions 

The junctions consist of a reinforced concrete beam (5.1 m length, 0.3 m width and 

0.5 m depth) and a reinforced concrete column (8.0 m length, 0.4 m width and 0.3 m 

depth) as it is shown in Figure 3-11. The beam and the column are reinforced with six 

and eight longitudinal steel bars of 16 mm diameter, respectively and the transverse 

reinforcement consists of 8 mm diameter stirrups placed at 200 mm centres along the 

beams (see Figure 3-12). Two types of junctions were considered as shown in Figure 

3-11: (a) undamaged (rigid T-junction) and (b) damaged with a concrete discontinuity 

of 50 mm between the beam and the column. In addition, the beam is rotated by the 

angle, θ and connected to the column via the longitudinal steel reinforcement.  
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The solid element C3D20R (20 nodes) and the beam element B32 (3 nodes) were 

selected from the element library of Abaqus [56] to model the concrete and the steel 

bars respectively (see Figure 3-13 and Figure 3-14). The mesh density fulfils the 

requirement for at least six elements per wavelength for structural dynamics problems 

[28]. Tie constraints were used for modelling the rigid connection between the beam 

and the column in the undamaged junction. Both beam and column were assumed to 

be simply supported at the ends.  

 

 

                                   (a)                                                                         (b) 

Figure 3-11 Geometry and reinforcement details of: (a) an undamaged and (b) a 

damaged beam-to-column junction (units: millimetre).  
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                                (a)                                                                               (b) 

Figure 3-12 Cross-section details of the reinforced concrete members that for the 

junctions: (a) beam and (b) column (units: millimetre). 

 

 

Figure 3-13 FEM model of a rigid beam-to-column T-junction. The orange symbols 

indicate the positions of the simple supports. 
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Figure 3-14 FEM model of a damaged beam-to-column T-junction. The orange 

symbols indicate the positions of the simple supports.  

3.3 Statistical Energy Analysis 

3.3.1 Classical SEA 

SEA considers a structure as a number of coupled structural components (e.g. beams, 

columns, plates etc) which are called subsystems.  Figure 3-15 shows an N-subsystem 

SEA model with only direct coupling between the subsystems. A power input is 

applied to subsystem 1 and the transmitted power from subsystem (N-1) to N is denoted 

by W(N-1)N. The power dissipated through internal losses and coupling losses to other 

subsystems is denoted by Wd(N).  
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Figure 3-15 Schematic diagram of a N-subsystem SEA model showing only direct 

coupling.  

In a SEA model the losses of a subsystem are described using three loss factors: (a) 

the internal loss factor (nii) which accounts for the energy of a subsystem that is mainly 

converted to heat, (b) the coupling loss factor (nij) which account for energy transferred 

to another subsystem and (c) the total loss factor which is the sum of the internal loss 

factor and all the coupling loss factors from that subsystem [47].   

3.3.1.1 General matrix 

The general SEA matrix solution for N subsystems is given by [47] 

[
 
 
 
 
 
 
 
 
 
 
 
 
∑ 𝜂1𝑛

𝑁

𝑛=1

−𝜂21 −𝜂31 ⋯ −𝜂𝑁1

−𝜂12 ∑ 𝜂2𝑛

𝑁

𝑛=1

−𝜂32

−𝜂13 −𝜂23 ∑ 𝜂3𝑛

𝑁

𝑛=1

⋮ ⋱

−𝜂1𝑁 ∑ 𝜂𝑁𝑛

𝑁

𝑛=1 ]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝐸1

𝐸2

𝐸3

⋮

𝐸𝑁]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑊in(1)

𝜔

𝑊in(2)

𝜔

𝑊in(3)

𝜔

⋮

𝑊in(N)

𝜔 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.3.1) 
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where ηij is the coupling loss factor from subsystem i to j, ηii is the internal loss factor 

for subsystem i, Ei is the energy of subsystem i, Win(i) is the power injected into 

subsystem i, and  is the angular frequency.  

In chapter 6, each beam in piles 1 and 2 represents one subsystem and SEA has been 

carried out to calculate the energy, E of each subsystem. The SEA matrix formulations 

for each pile are given in Appendix B. 

3.3.1.2 Path analysis 

With SEA it is possible to use path analysis to assess the relative importance of one 

transmission path compared to another [47].  

The energy ratio between subsystem 1 and subsystem N for transmission along the 

chain of the direct coupled subsystems 1→2→3→···→N of Figure 3-15, is given by 

[47] 

𝐸1

𝐸𝑁
=

𝜂2𝜂3 …𝜂𝑁

𝜂12𝜂23 …𝜂(𝑁−1)𝑁
 (3.3.2) 

where ηij is the coupling loss factor from subsystem i to j, ηi is the total loss factor for 

subsystem i and Ei is the energy of subsystem i  

Sometimes, it is useful to combine different paths to give E1/EN for a specific 

combination of paths. The energy level differences in decibels (dB) due to 

transmission between subsystem 1 and subsystem N along P different paths can be 

calculated from [46] 

10lg (
𝐸1

𝐸𝑁
)

Due to 
𝑃 paths

= −10lg(∑ (
𝐸1

𝐸𝑁
)
𝑝

−1𝑃

𝑝=1

) (3.3.3) 
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Path analysis has been carried out on piles 1 and 2 of chapter 6 to assess the relative 

importance of one transmission path compared to another. The power was injected into 

subsystem 1 (see Figure 3-6 - Figure 3-8) and the energy ratio between subsystem 1 

and the other subsystems was calculated using Eq. 3.3.2. The path with the lowest 

energy ratio is the strongest path whereas the path with the highest energy ratio is the 

weakest path. It is noted that the energy ratio due to a single path (even if dominant) 

is typically significantly higher than the actual energy ratio between two subsystems. 

For the path analyses of chapter 6, it was assumed that paths cannot re-enter the 

subsystems that contain the source and they cannot revisit other subsystems.  

3.3.2 Experimental SEA 

In collapsed buildings, there are complex coupling situations and/or complex 

subsystems for which coupling loss factors are either not available or difficult to 

measure. To overcome this problem, Experimental Statistical Energy Analysis is used 

to determine CLFs by using FEM to provide ‘experimental’ data. 

3.3.2.1 Monte Carlo simulation for ESEA 

SEA only predicts the mean response of an ensemble of similar systems; therefore, a 

Monte Carlo simulation is combined with FEM ESEA in order to provide average 

responses and consider the inherent uncertainties. The technique is based on random 

number generation to determine each variable based on a chosen statistical distribution 

[46].   

In chapter 5, the experimentally validated FEM model of the beam junction was used 

as a basis for creating a sample of 30 beam junctions using a Monte Carlo simulation 

with FEM. For convenience, the angle between the two beams was fixed at 41 so that 

the length of the longest side of the surface-to-surface contact area, LC,max, was 
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constant. The relative position of the two beams was defined by the coordinates of the 

centroid of beam SS2, CSS2(x, y). These were sampled from the uniform distributions 

CSS2(x)~U(-2.68, 2.68) and CSS2(y)~U(-1.43, 1.43) with the rule that the black shaded 

area in Figure 3-16 which indicates the surface-to-surface connection area remains 

constant and equal to 0.091 m2.   

In chapter 7, a sample of 30 damaged beam-to-column junctions was created using a 

Monte Carlo simulation with FEM. Although the angle θ between the beam and the 

column in a damaged junction (see Figure 3-11) is often between 45 and 55 [16] in 

this thesis the angle θ was sampled from a uniform distribution θ~U(-80, 80) to include 

more extreme angles in the ensemble and assess whether there was a significant 

variation with angle. 

 

Figure 3-16 Relative beam positions in the ensemble of junctions. 
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3.3.2.2 General ESEA 

The general ESEA can be determined from the general SEA matrix and is given by 

[48] 

[
 
 
 
 
 
 
 
 
 
 
 
 
∑ 𝜂1𝑛

𝑁

𝑛=1

−𝜂21 −𝜂31 ⋯ −𝜂𝑁1

−𝜂12 ∑ 𝜂2𝑛

𝑁

𝑛=1

−𝜂32

−𝜂13 −𝜂23 ∑ 𝜂3𝑛

𝑁

𝑛=1

⋮ ⋱

−𝜂1𝑁 ∑ 𝜂𝑁𝑛

𝑁

𝑛=1 ]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝐸11 𝐸12 𝐸13 ⋯ 𝐸1𝑁

𝐸21 𝐸22 𝐸23

𝐸31 𝐸32 𝐸33

⋮ ⋱
𝐸𝑁1 𝐸𝑁𝑁]

 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑊in(1)

𝜔
0 0 ⋯ 0

0
𝑊in(2)

𝜔
0

0 0
𝑊in(3)

𝜔
⋮ ⋱

0
𝑊in(N)

𝜔 ]
 
 
 
 
 
 
 
 
 

 

(3.3.4) 

where Eij is the energy of subsystem i when the power is input into subsystem j 

The energy associated with each subsystem is given by 

𝐸 = 𝑚〈𝑣2〉𝑡,𝑠 (3.3.5) 

where m is the mass of the subsystem and <v2>t,s is the temporal and spatial average 

of the mean-square velocity of all the unconstrained nodes of the subsystem.     
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For rain-on-the-roof excitation (i.e. forces with unity magnitude and random phase) at 

P nodes, the power input, Win is given by 

𝑊in =
𝜔

2
∑(Im{�̂�}𝑅𝑒{�̂�} − Re{�̂�}𝐼𝑚{�̂�})

𝑝

𝑃

𝑝=1

 (3.3.6) 

where F is the force and �̂� is the peak out-of-plane displacement associated with each 

node. 

In chapters 5 and 7, numerical experiments with FEM were used as input data for 

ESEA to calculate CLFs for an SEA model.  

In chapter 5, each beam represents one subsystem and the output from the FEM models 

was used to calculate the subsystem energy and power input that apply to a SEA model 

of each beam junction. These FEM data were then used in ESEA to determine coupling 

loss factors. The beams were excited using rain-on-the-roof excitation  on all the nodes 

of the lower surface of beam SS1 and all nodes on the upper surface of beam SS2. 

These surfaces were selected to avoid applying any forces to the contact nodes. The 

same node sets were used for extracting the out-of-plane displacements.  

In chapter 7, the T-junction formed by two columns and one beam is modelled as either 

two or three subsystems. When two subsystems are considered, each beam and column 

of the junction represents one subsystem (see Figure 3-17a). When three subsystems 

are considered, the beam represents again one subsystem whereas the column is 

divided in two subsystems as indicated in Figure 3-17b. The output from the FEM 

models was used to calculate the subsystem energy and power input that apply to a 

SEA model of each beam-to-column junction. These FEM data were then used in 

ESEA to determine coupling loss factors. The beam and the column of the junctions 
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were excited using rain-on-the roof excitation at all the nodes of the surfaces which 

are indicated in Figure 3-17 with red lines.  

 
                                 (a)                                                                     (b) 

Figure 3-17 Division of the beam-to-column junctions in: (a) two and (b) three ESEA 

subsystems. The red lines indicate the surfaces where the rain-on-the-roof excitation 

is applied and the response is measured.  

3.3.3 Theoretical models for Coupling Loss Factors 

3.3.3.1 Lump spring connector 

An analytical model for the surface-to-surface connection as a lump spring can be used 

to calculate CLFs for an SEA model. This is expected to be valid when the bending 

wavelength is much larger than the length of the longest edge of the surface-to-surface 

connection area. 

For N identical point connections between two beams, the coupling loss factor from 

beam i to beam j can be calculated using (e.g. see [46]) 
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𝜂𝑖𝑗 =
𝑁

𝑚𝑖

𝑅𝑒{𝑌𝑗}

|𝑌𝑖 + 𝑌𝑗 + 𝑌c|
2 (3.3.7) 

where mi is the mass of beam i, the driving-point mobility of a thin beam of infinite 

extent (for excitation of bending waves in the central part of the beam) is calculated 

using [50] 

𝑌B,Inf = ((1 + 𝑖)2.67𝜌𝑆√𝑐L,bℎ𝑓)
−1

 (3.3.8) 

and the mobility of the point spring connection, Yc, representing the surface-to-surface 

connection can be calculated using (e.g. see [46]) 

𝑌c =
𝑖

𝑘
 (3.3.9) 

where  is the density of the solid beam, S is the cross-sectional area of the beam, f is 

frequency, h is the depth of the beam, cL,b is the phase velocity of the beam for quasi-

longitudinal waves, k is the dynamic stiffness of the point connection acting as a 

spring.  

3.3.3.2 T-junctions – wave approach: bending waves only  

To validate the FEM models of the beam-to-column junctions, the coupling loss 

factors resulted from the FEM ESEA of the rigid junction with the inclusion of bending 

modes only are compared with the CLFs calculated using the wave approach. 

For a beam that is connected at both ends, the coupling loss factor between two beams 

i and j is 

𝜂𝑖𝑗 =
2𝑐B,b,𝑖𝜏𝑖𝑗

4𝜋𝑓𝐿𝑖
 (3.3.10) 
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where cB,b,i is the phase velocity for the propagating bending waves on a solid beam i, 

τij is the transmission coefficient between the beams i and j and Li is the length of beam 

i.  

In rigid beam-to-column T-junctions (see Figure 3-18) all waves are at normal 

incidence, so only the normal incidence transmission coefficient is needed.  

 

Figure 3-18 Subsystem numbering for the beam-to-column T-junction for the 

application of the wave approach. 

Using the subsystem numbering system in Figure 3-18 with an incident bending wave 

on subsystem i, the transmission around the corner is given by [47] 

𝜏𝑖𝑗 =
0.5𝐽𝑖𝐽𝑗𝜓√𝜒2

(𝐽𝑗𝜓)
2
+ 𝜒2 + 𝐽𝑗𝜓(2√𝜒2)

 (3.3.11) 

where Ji=2 and Jj=0.5 when the incident bending wave is on subsystem i and Ji=2 and 

Jj=2 when the incident bending wave is on subsystem j. 
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The variables χ and ψ are given by [47] 

𝜒 = √
ℎ𝑖𝑐𝐿𝑖

ℎ𝑗𝐶𝐿𝑗
 (3.3.12) 

𝜓 =
ℎ𝑗𝑐𝐿𝑗𝜌𝑠𝑗

ℎ𝑖𝑐𝐿𝑖𝜌𝑠𝑖
 (3.3.13) 

where h is the depth, cL is the quasi-longitudinal phase velocity and ρs is the surface 

density of  subsystems i and j.  

For an incident bending wave on subsystem i, the transmission across a straight section 

of a rigid T-junction (Figure 3-18) is given by [47] 

𝜏𝑖𝑘 =
0.5𝜒2

(𝐽𝑘𝜓)2 + 𝜒2 + 𝐽𝑘𝜓(2√𝜒2)
 (3.3.14) 

where Jk=0.5 for T-junctions.  

The variables χ and ψ are given by [47] 

𝜒 = √
ℎ𝑖𝑐𝐿𝑖

ℎ𝑘𝑐𝐿𝑘
 

(3.3.15) 

𝜓 =
ℎ𝑘𝐶𝐿𝑘𝜌𝑠𝑘

ℎ𝑖𝐶𝐿𝑖𝜌𝑠𝑖
 

(3.3.16) 
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3.4 Conclusions 

This chapter described in detail the FEM models of the experimental setups and the 

numerical experiments, as long as the correlation criteria used for the validation of 

FEM models against EMA results. Furthermore, prediction models based on Statistical 

Energy Analysis were developed for modelling the vibration transmission in beam 

junctions, piles of beams and beam-to-column junctions. Finally, theoretical models 

for the determination of the coupling loss factors in beam junctions and beam-to-

column T-junctions were presented in this chapter.  
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4.  Experimental validation of finite element models  

representing stacked concrete beams with unbonded 

surface contacts 

4.1 Introduction 

This chapter investigates the normal contact stiffness between reinforced concrete 

beams by experimentally validating FEM models in the frequency range up to 

3200 Hz. In each junction, the beams are stacked on top of each other without any 

bonding material and the interaction between the beams is modelled by using either 

linear elastic contacts (e.g. surface-to-surface junctions) or linear elastic springs (e.g. 

edge-to-surface junctions). The contact stiffness is determined after model updating 

against the experimental eigenfrequencies. The main aims of this investigation are to 

experimentally validate FEM models of non-bonded concrete beams when in contact 

with each other and identify a suitable contact stiffness value for surface-to-surface or 

edge-to-surface contact conditions. 
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4.2 Individual beams 

4.2.1 Material properties 

Table 4-1 shows the material properties for the beams. The density of the concrete for 

each beam was calculated by dividing the measured weight of the beams by the volume 

of concrete after extracting the weight of the steel reinforcement. The Young’s 

modulus of the concrete was estimated after model updating for beams 1 and 2 against 

the experimental results for the individual beams. Numerical trials were carried out 

until the lowest eigenfrequency from FEM and measurements were identical to one 

decimal place (138.2 and 131.1 Hz for beams 1 and 2 respectively). The estimated 

value of the Young’s modulus for beam 1 is relatively higher than beam 2 but it is 

within the range proposed in the literature for C25/30 concrete [68]. A possible reason 

for this discrepancy is that beam 1 was cast on a different day to beams 2 and 3. The 

material properties for the steel and Poisson’s ratio for the concrete were taken from 

the literature ( [68], [53]). The average damping ratios for Setups J3, J4 and J5 

determined from EMA were 0.53, 0.49 and 0.49% respectively. 

Table 4-1 Material properties of beams 1, 2 and 3. 

Material 
Density, ρ 

(kg/m3) 

Young’s modulus, 

E (N/m2) 

Poisson’s ratio, 

ν (-) 

Concrete 

Beam 1 2329 36875E6 

0.2 Beam 2 2245 32475E6 

Beam 3 2235 32475E6 

Steel 7800 200E9 0.3 
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4.2.2 Frequencies 

Figure 4-1 compares FEM and experimental eigenfrequencies for setups I1, I2 and I3. 

Close agreement was achieved with differences less than 5% for the majority of the 

mode pairs in the frequency range up to 3200 Hz.  

 

Figure 4-1 Comparison of FEM against experimental eigenfrequencies for Setups I1, 

I2 and I3. 

4.2.3 Mode shapes 

Figure 4-2 to Figure 4-4 compare EMA and FEM results for setups I1, I2 and I3 in 

terms of MAC. For setups I1 and I2, close agreement was achieved for bending and 

torsional modes (MAC > 0.95) for all the modes up to 3200 Hz (see Figure 4-2 and 

Figure 4-3).  

For setup I3 (see Figure 4-4), whilst there is close agreement for the majority of the 

bending modes (MAC > 0.8 for 11 out of 18 bending modes) there was weaker 

agreement for the torsional modes (MAC > 0.8 for two out of seven torsional modes).  

This indicates that the discontinuity mainly affects the accuracy of the torsional modes 

and therefore it could be that the torsional stiffness of the reinforcement bars needs to 

be modelled differently.  
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(a) 

 
(b) 

 
(c) 

Figure 4-2 MAC values for FEM model of Setup I1: (a) in-plane bending modes, (b) 

out-of-plane bending modes and (c) torsional modes. 
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(a) 

 
(b) 

 
(c) 

Figure 4-3 MAC values for FEM model of Setup I2: (a) in-plane bending modes, (b) 

out-of-plane bending modes and (c) torsional modes. 
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(a) 

 
(b) 

 
(c) 

Figure 4-4 MAC values for FEM model of Setup I3: (a) in-plane bending modes, (b) 

out-of-plane bending modes and (c) torsional modes. 
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4.3 Junctions of two beams (surface-to-surface contact) 

4.3.1 Normal contact stiffness 

Normal contact stiffness values were determined from model updating of the FEM 

model against EMA for the first 24 modes in each of the setups J1, J2 and J3. These 

are shown in Table 4-2 in terms of the mean, minimum and maximum values. During 

the model updating, the eigenfrequencies of some modes were mainly dependent on 

the eigenfrequencies of the individual beams rather than the value of the contact 

stiffness. This resulted to a relatively wide range of values for the modes and along 

with the significantly different mean values for setup J2, the validity of the FEM 

models was assessed using the mean stiffnesses for each individual setup (J1, J2 and 

J3) in the following sections. 

Table 4-2 Normal contact stiffness values determined from model updating for the 

surface-to-surface contacts in setups J1, J2 and J3. 

Test 

setup 

Number of 

modes 

Contact 

area 

(m2) 

Normal contact stiffness (N/m) 

Mean Minimum Maximum 

J1 22 0.06 7.6E8 5.1E5 3.9E9 

J2 22 0.06 4.5E8 1.5E6 2.2E9 

J3 23 0.09 7.5E8 5.0E5 4.3E9 

 

4.3.2 Eigenfrequencies 

Figure 4-5 compares FEM and experimental eigenfrequencies for setups J1, J2 and J3. 

Close agreement was achieved with differences less than 5% for the majority of the 

mode pairs in the frequency range from 700 to 3200 Hz. The three setups have similar 

eigenfrequencies because the global modes of the three setups are partly determined 
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by the eigenfrequencies of the individual isolated beams, and these beams are the same 

in each of these setups. 

 

Figure 4-5 Comparison of FEM against experimental eigenfrequencies for Setups J1, 

J2 and J3. 

4.3.3 Mode shapes  

In this section, setup J3 is chosen to assess the FEM model in terms of MAC, PMAC 

and PMVR because the other two setups give similar findings. 

Correlation between EMA and FEM is shown using the MAC in Figure 4-6. Note that 

only bending and torsional modes were included in the validation procedure of the 

FEM models. Whilst there is close agreement for the first two modes (MAC > 0.8) 

there was poor agreement for modes three, four and five. Close agreement was 

achieved above the first five global modes (i.e. between 1000 and 3200 Hz) with 

MAC > 0.8 for 17 of the mode pairs (only mode pair 17 had MAC<0.8).  
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Figure 4-6 MAC values for FEM model of Setup J3. 

For setup J3 that comprises two beams, Figure 4-7 shows the PMAC for beams 1 and 

2 for comparison with the MAC. Note that there is no data for the fifth mode pair as 

this pair was not identifiable. It is seen that for each mode pair there is often a PMAC 

value for one beam that is higher or similar to the MAC, and one PMAC value for the 

other beam that is lower than the MAC. The reason for this is the sensitivity of MAC 

to large values in the modal vector. Note that only seven of the 24 mode pairs had 

PMAC > 0.8 for both beams. The global modes of the coupled beams are related to the 

local modes of each isolated beam where one or both beams have an identifiable modal 

response that is similar to the local mode shape. Hence there are some global modes 

where only one beam has a clear modal response and the other has a low response; in 

this situation, the modal vectors of the former beam primarily determine the MAC and 

the influence of the other beam will be negligible. For example, in Figure 4-8a the 

modal vectors of beam 2 determine the MAC value of mode pair 12, whereas in Figure 

4-8b the MAC value of mode pair 18 is determined by the modal vectors of beam 1 

(see Figure 4-7).  
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Figure 4-7 PMAC values for FEM model of Setup J3. 

       
                                  (a)                                                                 (b) 

Figure 4-8 FEM mode shapes of Setup J3: (a) Mode 12 at 1782.3 Hz and (b) Mode 18 

at 2418.8 Hz. The legends show the normalized out-of-plane modal displacements.  

Figure 4-9 compares FEM and experimental results for setup J3 using PMVR. When 

introducing this new descriptor in section 3.2.3.1 it was noted that a criterion could not 

be assigned a priori. A value of 0 dB would indicate complete correlation between 

EMA and FEM. However, as the contact condition is modelled using a single contact 

stiffness value it is expected that low values, such as between 0 and 2 dB, might only 

occur for a few mode pairs. In this thesis the application considers the response in 
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frequency bands; hence the velocity level difference between two beams when one is 

excited a point force will be determined by more than one mode pair. For this reason, 

two criteria are proposed based on the results from all beam junctions, close agreement 

being PMVR ≤ 5 dB (33% of mode pairs) and reasonable agreement being 5 dB < 

PMVR ≤ 10 dB (25% of mode pairs). Only 38% of mode pairs had PMVR > 10 dB. 

These results indicate that the model for the interaction between the two beams with 

FEM is appropriate.  

 

Figure 4-9 PMVR values for FEM model of Setup J3. The green and red straight lines 

indicate difference levels of 5 and 10 dB respectively while the empty column 

indicates an unidentified mode pair.  

4.3.4 Spatial-average transfer mobility ratio 

As in the previous section, setup J3 is used to illustrate features of the spatial-average 

transfer mobility ratio. Figure 4-10a and b allow comparison of these ratios from FEM 

and measurements when a point force is applied to beams 1 and 2 respectively. Below 

650 Hz there are only rigid body modes; hence results are shown above 650 Hz using 

17 frequency bands with a 150 Hz bandwidth to simplify the comparison. 
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The results for FEM and measurements have similar curves, except in the lowest and 

highest frequency bands, with the average difference being 2.4 dB. This indicates that 

the FEM model is able to provide reasonable estimates of vibration transmission 

between coupled beams by using a single value for the contact stiffness. The next 

section will consider a three beam junction (setup J4) and combine the stiffness values 

determined from J1, J2 and J3 by treating them as a sample of the population in order 

to identify a single contact stiffness that could be used in FEM models of larger 

combinations of coupled beams. 

 

                                    (a)                                                               (b)  

Figure 4-10 Spatial-average transfer mobility ratio between the beams of setup J3: (a) 

YR21,1 and (b) YR12,2. 

 

 

 



69 

 

4.4 Junction of three beams (surface-to-surface contact) 

This section aims to identify and assess the use of a single, representative value for the 

contact stiffness that could be used to model collapsed buildings where there is a high 

level of uncertainty in the modal properties of the fragmented structure as well as the 

position of the contact and its surface area. 

4.4.1 Normal contact stiffness derived from model updating 

In Section 4.3, model updating with setups J1, J2 and J3 resulted in 67 individual 

values for the normal contact stiffness. It is now assumed that these values represent a 

sample from a population from which a representative average value could be 

identified that has general application to two coupled beams. The contact stiffness 

values for each mode were divided into classes and a probability distribution was fitted 

to the data using the MATLAB distribution fitter toolbox [69]. The stiffness values are 

sub-divided into nine bins with a width of 4.78E08 N/m for which the fitted probability 

distribution is a lognormal distribution as shown in Figure 4-11 with a mean value of 

7.038E08 N/m. As the first bin contains 66% of the values it is also feasible to consider 

the mean of the values in this bin which was 8.77E07 N/m. Previous work [48] has 

also identified that lognormal distributions describe structural coupling parameters 

between stiff, heavy structures (i.e. concrete) where there are relatively few modes; 

this applies to the situation assessed in this thesis with the concrete beams. 
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Figure 4-11 Lognormal probability distribution fitted to the dataset of the normal 

contact stiffness. 

4.4.2 Eigenfrequencies 

An assessment of the FEM model is now made through comparison with EMA when 

the normal contact stiffness is (a) the mean value of the first bin, i.e. 8.77E07 N/m 

which is referred to as FEM model No.1 and (b) the mean value of the lognormal 

distribution, i.e. 7.038E08 N/m which is referred to as FEM model No.2. 

 

Figure 4-12 Comparison of FEM model No.1 and 2 against experimental 

eigenfrequencies for Setup J4. 
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Figure 4-12 allows comparison of FEM models No.1 and 2 against EMA for setup J4. 

Both FEM models show close agreement with differences less than 5% for the majority 

of mode pairs. Considering only the first eight mode pairs the average difference 

(3.7%) is lower for FEM model No.1 than No.2  (6.0%). Whilst the value chosen for 

the normal contact stiffness affects the global eigenfrequencies below 1200 Hz, both 

FEM models have similar eigenfrequencies above 1200 Hz (average differences equal 

to 0.98 and 1.3% for FEM models No.1 and 2 respectively). This indicates that the 

global eigenfrequencies of the junction are mainly determined by the eigenfrequencies 

of the individual beams rather than their interaction.  

4.4.3 Mode shapes 

MAC results for Setup J4 are shown in Figure 4-13a and Figure 4-13b. For the first 

eight correlated mode pairs (i.e. below 1200 Hz), MAC>0.8 for seven mode pairs with 

FEM model No.1 but only three mode pairs with No.2. Above the eighth mode (i.e. 

between 1200 and 3200 Hz), both FEM models showed equally close agreement with 

MAC > 0.8 for 17 of the 32 mode pairs.  

In terms of PMAC, neither of the FEM models had PMAC > 0.8 for all three beams – 

see Figure 4-14a and b. This issue with one or two of the individual beams was not 

detected with MAC because (as discussed in section 4.3.3) the MAC value is primarily 

determined by the modal vectors of one beam. 

In terms of PMVR, close agreement (≤ 5 dB) was achieved for 16% and 29% of the 

mode pairs from FEM models No.1 and 2 respectively. It is seen that for FEM model 

No.1, many PMVR values are >10 dB (see Figure 4-15a, b and c). Hence, whilst FEM 

model No.1 had higher MAC values than No.2, PMVR indicates that FEM model No.2 

gives an improved representation of the interaction between the coupled beams.  
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                              (a)                                                                (b)  

Figure 4-13 MAC values for Setup J4: (a) FEM model No.1 and (b) FEM model No.2. 

 

 
                                                          (a)                           

           
                                                         (b)                           

                             

Figure 4-14  PMAC values for Setup J4: (a) FEM model No.1 and (b) FEM model 

No.2. 
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                                                                    (a) 

 
                                                                    (b) 

 
                                                                    (c) 

Figure 4-15 PMVR for FEM models No.1 and 2 with Setup J4: (a) PMVR12, (b) 

PMVR13 and (c) PMVR23. 
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4.4.4 Spatial-average transfer mobility ratio 

Figure 4-16 allows comparison of FEM models No.1 and No.2 with EMA for the 

beams in setup J4. When the force is applied to beam 1 (Figure 4-16a and b), FEM 

model No.2 shows closest agreement with EMA (differences less than 4 dB) whereas 

FEM model No.1 was offset with differences up to 12 dB on average.  

When the force is applied to beam 2 (Figure 4-16c) or beam 3 (Figure 4-16e), FEM 

model No.2 also shows significantly closer agreement with EMA than No.1. However, 

both FEM models Nos. 1 and 2 show reasonable agreement when the force is applied 

to beam 2 (Figure 4-16d) or beam 3 (Figure 4-16f) and the velocity response is 

measured on beams 2 and 3. This indicates that the choice of normal contact stiffness 

might be less critical where the size of the area connection is reduced, in this case the 

area is reduced due to the discontinuity in beam 3. 

In general, the results show that FEM model No.2 is significantly better than No.1 for 

modelling vibration transmission between the beams in setup J4. Therefore, the mean 

value of the lognormal distribution provides the better approximation of the normal 

contact stiffness to model the dynamic behaviour of beam junctions where the beams 

are connected with surface-to-surface contact conditions. The next section assesses the 

potential of using this normal contact stiffness value in beam junctions with edge-to-

surface contact conditions. 
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                                    (a)                                                                (b) 

  
                                    (c)                                                                (d) 

  
                                   (e)                                                                 (f) 

Figure 4-16 Spatial-average transfer mobility ratio for the beams in setup J4: (a) YR21,1, 

(b) YR31,1, (c) YR12,2, (d) YR32,2, (e) YR13,3 and (f) YR23,3. 
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The FEM model that best represented the physical situation was identified by PMVR 

but not by MAC which led to a misleading validation by indicating that FEM model 

No.1 was more accurate than No.2. MAC is very sensitive to large values, so any 

correlation problem caused by the interaction between the beams is not reflected in its 

value. For this reason, it is proposed here that PMVR is a computationally efficient 

supplement to MAC when validating FEM models where structural components are 

coupled by elastic connections of unknown stiffness.  

4.5 Junction of two beams (edge-to-surface contact) 

Following the findings in the previous section, only one FEM model is used in this 

section which uses the mean value of the lognormal distribution for the normal contact 

stiffness. 

4.5.1 Eigenfrequencies 

Figure 4-17 compares FEM and experimental eigenfrequencies for setup J5. Close 

agreement was achieved with differences less than 3% for mode pairs in the frequency 

range from 700 to 3200 Hz. 

 

Figure 4-17 Comparison of FEM against experimental eigenfrequencies for Setup J5. 
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4.5.2 Mode shapes 

In terms of MAC, close agreement was achieved for 21 out of 23 mode pairs with 

MAC > 0.8 and reasonable agreement was achieved for mode pairs 8 and 23 with 

MAC > 0.7 – see Figure 4-18. In terms of PMAC, beams 1 and 2 have PMAC > 0.8 for 

15 out of the 23 mode pairs – see Figure 4-19. These PMAC results are higher than 

occurred with the surface-to-surface contact conditions which indicates that the 

reduced contact area which occurs with an edge-to-surface contact introduces lower 

errors when modelling the coupling using springs. 

In terms of PMVR, close agreement (PMVR ≤ 5 dB) was achieved for 22% of the 

mode pairs with reasonable agreement for 52% of the mode pairs (5 dB < 

PMVR ≤ 10 dB) and only 26% of mode pairs had PMVR > 10 dB – see Figure 4-20.  

 

Figure 4-18 MAC values for FEM model of Setup J5. 
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Figure 4-19 PMAC values for FEM model of Setup J5. 

 

Figure 4-20 PMVR values for FEM model with Setup J5. 

4.5.3 Spatial-average transfer mobility ratio 

Figure 4-21a and b allow comparison of FEM and EMA in terms of the spatial-average 

transfer mobility ratio for setup J5. For a point force applied to beam 1 (Figure 4-21a) 

and beam 2 (see Figure 4-21b), FEM and EMA show close agreement within 4 dB on 

average. This confirms that the mean value of the lognormal distribution can be used 
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for the contact stiffness in FEM models where the beams are connected with edge-to-

surface contact conditions.  

 

Figure 4-21 Spatial-average transfer mobility ratio for the beams in setup J5: (a) YR21,1, 

(b) YR12,2. 

4.6 Conclusions 

FEM models have been developed and validated with experimental modal analysis for 

beams connected with surface-to-surface and edge-to-surface contact conditions. 

These models were validated in terms of eigenfrequencies, mode shapes and spatial-

average response. It was shown that the interaction between the beams could be 

approximated using a normal contact stiffness. This stiffness showed some 

dependence on the modal response with values forming a lognormal distribution. It 

was shown that the mean value of this lognormal distribution could be used to 

approximate the contact stiffness in FEM models of beams junctions with surface-to-

surface or edge-to-surface contact conditions. This approximation was more effective 

in junctions with two than three beams and especially with edge-to-surface contact 

conditions. 
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For concrete beams that are stacked on top of each other without any rigid bonding 

material it was shown that MAC is not able to assess the validity of the FEM model 

and led to misleading results. Using PMAC for these beams, it was shown that MAC 

was mainly determined by the modal vectors of one beam whereas the contribution of 

the other beam(s) to the MAC value was negligible. To overcome the shortcomings of 

MAC when validating FEM models of structural coupling between elastic systems 

using spring connectors to model the unbonded contact condition, an additional 

criterion, the Partial Modal Vector Ratio was introduced in this thesis. This criterion 

allowed identification of the FEM model that gave the most appropriate representation 

of the interaction between the coupled beams. 

Compared to running FEM models with applied loads to assess vibration transmission 

between the coupled beams, PMVR is a time efficient approach and can be used as a 

supplementary criterion to MAC to identify potential correlation problems caused by 

the interaction of the beams. 
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5. Vibration transmission between reinforced concrete 

beams with surface-to-surface contact conditions 

5.1 Introduction 

The aim of this chapter is to assess the potential to use SEA to model vibration 

transmission between two reinforced concrete beams when they are stacked on top of 

each other (i.e. without any bond connecting the two beams) to make a surface-to-

surface connection. This is carried out using numerical experiments with FEM to 

create an ensemble of beam junctions for a Monte Carlo simulation which will allow 

use of ESEA to determine Coupling Loss Factors between the beams.  

The two main aspects to investigate are (a) whether it is possible to only consider one 

type of wave motion (bending waves) or whether two or more types of wave motion 

can be considered simultaneously (bending and torsional waves) and (b) whether 

analytical models based on lump spring connectors can be used to model the contact 

condition. The first aspect concerning the use of ESEA with multiple wave types is 

necessary because in a collapsed structure it is not known whether one or more wave 

type will be excited at the surface-to-surface connection. For coupled plates with wave 

conversion at the junction, Hopkins [48] previously showed that with ESEA it was not 

always possible to identify the existence of multiple wave types when only bending 

waves are excited on one plate. In chapter 4, it was shown that the contact conditions 

between reinforced concrete beams with a dry unbonded contact could be modelled by 

using an array of springs. This provides the impetus to assess analytical models based 

on lump spring connectors to calculate CLFs for SEA models.  
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5.2 Mode types  

The global modes identified by the eigenfrequency analysis of the beam junctions were 

grouped into three categories according to the deformed shape of each of the beams 

that form the junctions as: (a) bending modes, (b) torsional modes and (c) combination 

of bending and torsional modes (see Figure 5-1). Even though in-plane bending and 

longitudinal modes were identified by Lanczos eigen solver, these are not relevant to 

this study since they are not excited by the rain-on-the-roof force and they do not 

significantly affect the out-of-plane response of the beam junctions.  

 
(a) 

 
(b) 

 
(c) 

Figure 5-1 Types of global modes: (a) bending modes, (b) torsional modes and (c) 

combination of bending and torsional modes. The legends show the normalized out-

of-plane modal displacements. 
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5.3 Mode count 

Figure 5-2 and Figure 5-3 show the average mode count for out-of-plane bending, 

torsional and combinations of all the modes for beam junctions with simply supported 

and free support conditions respectively. Results are shown for 16 frequency bands of 

200 Hz bandwidth. These were preferred than one-third octave bands so there is at 

least one mode in each frequency band. The later has been shown to improve the 

efficiency of SEA [46].  

 For the simply supported junctions, there is at least one bending mode in 13 out of the 

16 frequency bands whereas there is less than one torsional mode in 10 out of the 16 

frequency bands. When all the modes are combined, all the frequency bands have at 

least seven modes.  

For free support conditions, all the frequency bands have at least one bending mode 

except for the 2900 Hz band. In addition, there is less than one torsional mode in 10 

out of the 16 frequency bands. When all the modes are combined, all the frequency 

bands have at least six modes.  
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Figure 5-2 Average mode count for bending, torsional and combination of all modes 

of the 30 beam junctions when simply supported.  

 

Figure 5-3 Average mode count for bending, torsional and combination of all modes 

of the 30 beam junctions with free support conditions. 
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5.4 Assessment of the FEM driving-point mobilities 

5.4.1 Assessment of damping 

This section compares the ratio of the spatial average driving-point mobilities from 

FEM (with only bending modes) to infinite beam theory for beam SS1 with simple 

supports at both ends. Two values of internal loss factors were considered: (a) η=0.1 

and (b) η=0.01. In the absence of measured damping data from collapsed buildings, 

these values were selected as the two extremes damping conditions that are likely to 

occur in practice (see section 3.2.1.2 considering that η=2ζ [46]); η=0.1 is assumed to 

represent the situation where a beam is connected to many concrete beams/plates and 

η=0.01 represents a situation where there is only one connection to a concrete 

beam/plate. Results are shown for both the real part (Figure 5-4) and the magnitude 

(Figure 5-5) of the driving-point mobility as this is required for the lump spring 

connector model (see Eq. 3.3.7). As expected, the lower damping leads to more peaks 

and troughs than the higher damping where the latter is a much smoother curve. 

The difference of the ratio 10lg(<YB,FEM>s /YB,Inf) for the two values of damping is 

within 1.5 dB for the real part and up to 3 dB for the magnitude between the 100 and 

3100 Hz frequency bands. This indicates that the driving-point mobility of an infinite 

beam is a good estimate for the driving-point mobility of a reinforced concrete beam 

regardless the value of the internal loss factor. In a collapsed building, it is more likely 

to have multiple connections between the fragmented structural members than only 

one, thus the internal loss factor η=0.1 is adopted for the next sections of this thesis.  
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Figure 5-4 Beam SS1 (simply supported) – Ratio of the real part of the driving-point 

mobilities (FEM using bending modes only to infinite beam theory) along with the 

95% confidence intervals for two different internal loss factors.  

 

Figure 5-5 Beam SS1 (simply supported) – Ratio of the magnitude of the driving-point 

mobilities (FEM using bending modes only to infinite beam theory) along with the 

95% confidence intervals for two different internal loss factors. 
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5.4.2 Simply supported condition  

Figure 5-6 to Figure 5-11 show the ratio of the real part of the driving-point mobilities 

from FEM relative to infinite beam theory over the surface of beams SS1 and SS2 

using one contour plot for each frequency band. Figure 5-12 and Figure 5-13 compare 

the spatial average of the driving-point mobilities of the simply supported beams SS1 

and SS2 from FEM using either bending or torsional or all modes against the driving-

point mobilities of a thin beam of infinite extent for bending wave excitation (Eq. 

3.3.8). Results are shown for 16 frequency bands of 200 Hz bandwidth, in terms of a 

mean value with 95% confidence intervals for both the real part and the magnitude of 

the mobilities that are used in Eq. (3.3.7) to calculate the CLF.  

The lowest frequency bending modes for the isolated simply supported beams SS1 and 

SS2 occur at 9.7 and 21.4 Hz respectively. For excitation of only bending waves on 

beams SS1 and SS2, the ratio of the real part of the driving point mobilities,                 

10lg(YB,FEM /YB,Inf) is less than 5 dB for 94% and 76% of the excitation positions on 

beams SS1 and SS2 respectively (see Figure 5-6 and Figure 5-7). Higher differences 

were observed at positions close to the ends of the beams. In terms of the spatial 

average, the ratio 10lg(<YB,FEM>s /YB,Inf) is between -1 and 3.8 dB between the 100 and 

3100 Hz frequency bands, for both the real part and the magnitude of the driving point 

mobilities. 

The lowest frequency torsional modes for the isolated simply supported beams SS1 

and SS2 occur at 164.4 and 172.8 Hz respectively. For excitation of only torsional 

waves, the ratio of the real part of the driving point mobilities, 10lg(YT,FEM /YB,Inf) is 

less than 5 dB for 46% and 44% of the excitation positions on beams SS1 and SS2 

respectively (see Figure 5-8 and Figure 5-9). This is partially expected since the 

driving point mobility of a beam of infinite extent is valid only for bending wave 
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excitation. However, in terms of the spatial average the ratio 10lg(<YT,FEM>s /YB,Inf) is 

between -4 and 3 dB between the 300 and 3100 Hz bands. At 100 Hz the differences 

are up to -7 and -5.6 dB for the real part and magnitude respectively.  

For all modes (i.e. the combination of bending, torsional and longitudinal modes) of 

beams SS1 and SS2, the ratio of the real part of the driving point mobilities, 

10lg(YA,FEM /YB,Inf) is less than 5 dB for 66% and 67% of the excitation positions of 

beam SS1 and SS2 respectively (see Figure 5-10 and Figure 5-11). In terms of the 

spatial average, the ratio 10lg(<YA,FEM>s /YB,Inf) is positive and up to 5.7 dB between 

the 100 and 3100 Hz frequency bands, both for the real part and the magnitude of the 

driving point mobilities. 

The main finding is that the infinite beam equation gives close estimates for bending 

modes for which it is derived but can still give reasonable estimates for torsional modes 

and for the combination of all modes. 

5.4.3 Free support condition 

Figure 5-14 to Figure 5-19 show the ratio of the real part of the driving-point mobilities 

from FEM relative to infinite beam theory across the excitation positions of beams 

SS1 and SS2 using one contour plot for each frequency band. Figure 5-20 and Figure 

5-21 compare the spatial average of the driving-point mobilities of the free-free 

supported beams SS1 and SS2 from FEM using either bending or torsional or all modes 

against the driving-point mobilities of a thin beam of infinite extent for bending wave 

excitation (Eq. 3.3.8). Results are shown for 16 frequency bands of 200 Hz bandwidth, 

in terms of a mean value with 95% confidence intervals for both the real part and the 

magnitude of the mobilities that are used in Eq. (3.3.7) to calculate the CLF.  
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The lowest frequency bending modes for the isolated free beams SS1 and SS2 occurs 

at 22.0 and 48.2 Hz respectively. For bending wave excitation of beams SS1 and SS2, 

the ratio of the real part of the driving point mobilities, 10lg(YB,FEM /YB,Inf) is less than 

5 dB for 88% and 72% of the excitation positions of beam SS1 and SS2 respectively 

(see Figure 5-14 and Figure 5-15). As it was observed with the simple supports, the 

differences were higher at positions close to the ends of the beams. In terms of the 

spatial average, the ratio 10lg(<YB,FEM>s /YB,Inf) is between -0.4 and 2 dB between the 

100 and 3100 Hz frequency bands, for both the real part and the magnitude of the 

driving point mobilities. Compared to the simply supported beams, slightly better 

agreement is achieved when the beams are free at both ends. 

The lowest frequency torsional modes for the isolated free beams SS1 and SS2 occurs 

at 174.4 and 209.3 Hz respectively. For torsional wave excitation, the ratio of the real 

part of the driving point mobilities, 10lg(YT,FEM /YB,Inf) is less than 5 dB for the 45% 

and 43% of the excitation positions of beam SS1 and SS2 respectively (see Figure 5-16 

and Figure 5-17). As before, this difference is reasonable since the driving point 

mobility of a beam of infinite extent is valid only for bending wave excitation. 

However, in terms of the spatial average the ratio 10lg(<YT,FEM>s /YB,Inf) is between      

-3.2 and 3.3 dB between the 300 and 3100 Hz bands for both the real part and the 

magnitude of the driving point mobilities. At 100 Hz the differences are up to -5 and  

-12.3 dB for beams SS1 and SS2 respectively.  

For the combination of bending, torsional and longitudinal modes of beams SS1 and 

SS2, the ratio of the real part of the driving point mobilities, 10lg(YA,FEM /YB,Inf) is less 

than 5 dB for the 65% and 67% of the excitation positions of beam SS1 and SS2 

respectively (see Figure 5-18 and Figure 5-19). In terms of the spatial average, the 

ratio 10lg(<YA,FEM>s /YB,Inf) is positive and up to 6 dB between the 100 and 3100 Hz 
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frequency bands, both for the real part and the magnitude of the driving point 

mobilities. 

As for the simply supported beams, the infinite beam equation gives close estimates 

for bending wave only modes and reasonable estimates for torsional modes only and 

with all modes. 

5.4.4 Discussion 

For beam SS1 (which is thinner in the direction of bending wave motion) the infinite 

beam mobility is a reasonable estimate for both bending and torsional modes and 

whilst it is also reasonable for bending waves on SS2, it is less reasonable for torsional 

modes. For both beams the infinite beam theory gives the least reasonable estimate for 

the combination of all modes. However, in the absence of any alternative equation, 

both will be used to calculate the CLF in section 5.6. 
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Figure 5-6 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for simply supported 

beam SS1 for excitation of bending waves only. X and Y axis indicate the grid of the measuring positions of YB,FEM. 
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Figure 5-7 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for simply supported 

beam SS2 for excitation of bending waves only. X and Y axis indicate the grid of the measuring positions of YB,FEM. 
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Figure 5-8 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for simply supported 

beam SS1 for excitation of torsional waves only. X and Y axis indicate the grid of the measuring positions of YT,FEM. 
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Figure 5-9 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for simply supported 

beam SS2 for excitation of torsional waves only. X and Y axis indicate the grid of the measuring positions of YT,FEM. 
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Figure 5-10 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for simply supported 

beam SS1 for combination of all types of waves. X and Y axis indicate the grid of the measuring positions of YA,FEM. 



96 

 

 

Figure 5-11 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for simply supported 

beam SS2 for combination of all types of waves. X and Y axis indicate the grid of the measuring positions of YA,FEM. 
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Figure 5-12 Ratio of the real part of the driving-point mobilities (FEM to infinite beam 

theory) along with the 95% confidence intervals for beam SS1 (top) and beam SS2 

(bottom) when they are simply supported. 
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Figure 5-13 Ratio of the magnitude of the driving-point mobilities (FEM to infinite 

beam theory) along with the 95% confidence intervals for beam SS1 (top) and beam 

SS2 (bottom) when they are simply supported. 
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Figure 5-14 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for the free supported 

beam SS1 for excitation of bending waves only. X and Y axis indicate the grid of the measuring positions of YB,FEM. 



100 

 

 

Figure 5-15 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for the free supported 

beam SS2 for excitation of bending waves only. X and Y axis indicate the grid of the measuring positions of YB,FEM. 
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Figure 5-16 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for the free supported 

beam SS1 for excitation of torsional waves only. X and Y axis indicate the grid of the measuring positions of YT,FEM. 
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Figure 5-17 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for the free supported 

beam SS2 for excitation of torsional waves only. X and Y axis indicate the grid of the measuring positions of YT,FEM. 
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Figure 5-18 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for the free supported 

beam SS1 for combination of all types of waves. X and Y axis indicate the grid of the measuring positions of YA,FEM. 
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Figure 5-19 Contour plots of the ratio of the real part of the driving-point mobilities (FEM to infinite beam theory in decibels) for the free supported 

beam SS2 for combination of all types of waves. X and Y axis indicate the grid of the measuring positions of YA,FEM.
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Figure 5-20 Ratio of the real part of the driving-point mobilities (FEM to infinite beam 

theory) along with the 95% confidence intervals for beam SS1 (top) and beam SS2 

(bottom) with free-free support conditions.  
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Figure 5-21 Ratio of the magnitude of the driving-point mobilities (FEM to infinite 

beam theory) along with the 95% confidence intervals for beam SS1 (top) and beam 

SS2 (bottom) with free-free support conditions. 
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5.5 Bending and torsional wavelength 

To assess the potential frequency range of application for the lump spring model, the 

length of the longest side of the surface-to-surface contact area, LC,max, is compared 

with the bending and torsional wavelength. It is assumed that the lump spring model 

will be valid at frequencies where λB/2 > LC,max for bending motion and λT/2 > LC,max 

for torsional motion [70]. 

Figure 5-22 shows the bending wavelength, λB and the half-wavelength, λB/2 for beam 

SS1 and SS2. LC,max is equal to λB/2 for beams SS1 and SS2 at 1720 Hz and 2580 Hz 

respectively. For torsional waves, LC,max is equal to λT/2 for beams SS1 and SS2 at 

2360 Hz (see Figure 5-23). This information will be used in assessing the validity of 

the lump spring model in section 5.6. 

 

Figure 5-22 Bending wavelength of beams SS1 and SS2. The red line indicates the 

length of the longest side, LC,max=0.45 m of the contact area.  
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Figure 5-23 Torsional wavelength of beams SS1 and SS2. The red line indicates the 

length of the longest side, LC,max=0.45 m of the contact area. 

5.6 Comparison of coupling loss factors from lump spring theory 

and FEM ESEA 

Figure 5-24 to Figure 5-29 show the coupling loss factors, η12 and η21 from FEM ESEA 

for the 30 beam junctions along with two prediction models based on the lump spring 

connector model (see section 3.3.3.1). The analytical lump spring model is calculated 

using (a) the driving point mobilities, YB,Inf, of thin beams of infinite extent for 

excitation of bending waves in the central part of the beams and (b) the spatial average 

of the FEM driving point mobilities, YFEM, over the surface of beams SS1 and SS2 with 

simply supported and free support conditions (see section 5.4). The FEM ESEA results 

for simply supported and free supported beams are shown in terms of a mean value 

with 95% confidence intervals.   
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5.6.1 Simply supported condition 

For bending waves only in the FEM model (Figure 5-24), there is close agreement 

between the coupling loss factors from FEM ESEA and the analytical model up to the 

1700 Hz frequency band (where λB/2 > LC,max), with differences up to 5 dB. Above 

1700 Hz, the differences increased up to 12 dB where the contact area between SS1 

and SS2 can no longer be considered as a point connection. Using FEM mobilities 

instead of the infinite beam mobilities for bending wave motion does not significantly 

improve the agreement. This is expected because the real part and the magnitude are 

between -1 and 3.8 dB of YB,inf in this frequency range. 

For torsional waves only in the FEM model (Figure 5-25), there is close agreement 

between FEM ESEA and the analytical model up to the 2300 Hz frequency band 

(where λT/2 > LC,max), with differences up to 5 dB. Note that in two low frequency 

bands (100 Hz and 300 Hz) the spread of the FEM ESEA coupling loss factors was ± 

5 dB. Above 2300 Hz, the differences were between 5 and 12 dB where the contact 

area between SS1 and SS2 can no longer be considered as a point connection. The 

infinite beam mobilities are intended for bending rather than torsional motion but are 

shown for reference. However, using FEM mobilities instead of the infinite beam 

mobilities for torsional motion did not significantly improve the agreement.  

For the combination of all modes (Figure 5-26), close agreement was achieved 

between the FEM ESEA and the analytical model between 100 and 900 Hz, with 

differences up to 5 dB. Considering only bending modes, the analytical model is not 

expected to be valid above 1700 Hz (where λB/2 > LC,max). However, the combination 

of all modes seems to reduce the frequency where close agreement is obtained from 

1700 to 900 Hz. The infinite beam mobilities are an approximation as they intended 

for bending rather than all types of wave motion; hence it is a coincidence that the 
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infinite beam mobilities show better agreement than the FEM calculated mobilities 

with the analytical model above 1100 Hz.  

 

Figure 5-24 Comparison of FEM ESEA (bending modes) and the analytical model 

(LSC) coupling loss factors η12 and η21. The error bars denote the 95% confidence 

intervals. 

 

Figure 5-25 Comparison of FEM ESEA (torsional modes) and the analytical model 

(LSC) coupling loss factors η12 and η21. The error bars denote the 95% confidence 

intervals. 
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Figure 5-26 Comparison of FEM ESEA (combination of all modes) and the analytical 

model (LSC) coupling loss factors η12 and η21. The error bars denote the 95% 

confidence intervals. 

5.6.2 Free supported condition 

For bending waves only in the FEM model (Figure 5-27), there is reasonable 

agreement between the coupling loss factors from FEM ESEA and the analytical 

model between 500 and 1900 Hz, with differences up to 6 dB. Below 500 Hz, the 

curves of the FEM ESEA and theoretical coupling loss factors follow the same trend 

although the differences are up to 9.8 dB. Above 1900 Hz, the differences increased 

up to 10.7 dB where the contact area between SS1 and SS2 can no longer be considered 

as a point connection. Using FEM mobilities instead of the infinite beam mobilities 

for bending wave motion did not significantly improve the agreement. This is expected 

because the real part and the magnitude are within 3 dB of YB,inf in this frequency range 

For torsional waves only in the FEM model (Figure 5-28), there is reasonable 

agreement between FEM ESEA and the analytical model between 500 and 2300 Hz 

(where λT/2 > LC,max), with differences up to 6 dB. In the 300 Hz band the differences 
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are up to 7 dB, but the agreement can be considered reasonable since the spread of the 

FEM ESEA coupling loss factors was ± 4 dB. At 100 Hz, the differences are up to 18 

dB and the spread of the FEM ESEA coupling loss factors was ± 8 dB. Above 2300 

Hz, the differences were between 5 and 10 dB where the contact area between SS1 and 

SS2 cannot be considered as a point connection. The infinite beam mobilities are 

intended for bending rather than torsional motion but are shown for reference. 

However, as with the simply supported beams, using FEM mobilities instead of the 

infinite beam mobilities for torsional motion did not significantly improve the 

agreement except in the 100 Hz frequency band. This is expected because the real part 

and the magnitude are between -1 and 3.1 dB of YB,inf in this frequency range.   

For the combination of bending, torsional and longitudinal modes (Figure 5-29), close 

agreement was achieved between the FEM ESEA and the analytical model between 

100 and 900 Hz, with differences up to 5 dB. Above 900 Hz, the curves of the FEM 

ESEA and theoretical coupling loss factors do not follow the same trend even though 

the differences are up to 7 dB. The analytical model is not expected to be valid above 

1700 Hz (where λB/2 > LC,max) but the combination of all modes seems to reduce the 

frequency where reasonable agreement is obtained from 1700 to 900 Hz. The infinite 

beam mobilities are an approximation as they intended for bending rather than all wave 

motion; hence it is a coincidence that the infinite beam mobilities show better 

agreement than the FEM calculated mobilities with the analytical model above 

1100 Hz.  



113 

 

 

Figure 5-27 Comparison of FEM ESEA (bending modes) and the analytical model 

(LSC) coupling loss factors η12 and η21. The error bars denote the 95% confidence 

intervals. 

 

Figure 5-28 Comparison of FEM ESEA (torsional modes) and the analytical model 

(LSC) coupling loss factors η12 and η21. The error bars denote the 95% confidence 

intervals. 
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Figure 5-29 Comparison of FEM ESEA (combination of all modes) and the analytical 

model (LSC) coupling loss factors η12 and η21. The error bars denote the 95% 

confidence intervals. 

5.7 Conclusions 

Finite element models were used to calculate the driving-point mobilities of reinforced 

concrete beams for bending modes only, torsional modes only and the combination of 

all modes in the frequency range up to 3200 Hz with free and simply supported 

conditions. These mobilities were in close agreement (differences within 5 dB) with 

the theoretical driving-point mobilities of a thin beam of infinite extent for bending 

wave excitation but not for the combination of all modes. 

An ensemble of 30 random beam junctions with free and simply supported conditions 

was generated for Monte Carlo simulations with FEM that allowed ESEA to be used 

to determine coupling loss factors between the two beams. These were compared with 

coupling loss factors calculated using an analytical model based on a lump spring 

connector. For only bending waves or torsional waves, close agreement was achieved 

between FEM ESEA and the analytical model up to the frequency where half the 
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bending or torsional wavelength equalled the longest side of the contact area. Above 

this frequency the interaction between the two beams cannot be considered as a point 

connection. The inclusion of the FEM driving-point mobilities in the prediction model 

(instead of the infinite beam model) did not significantly `improve the agreement. 

When all wave types are combined, close agreement can still be achieved at 

frequencies below 900 Hz.  
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6. Vibration transmission in piles of reinforced concrete 

beams with surface-to-surface contact conditions 

6.1 Introduction 

The aim of this chapter is to assess the potential to use Statistical Energy Analysis to 

model the vibration transmission in two piles of seven and one pile of fourteen 

reinforced concrete beams when they are stacked on top of each other (i.e. without any 

bond connecting the beams) to make a surface-to-surface connection. SEA path 

analysis is carried out to quantify and assess the strength of the transmission paths 

between the beams. Next, the general SEA matrix solution is used to estimate the 

energy ratios between the beams of the piles using: a) FEM ESEA CLFs and b) the 

CLFs from an analytical model of a lump spring connector. SEA predictions are 

compared against the results of FEM models.  

Average coupling loss factors are determined from ESEA for the 30 beam junctions 

(for combination of all wave types) and the theoretical coupling loss factors based on 

an analytical model of a lump spring connector (see sections 5.6.1 and 5.6.2). The 

analytical lump spring model is calculated using (a) the driving-point mobilities of thin 

beams of infinite extent for excitation of bending waves in the central part of the 

beams, YB,Inf and (b) the spatial average of the FEM driving-point mobilities (for 

combination of all wave types) over the surface of beams, YA,FEM. Figure 6-1 and 

Figure 6-2 shows the CLFs which are used throughout the SEA analysis in this chapter.  
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Figure 6-1 Coupling loss factors η12 and η21 with 95% confidence intervals from FEM 

ESEA for beams with simply supported and free support conditions at the end of each 

beam.  

 

Figure 6-2 Coupling loss factors η12 and η21 resulted from an analytical model based 

on a lump spring connector using driving-point mobilities of an infinite beam and 

FEM.  
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6.2 Path analysis 

This section presents the results of SEA path analysis carried out to quantify and assess 

the strength of the transmission paths between the seven beams of piles 1a and 1b (see 

Figure 3-6 and Figure 3-7). The path analysis results of pile 2 (see Figure 3-8) lead to 

similar findings and are therefore given in Appendix C.   

6.2.1 Pile 1a  

For power input to source beam SS1, Table 6-1 shows the transmission paths from 

source beam SS1 to receiving beams SS2 up to SS7. For each energy ratio, the paths 

are grouped according to the number of the intermediate subsystems.  

Figure 6-3 to Figure 6-8 show the differences between the energy level differences 

resulting from the SEA matrix solution and path analysis. The curves are coloured 

according to the number of intermediate subsystems in each transmission path. The 

path that gives the lowest energy ratio difference is the strongest path (shaded grey in 

Table 6-1). 

Between beams SS1 and SS2 there is no direct connection and path No.1 (1→3→2) is 

the strongest path with beam SS3 being the only intermediate subsystem. For this path, 

there was close agreement between the SEA matrix solution and the path analysis with 

differences between -1.5 and 0 dB in the frequency range up to 3100 Hz (see Figure 

6-3). Paths with three and five intermediate subsystems were at least 10 dB higher than 

the matrix solution. Note that all the transmission paths between beams SS1 and SS2 

pass through subsystem 3 (beam SS3).    

Beam SS1 is directly connected to beams SS3, SS4 and SS5 hence the direct 

transmission paths 1→3, 1→4 and 1→5 are the strongest paths with differences 

between -1.5 and 0 dB between the SEA matrix solution and path analysis (see Figure 
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6-4 - Figure 6-6). Energy level differences from paths with two and four intermediate 

subsystems were at least 10 dB higher than the matrix solution. This indicates that 

longer paths were less important than the direct paths.  

Table 6-1 Transmission paths to beams SS2 to SS7 through the pile 1a shown in Figure 

3-6 for power input to beam SS1 (grey shading indicates the strongest path). 

Energy 

ratio 

Number of intermediate subsystems 

0 1 2 3 4 5 

E1/E2 - 
1→3→2 

- 
1→4→6→3→2 

- 
1→5→6→4→7→3→2 

 
1→4→7→3→2 

 
1→5→6→3→2 

E1/E3 
1→3 

- 
1→4→6→3 

- 
1→5→6→4→7→3 

-  
1→4→7→3 

 
1→5→6→3 

E1/E4 
1→4 

- 
1→5→6→4 

- 
1→5→6→3→7→4 

-  
1→3→6→4 

 
1→3→7→4 

E1/E5 
1→5 

- 
1→4→6→5 

- 
1→3→7→4→6→5 

-  1→3→6→5 1→4→7→3→6→5 

E1/E6 - 
1→3→6 

- 
1→3→7→4→6 

- - 1→4→6 1→4→7→3→6 
1→5→6  

E1/E7 - 

1→3→7 

- 

1→3→6→4→7 

- - 
1→4→7 1→5→6→3→7 

 
1→5→6→4→7 
1→4→6→3→7 

 

 

Figure 6-3 Difference between the energy ratio, E1/E2, from the SEA matrix solution 

and path analysis (pile 1a).  
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Figure 6-4 Difference between the energy ratio, E1/E3, from the SEA matrix solution 

and path analysis (pile 1a). 

 

Figure 6-5 Difference between the energy ratio, E1/E4, from the SEA matrix solution 

and path analysis (pile 1a). 
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Figure 6-6 Difference between the energy ratio, E1/E5, from the SEA matrix solution 

and path analysis (pile 1a). 

Between beams SS1 and SS6 there is no direct connection and although path No.3 

(1→5→6) is the strongest path, the difference between the SEA matrix solution and 

the path analysis is up to 5 dB. Similar results occur for the other two paths with one 

intermediate subsystem, path No.1 (1→3→6) and path No.2 (1→4→6) with 

differences up to 6 and 7 dB respectively.  When paths No.1-3 are combined, close 

agreement is achieved between the SEA matrix solution and the path analysis with 

differences between -1.2 and 0 dB in the frequency range up to 3100 Hz (see Figure 

6-7). This indicates that these are the dominant three paths. 

The energy ratios E1/E7 from the SEA matrix solution and path analysis between 

beams SS1 and SS7 differ up to 4 dB for path No.2 (1→4→7) and up to 4.8 dB for 

path No.1 (1→3→7). When path No.2 is combined with path No.1, there is close 

agreement between the SEA matrix solution and the path analysis with differences 

between -1.4 and 0 dB in the frequency range up to 3100 Hz (see Figure 6-8). Hence 

these two paths can be considered to be the dominant paths. 
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Figure 6-7 Difference between the energy ratio, E1/E6, from the SEA matrix solution 

and path analysis (pile 1a). 

 

Figure 6-8 Difference between the energy ratio, E1/E7, from the SEA matrix solution 

and path analysis (pile 1a). 
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6.2.2 Pile 1b 

The only difference between piles 1a and 1b is one additional contact between beams 

SS2 and SS5. For power input to source beam SS1, Table 6-2 shows the transmission 

paths from source beam SS1 to receiving beams SS2 up to SS7. For each energy ratio, 

the paths are grouped according to the number of the intermediate subsystems.  

Figure 6-9 to Figure 6-14 present the differences between the energy ratios from the 

SEA matrix solution and path analysis.  

Table 6-2 Transmission paths to beams SS2 to SS7 through pile 1b shown in Figure 

3-7 for power input to beam SS1 (grey shading indicates the strongest path). 

Energy 

ratio 

Number of intermediate subsystems 

0 1 2 3 4 5 

E1/E2 - 

1→3→2 

- 

1→3→6→5→2 

- 

1→3→7→4→6→5→2 
1→5→2 1→4→6→3→2 1→4→7→3→6→5→2 

 

1→4→6→5→2 1→5→6→4→7→3→2 

1→4→7→3→2 

 
1→5→6→3→2 

 

E1/E3 

1→3 

- 

1→4→6→3 

- 

1→4→6→5→2→3 

- 
 

1→4→7→3 1→5→6→4→7→3 

1→5→2→3 
 1→5→6→3 

 

E1/E4 

1→4 

- 

1→5→6→4 

- 

1→3→2→5→6→4 

- 
 

1→3→6→4 1→5→2→3→6→4 

1→3→7→4 1→5→2→3→7→4 

 1→5→6→3→7→4 

E1/E5 

1→5 

- 

1→3→2→5 

- 

1→3→7→4→6→5 

-  
1→3→6→5 1→4→6→3→2→5 
1→4→6→5 1→4→7→3→2→5 

 1→4→7→3→6→5 

E1/E6 - 

1→3→6 

- 

1→3→2→5→6 

- 

1→4→7→3→2→5→6 
1→4→6 1→3→7→4→6 1→5→2→3→7→4→6 
1→5→6 1→4→7→3→6 

 
 1→5→2→3→6 

E1/E7 - 

1→3→7 

- 

1→3→6→4→7 

- 

1→3→2→5→6→4→7 
1→4→7 1→5→6→3→7 1→4→6→5→2→3→7 

 
1→5→6→4→7 1→5→2→3→6→4→7 
1→4→6→3→7 

 
1→5→2→3→7 
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Between beams SS1 and SS2 there is no direct connection and path No.2 (1→5→2) is 

the strongest path. As shown in Figure 6-9, close agreement was achieved between the 

SEA matrix solution and the path analysis for path No.2 with differences up to 4 dB 

in the frequency range up to 3100 Hz. Differences up to 5 dB occurred for path No.1 

(1→3→2). When paths No.1 and 2 are combined, close agreement is achieved 

between the SEA matrix solution and the path analysis with differences up to 2.0 dB. 

This indicates the importance of these two short paths. 

 

Figure 6-9 Difference between the energy ratio, E1/E2, from the SEA matrix solution 

and path analysis (pile 1b). 

Beam SS1 is directly connected with beams SS3, SS4 and SS5 hence the transmission 

paths 1→3, 1→4 and 1→5 are the strongest paths with differences up to 2 dB between 

the SEA matrix solution and the path analysis (see Figure 6-10 - Figure 6-12).  
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Figure 6-10 Difference between the energy ratio, E1/E3, from the SEA matrix solution 

and path analysis (pile 1b). 

 

Figure 6-11 Difference between the energy ratio, E1/E4, from the SEA matrix solution 

and path analysis (pile 1b). 
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Figure 6-12 Difference between the energy ratio, E1/E5, from the SEA matrix solution 

and path analysis (pile 1b). 

Between beams SS1 and SS6 there is no direct connection and paths No. 2 (1→4→6) 

and 3 (1→5→6) are equally strong paths with differences between the SEA matrix 

solution and the path analysis up to 5.9 dB. Similar results are obtained for the other 

path with one intermediate subsystem, path No.1 (1→3→6) with differences up to         

6.8 dB.  When paths No.1-3 are combined, close agreement is achieved between the 

SEA matrix solution and the path analysis with differences up to 1.4 dB in the 

frequency range up to 3100 Hz (see Figure 6-13).  

The energy ratios E1/E7 resulted from the SEA matrix solution and the path analysis 

between beams SS1 and SS7 differ by 4 dB for path No.2 (1→4→7) and by 4.9 dB 

for path No.1 (1→3→7). Thus, path No.2 is the strongest path and when it is combined 

with path No.1, close agreement is achieved between the SEA matrix solution and the 

path analysis with differences up to 1.5 dB in the frequency range up to 3100 Hz (see 

Figure 6-14).  
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Figure 6-13 Difference between the energy ratio, E1/E6, from the SEA matrix solution 

and path analysis (pile 1b). 

 

Figure 6-14 Difference between the energy ratio, E1/E7, from the SEA matrix solution 

and path analysis (pile 1b). 
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6.2.3 Discussion 

From path analysis of piles 1a and 1b it was found that when direct paths (i.e. a 

transmissions paths with no intermediate subsystems between the first and the last 

subsystem) were present, these were always the strongest and the transmitted energy 

was in close agreement with the energy determined by the SEA matrix formulation. In 

absence of a direct path between two subsystems, the transmission paths with the 

smaller number of intermediate subsystems were the strongest and a few paths could 

often be combined to give a result within 2 dB of the matrix solution.     

6.3 Pile 1a - Comparison between SEA and FEM  

Figure 6-15 to Figure 6-20 show the difference between the energy ratios from FEM 

and SEA for the seven beams (simply supported or free) of pile 1a when the power is 

injected on beam SS1. The colour of each curve is analogous to the colour index of 

Figure 3-6 and indicates the layer of the pile where the energy is transmitted. Positive 

differences indicate that SEA overestimates the energy ratios whereas negative 

differences indicate that SEA underestimates the energy ratios compared with FEM.   

6.3.1 Simply supported beams  

When the FEM ESEA coupling loss factors are used in the SEA model (Figure 6-15), 

reasonable agreement was achieved between SEA and FEM for beams SS3 to SS7 

with differences between -7.6 and 7 dB, in the frequency range from 100 to 3100 Hz. 

The difference of the energy ratios for beam SS2 (E1/E2) is in general between -6.6 

and 1.5 dB (except for the frequency bands of 2300 and 2900 Hz where the differences 

are -10.5 and -11.6 dB). This agreement is reasonable considering the CLFs estimates 

are derived from FEM.   
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When the SEA model uses the coupling loss factors from an analytical model based 

on a lump spring connector with the infinite beam mobilities (see Figure 6-16), 

reasonable agreement was achieved between SEA and FEM for all the beams of the 

pile up to the frequency band of 1100 Hz, with differences between -9.3 and 5.3 dB. 

Above 1100 Hz, the difference of the energy ratios for beam SS2 (E1/E2) is up to -18.4 

dB. Between 1100 and 1700 Hz, the difference of the energy ratios for beams SS3 to 

SS7 is negative and up to -7.6 dB whereas above 1700 Hz the differences are up to        

-12.4 dB.  

When the SEA model uses the coupling loss factors from the analytical model with 

the inclusion of the FEM mobilities (see Figure 6-17), reasonable agreement was 

achieved between SEA and FEM for all the beams of the pile up to the frequency band 

of 900 Hz, with differences between -8.5 and 4.5 dB. This is reasonable since 900 Hz 

is the estimated upper frequency for the theoretical model of the lump spring connector 

to be valid (see Figure 5-26 in section 5.6.1). Above 900 Hz, SEA underestimates the 

energy ratio for beam SS2 (E1/E2)  with differences up to -30.84 dB. Between 900 

and1500 Hz, the differences were up to -8.8 and -14.8 dB for the beams of the second 

(SS3-5) and third (SS6-7) layer of the pile respectively. Above 1500 Hz, the energy 

ratios for beams SS3 to SS7 had negative differences over 10 dB. 

To conclude, the lowest differences between FEM and SEA were achieved when the 

FEM ESEA coupling loss factors were used in the SEA model.   
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Figure 6-15 Difference between the energy ratios from FEM and SEA with CLFs from 

FEM ESEA (combination of bending, torsional and longitudinal modes). 

 

Figure 6-16 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with infinite beam mobilities). 
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Figure 6-17 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with FEM mobilities). 

6.3.2 Free supports  

When the FEM ESEA coupling loss factors are used in the SEA model (Figure 6-18), 

reasonable agreement is achieved between SEA and FEM for beams SS3 to SS7 with 

differences between -8.7 and 6.6 dB in the frequency range from 100 to 1700 Hz. 

Above 1700 Hz, the differences of the energy ratios were between -9.1 and 0.5 dB for 

the beams of the first (SS2) and second (SS3-5) layer of the pile whereas differences 

up to 15.6 dB were occurred for the beams in the third layer of the pile.  

When the SEA model uses the coupling loss factors from an analytical model based 

on a lump spring connector with infinite beam mobilities (see Figure 6-19), reasonable 

agreement was achieved between SEA and FEM for beams SS3 to SS7 with 

differences within -10 and 8 dB between 100 and 1900 Hz. Above 1900 Hz, the 

differences were up to -10.1 dB and 22.3 dB for the beams of the second (SS3-SS5) 

and third (SS6-SS7) layer of the pile respectively. For beam SS2, the difference was 
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within ±10 dB except for the frequency bands of 700, 900 and 1500 Hz with 

differences up to -14.6 dB.  

When the SEA model uses the coupling loss factors from the analytical model with 

the inclusion of the FEM mobilities (see Figure 6-20), reasonable agreement was 

achieved between SEA and FEM for beams SS3 to SS7 with differences between -4.1 

and 7.3 dB up to the frequency band of 700 Hz. Above 700 Hz, the differences were 

up to -14.5 dB and 11.2 dB for the beams of the second (SS3-SS5) and third (SS6-

SS7) layer of the pile respectively. SEA underestimates the energy ratio for beam SS2, 

with differences up to -18.7 dB between 700 and 2300 Hz. Outside this frequency 

range the difference was within ±10 dB. 

As with the simply supported beams, the lowest differences between FEM and SEA 

were achieved when the FEM ESEA coupling loss factors were used in the SEA 

model. Note that closer agreement both in terms of level differences and frequency 

range was achieved for the pile with the simple supports.    

 

Figure 6-18 Difference between the energy ratios from FEM and SEA with CLFs from 

FEM ESEA (combination of bending, torsional and longitudinal modes). 
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Figure 6-19 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with infinite beam mobilities). 

 

Figure 6-20 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with FEM mobilities). 
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6.4 Pile 1b – Comparison between SEA and FEM 

Figure 6-21 to Figure 6-26 show the difference between the energy ratios from FEM 

and SEA for the seven either simply supported or free-free beams of pile 1b when the 

power is injected on beam SS1. The colour of each curve is analogous to the colour 

index of Figure 3-7 and indicates the layer of the pile where the energy is transmitted. 

As in the previous section, positive differences indicate that SEA overestimates the 

energy ratios whereas negative differences indicate that SEA underestimates the 

energy ratios compared with FEM.   

6.4.1 Simply supported beams  

When using FEM ESEA coupling loss factors in the SEA model (Figure 6-21), 

reasonable agreement was achieved between SEA and FEM for all the beams of the 

pile with differences between -7.7 and 7 dB, between 100 and 3100 Hz.  

When the SEA model uses the coupling loss factors from an analytical model based 

on a lump spring connector with the infinite beam mobilities (see Figure 6-22), 

reasonable agreement was achieved between SEA and FEM for all the beams of the 

pile up to the frequency band of 1100 Hz, with differences between -7.5 and 6.3 dB. 

Above 1100 Hz, the difference of the energy ratios for beam SS2 (E1/E2) is up to -13.4 

dB. Between 1100 and 1700 Hz, the difference of the energy ratios for beams SS3 to 

SS7 is up to -10 dB whereas above 1700 Hz the differences are up to -12.4 dB.  

When the SEA model uses the coupling loss factors from the analytical model with 

the inclusion of the FEM mobilities (see Figure 6-23), reasonable agreement was 

achieved between SEA and FEM for all the beams up to the frequency band of 900 

Hz, with differences between -8.7 and 5.5 dB. This is reasonable since 900 Hz is the 

estimated upper frequency for the theoretical model of the lump spring connector to 
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be valid (see Figure 5-26 in section 5.6.1). Between 900 and1500 Hz, the differences 

were up to -8.8 dB for the beams of the second layer of the pile (SS3-5) whereas for 

SS2 and SS6-7 the differences were and up to -16.4 dB. Above 1500 Hz, SEA 

underestimates the energy ratios for all the beams with differences up to -23.9 dB.  

As with pile 1a, the lowest differences between FEM and SEA were achieved when 

the FEM ESEA coupling loss factors were used in the SEA model.   

 

Figure 6-21 Difference between the energy ratios from FEM and SEA with CLFs from 

FEM ESEA (combination of bending, torsional and longitudinal modes). 
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Figure 6-22 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with infinite beam mobilities). 

 

Figure 6-23 Difference between the energy ratios from FEM and SEA with CLFs from 

an analytical model (LSC with FEM mobilities).  
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6.4.2 Free support 

When the FEM ESEA coupling loss factors are used in the SEA model (Figure 6-24), 

reasonable agreement was achieved between SEA and FEM for beams SS2 to SS7 

with differences within -9.3 and 8.4 dB, between 100 and 1900 Hz. Above 1900 Hz, 

the differences of the energy ratios were up to -9 dB for the beams of the second layer 

of the pile (SS3-SS5) which are connected directly with beam SS1. For the remaining 

beams of the pile which are not directly connected with beam SS1, the difference 

curves had a similar shape with differences up to 13.2 dB.  

When the SEA model uses the coupling loss factors from an analytical model based 

on a lump spring connector with infinite beam mobilities (see Figure 6-25), reasonable 

agreement was achieved between SEA and FEM for beams SS2 to SS7 with 

differences within  -9.8 and 5.4 dB, between 100 and 1700 Hz. Above 1700 Hz, the 

differences were up to -10.7 dB for the beams of the second layer of the pile (SS3-

SS5). For the beams of the first and third layer of the pile (SS2, SS6 and SS7) where 

there is no direct connection with the source beam SS1, the differences were below 10 

dB between 1700 and 2100 Hz. Above this frequency the differences were up to 20 

dB. Note that above 900 Hz the difference curves for beams SS2, SS6 and SS7 follow 

the same trend. 

When the SEA model uses the coupling loss factors from the analytical model with 

the inclusion of the FEM mobilities (see Figure 6-26), reasonable agreement was 

achieved between SEA and FEM for beams SS2 to SS7 with differences between                   

-10.3 and 4.3 dB up to the frequency band of 1100 Hz. Above 1100 Hz, the differences 

were up to -14.7 dB for the beams of the second layer of the pile (SS3-SS5) whereas 

reasonable agreement with differences between -8.6 and 8.9 dB was achieved for the 

beams of the first and third layer (SS2, SS6 and SS7) of the pile. 
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Figure 6-24 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from FEM ESEA (combination of bending, torsional and longitudinal modes). 

 

Figure 6-25 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with infinite beam mobilities). 
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Figure 6-26 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with FEM mobilities). 

6.5 Piles 1a and 1b – Discussion  

In piles 1a and 1b with either simply or free-free support conditions, the beams of the 

second layer (SS3-SS5) which were directly connected with beam SS1 achieved the 

closest agreement between SEA and FEM in terms of energy ratio difference, 

regardless of the coupling loss factors used in the SEA matrix calculation.  

In pile 1a it was observed that among the beams with no direct connection with the 

beam where the power is injected (SS1), the largest differences between SEA and FEM 

occurred for beam SS2. In addition, the E1/E2 difference curve had a different shape 

than the rest of the E1/Ei curves. This problem did not occur in pile 1b where the 

difference curves of beams SS2, SS6 and SS7 had similar values and followed the 

same trend.  

The main reason for this improvement was that in pile 1b the number of transmission 

paths between subsystems 1 and 2 was doubled after connecting beam SS2 with beam 
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SS5 (see Table 6-1 and Table 6-2) leading to SEA to work more efficiently. This was 

partially expected considering that a SEA model with many short paths is less affected 

by errors than a model that consists of a few long paths [71]. This indicates the 

potential for SEA to predict the energy transmission between the beams in a pile as the 

number of the interconnected members and consequently the complexity of the pile 

increases. 

6.6 Pile 2 – Comparison between SEA and FEM 

Figure 6-27 to Figure 6-32 present the difference between the energy ratios, E1/Ei from 

FEM and SEA for the 14 beams of pile 2 when the power is injected on beam SS1. 

Results are shown for simply supported and free-free beams. The colour of each curve 

is analogous to the colour indexes of Figure 3-8 and indicates the layer of the pile 

where the energy is transmitted. Positive differences indicate that SEA overestimates 

the energy ratios whereas negative differences indicate that SEA underestimates the 

energy ratios compared with FEM. 

6.6.1 Simply supported beams 

When the FEM ESEA coupling loss factors are used in the SEA model (Figure 6-27), 

reasonable agreement was achieved between SEA and FEM for beams SS2 to SS14 

(except for beam SS9) with differences within ±10 dB, for the majority of the 

frequency bands between 100 and 1500 Hz. Above 1500 Hz, reasonable agreement 

was still achieved for the beams of the first five layers of the pile, although for beam 

SS12 the differences were up to -15.1 dB at 1700 Hz. For beams SS13 and SS14 the 

differences between SEA and FEM were up to 39 dB. The difference of the energy 

ratios for beam SS9 was negative and over 10 dB for most of the frequency bands 
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above 100 Hz. Above 700 Hz, the shape of the difference curve is also different than 

the other curves of Figure 6-27. 

When the SEA model uses the coupling loss factors from an analytical model based 

on a lump spring connector with the infinite beam mobilities (see Figure 6-28), 

reasonable agreement was achieved between SEA and FEM for all the beams of the 

pile up to the frequency band of 300 Hz, with differences within ±10 dB. Above 300 

Hz and up to the frequency band of 1300 Hz, reasonable agreement was achieved for 

the beams of layers 1-4 of the pile (except for the beam SS9) with differences between 

-8 and 1.6 dB. Above 1300 Hz the differences were up to -13.6 dB. For beams SS9 to 

SS14 differences over ±10 dB was received for the majority of the frequency bands 

above 300 Hz. Note that above 900 Hz the difference curve of beam SS9 had different 

trend than the other curves of  Figure 6-28. 

When the SEA model uses the coupling loss factors from the analytical model with 

the inclusion of the FEM mobilities (see Figure 6-29), reasonable agreement was 

achieved between SEA and FEM for all the beams of the pile up to the frequency band 

of 300 Hz, with differences within ±10 dB. Above 300 Hz and up to the frequency 

band of 700 Hz, reasonable agreement with differences between -7.6 and 4 dB was 

achieved for the all the beams of the pile except for beam SS9. Above 700 Hz the 

differences were over -10 dB for most of the beams of the pile. Note that the difference 

of the energy ratios for beam SS9 was greater than 10 dB in all the frequency bands 

above 300 Hz.  



142 

 

 

Figure 6-27 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from FEM ESEA (combination of bending, torsional and longitudinal modes) – 

Excitation  on subsystem SS1. 

 

Figure 6-28 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with infinite beam mobilities) – Excitation on 

subsystem SS1. 
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Figure 6-29 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with FEM mobilities) – Excitation  on subsystem 

SS1. 

6.6.2 Free supports 

When the FEM ESEA coupling loss factors are used in the SEA model (Figure 6-30), 

reasonable agreement was achieved between SEA and FEM for beams SS2 to SS14 

with differences within ±10 dB, for the vast majority of the frequency bands between 

100 and 700 Hz. Above 700 Hz, reasonable agreement was achieved mainly for the 

beams of the first three layers of the pile (SS2 – SS7). For beams SS8 to SS14 the 

difference between SEA and FEM was greater than 10 dB for the majority of the 

frequency bands above 700 Hz.  

When the SEA model uses the coupling loss factors from an analytical model based 

on a lump spring connector with the infinite beam mobilities (see Figure 6-31), 

reasonable agreement was achieved between SEA and FEM for the most beams of the 

pile up to the frequency band of 300 Hz, with differences within ±10 dB. Between 300 

and 900 Hz, the difference curves of the 14 beams follow the same trend but reasonable 
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agreement was achieved mainly for beams SS2-SS8. Above 900 Hz, differences within 

±10 dB were achieved for the majority of the frequency bands of beams SS2 – SS7 

whereas for beams SS9 to SS14 the differences were in general over ±10 dB.  

When the SEA model uses the coupling loss factors from the analytical model with 

the inclusion of the FEM mobilities (see Figure 6-32), reasonable agreement was 

achieved between SEA and FEM for all the beams of the pile up to the frequency band 

of 300 Hz, with differences between -8 and 8.8 dB. Above 300 Hz and up to the 

frequency band of 900 Hz, reasonable agreement with differences within ±10 dB was 

achieved for the most beams of the pile. However, above 900 Hz the majority of the 

beams had differences over ±10 dB. 

 

Figure 6-30 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from FEM ESEA (combination of bending, torsional and longitudinal modes) – 

Excitation  on subsystem SS1. 
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Figure 6-31 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with infinite beam mobilities) – Excitation on 

subsystem SS1. 

 

Figure 6-32 Difference between the energy ratios, E1/Ei from FEM and SEA with 

CLFs from an analytical model (LSC with FEM mobilities) – Excitation  on subsystem 

SS1. 
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6.7 Pile 2 – Discussion 

For pile 2 it was observed that the largest differences between SEA and FEM occurred 

for beam SS9. Specifically, for simply supported conditions the E1/E9 difference curve 

was different  than the rest of the E1/Ei curves both in terms of shape and value, 

regardless of the CLFs used in the SEA matrix calculation. This is explained 

considering that between beams SS1 and SS9 there are only two transmission paths 

that approximate the SEA matrix solution when they are combined (Table C-8 and 

Figure C-8) and SEA is less prone to error when multiple transmission paths exist 

between the source and receiver subsystems. 

From the study of the pile 2 with either simply supported or free support conditions it 

is seen that when the coupling loss factors from an analytical model of a lump spring 

connector are used in the SEA matrix, the energy ratios between the subsystems of the 

pile are predicted with reasonable accuracy in the frequency range from 100 to 700 

Hz. Reasonable accuracy does not occur at higher frequencies. 

6.8 Conclusions 

SEA path analysis has been carried out in two piles with seven and one pile with 14 

beams to assess the strength of the various transmission paths. The comparison of the 

energy ratios with the results of the SEA matrix solution shows that a direct path 

between two subsystems transfers more energy than the other paths. If a direct path 

does not exist, the transmission paths with the smaller number of intermediate 

subsystems will be the strongest and tends to approximate the SEA matrix solution.   

FEM models of the piles with simply supported and free support conditions were used 

to calculate the energy ratios between the beams of the piles. These were compared 

with the energy ratios calculated from a SEA model which used a) FEM ESEA 
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coupling loss factors and b) CLFs resulted from an analytical model of a lump spring 

connector. For piles 1a and 1b reasonable agreement (differences within 10 dB) was 

achieved between SEA and FEM up to 900 Hz and 1100 Hz for simply supported and 

free supports respectively regardless the CLFs used in the SEA matrix. It was also 

shown that the SEA works more efficiently as the number of transmission paths 

between the subsystems increases. For pile 2 with either simply supported or free 

support conditions, reasonable agreement was achieved between SEA (for any CLFs) 

and FEM for the majority of the beams with differences up to 10 dB in the frequency 

range from 100 to 700 Hz.  
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7. Vibration transmission in damaged reinforced concrete 

beam-to-column junctions  

7.1 Introduction 

The aim of this chapter is to assess the potential to use SEA to model the vibration 

transmission in seismic damaged reinforced concrete beam-to-column junctions where 

the connection between the beam and the column is made only via the steel 

reinforcement according to the lean-to collapse pattern which was introduced in Figure 

1-3b. A FEM model of a rigid T-junction defined in section 3.3.3.2 is validated against 

the wave theory in terms of CLFs that only consider bending wave motion. A concrete 

discontinuity is then introduced at the connection of the beam with the column and the 

resulting FEM model is used to carry out numerical experiments with FEM to create 

an ensemble of damaged beam-to-column junctions for a Monte Carlo simulation. This 

allows use of ESEA to determine CLFs between the beam and the column.   

The two main aspects to be investigated are (a) whether two or three subsystems should 

be used for FEM ESEA (refer back to Figure 3-17) and (b) whether it is possible to 

only consider one type of wave motion (e.g. bending waves) or whether two or more 

types of wave motion could be considered simultaneously (e.g. bending and torsional 

waves). The second aspect concerning the use of ESEA with multiple wave types is 

necessary because in a collapsed structure it is not known whether one or more wave 

type will be excited at the damaged beam-to-column connections. 
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7.2 Mode count 

Figure 7-1 shows the mode count from FEM for out-of-plane bending (rotation about 

X-axis – see Figure 3-14) and combinations of all modes for damaged and rigid beam-

to-column junctions. On average, there are at least two bending modes in all the 

frequency bands for the damaged junctions. The rigid T-junctions have at least one 

bending mode in all the frequency bands. When all the modes are combined, all the 

frequency bands have at least eight and seven modes for the damaged and rigid T-

junctions respectively.   

 

Figure 7-1 Comparison of the average mode count of the 30 damaged junctions with 

the mode count of the rigid T-junction for out-of-plane bending modes and 

combination of all mode types. 
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7.3 Comparison of coupling loss factors from FEM ESEA and 

wave approach (bending waves only) for the rigid T-junction  

In this section, the FEM model of the rigid T-junction is validated against the wave 

theory in terms of CLFs, considering only bending wave motion. Figure 7-2 - Figure 

7-4 compare the coupling loss factors resulted from FEM ESEA and the wave 

approach (bending waves only) for the rigid T-junction. As shown in Figure 7-2, the 

CLFs, η12 and η21, from FEM ESEA are negative below 500 and 300 Hz respectively. 

However, reasonable agreement was achieved for η12 and η21 from 300 to 1700 Hz 

(differences ≤ 4 dB) and from 1700 to 2500 Hz (differences ≤ 10 dB). Above 2500 Hz 

the differences were up to 15 dB.   

The CLFs η13 and η31 resulted from FEM ESEA are negative above 2700 and 2900 Hz 

respectively (see Figure 7-3). Close agreement was achieved for η13 and η31 between 

500 and 1500 Hz with differences within 5 dB. In the higher frequency bands the 

differences were within 10 dB except for the frequency band of 2300 Hz where the 

difference for η13 were up to 21 dB.  

As Figure 7-4 shows, nine out of 16 frequency bands between 100 and 3100 Hz 

achieved close agreement for η23 and η32 with differences within 5 dB. Reasonable 

agreement was achieved for the remaining seven frequency bands with differences 

within 10 dB except for the frequency band of 3100 Hz where the difference for η23 

were up to 11 dB.  

To conclude, differences up to ±10 dB and negative CLFs were noticed at low 

frequencies whereas the agreement was in between ±5 dB from 500 to 1700 Hz. At 

higher frequencies, errors larger than ±10 dB were noticed for most of the frequency 

bands.    
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Figure 7-2 Comparison of FEM and the analytical (wave approach) coupling loss 

factors η12 and η21. 

 

Figure 7-3 Comparison of FEM and the analytical (wave approach) coupling loss 

factors η13 and η31. 
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Figure 7-4 Comparison of FEM and the analytical (wave approach) coupling loss 

factors η23 and η32. 

7.4 Coupling loss factors from FEM ESEA for damaged and rigid 

T-junctions 

This section compares the CLFs from FEM ESEA for damaged and rigid beam-to-

column junctions to investigate whether the number of the subsystems affects the 

efficiency of FEM ESEA and whether it is possible to only consider one type of wave 

motion (e.g. bending waves) or whether two or more types of wave motion could be 

considered simultaneously (e.g. bending and torsional waves). 

7.4.1 Two subsystems 

Figure 7-5 compares the coupling loss factors η12 and η21 from FEM ESEA with two 

subsystems, considering either only bending modes or the combination of all modes 

in the frequency range from 1 to 3200 Hz. Results are shown for rigid and damaged 

junctions. The FEM ESEA results for the 30 damaged beam-to-column junctions are 

shown in terms of a mean value with 95% confidence intervals.  
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In the damaged junctions, the coupling is weaker than the rigid junction because 

subsystems 1 and 2 are connected only via the steel reinforcement.  

For the damaged junctions, the comparison of the CLFs from FEM ESEA with bending 

modes and the combination of all modes showed close agreement (differences within 

5 dB) from 100 to 2500 Hz. Above 2500 Hz, the differences were up to 10 dB. The 

95% confidence intervals for the damaged junctions show that the uncertainty is 

sufficiently low that it should be feasible to estimate the coupling even when the exact 

angle between the beam and the column is unknown in the damaged junctions of a real 

collapsed building.  

For the rigid junction, there were differences up to 5 dB between the CLFs from FEM 

ESEA with bending modes and the combination of all modes up to 3200 Hz. The 

higher CLFs with bending modes indicate that the bending modes are dominating over 

the combination of all the modes for the dynamic response of a beam-to-column 

junction either if the beam is connected to the column rigidly or only via the steel 

reinforcement.  

For consideration of either only bending modes or the combination of all modes, FEM 

ESEA resulted in positive CLFs for each of the 30 damaged junctions except for one 

junction in the frequency band of 100 Hz as Figure 7-6 indicates.  
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Figure 7-5 Coupling loss factors η12 and η21 resulted from FEM ESEA with two 

subsystems with bending only (B) and the combination of all modes (A). The error 

bars denote the 95% confidence intervals. 

 

Figure 7-6 Damaged junctions – Percentage of negative CLFs η12 and η21 resulted from 

FEM ESEA with two subsystems with bending only (B) and the combination of all 

modes (A). 
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7.4.2 Three subsystems 

Figure 7-7 to Figure 7-9 allow comparison of the coupling loss factors from FEM 

ESEA with three subsystems, considering either bending or combination of all modes 

in the frequency range from 1 to 3200 Hz. Results are shown for rigid and damaged 

junctions. The FEM ESEA results for the 30 damaged beam-to-column junctions are 

shown in terms of a mean value with 95% confidence intervals.  

The CLFs η12 and η21 from FEM ESEA with damaged junctions are comparable to the 

CLFS of the rigid one (see Figure 7-7). This was partially expected since subsystems 

1 and 2 are located in the column of the junction where there is no damage. The 

remaining CLFs (η13, η31, η23, and η32) are smaller in the damaged than in the rigid T-

junction. This is expected because in the damaged junctions, subsystem 3 is connected 

to subsystems 1 and 2 only via the steel reinforcement and weaker coupling is expected 

(see Figure 7-8 and Figure 7-9). 

For the rigid T-junction, the differences of the CLFs η12, η13 and η31 from  FEM ESEA 

by using bending and combination of all modes were up to 5 dB between 100 and 900 

Hz. Above 900 Hz, the differences were between 5 and 10 dB for the vast majority of 

the frequency bands. For η21, η23 and η32 the differences were typically up to 5 dB over 

the complete frequency range. FEM ESEA resulted in negative CLFs below 500 Hz 

and over 2700 Hz as it is shown in Figure 7-7. 

For the damaged junctions, the differences between the CLFs from the FEM ESEA for 

bending only and the combination of all modes were up to 5 dB between 100 and 2500 

Hz. Above 2500 Hz, the differences were between 5 and 10 dB. The 95% confidence 

intervals show that the uncertainty is sufficiently low that it should be feasible to 
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estimate the coupling even when the exact angle between the beam and the column is 

unknown in the damaged junctions of a real collapsed building. 

Regardless of the type of modes (bending or combination of all modes), the 

consideration of three subsystems for the FEM ESEA of the 30 damaged beam-to-

column junctions resulted in a significant number of negative coupling loss factors 

(see Figure 7-10 and Figure 7-11). Specifically, below 1500 Hz the percentage of the 

junctions with negative loss factors was between 17 and 54%. These mainly occurred 

with the CLFs from the column (SS1 and SS2) to the beam (SS3) and vice versa. 

Above 1500 Hz, the percentage of the junctions with negative loss factors was between 

3 and 10%.     

Comparing the above percentages with the 3% of negative CLFs of Figure 7-6 (FEM 

ESEA with two subsystems), it is seen that in damaged junctions the use of two instead 

of three subsystems in FEM ESEA significantly decrease the number of negative 

coupling loss factors.    
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Figure 7-7 Coupling loss factors η12 and η21 resulted from FEM ESEA with three 

subsystems with bending only (B) and the combination of all modes (A). The error 

bars denote the 95% confidence intervals. 

 

Figure 7-8 Coupling loss factors η13 and η31 resulted from FEM ESEA with three 

subsystems with bending only (B) and the combination of all modes (A). The error 

bars denote the 95% confidence intervals. 
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Figure 7-9 Coupling loss factors η23 and η32 resulted from FEM ESEA with three 

subsystems with bending only (B) and the combination of all modes (A). The error 

bars denote the 95% confidence intervals. 

 

Figure 7-10 Damaged junctions – Percentage of negative CLFs resulted from FEM 

ESEA with three subsystems with bending modes only (B). 
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Figure 7-11 Damaged junctions – Percentage of negative CLFs resulted from FEM 

ESEA with three subsystems with the combination of all modes (A). 

7.5 Conclusions 

The FEM model of a rigid reinforced concrete T-junction was validated by comparing 

the FEM ESEA coupling loss factors against the theoretical CLFs which were 

calculated using the wave approach for only bending modes. An ensemble of 30 

randomly damaged beam-to-column junctions was generated using Monte Carlo 

simulation with FEM that allowed ESEA with two or three subsystems to be used to 

determine the CLFs between the beam and the column considering either only bending 

or the combination of all modes.  

Regardless of the number of the subsystems and the wave types in FEM ESEA, the 

coupling between the beam and the column was weaker in the damaged than in the 

rigid junction. In both rigid and damaged junctions, the CLFs from FEM ESEA were 

similar with only bending and the combination of all modes, regardless of the number 

of the subsystems. This indicated that the bending modes are dominating the dynamic 
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response of a beam-to-column junction over the combination of all the modes, either 

if the beam is connected to the column rigidly or only via the steel reinforcement. 

In damaged junctions, it was shown that the uncertainty of predicting the CLFs using 

FEM ESEA is sufficiently low that it should be feasible to estimate the coupling even 

when the exact angle between the beam and the column is unknown. In addition, the 

use of two instead of three subsystems should be preferred in FEM ESEA since it 

significantly decreases the number of negative coupling loss factors.    
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8. Conclusions 

8.1 Introduction 

This thesis has investigated the vibration transmission between reinforced concrete 

beams in situations that represent fragmented concrete buildings after an earthquake 

using Experimental Modal Analysis (EMA), Finite Element Methods (FEM) and 

Statistical Energy Analysis (SEA).   

8.2 Main findings 

The research in this thesis provides evidence of the potential to use SEA to predict 

vibration transmission in fragmented concrete buildings after an earthquake. The main 

extensions to SEA modelling were for concrete elements that are in contact with each 

other and to beam-column junctions where the rigid connection has broken leaving 

only the reinforcement. Whilst the findings apply to reinforced concrete beams, the 

experimentally validated FEM models provide a basis on which to model reinforced 

concrete walls and floors. 

FEM models were developed and validated with experimental modal analysis for 

beams connected with surface-to-surface and edge-to-surface contact conditions. 

These models were validated in terms of eigenfrequencies, mode shapes and spatial-

average response. It was shown that the interaction between the beams could be 

approximated using a normal contact stiffness. This stiffness showed some 

dependence on the modal response with values forming a lognormal distribution. It 

was shown that the mean value of this lognormal distribution could be used to 

approximate the contact stiffness in FEM models of beams junctions with surface-to-

surface or edge-to-surface contact conditions.  
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For concrete beams that are stacked on top of each other without any rigid bonding 

material it was shown that MAC is inadequate to assess the validity of the FEM model 

as this led to misleading results. Whilst shortcomings of MAC have been identified in 

other work [66], this problem may have gone unnoticed because most connections tend 

to be rigid rather than spring-coupled. Using PMAC for these beams, it was shown 

that MAC was mainly determined by the modal vectors of one beam whereas the 

contribution of the other beam(s) to the MAC value was negligible. To overcome the 

shortcomings of MAC when validating FEM models of structural coupling between 

elastic systems using spring connectors to model the unbonded contact condition, an 

additional criterion, the Partial Modal Vector Ratio was introduced in this thesis. This 

criterion allowed identification of the FEM model that gave the most appropriate 

representation of the interaction between the coupled beams. 

Compared to running FEM models with applied loads to assess vibration transmission 

between the coupled beams, PMVR is a time-efficient approach that can be used as a 

supplementary criterion to MAC to identify potential correlation problems caused by 

the interaction of structural elements.  

Finite element models were used to calculate the driving-point mobilities of reinforced 

concrete beams for bending modes only, torsional modes only and the combination of 

all modes in the frequency range up to 3200 Hz with free and simply supported 

conditions. These mobilities were in close agreement (difference within 5 dB) with the 

theoretical driving-point mobilities of a thin beam of infinite extent for bending wave 

excitation but not for the combination of all modes. 

Coupling loss factors between two beams were determined using an ensemble of 30 

random beam junctions (free and simply supported boundary conditions) for Monte 

Carlo simulations with FEM and ESEA. These were compared with CLFs calculated 
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using an analytical model based on a lump spring connector. For only bending waves 

or torsional waves, close agreement (difference within 5 dB) was achieved between 

FEM ESEA and the analytical model up to the frequency where half the bending or 

torsional wavelength equalled the longest side of the contact area. Above this 

frequency the interaction between the two beams cannot be considered as a lump 

spring connection. The inclusion of the FEM driving-point mobilities in the analytical 

model (instead of the infinite beam equation for the driving-point mobility) did not 

significantly improve the agreement. When all wave types are combined, close 

agreement can still be achieved at frequencies below 900 Hz.  

To extend the validation of vibration transmission between two beams, SEA path 

analysis was carried out on two piles with seven beams and one pile with 14 beams to 

assess the strength of the various transmission paths. The comparison of the energy 

ratios with the results of the SEA matrix solution showed that a direct path between 

two subsystems will transfer more energy than the other paths. If a direct path does not 

exist, the transmission paths with the smaller number of intermediate subsystems will 

be the strongest and will approximate better the SEA matrix solution.   

FEM models of these piles were used to calculate the energy ratios between the beams 

of the piles. These were compared with the energy ratios calculated from an SEA 

model which used a) FEM ESEA coupling loss factors and b) CLFs resulted from an 

analytical model of a lump spring connector. For the piles of seven beams, reasonable 

agreement (difference within 10 dB) was achieved between SEA and FEM up to at 

least 900 Hz and it was shown that SEA can become more accurate when the number 

of transmission paths increases. For the pile of 14 beams, reasonable agreement was 

achieved between SEA and FEM for the majority of the beams in the frequency range 

up to 700 Hz.  
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The next step was to broaden the approach using FEM and SEA to other types of 

damaged beam or column elements found in a building after an earthquake. Initially, 

FEM models of a rigid reinforced concrete T-junction were validated by comparing 

FEM ESEA coupling loss factors against theoretical CLFs calculated using the wave 

approach for only bending modes. In this situation it was apparent that the T-junction 

needed to be modelled as three subsystems. However, for the damaged T-junction, an 

ensemble of 30 randomly damaged beam-to-column junctions was generated using a 

Monte Carlo simulation with FEM. This allowed an assessment of ESEA with two or 

three subsystems to be used to determine the CLFs between the beam and the column 

considering either only bending modes or the combination of all modes. Regardless of 

the number of the subsystems and the wave types in FEM ESEA, the coupling between 

the beam and the column was weaker in the damaged than in the rigid junction. In both 

rigid and damaged junctions, the CLFs from FEM ESEA were similar with only 

bending and the combination of all modes, regardless of the number of the subsystems. 

This indicated that the bending modes are dominating the dynamic response of a beam-

to-column junction over the combination of all the modes, either if the beam is 

connected to the column rigidly or only via the steel reinforcement. In damaged 

junctions, it was shown that the uncertainty of predicting the CLFs using FEM ESEA 

is sufficiently low that it should be feasible to estimate the coupling even when the 

exact angle between the beam and the column is unknown. The use of two instead of 

three subsystems for the junction significantly decreases the number of negative 

coupling loss factors in FEM ESEA. This indicates that the two-subsystem model 

provides a reasonable basis on which to build an SEA model. 
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8.3 Future work 

Future work could assess the structure borne power input from a person banging on 

concrete with their hand or a piece of rubble. This will identify the relevant frequency 

range that needs to be considered.   

Results in chapter 4 indicate that the mean value of the lognormal distribution could 

be used to approximate the contact stiffness in FEM models of beams junctions with 

edge-to-surface contact conditions. To extend the validity of this approach it would be 

useful: (a) to assess the potential to use SEA to model the vibration transmission in 

these junctions and (b) investigate whether an analytical model based on a lump spring 

connector is valid.  

Results in chapters 6 and 7 shown that SEA could be used to model the vibration 

transmission in piles of reinforced concrete beams and in damaged beam-to-column 

junctions separately. Next stage of the work would be to combine these collapse 

patterns and assess the potential to use SEA to model the vibration transmission.   
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A. MAC values for experimental setups J1 and J2 

Figure A-1 and Figure A-2 compare FEM and EMA results for setups J1 and J2 in 

terms of mode shapes. Close agreement was achieved for the vast majority of the mode 

pairs with MAC > 0.8. 

• Setup J1 

 

Figure A-1 MAC values for FEM model of Setup J1. 

• Setup J2 

 

Figure A-2 MAC values for FEM model of Setup J2. 
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B. SEA matrix solution for piles 1a, 1b and 2 

The general SEA matrix solution for the seven subsystems of pile 1a and 1b and for 

the 14 subsystems of pile 2 for excitation on subsystem 1 is given by Eq. B.1, B.2 and 

B.3. For subsystems that are not directly connected, the coupling loss factor was set 

equal to zero. 

• Pile 1a 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∑ 𝜂1𝑛

𝑁

𝑛=1

0 −𝜂31 −𝜂41 −𝜂51 0 0

0 ∑ 𝜂2𝑛

𝑁

𝑛=1

−𝜂32 0 0 0 0

−𝜂13 −𝜂23 ∑ 𝜂3𝑛

𝑁

𝑛=1

0 0 −𝜂63 −𝜂73

−𝜂14 0 0 ∑ 𝜂4𝑛

𝑁

𝑛=1

0 −𝜂64 −𝜂74

−𝜂15 0 0 0 ∑ 𝜂5𝑛

𝑁

𝑛=1

−𝜂65 0

0 0 −𝜂36 −𝜂46 −𝜂56 ∑ 𝜂6𝑛

𝑁

𝑛=1

0

0 0 −𝜂37 −𝜂47 0 0 ∑ 𝜂7𝑛

𝑁

𝑛=1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

𝐸7]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑊in(1)

𝜔

0

0

0

0

0

0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (B.1) 
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• Pile 1b 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∑ 𝜂1𝑛

𝑁

𝑛=1

0 −𝜂31 −𝜂41 −𝜂51 0 0

0 ∑ 𝜂2𝑛

𝑁

𝑛=1

−𝜂32 0 −𝜂52 0 0

−𝜂13 −𝜂23 ∑ 𝜂3𝑛

𝑁

𝑛=1

0 0 −𝜂63 −𝜂73

−𝜂14 0 0 ∑ 𝜂4𝑛

𝑁

𝑛=1

0 −𝜂64 −𝜂74

−𝜂15 −𝜂25 0 0 ∑ 𝜂5𝑛

𝑁

𝑛=1

−𝜂65 0

0 0 −𝜂36 −𝜂46 −𝜂56 ∑ 𝜂6𝑛

𝑁

𝑛=1

0

0 0 −𝜂37 −𝜂47 0 0 ∑ 𝜂7𝑛

𝑁

𝑛=1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

𝐸7]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑊in(1)

𝜔

0

0

0

0

0

0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (B.2) 
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• Pile 2 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∑ 𝜂1𝑛

𝑁

𝑛=1

0 −𝜂31 −𝜂41 −𝜂51 0 0 0 0 0 0 0 0 0

0 ∑ 𝜂2𝑛

𝑁

𝑛=1

−𝜂32 −𝜂42 0 0 0 0 0 0 0 0 0 0

−𝜂13 −𝜂23 ∑ 𝜂3𝑛

𝑁

𝑛=1

0 0 −𝜂63 0 0 0 0 0 0 0 0

−𝜂14 −𝜂24 0 ∑ 𝜂4𝑛

𝑁

𝑛=1

0 −𝜂64 −𝜂74 0 0 0 0 0 0 0

−𝜂15 0 0 0 ∑ 𝜂5𝑛

𝑁

𝑛=1

−𝜂65 −𝜂75 0 0 0 0 0 0 0

0 0 −𝜂36 −𝜂46 −𝜂56 ∑ 𝜂6𝑛

𝑁

𝑛=1

0 −𝜂86 0 0 0 0 0 0

0 0 0 −𝜂47 −𝜂57 0 ∑ 𝜂7𝑛

𝑁

𝑛=1

−𝜂87 −𝜂97 0 0 0 0 0

0 0 0 0 0 −𝜂68 −𝜂78 ∑ 𝜂8𝑛

𝑁

𝑛=1

0 −𝜂108 −𝜂118 −𝜂128 0 0

0 0 0 0 0 0 −𝜂79 0 ∑ 𝜂9𝑛

𝑁

𝑛=1

−𝜂109 0 0 0 0

0 0 0 0 0 0 0 −𝜂810 −𝜂910 ∑ 𝜂10𝑛

𝑁

𝑛=1

0 0 −𝜂1310 −𝜂1410

0 0 0 0 0 0 0 −𝜂811 0 0 ∑ 𝜂11𝑛

𝑁

𝑛=1

0 −𝜂1311 −𝜂1411

0 0 0 0 0 0 0 −𝜂812 0 0 0 ∑ 𝜂12𝑛

𝑁

𝑛=1

−𝜂1312 0

0 0 0 0 0 0 0 0 0 −𝜂1013 −𝜂1113 −𝜂1213 ∑ 𝜂13𝑛

𝑁

𝑛=1

0

0 0 0 0 0 0 0 0 0 −𝜂1014 −𝜂1114 0 0 ∑ 𝜂14𝑛

𝑁

𝑛=1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

𝐸7

𝐸8

𝐸9

𝐸10

𝐸11

𝐸12

𝐸13

𝐸14]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑊in(1)

𝜔

0

0

0

0

0

0

0

0

0

0

0

0

0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (B.3) 
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C. Path analysis of pile 2 

For power input to source beam SS1, Table C-1 to Table C-13 show the transmission 

paths to receiving beams SS2 to SS14. For each energy ratio, the paths are grouped 

according to the number of the intermediate subsystems.  

Figure C-1 to Figure C-13 present the differences between the energy ratios from the 

SEA matrix solution and path analysis. Results are shown for 16 frequency bands of 

200 Hz bandwidth. The difference curves are coloured according to the number of the 

intermediate subsystems of each transmission path and the path that gives the lowest 

energy ratio difference is considered as the strongest path.  

Table C-1 Transmission paths to beam SS2 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 - - 

1 2 
No.1 (1→3→2) 

No.2 (1→4→2) 

2 - - 

3 5 

No.3 (1→3→6→4→2) 

No.4 (1→4→6→3→2) 

No.5 (1→5→6→3→2) 

No.6 (1→5→6→4→2) 

No.7 (1→5→7→4→2) 

4 - - 

5 8 

No.8 

 (1→3→6→5→7→4→2) 

No.12 

(1→5→6→8→7→4→2) 

No.9 

 (1→3→6→8→7→4→2) 

No.13 

(1→5→7→4→6→3→2) 

No.10  

(1→4→7→5→6→3→2) 

No.14 

(1→5→7→8→6→3→2) 

No.11  

(1→4→7→8→6→3→2) 

No.15 

(1→5→7→8→6→4→2) 
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Figure C-1 Difference between the energy ratio, E1/E2, from the SEA matrix solution 

and path analysis.  

Table C-2 Transmission paths to beam SS3 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

 intermediate 

subsystems 

Number 

of paths 
Paths 

0 1 No.1 (1→3) 

1 - - 

2 3 

No.2 (1→4→2→3) 

No.3 (1→4→6→3) 

No.4 (1→5→6→3) 

3 - - 

4 6 

No.5  

(1→4→7→5→6→3) 

No.8  

(1→5→7→4→2→3) 

No.6  

(1→4→7→8→6→3) 

No.9 

 (1→5→7→4→6→3) 

No.7  

(1→5→6→4→2→3) 

No.10  

(1→5→7→8→6→3) 

5 - - 
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Figure C-2 Difference between the energy ratio, E1/E3, from the SEA matrix solution 

and path analysis. 

Table C-3 Transmission paths to beam SS4 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 1 No.1 (1→4) 

1 - - 

2 4 

No.2 (1→3→2→4) 

No.3 (1→3→6→4) 

No.4 (1→5→6→4) 

No.5 (1→5→7→4) 

3 - - 

4 5 

No.6 (1→3→6→5→7→4) 

No.7 (1→3→6→8→7→4) 

No.8 (1→5→6→3→2→4) 

No.9 (1→5→6→8→7→4) 

No.10 (1→5→7→8→6→4) 

5 - - 

 



173 

 

 

Figure C-3 Difference between the energy ratio, E1/E4, from the SEA matrix solution 

and path analysis. 

Table C-4 Transmission paths to beam SS5 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 1 No.1 (1→5) 

1 - - 

2 3 

No.2 (1→3→6→5) 

No.3 (1→4→6→5) 

No.4 (1→4→7→5) 

3 - - 

4 6 

No.5  

(1→3→2→4→6→5) 

No.8  

(1→4→2→3→6→5) 

No.6  

(1→3→2→4→7→5) 

No.9  

(1→4→6→8→7→5) 

No.7  

(1→3→6→8→7→5) 

No.10 

 (1→4→7→8→6→5) 

5 - - 
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Figure C-4 Difference between the energy ratio, E1/E5, from the SEA matrix solution 

and path analysis. 

Table C-5 Transmission paths to beam SS6 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 - - 

1 3 

No.1 (1→3→6) 

No.2 (1→4→6) 

No.3 (1→5→6) 

2 - - 

3 6 

No.4 (1→3→2→4→6) No.7 (1→4→7→8→6) 

No.5 (1→4→2→3→6) No.8 (1→5→7→4→6) 

No.6 (1→4→7→5→6) No.9 (1→5→7→8→6) 

4 - - 

5 5 

No.10 (1→3→2→4→7→5→6) 

No.11 (1→3→2→4→7→8→6) 

No.12 (1→4→7→9→10→8→6) 

No.13 (1→5→7→4→2→3→6) 

No.14 (1→5→7→9→10→8→6) 
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Figure C-5 Difference between the energy ratio, E1/E6, from the SEA matrix solution 

and path analysis. 

Table C-6 Transmission paths to beam SS7 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 - - 

1 2 
No.1 (1→4→7) 

No.2 (1→5→7) 

2 - - 

3 8 

No.3 (1→3→2→4→7) No.7 (1→4→6→5→7) 

No.4 (1→3→6→4→7) No.8 (1→4→6→8→7) 

No.5 (1→3→6→5→7) No.9 (1→5→6→4→7) 

No.6 (1→3→6→8→7) No.10 (1→5→6→8→7) 

4 - - 

5 8 

No.11 

 (1→3→2→4→6→5→7) 

No.15 

(1→4→2→3→6→8→7) 

No.12 

(1→3→2→4→6→8→7) 

No.16 

(1→4→6→8→10→9→7) 

No.13 

(1→3→6→8→10→9→7) 

No.17 

(1→5→6→3→2→4→7) 

No.14 

(1→4→2→3→6→5→7) 

No.18 

(1→5→6→8→10→9→7) 
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Figure C-6 Difference between the energy ratio, E1/E7, from the SEA matrix solution 

and path analysis. 

Table C-7 Transmission paths to beam SS8 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 - - 

1 - - 

2 5 

No.1 (1→3→6→8) 

No.2 (1→4→7→8) 

No.3 (1→4→6→8) 

No.4 (1→5→7→8) 

No.5 (1→5→6→8) 

3 - - 

4 11 

No.6 

(1→3→2→4→6→8) 

No.10 

(1→4→2→3→6→8) 

No.14 

(1→5→6→4→7→8) 

No.7 

(1→3→2→4→7→8) 

No.11 

(1→4→6→5→7→8) 

No.15 

(1→5→7→4→6→8) 

No.8 

(1→3→6→4→7→8) 

No.12 

(1→4→7→5→6→8) 

No.16 

(1→5→7→9→10→8) 

No.9 

(1→3→6→5→7→8) 

No.13 

(1→4→7→9→10→8) 
 

5 - - 
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Figure C-7 Difference between the energy ratio, E1/E8, from the SEA matrix solution 

and path analysis. Combination of paths No. 1-5 and No. 1-16 result in identical 

curves. 

Table C-8 Transmission paths to beam SS9 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 - - 

1 - - 

2 2 
No.1 (1→4→7→9) 

No.2 (1→5→7→9) 

3 - - 

4 13 

No.3 

(1→3→2→4→7→9) 

No.8 

(1→4→6→5→7→9) 

No.13 

(1→5→6→8→7→9) 

No.4 

(1→3→6→4→7→9) 

No.9 

(1→4→6→8→7→9) 

No.14 

(1→5→6→8→10→9) 

No.5 

(1→3→6→5→7→9) 

No.10 

(1→4→6→8→10→9) 

No.15 

(1→5→7→8→10→9) 

No.6 

(1→3→6→8→7→9) 

No.11 

(1→4→7→8→10→9) 
 

No.7 

(1→3→6→8→10→9) 

No.12 

(1→5→6→4→7→9) 

5 - - 
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Figure C-8 Difference between the energy ratio, E1/E9, from the SEA matrix solution 

and path analysis. 

Table C-9 Transmission paths to beam SS10 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 - - 

1 - - 

2 - - 

3 4 

No.1 (1→3→6→8→10) 

No.2 (1→4→6→8→10) 

No.3 (1→4→7→8→10) 

No.4 (1→4→7→9→10) 

4 - - 

5 32 

No.5 
(1→3→2→4→6→8→10) 

No.16 
(1→4→2→3→6→8→10) 

No.27 

(1→5→6→4→7→8→10) 

No.6 
(1→3→2→4→7→8→10) 

No.17 
(1→4→6→5→7→8→10) 

No.28 

(1→5→6→4→7→9→10) 

No.7 
(1→3→2→4→7→9→10) 

No.18 
(1→4→6→5→7→9→10) 

No.29 

(1→5→6→8→7→9→10) 

No.8 
(1→3→6→4→7→8→10) 

No.19 
(1→4→6→8→7→9→10) 

No.30 

(1→5→6→8→11→13→10) 

No.9 
(1→3→6→4→7→9→10) 

No.20 
(1→4→6→8→11→13→10) 

No.31 

(1→5→6→8→11→14→10) 

No.10 
(1→3→6→5→7→8→10) 

No.21 

(1→4→6→8→11→14→10) 

No.32 

(1→5→6→8→12→13→10) 

No.11 
(1→3→6→5→7→9→10) 

No.22 

(1→4→6→8→12→13→10) 

No.33 

(1→5→7→4→6→8→10) 
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No.12 
(1→3→6→8→7→9→10) 

No.23 

(1→4→7→5→6→8→10) 

No.34 

(1→5→7→8→11→13→10) 

No.13 
(1→3→6→8→11→13→10) 

No.24 

(1→4→7→8→11→13→10) 

No.35 

(1→5→7→8→11→14→10) 

No.14 
(1→3→6→8→11→14→10) 

No.25 

(1→4→7→8→11→14→10) 

No.36 

(1→5→7→8→12→13→10) 

No.15 
(1→3→6→8→12→13→10) 

No.26 

(1→4→7→8→12→13→10) 
 

 

 

Figure C-9 Difference between the energy ratio, E1/E10, from the SEA matrix solution 

and path analysis. 
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Table C-10 Transmission paths to beam SS11 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 - - 

1 - - 

2 - - 

3 5 

No.1 (1→3→6→8→11) 
No.2 (1→4→6→8→11) 
No.3 (1→4→7→8→11) 
No.4 (1→5→6→8→11) 
No.5 (1→5→7→8→11) 

4 - - 

5 30 

No.6 

(1→3→2→4→6→8→11) 
No.16 

(1→4→6→8→10→14→11) 
No.26 

(1→5→6→8→10→13→11) 
No.7 

(1→3→2→4→7→8→11) 
No.17 

(1→4→6→8→12→13→11) 
No.27 

(1→5→6→8→10→14→11) 
No.8 

(1→3→6→4→7→8→11) 
No.18 

(1→4→7→5→6→8→11) 
No.28 

(1→5→6→8→12→13→11) 
No.9 

(1→3→6→5→7→8→11) 
No.19 

(1→4→7→8→10→13→11) 
No.29 

(1→5→7→4→6→8→11) 
No.10 

(1→3→6→8→10→13→11) 
No.20 

(1→4→7→8→10→14→11) 
No.30 

(1→5→7→8→10→13→11) 
No.11 

(1→3→6→8→10→14→11) 
No.21 

(1→4→7→8→12→13→11) 
No.31 

(1→5→7→8→10→14→11) 
No.12 

(1→3→6→8→12→13→11) 
No.22 

(1→4→7→9→10→8→11) 
No.32 

(1→5→7→8→12→13→11) 
No.13 

(1→4→2→3→6→8→11) 
No.23 

(1→4→7→9→10→13→11) 
No.33 

(1→5→7→9→10→8→11) 
No.14 

(1→4→6→5→7→8→11) 
No.24 

(1→4→7→9→10→14→11) 
No.34 

(1→5→7→9→10→13→11) 
No.15 

(1→4→6→8→10→13→11) 
No.25 

(1→5→6→4→7→8→11) 
No.35 

(1→5→7→9→10→14→11) 
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Figure C-10 Difference between the energy ratio, E1/E11, from the SEA matrix solution 

and path analysis. 

Table C-11 Transmission paths to beam SS12 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 - - 

1 - - 

2 - - 

3 5 

No.1 (1→3→6→8→12) 
No.2 (1→4→6→8→12) 
No.3 (1→4→7→8→12) 
No.4 (1→5→6→8→12) 
No.5 (1→5→7→8→12) 

4 - - 

5 23 

No.6 

(1→3→2→4→6→8→12) 
No.14 

(1→4→6→8→10→13→12) 
No.22 

(1→5→6→8→10→13→12) 
No.7 

(1→3→2→4→7→8→12) 
No.15 

(1→4→6→8→11→13→12) 
No.23 

(1→5→6→8→11→13→12) 
No.8 

(1→3→6→4→7→8→12) 
No.16 

(1→4→7→5→6→8→12) 
No.24 

(1→5→7→4→6→8→12) 
No.9 

(1→3→6→5→7→8→12) 
No.17 

(1→4→7→8→10→13→12) 
No.25 

(1→5→7→8→10→13→12) 
No.10 

(1→3→6→8→10→13→12) 
No.18 

(1→4→7→8→11→13→12) 
No.26 

(1→5→7→9→10→8→12) 
No.11 

(1→3→6→8→11→13→12) 
No.19 

(1→4→7→9→10→8→12) 
No.27 

(1→5→7→9→10→13→12) 
No.12 

(1→4→2→3→6→8→12) 
No.20 

(1→4→7→9→10→13→12) 
No.28 

(1→5→7→8→11→13→12) 
No.13 

(1→4→6→5→7→8→12) 
No.21 

(1→5→6→4→7→8→12)  



182 

 

 

Figure C-11 Difference between the energy ratio, E1/E12, from the SEA matrix solution 

and path analysis. 

Table C-12 Transmission paths to beam SS13 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 - - 

1 - - 

2 - - 

3 - - 

4 17 

No.1 

(1→3→6→8→10→13) 
No.7 

(1→4→7→8→10→13) 
No.13 

(1→5→6→8→12→13) 
No.2 

(1→3→6→8→11→13) 
No.8 

(1→4→7→8→11→13) 
No.14 

(1→5→7→8→10→13) 
No.3 

(1→3→6→8→12→13) 
No.9 

(1→4→7→8→12→13) 
No.15 

(1→5→7→8→11→13) 
No.4 

(1→4→6→8→10→13) 
No.10 

(1→4→7→9→10→13) 
No.16 

(1→5→7→8→12→13) 
No.5 

(1→4→6→8→11→13) 
No.11 

(1→5→6→8→10→13) 
No.6 

(1→5→7→9→10→13) 
No.6 

(1→4→6→8→12→13) 
No.12 

(1→5→6→8→11→13)  

5 - - 
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Figure C-12 Difference between the energy ratio, E1/E13, from the SEA matrix solution 

and path analysis. 

Table C-13 Transmission paths to beam SS14 through pile 2 shown in Figure 3-8 for 

power input to beam SS1 (grey shading indicates the strongest path). 

Number of 

intermediate 

subsystems 

Number 

of paths 
Paths 

0 - - 

1 - - 

2 - - 

3 - - 

4 12 

No.1 

(1→3→6→8→10→14) 

No.7  

(1→4→7→9→10→14 

No.2 

(1→3→6→8→11→14) 

No.8  

(1→5→6→8→10→14 

No.3 

(1→4→6→8→10→14) 

No.9  

(1→5→6→8→11→14 

No.4 

(1→4→6→8→11→14) 

No.10  

(1→5→7→8→10→14 

No.5 

(1→4→7→8→10→14) 

No.11  

(1→5→7→8→11→14 

No.6 

(1→4→7→8→11→14) 

No.12  

(1→5→7→9→10→14) 

5 - - 
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Figure C-13 Difference between the energy ratio, E1/E14, from the SEA matrix solution 

and path analysis. 
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