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Abstract: Modelling lottery sales as a function of the mean, standard deviation and 

skewness of the probability distribution of returns potentially gives insights into how the 

design of a game could be modified to maximise net revenue. But use of OLS is 

problematic because the level of sales itself affects values of the moments (and 

insufficient instruments are available for IV regression). We draw on the concept of a 

rational expectations equilibrium, developing a new regression model which corrects for 

endogeneity where the causal impact of the dependent variable on the right-hand side 

variables is deterministic. Results provide more reliable guidance to lottery agencies 

because accounting for endogeneity leads to significantly different results from OLS and 

these results have superior performance in out-of-sample forecasting of sales. More 

generally, results prove consistent with the Friedman-Savage explanation of why people 

buy lottery tickets and with evidence from racetrack data that ‘bettors love skewness’.  
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Highlights: 

 

● we model lotto demand, correcting for endogeneity without the use of instruments 

 

 ● assuming rational expectations allows removal of biases caused by reverse causation 

 

● our new method for estimating lotto demand provides improved forecasting of sales 

 

● lotto players respond positively to expected value and skewness 
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1. Introduction 

A lotto game offer players the chance to win a large jackpot prize. The player pays an entry fee and 

chooses numbers from a set of numbers according to the format of the particular game. For example, 

players may be asked to choose any six numbers from the set 1-49 (or have the computer choose for 

them). After the draw closes, a proportion of revenue from entry fees is paid into a jackpot pool. A 

random draw of numbers then takes place, for example six balls are drawn from a container with 49 

numbered balls. These are the winning numbers. Any player whose number selection exactly matches 

the numbers drawn wins a share of the jackpot pool (the sales revenue also funds smaller prizes for 

‘near misses’, for example for entries which match only four or five of the six balls). In the event that 

no one wins a share in the jackpot, the money allocated ‘rolls over’ to the following draw, i.e. it is 

added to the jackpot prize pool for that draw. This will make the game better value next time it is 

offered.  

 

Economists have long been interested in modelling demand for such lotto games, for two main 

reasons. First, they are typically state-operated or state-sanctioned and generate considerable 

revenues, which are often dedicated to funding ‘good causes’. Second, economists have been 

intrigued by the popularity of lotto games given the typically poor returns-to-player on offer. 

Capturing consumer preferences informs choices on how game design may be modified to 

maximise revenue for good causes. Potentially, studying demand will also offer insight on 

why people buy lottery tickets in the first place and add to understanding of how risk 

preferences can explain the phenomenon of gambling. 

 

Researchers modelling lotto demand (for a detailed survey, see Pérez and Humphreys, 2013) 

rely on the ‘rollover’ feature of the game for identification of the demand function. Whenever 

the jackpot prize is not won, the jackpot money carried forward to the following draw raises 

the size of the jackpot even if some of the smaller prizes remain the same. Often several 

consecutive rollovers occur and the jackpot prize becomes many times greater than in the first 

draw in the sequence. So draws observed over any given period may differ very considerably 

from each other in terms of the set of prizes available to the purchaser of a ticket. It is this 

variation from draw to draw which facilitates identification.  
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Essentially the purchaser of a ticket is regarded in this research as buying a probability 

distribution of winnings, which includes a high probability of winning nothing, a low 

probability of winning a modest amount, and a very low probability of winning an extremely 

high prize. Rollovers change the characteristics of this probability distribution of winnings. 

For example, they increase the mean (or expected value) because they add money from 

preceding draws to the prize pool for the current draw; and they also change the shape of the 

distribution, because all the additional funds carried forward from the preceding draw are 

allocated just to the top prize, raising skewness. Relating the sales in each draw to the 

characteristics of the probability distribution of prizes generates a demand function defined in 

terms of those characteristics. 

 

The characteristics of the probability distribution of winnings in a draw are conveniently 

summarised in terms of mean, variance (or standard deviation) and skewness (as in, for 

example, Walker and Young, 2001). But the researcher runs into a problem in attempting to 

estimate demand as a function of these moments. Purchasers can indeed be expected to 

respond to variations in mean, variance (or standard deviation) and skewness. However, there 

is also reverse causation. Fixed proportions of sales revenue from the current draw are paid 

into the jackpot and lower prize pools, which affects the values of each of these moments.  

 

This and other types of endogeneity in economic modelling which lead to biased coefficient 

estimates are classically resolved by resort to the use of instrumental variables. Gulley and 

Scott (1993) estimated lotto sales as a function of expected value and proposed that expected 

value could be instrumented by the amount rolled over from the preceding draw. Subsequent 

authors (such as Farrell et al., 1999) followed their example.  

 

However, specifying sales as a function of just expected value is an incomplete representation 

of consumer preferences. Expected value is less than the price of a ticket, so the decision to 

buy appears likely to be driven by higher moments of the probability distribution of 

winnings. Unfortunately, a more complete specification would require additional instruments 

(one for each of the additional variables) and none have been identified. Thus, Walker and 

Young (2001) had to estimate UK Lotto sales as a function of mean, variance and skewness 
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by ordinary least squares (OLS) even though all three variables were measured ex post and 

were therefore endogenous. How much this will have biased coefficient estimates has 

remained unclear. 

 

Our methodological contribution is to show that the problem of endogeneity can in fact be 

resolved when estimating lotto demand without the use of any instruments. This is only 

possible because reverse causation in this particular case is deterministic: the causal impact of 

the dependent variable on the explanatory variables is determined by the operator’s fixed 

formula for allocating a share of revenue from ticket sales in a draw to prizes for that draw. In 

this context, a demand curve purged of the biases associated with endogeneity may then be 

estimated by drawing on the concept of a rational expectations equilibrium. In the rational 

expectations equilibrium, where the underlying assumption is that agents on average make 

unbiased forecasts, predicted sales used to compute the values of the moments are required to 

equal the sales predicted by the moments model. Our methodology extends the scope of 

rational expectations theory to a new market setting. In the past, it has been used primarily in 

macro-oriented contexts but also underpins much analysis in the area of asset prices (Sargent, 

2008).    

 

We apply our rational expectations approach to a data set of sales for the principal lotto game 

offered in Spain. We demonstrate that estimation results are materially different from OLS 

results. Coefficient estimates are smaller than those obtained from OLS because the model 

has been purged of endogeneity. This is practically important because reliably estimating 

consumer preferences over mean, variance and skewness allows operators to predict 

consumer response were the pattern of returns to be altered by changing the format of the 

game.  

 

Finally, by offering a reliable way of using lotto sales models to reveal consumer preferences 

over the characteristics of the probability distribution of returns, we will be able to confirm 

whether the pattern of signs on mean, standard deviation and skewness is consistent with the 

Friedman-Savage utility-of-wealth function (Friedman and Savage, 1948). Confirmation of 

the relevance of Friedman-Savage from experimental data has been hard to obtain because 
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experiments cannot realistically offer sufficiently large gains which reveal preferences for 

gambling for life-changing prospective gains. But Brunck (1981) provided indirect evidence 

from a National (US) survey where respondents’ dissatisfaction with current income 

predicted participation in lotteries but not in other gambling activities where extreme wins are 

not offered. And, over time, study of gambling markets has added slowly to evidence through 

analysis of naturalistic data. Golec and Tamarkin (1998) found patterns of odds and returns 

across horses that were consistent with racetrack bettors being risk-averse but skewness-

loving, which would be the case if they had Friedman-Savage utility functions. Walker and 

Young (2001) took a yet more direct approach by regressing lottery draw sales on the mean, 

variance and skewness of returns in the particular draw and found coefficient estimates to be 

positive, negative and positive respectively (albeit that skewness was only marginally 

significant). This was evidence consistent with Friedman-Savage; but, as noted already, they 

had to use OLS despite acknowledging the presence of endogeneity. By resolving the 

endogeneity issue, we are able to consider safer estimates of the relevant coefficient estimates 

and test whether, for lottery play at least, behaviour in the field is consistent with the 

Friedman-Savage assumptions and with their rationale for lottery play: purchasers of lottery 

tickets are sufficiently compensated by high positive skewness in returns that they buy tickets 

which are poor value in terms of the mean return.  

 

The remainder of the paper is structured as follows. In Section 2, we provide context for the 

Spanish data set we analyse. We go on to work with a model where sales are a function of the 

moments of the probability distribution of winnings. Section 3 outlines issues on how these 

moments may be measured. In Section 4, we build our model, based on the idea of a rational 

expectations equilibrium, and seek to justify our claim to have resolved the roadblock in 

modelling lotto demand caused by the lack of obvious instruments. Our strategy for 

computing the parameter estimates and standard errors is described in an Appendix. The 

estimates themselves are presented in Section 5 and compared with OLS estimates. We show 

that estimation from our modelling based on rational expectations provides more accurate 

out-of-sample sales forecasts than OLS and that the material difference between coefficient 

estimates is large enough to be relevant in practical application by those evaluating 

prospective changes in the structure of any lotto game. The final section of the paper reflects 

on what has been learned.       
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2. Data and context 

The game we study to illustrate our methodology is El Gordo de la Primitiva, offered by 

the Spanish state lottery agency, Loterías y Apuestas del Estado (LAE). It was launched 

as a monthly game in 1993 but converted to weekly play on October 12, 1997, and the 

data to be employed in our analysis relate to draws from then on (and up to September 

28, 2008). This gave us 573 weekly observations. Throughout these weeks, the cost of 

purchasing a ticket (€1.50) and the proportion of sales revenue earmarked for prizes 

(55%) remained the same.  

 

Initially the game was sold with the single matrix m/n format used in many other 

jurisdictions, with m=6 and n=49. So players had to choose six numbers from the set 1 to 

49 and, if the selection made exactly matched the six main numbers drawn (the 

probability of such a match is approximately 1 in 14m), the player shared in the jackpot 

prize. There were also four lower prize tiers and the additional possibility of a refund of 

the entry fee, which was made to holders of 10% of the tickets sold (chosen by a 

separate random process). Detailed rules were in place for the proportion of ticket 

revenue allocated to each prize level.  

 

On February 6, 2005, at the 383rd draw in our data set, LAE introduced a major 

modification to the design of the game by changing to a two-matrix format, 5/54 + 1/10. 

So now a player had to choose five numbers from the set 1 to 54 plus an additional 

number from a second matrix consisting of the ten numbers from 0 to 9. Consequently 

the chance of winning a share in the jackpot fell to 1 in nearly 32m. The entire prize 

structure was changed, with eight instead of five tiers of prize (in addition to the refund, 

for which the probability remained 0.1). Table 1 presents a summary of the basic rules of 

the game before and after the changes in game design. Figure 1 shows draw-by-draw 

sales figures 

 

It should be noted that, before each draw, LAE announces how much has been rolled 

over from preceding draws but does not issue forecasts of projected jackpot. Jackpot size 

is known only after sales close because a proportion of sales revenue is added to any 

rolled over funds already in the pool. Players’ decisions on how many tickets to buy are 
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therefore made without complete information and must be based on expectations 

concerning the distribution of prizes on offer. 

 

 

Figure 1. Numbers of tickets sold for El Gordo de la Primitiva 

 

 

 

Because the game was made harder to win by the design change in 2005, the jackpot 

was won less often, despite an increase in sales, and draw cycles were therefore typically 

longer. This allowed jackpots to accumulate to larger amounts than had been observed 

under the old format and the highest recorded in our data was €26.7m. Through the 

sequence of draws before the jackpot was won, the patterns of expected value, standard 

deviation and skewness were radically different from before. High skewness was more 

commonly a feature than under the previous arrangements. How sales evolved is shown 

in Figure 1 where the vertical line shows the point at which the design change came into 

effect. 
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Table 1. Rules and prize structure of El Gordo de la Primitiva 

  Before February 6, 2005 After February 6, 2006 

Format 6 from 49 5 / 54 + 1 / 10 

Drawing 

frequency Weekly Weekly 

Ticket price 

(€) 1.5 1.5 

Take-out ratea 0.45 0.45 

Prize 

categories 5 8 

Share of the prize poolb,  number of balls to be matched and probability of winning 

Jackpot 0.55c 6 7.151 x 10-8 0.22d 5+1 3.162 x 10-8 

2nd category  0.05 5+1e 4.291 x 10-7 0.33 5+0 2.846 x 10-7 

3rd category  0.16 5 1.845 x 10-5 0.06 4+1 7.747 x 10-6 

4th category  0.24 4 9.69 x 10-4 0.07 4+0 6.972 x 10-5 

5th category  15.03 3 0.0177 0.08 3+1 3.72 x 10-4 

6th category  - - - 0.26 3+0 0.00335 

7th category  - - - 0.2 2+1 0.00583 

8th category  - - - 3 2+0 0.0524 

 

Notes: a take-out rate is the proportion of entry fees retained by the operator to cover operating costs and 

profit. b 55% of total income goes into the prize pool, but 10% goes to a fund for the refund of the ticket 

price prize and the remaining 45% is then distributed among prize ‘categories’. c Once the total amount 

devoted to the fixed prize for the 5th category  has been deducted from 45% of total income, the remaining 

amount is distributed among prize categories (including the jackpot). d 22% of total income goes directly 

into the jackpot prize pool. The remaining 23% of total income – after deducting the total amount devoted 

to the flat prize for the 8th category – is distributed among lower categories. e A seventh ball was drawn 

before February 6, 2005. Matching 5 numbers and the 'Bonus Ball' won the second highest prize. 

 

We note that the design change in question was not a response to falling sales (see 

Figure 1). Change therefore appears to have been a genuine experiment to confirm the 

agency’s view on how players would be likely to respond to return-risk-skewness 

packages that were different from those that had been available through the draw cycle 

in the past. It provides for our empirical analysis something akin to a natural experiment 

where change can be considered to be exogenous (until recently relatively few other 

jurisdictions had altered the design of their lotto games and those that did so were 

typically responding to falling sales). 
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3. Measurement of the moments 

Given that we intend to model lotto sales as a function of expected value, standard 

deviation and skewness, it should be noted before we begin that there is some ambiguity 

in how values for the three moments should be calculated. Previous papers calculate the 

values for a ticket for which the combination of numbers has been randomly selected 

and on the assumption that all other entries to the draw are also based on random 

selection. However, many players choose numbers for themselves rather than opt for a 

computer generated entry. These choices are liable to be correlated with each other and 

any given level of sales will be associated with a lower proportion of the possible 

number combinations being selected.  This is the issue of ‘conscious selection’, raised 

first by Cook and Clotfelter (1993). Conscious selection lowers the probability that the 

jackpot will be won at all and produces increased variability in the number of winners 

who share the jackpot when it is won. 

 

To take account of conscious selection when calculating the moments, we adapted 

methodology developed in Baker and McHale (2009). Our main results will be from 

modelling where the moments have been calculated following the Baker-McHale 

approach. However, we checked the sensitivity of results to the assumption of conscious 

selection and the methodology for allowing for it by repeating our estimation but with 

moments calculated without allowance for conscious selection (i.e. every player was 

assumed to pick his or her numbers randomly).  Results were in fact very similar, 

validating and extending the claim in Farrell et al. (1999) that allowing for conscious 

selection when modelling UK lotto sales as a function of expected value, made no 

material difference to results. It had not been clear to us whether the same would apply 

when higher moments were added to the specification but, in the event, we drew the 

same conclusion. Therefore our final results will not be dependent on decisions made 

about dealing with conscious selection. 

 

 

4. A model for resolving endogeneity 

4.1 Overview  

As the moments used to predict lotto sales are themselves a function of sales, OLS 

must be modified in some way because of endogeneity; but, as we have noted, 
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insufficient instruments are available for IV regression to be an option. Here we adopt 

instead a method based on constructing a self-consistent estimate of sales from the 

regression equation. This self-consistent estimate is not a function of observed sales, q, 

hence removing the endogeneity problem.  

 

This procedure has a simple economic interpretation. There are many econometric 

models in which people’s expectations figure as predictive variables (Murphy and 

Topel, 2002). Greene (2008, p. 507) gives the illustrative example of a model in which 

the expected number of children could be a predictor variable in the decision to enrol in 

job training. In our case, the difference is that expected sales influences the values 

of the moments of the prize probability distribution which, in turn, influence the 

prediction of sales from the regression equation. This leads to a self-consistency 

condition that must be met in a rational expectations equilibrium. One can imagine 

the potential purchaser of a ticket hypothesising a likely sales figure, evaluating the 

resulting attractiveness of the lottery, and hence refining his or her estimate of sales 

until a self-consistent estimate is reached. 

 

As this methodology, which we term self-consistent regression (SCR), is new, 

computations were done by writing fortran95 programs. These used Numerical 

Algorithms Group (NAG) routines for random number generation, function 

minimisation, numerical differentiation, and matrix inversion. Full description of our 

computation strategy is provided in an Appendix. In the remainder of the present 

section, we first describe the model itself and then explain why and how it allows 

unbiased estimates to be derived despite endogeneity issues and despite the lack of 

appropriate instrumental variables. 

 

4.2 Model description 

The observed sales figure is modelled as 

 
1

ˆ( )
p

t j jt t t

j

q x q


                                         (1) 

where the subscript t signifies the draw number. The j are regression coefficients and 

the xj are variables including expected ticket value, standard deviation and skewness 

(x1=1 to permit 1 to serve as an intercept). The model is specified as linear as the 
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simplest choice where theory provides no guidance as to functional form. 

 

Control variables include draw number  (to account for any trend in sales), shift and 

slope dummies to account for any effects (other than through changes in the prize 

probability distribution) from the introduction of a new game design, and two lagged 

values of sales, to account for habit formation. Some of the xj, specifically expected 

value, standard deviation and skewness, are functions of predicted sales q̂. Finally, is 

an exogenous random error about which we shall give further detail later. 

 

Since by definition q = q̂ + we have the self-consistency condition  

 
1

ˆ ˆ
p

t j jt t

j

q x q


                                      (2) 

This means that the forecast of sales that we imagine the player makes is also our best 

forecast from the trend and moments of the prize distribution.  The only parameters in 

the model are 1,…,p, but the model is now nonlinear in these j because the predictor 

q̂ solves a nonlinear equation. 

 

4.3 The role of rational expectations 

Our SCR model is essentially based on the notion of a rational expectations 

equilibrium, a concept applied generally to markets where participants must forecast 

the future or some other unknown: such a market is said to be in equilibrium when 

the expectations of market participants match actual outcomes on average (the 

wisdom of crowds). Here, the values of the moments are not known at the time of 

ticket purchase as they depend on finally realised sales. In the absence of published 

forecasts on the final size of the jackpot, and using (readily) available information 

such as the size of rollover paid into the jackpot pool for the current draw, players are 

assumed to make their own forecasts of sales in order to assess the values of the 

moments (they then decide how many tickets to purchase). The assumption does not 

imply that their forecasts are perfect but it does imply that the forecasts are unbiased 

and that any forecast errors are not serially correlated. 

 

This of course is a strong assumption which may not necessarily hold. However, such 

evidence as there is from the prior literature on the rationality of lotto players 
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suggests that it may be regarded as a fair working assumption.  Scott and Gulley 

(1995) developed a method of testing for a rational expectations equilibrium in a 

lotto market. They found that actual sales were uncorrelated with the residuals from 

the fitted expected value equation in a two stage procedure, concluding that players, 

on average, correctly forecast sales using available information and supporting the 

idea of a rational expectations equilibrium. Forrest et al (2000) replicated this finding 

for the case of the market for UK Lotto and Matheson and Grote (2003) found, when 

looking at American lotteries, that players acted as if they were able to adjust their 

expected value forecasts in the face of new arrangements for paying out the jackpot 

prize as an annuity that appeared almost to constitute misinformation. This again is 

strong evidence of efficient use of data on the part of players and adds to the 

plausibility of assuming a rational expectations equilibrium in a lotto market. 

 

How does assuming a rational expectations equilibrium enable an endogeneity issue 

to be resolved without recourse to conventional IV estimation?   

 

First, one could state that the forecast qˆ can be interpreted as akin to an instrumental 

variable, because it correlates with the predictor variables but not with the error term 

. We need only one such variable, despite having several predictors, because they 

are all functions of the one quantity qˆ. The error  represents the influence of 

variables external to the lottery, such as the current weather or economic conditions, 

because we aim to have used all the lottery-based information such as rollover in our 

regression model. Hence qˆ correlates with the xj but not with . 

 

However, a deeper insight is that it is possible to remove endogeneity because we 

know sufficient information about the mechanism through which it operates to 

account for it in another way. A key point is that SCR deals only with one specific 

type of endogeneity.  By contrast, the IV method is a very general tool that can be 

applied to all types of endogeneity, at the cost of introducing fresh variables into the 

analysis. 

 

Here sales q are a function of predictors x, and vice versa. The functional dependence 

of q on x is specified by the model, but here the reverse functional dependence x(q) is 
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known. The regression need only be corrected for this latter dependence to make it 

work. How easy this is can be seen by a first-order (approximate) solution; expand 

x(qˆ)  x(q) + x(q)’ (qˆ- q), where x’(q) is the (calculable) derivative dx/dq evaluated 

at observed sales q. Then a regression 

ˆ( )q x q                                               (3) 

becomes  

( ) {1 '( )}q x q x q                                                                                     (4) 

  

Here, x is now evaluated only at observed sales q, and the only departure from OLS 

is that the random error must be corrected by a function of . This makes the 

regression nonlinear, so that the approximate solution could be found by nonlinear 

least squares (NLLS).  

 

5.  Results and model validation 

Summary statistics are shown in Table 2 and results from estimation are displayed 

in Table 3.  

 

The model is 

 
1

ˆ( )
p

j j

j

t t txq q 


                          (5) 

where the sales figure for draw t (in millions) is modelled as a linear regression on p 

predictor variables, xj, some of which (expected value, standard deviation and skewness) 

are themselves functions of sales, qt, and others, such as lagged and doubly-lagged sales 

(included to capture habit formation) are not. We also include a trend term (draw 

number) and an interaction term where we multiply trend and a dummy variable (set 

equal to one for draws from Draw 383 on). This slope dummy permits trend to be 

different after the design change in El Gordo de la Primitiva.  
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Table 2. Summary statistics 

 mean standard 

deviation 

minimum maximum 

sales 

(millions) 

3.752 1.293 1.272 9.478 

expected 

value 

0.799 0.170 0.607 1.493 

standard 

deviation 

1098.5 915.3 78.0 4384.7 

skewness 4529.1 901.5 3409.4 5903.1 

 

 

Table 3. Regression results 

               

     (1)   (2)   (3)  

      |t|    |t|    |t|  

estimator    OLS     SCR     SCR      

conscious selection   yes     yes     no      

                    

                    

lag 1 sales    0.2851  10.42  0.2640  10.66  0.2675  10.80   

lag 2 sales    0.0882  3.67  0.1013  4.04  0.1007  4.39   

draw number   0.0014  6.63  0.0028  9.73  0.0028  9.40   

draw number*new design -0.0023  4.23  -0.0026  2.91  -0.0027  3.02   

expected value   10.1456  21.52  6.493  12.09  6.435  8.98   

standard deviation   -0.0015  14.41  -0.0007  5.34  -0.0007  4.50   

skewness    0.0010  17.01  0.0004  7.81  0.0005  6.88   

                    

constant    -9.0036  19.28  -4.870  9.38  -4.987  7.40   

                    

observations   573     573     573      

R-sq    .913     .921     .922      

               

Note: p-value to three decimal places was < .001 for all coefficient estimates  

OLS refers to ordinary least squares and SCR to self-consistent regression 

 

 

 

The OLS results (where values of the moments were computed taking conscious 

selection into account) appear in the leftmost columns of Table 3. Here, the moments 

were computed using the realised sales in each draw that are to be predicted; this 

contradiction is the weakness of the OLS model.  
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Although the problem of endogeneity with an OLS specification appears obvious, we 

nevertheless carried out a Hausman specification test to confirm that the OLS estimator 

indeed suffered from endogeneity. The test was carried out for a subset of variables, i.e. 

the expected value, standard deviation and skewness coefficients, and gave the chi-

squared statistic as 2 [3] = 200.73, showing that the OLS estimator is not consistent 

given the endogeneity problem it incurs.  

 

The second set of estimates in Table 3 reports the corresponding result from the SCR 

method. The third column is for the case where we re-estimated the SCR model with no 

allowance for conscious selection. The similarity of the results between columns (2) and 

(3) demonstrates that whether or not conscious selection is allowed for when modelling 

lotto sales is not in fact an important issue.  

 

The principal feature of Table 3 is that there is a material difference between the OLS 

and the SCR results. When estimation by OLS (column 1) is replaced by estimation with 

SCR (column 2), the coefficient on expected value falls to about 64% of its previous 

value and the coefficient estimates on standard deviation and skewness fall, respectively, 

to 47% and 40% of their previous values. This is to be expected given that the equation 

has effectively been purged of the effects of endogeneity. All coefficient estimates, 

however, remain very highly significant and of the expected signs.   

 

The self-consistent model appears to track sales more accurately than OLS. Holding 

back the last 50 draws, the MAPE (mean absolute percentage error) of the out-of-sample 

forecast of sales from the SCR model (with conscious selection) for the last 50 draws 

was 4.85%. When we estimated the OLS model holding back the last fifty draws, and 

“predicted” sales for those fifty using values for the moments calculated according to 

realised sales, the MAPE was 9.80%, more than twice as high. The same story held if we 

made comparisons using the SMAPE (symmetric mean absolute percentage error) 

(4.93% versus 10.47%) or the MAAPE (mean arctangent absolute percentage error, see 

Kim and Kim, 2016) (4.84% versus 9.76%). This illustrates the potential gain from 

adopting the self-consistent model for practical purposes. 
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A footnote to our results is that the redesign of the game appears, in fact, to have 

been very successful in terms of total sales, which were 44% higher in the twelve 

months following than in the twelve months preceding the change of format. Given 

that inclusion of the moments as regressors already accounts for restructuring of the 

prizes on offer, the results on the trend variables suggest that players collectively 

found the game format itself less satisfactory than before (perhaps, for example, 

they found it irksome to select their numbers from two matrices rather than one). 

Therefore it is likely that the strong positive response of sales to the reform was 

indeed linked to their preferences regarding the prize probability distributions 

available over the twelve months before and after the design change. That the game 

became harder to win made draw cycles longer and there were therefore more weeks 

with high skewness. Further, at any given point in the draw cycle, skewness was 

higher than it would have been under the old rules. Given the preference for 

skewness revealed by the regression results, it appears reasonable to link increased 

demand to increased skewness. 

 

6. Concluding remarks 

Previous work attempting to model lotto demand encountered an endogeneity problem 

which was not resolved because of a shortage of appropriate instruments. We have 

attempted a resolution by developing and employing a new class of regression model 

which corrects for endogeneity in the special context where the causal impact of the left 

hand side variable on the right hand side variables is deterministic. Results were 

markedly different from using OLS as the best alternative in the absence of instruments. 

The coefficient estimates on expected value, standard deviation and skewness all fell 

substantially but in different proportions to each other, indicating that ignoring 

endogeneity may generate estimates that are misleading for operators seeking guidance 

on consumer preferences over aspects of game design. Despite its computational 

complexity, we therefore recommend use of our self-consistent regression given that the 

lotto industry is important in terms of both its scale and the social importance of the 

expenditures it funds.  

 

Using results from modelling sales is of practical importance to the lottery industry. 

Game managers must decide on game formats (e.g. whether a game should be choose-
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six-numbers-from-49 or choose-7-from-51) and prize structures (e.g. how much of the 

prize pool should go to the jackpot?) In assessing alternatives, a key input is formal 

evaluation of how consumers respond to different packages of expected value, standard 

deviation and skewness in returns. Our methodology allows more reliable input into 

decision-taking.  

 

A more general contribution of our paper is that we have identified a method which, 

without requiring instrumental variables, enables correction for endogeneity associated 

with reverse causation in the particular case where the influence of the dependent on the 

explanatory variables operates mechanistically.  Whether our innovation in methodology 

can be applied to settings other than the lottery we leave open to future research. Precise 

knowledge of how reverse causation operates may in fact be a rare situation but we 

speculate that it may be present in the setting of network goods where the utility of a 

service depends on how many other people subscribe. For example, suppose 

subscriptions to an online poker room are modelled as dependent on the expected 

waiting time for a playing partner to be found. Here there is reverse causation which is 

likely to operate mechanistically, permitting the application of SCR where there is no 

instrument available for expected waiting time.    

 

Our paper has also yielded findings which test the validity of the Friedman-Savage 

(1948) utility-of-wealth function. The positive/ negative/positive coefficient estimates on 

expected value, standard deviation and skewness (all strongly significant) are consistent 

with the shape of function they proposed and consequently with their explanation of why 

people buy lottery tickets. Previous attempts at validation of Friedman-Savage from 

naturalistic data on lottery sales may have been unreliable to the extent that endogeneity 

biased the coefficient estimates. Our methodology for removing endogeneity allows 

more confidence than before in the Friedman-Savage representation of risk preferences.  

 

 7. Appendix 

This appendix provides details of the exercise in computation that was required to 

estimate our SCR model. 

 

To compute parameter estimates and standard errors, a workable strategy is to evaluate 
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the skewness and other moments, at a number of equally-spaced values of q, for each 

draw. In this study, forty values from 0.25 million to 10 million sales were used. The 

value of xj(qˆ) is then found at any value of qˆ by interpolation. Quadratic inverse 

interpolation was used to solve the equation 

1

ˆ ˆ( ) 0j

j

t

p

t j tq x q


 
                         (6) 

  

What happens computationally is that the log-likelihood function is maximised using a 

function maximiser. At any stage en route to the optimum values β*j, the maximiser 

requires the log-likelihood to be evaluated at values of βj of its choice. Then, for each 

draw, equation (3) is solved to yield q̂ , the predicted sales for that draw, and this value 

is used to compute the log-likelihood as shown below. The values of xj(
q̂ ) that have 

been tabulated are specific to the particular draw, because they are functions of the 

amount rolled over  and these values are used to compute the log-likelihood across all 

draws as shown below. 

 

Concerning the error structure, it is reasonable to suppose that the error will likely be a 

percentage or proportion of sales. For example, on a sunny day, maybe 10% more 

people play, or those who do increase their purchases by 10%. This thought leads to a 

lognormal distribution for sales, ln(qt) = ln(qˆt) +εt , where t~N[0, 2]. In terms of the 

error , we have  = {exp ( ) - 1}qˆ. 

 

We tested the lognormal assumption by using the Box-Cox transformation to replace 

ln(q) = ln(qˆ) +ε by  

 
( )

1q
T q








                         (7) 

The best fit gave the power as  = 0.056, very close to zero, showing that a logarithmic 

transformation does give the best fitting model; the fit residuals are then approximately 

normally distributed. 

 

The log-likelihood function is then 
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where the last term is the Jacobian.  Since  

2 2

1

ˆ ˆ(ln( ) ln( )) / ( ),
n
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                                             (9) 

we can substitute for 2 in the log-likelihood to obtain the profile log-likelihood 

2

1 1

ˆ( / 2) ln( (ln ln ) ) ( ) / 2 ( / 2) ln(2 / ( )) ln( )t t t

n n

p

t t

n q q n p n n p q
 

        
      (10) 

where the last three terms are constant and can be ignored. This was maximised with a 

function-maximiser to estimate the . Because the likelihood surface was bumpy, the 

simulated annealing version of the Nelder-Mead (1965) simplex method given by Press 

et al (2007) was used to maximise the likelihood function. The simplex method is 

already a robust method of maximisation that does not get ‘stuck’ on the way to the 

global maximum as for example a conjugate- gradient method might, and the simulated 

annealing modification allows it to jump over bumps. It is of course important to 

continue computation until one is very sure that the global maximum has been reached. 

To ensure this, iterations were restarted from 5 random starting points. 

 

Another technical problem is that for some choices of the j, the self-consistency 

condition (2) cannot be satisfied. In this case, qˆ was taken as the value of q that 

minimised the modulus of the difference between the left and right hand sides of (2). 

The solution converged such that (2) was always satisfied. 

 

Throughout our empirical analysis, we used standard deviation rather than variance to 

capture risk. There is no knowledge as to which functional form is more appropriate. In 

general, when the functional form of the predictor is not known, it is appropriate to 

explore transformations of the predictor variables. We therefore fitted a model in which 

the standard deviation was raised to a power (effectively a Box-Cox transformation). 

The fit improved from that obtained with the standard deviation; the increase in log-

likelihood for one extra parameter was 18, corresponding to a fall in chi-squared of 36. 

The power of the standard deviation was 0.766 (with standard error of 0.0123). This 

clearly shows that, empirically, standard deviation is a better predictor than variance. For 

simplicity, we have reported results using the standard deviation rather than the standard 
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deviation raised to the power 0.766. 

 

The calculation of standard errors on fitted model parameters, was initially done 

numerically by computing the Hessian of the log-likelihood using numerical 

differentiation, and inverting the Hessian to give the covariance matrix for the fitted 

model parameters. The bumpiness of the likelihood surface makes this method 

unreliable, so that the Hessian can have negative eigenvalues, and hence a bootstrap 

method was used (Efron and Tibshirani, 1993). Here the draws are resampled with 

replication, and the standard deviation of parameter estimates computed as the standard 

deviation of the distribution of resampled estimates. The 250 bootstrap samples were 

made by randomly selecting draws from the data set, sampling with replacement. 
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