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Abstract. We examine the problem of gathering k ≥ 2 agents
(or multi-agent rendezvous) in dynamic graphs which may
change in every synchronous round but remain always con-
nected (1-interval connectivity) [KLO10]. The agents are iden-
tical and without explicit communication capabilities, and are
initially positioned at different nodes of the graph. The prob-
lem is for the agents to gather at the same node, not fixed in
advance. We first show that the problem becomes impossible
to solve if the graph has a cycle. In light of this, we study a re-
laxed version of this problem, called weak gathering. We show
that only in unicyclic graphs weak gathering is solvable, and
we provide a deterministic algorithm for this problem that
runs in polynomial number of rounds.

Keywords: gathering, weak gathering, dynamic graphs, unicyclic graphs,
mobile agents

1 Introduction and Related Work

In [DLFP+18], the authors study the feasibility of gathering k ≥ 2 agents
in 1-interval connected rings and investigate the impact that chirality (i.e.,
common sense of orientation) and cross detection (i.e., the ability to detect
whether some other agent is traversing the same edge in the same round)
have on the solvability of the problem. To enable feasibility, they empower
the agents with some minimal form of implicit communication, called
homebases (the nodes that the agents are initially placed are identified by
an identical mark, visible to any agent passing by it).

⋆ All authors were supported by the EEE/CS initiative NeST. The last author was also
supported by the Leverhulme Research Centre for Functional Materials Design. This
work was partially supported by the EPSRC Grant EP/P02002X/1 on Algorithmic
Aspects of Temporal Graphs.
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In this work we go beyond ring graphs and we start a characterization
of the class of solvable 1-interval connected graphs. As we show, weak
gathering is impossible if the graph contains at least two cycles, regardless
of any other additional assumptions.

We then provide a deterministic algorithm that solves weak gather-
ing in unicyclic graphs, and runs in polynomial number of synchronous
rounds. A unicyclic graph is a connected graph containing exactly one
cycle. Observe that ring graphs is a special case of unicyclic graphs. The
additional difficulty in these graphs comes from the fact that in most
instances of initial agent configurations, the agents must gather on the
cycle. However, in the model described in Section 1.1 the agents do not
have the ability to distinguish the nodes that form the cycle. In Section
2, we empower the agents with some minimal form of implicit communi-
cation that allows them to assign identical labels on the nodes. We then
carefully design a non-trivial mechanism that utilizes the graph topology
and after O(n3 log n) rounds the agents start moving only on the nodes of
the cycle. Finally, the second part of the algorithm guarantees eventual
correctness of weak gathering.

1.1 Model and Definitions

Static Network Model. A static network is modeled as an undirected
connected graph GU = (V,E), referred to hereafter as a static graph.
The number of nodes n = |V | of the graph is called its size. Every node
u ∈ GU has δ(u) incident edges, where δ(u) is its degree. For each of them,
it associates a port and the ports are arbitrarily labeled with unique labels
from the set {0, . . . , δ(u) − 1}. We call these labels the port numbers.

Dynamic Network Model. Given an underlying static graph on n
vertices, a dynamic graph on GU = (V,E) is a sequence GD = {Gt =
(V,Et) : t ∈ N} of graphs such that Et ⊆ E for all t ∈ N. Every Gt is
the snapshot of GD at time-step t. We assume that the sequence GD is
controlled by an adversarial scheduler, subject to the constraint that the
resulting dynamic graph should be 1-interval connected.

Definition 1 (1-interval-connectivity). A dynamic graph GD is 1-
interval-connected if for every integer t ≥ 0, the static graph Gt = (V,Et)
is connected.

Agents. The agents is a set A = {α1, . . . , αk} of k anonymous computa-
tional entities, each provided with memory and computational capabili-
ties, that execute the same protocol. They are arbitrarily placed on some
nodes of the graph, and they are not aware of the other agents’ positions.



Gathering in 1-Interval Connected Graphs 3

More than one agent can be in the same node and may move through
the same port number (i.e., the same edge) in the same round. We say that
an agent α is blocked if the edge that α decided to cross in the current
round is disabled by the scheduler. We consider the strong multiplicity
detection model, in which each agent can count the number of agents
at its current node. Based on that information, the port labeling and
the contents of its memory, it determines whether or not to move, and
through which port number. When two or more agents move in opposite
directions of the same edge in the same round, we can assume that they
can either detect this event or not. If yes, we say that the system has
cross detection.

We assume that the nodes of G do not have unique identifiers, and
the agents do not have explicit communication capabilities. We do this
in order to capture the limitations and the basic assumptions that make
gathering in dynamic networks feasible. Detailed assumptions needed by
us to solve weak gathering in unicyclic graphs are clearly explained in
Section 2.

Definition 2 (Gathering problem). The gathering problem requires
a set of k mobile computational entities, called agents, initially located at
different nodes of a graph, to gather within finite time at the same node,
not known to them in advance.

Definition 3 (Weak gathering problem). The relaxed version of the
gathering problem, called weak gathering, requires all agents to gather
within finite time at the same node, or on the endpoints of the same edge.

1.2 Impossibility results

Proposition 1. Gathering is unsolvable in 1-interval connected unicyclic
graphs.

Proof. Consider an underlying graph GU = (V,E), where there exists
a single cycle C of size c > 3. Assume that the number of agents is
k = 2, and they try to solve gathering. GU can be represented as a ring
graph, where each node w ∈ C is the root of a tree Gw, (C \ w) /∈ Gw,
of size sw ≥ 1. Then, if the agents start from the same tree Gw, it is
possible to meet without reaching the nodes of the ring. However, the
agents are placed arbitrarily on the graph, thus, they might start from
different trees. This means that the nodes must reach the ring in order
to meet, in which case the scheduler can always block the path between
them without violating the connectivity constraints. ⊓⊔
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Proposition 2. Weak gathering is unsolvable in 1-interval connected
graphs, if G has at least two cycles.

Proof. Consider the case where G contains exactly 2 cycles c1 and c2 with
no common vertices. All nodes of c1 and c2 can be roots of (independent)
trees, and there is a single path connecting c1 and c2, through nodes u ∈ c1
and w ∈ c2. The nodes of this path can also be roots of (independent)
trees. Consider now a partitioning of G into 3 groups L, M , and R, where
R and L contain all the nodes of the cycles c1 and c2 respectively, and the
trees starting from their nodes, except u and w. M contains all the nodes
in the path between u and w, including u and w and the trees starting
from these nodes.

The connectivity constraints imply that at most one edge from c1 and
one from c2 can be missing in each round. If there are two agents that
try to solve gathering and start from R and L, the scheduler can always
block the path to u and w without violating the connectivity constraints.
This means that none of them can ever reach u and w, thus, they can
never meet or end up in neighboring nodes.

Now, consider the case where c1 and c2 have at least two common
vertices. Then, the partition M contains all the common vertices (and
the trees starting from these nodes), while R and L contain the rest of
the nodes of c1 and c2 respectively (and the corresponding trees). The
scheduler can again remove two edges from G in each round from two
different partitions (otherwise, if the scheduler removes two edges of the
same partition, the connectivity constraints are violated). With a similar
argument, the scheduler can always block an agent from reaching a dif-
ferent partition, thus, two agents that start from different partitions can
never meet with each other, or move to neighboring nodes.

In the case where c1 and c2 have only one common vertex w, if two
agents start from c1\w and c2\w, the scheduler can again block the path
between the agents and w, by removing the corresponding edges in each
cycle.

Observe that the above cases apply also in graphs with more that two
cycles. This means that weak gathering, and the harder case of gathering
cannot be solved in this setting. ⊓⊔

Note that the above Propositions hold for any underlying graph with
one and at least two cycles respectively. The case of 1-interval connected
graphs without any cycle is equivalent to having a static tree graph, where
the problem of agent gathering has been extensively studied.
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2 Weak gathering

In light of the above impossibilities, we hereafter consider unicyclic graphs,
and we provide a deterministic algorithm that solves weak gathering. The
additional assumptions that we made are discussed and motivated later
in this section. Briefly, we provide the agents with non-constant memory
and knowledge of k. In addition, for ease of presentation we also provide
the agents with two identical movable tokens that can be placed on the
nodes and picked up in subsequent visits of these nodes and are indistin-
guishable from the other agents’ tokens, and we assume that the agents
have cross-detection and knowledge of n. In Section 2.3 we discuss how
we could drop the latter assumptions.

First, observe that in 1-interval connected unicyclic graphs, the sched-
uler can block an agent from reaching some parts of the graph, however,
all agents can move to the nodes of the unique cycle. The scheduler is
only allowed to remove one edge in each round, otherwise the connectiv-
ity constraints will be violated. Therefore, it is possible for the agents to
reach two neighboring nodes and solve weak gathering. In other words, if
there is an execution of a weak gathering algorithm that an agent α never
reaches the cycle, then there is a sequence of (connected) graphs where α
never reaches the same or neighboring node with the rest of the agents.

Observation 1 In order to achieve weak gathering in 1-interval con-
nected unicyclic graphs, the agents must gather on the nodes of the cycle.

Call C the set of nodes of the unique cycle and Gw the (connected) tree
starting from node w ∈ C and (C \ w) /∈ Gw. The above observation
holds because an agent in a node v ∈ Gw can be completely blocked from
reaching any other node u /∈ Gw. This means that weak gathering can
only be achieved if the agents first reach a node in C (otherwise they will
not be on the same or neighboring nodes). The above observation means
that the agents must first perform some sort of exploration on the graph
in order to reach the cycle and gather on some node v ∈ C.

Communication assumptions: A very common assumption that makes
the problem solvable in ring graphs is for the agents to have distinct iden-
tities [CPL12, DMGK+06, DFP03]. Alternatively, another assumption
which pertains to the communication capabilities of the agents, is either
to supply each node with a whiteboard where the agents can leave notes as
they travel [SKS+20], mark the nodes that the agents are initially placed
(identifiable and identical nodes called homebases), or provide the agents
with a constant number of movable tokens that can be placed on nodes,
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picked up, and carried while moving [CDKK08]. Under the first commu-
nication assumption the problem becomes solvable even in the presence
of some faults [BFFS07, CDS07]. In [DLFP+18], the authors used home-
bases in order to break the symmetry in 1-interval connected ring graphs.
In our work, we choose to empower the agents with two movable and iden-
tical tokens (called hereafter pebbles). The pebbles of each agent are also
indistinguishable from those of another agent. In Section 2.3 we discuss
how this assumption could be dropped.

Cross detection: In the algorithm of Di Luna et al. [DLFP+18] the
authors considered the case where cross detection is available, and then
they construct a mechanism which avoids agents crossing each other (i.e.,
no agents traverse the same edge at the same round and in opposite
directions), called Logic Ring, in order to drop this assumption. We now
assume that the agents have cross-detection, and in Section 2.3 we explain
how this mechanism can be applied in our setting.

Memory requirements: A very significant aspect of mobile agent sys-
tems is the memory requirements of the agents. In [Bud78], the authors
show that the problem of exploring a static graph with a finite state au-
tomaton (or agent) is unsolvable if the port numbers of the nodes are set
arbitrarily. In [FIP+05], the authors show that Θ(D log d) bits of memory
are required to achieve exploration, where D is the diameter, and d the
maximum degree of the graph. An alternative approach to network de-
sign consists in graph preprocessing by setting the port numbers, so that
graph exploration is easy, i.e., with constant memory [GKM+08, Ilc08].
In this work, we provide the agents with non-constant memory, as we
assume that the port labels are assigned arbitrarily.

Knowledge of n and k: Finally, we assume that the agents know the
size n of the graph and the number k of agents. We first show that if k is
not known, then weak gathering is unsolvable. Finally, in Section 2.3 we
discuss how to drop the assumption of knowing n.

Property 1. If k is not known, then weak gathering is unsolvable, even
with homebases.

Proof. A well known result even for static graphs is that if neither n
nor k are known, then gathering is unsolvable, regardless of chirality and
cross detection. We now show that if k is not known, then gathering is
unsolvable in unicyclic graphs.

By Observation 1, weak gathering can only be achieved on the nodes
of the cycle, otherwise the scheduler can choose two agents and completely
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block them from reaching the same node or the endpoints of the same
edge.

Consider the case where only n is known. The agents in order to
decide that gathering was achieved must find in some way the number of
agents. This is because if they manage to reach the same node u, they
need to decide whether to terminate, wait there, or continue moving on
the graph. Assume that u is on the cycle. Observe that the case where
they terminate, or wait on u in order for the rest of the agents to gather
leads to impossibility as the scheduler can choose one agent that has not
reached there and block it from reaching u or any neighboring node of u.
Assume now that all agents have reached u. If they choose to move on
the graph (even with a stronger communication model which allows them
to communicate and move on the graph as a group), this would happen
indefinitely.

Assume now that homebases are distinguishable from the rest of the
nodes. Because of the above, the agents need in some way to infer the
number of agents on the graph. They are not allowed to communicate in
any way, thus, each agent needs to explore the graph, visit and count all
homebases. However, because of the cycle and the fact that the agents
cannot leave labels on the nodes of the graph, every time an agent tra-
verses the cycle, all nodes are seen as unexplored, and there is no way of
determining whether a node was explored in a previous step or not (i.e.,
a homebase was previously visited). This means that a single homebase
might be counted more than once, thus, the agents will eventually not
hold the correct value of k. ⊓⊔

2.1 Weak gathering algorithm

Our deterministic algorithm is divided into two phases, and the overall
idea is the following: During the first phase all agents place one of their
pebbles on their initial nodes. Then, they start exploring the graph using
a DFS approach. Each agent α gradually moves its pebble closer to the
cycle, and when its pebble reaches the cycle, α moves to the second phase.
When all agents have moved to the second phase, the executed process
ensures that they will eventually gather on the cycle.

In order to make the description of the algorithm more clear, we first
introduce a number of variables that are stored in the local memory of
each agent.

– round : Counter that is increased by one in each round.
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– Graph (or G): Contains the lists that represent the nodes visited by
an agent. A specific node of the underlying graph might correspond
to multiple nodes in G. We refer to the Graph of an agent α as Gα.

– stepsAway : The distance between the agent and its pebble in G.

– epoch: The epoch, which determines the maximum distance of the
DFS exploration in G (2epoch).

– roundsBlocked : The number of rounds that the agent is continuously
blocked.

– pebblesFound : The number of pebbles found in distinct nodes of G.

Phase 1. This phase is responsible for traversing the graph (exploration)
and identifying the nodes that form the cycle. We now present all proce-
dures that take place during this phase.

Mapping of the graph. The problem of graph mapping has been exten-
sively studied in the literature. Most of the algorithms rely on either the
usage of whiteboards [DFNS05, DFK+07], or assume that the agents can
observe the memory contents of each other when they meet on the same
node [GTKC12]. In the latter, the agents maintain multiple hypotheses
when ambiguity about the graph topology occurs, and they resolve it
when they meet.

Clearly, in order to explore and map an anonymous graph, the agents
need to mark the nodes, so as to identify previously visited nodes on
subsequent visits. However, in our work the marks (i.e., pebbles) made
by each agent are indistinguishable from those made by another, thus, it
is not clear whether multiple agents can successfully map an anonymous
graph. Despite of the above problem, we have carefully designed an al-
gorithm that correctly maps part of the graph and allows the agents to
successfully identify the cycle without having to resolve the ambiguity
that occurs.

Each agent α stores in its local memory a list of the neighbors of each
vertex visited and the port numbers that led to those nodes. Let u be the
initial node of an agent α. Then, α constructs a list L(u) which represents
u. Assume that it traverses an edge through port number i and arrives
at a node w at port number j. It then constructs a new list L(w), and in
L(u) stores i and a pointer to L(w). At the same time, it stores in L(w)
the port j and a pointer to L(u). We call these lists the Graph of α or Gα.

Graph exploration. We use a traditional technique which makes each agent
traverse a tree in the DFS way. In a round, when the agent arrives at
node u through a port i, it leaves u through port (i + 1) mod δ(u) in
the next round (if the edge is available). Initially, the agents start by
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leaving the port 0. We divide the execution into epochs, and in each
epoch e the agents perform DFS up to distance 2e in G. In particular,
when stepsAway = 2e, the agent moves through the port that it arrived
from. Initially e = 0, and when the agent returns to its initial node and
has traversed all its neighbors in that phase, it increases e by one.

Pebbles on the cycle. During the exploration process, the agents check a
number of predicates that help them to gradually move their pebble to the
cycle and achieve gathering. In particular, whenever an agent α reaches a
leaf, it marks the node in Gα with a special character ��C, indicating that
it does not belong to the cycle, and never moves to that node (of Gα)
again. In addition, if a node u ∈ Gα with degree δ(u) has δ(u)−1 marked
neighbors, the agent also marks u. Whenever an agent α reaches the node
u ∈ Gα containing its own pebble, and u is marked with ��C, α moves its
pebble to the (unique) neighboring node w ∈ Gα that is not marked.

Cycle detection. When an agent α encounters a pebble, it marks the node
in Gα (locally) with a special character T , and increases the value of the
counter pebblesFound by one (if already marked with T or ��T , it does
nothing). In particular, only the first time that it visits a node with a
pebble during an epoch e it marks the corresponding node in Gα. This is
important in order to maintain a consistent knowledge about the positions
of the pebbles as we show in Lemma 4. We hereafter call the T -marked
nodes of G pebbles of G or TGα

, and the set of nodes with pebbles on
the underlying graph distinct pebbles or P . We say that a node w ∈ TGα

corresponds to a node u ∈ P , and we write w → u, if w was marked
when the agent α visited u. If ∀u ∈ P , ∃w ∈ TGα

: w → u, we say that
the agent α visited all distinct pebbles, and we write TGα

≡ P . When
α counts k + 1 pebbles (including its own pebble), we show that it can
verify whether these pebbles are on the cycle or not. In case that they
are on the cycle, the agent enters to the second phase of the algorithm
which only moves on the nodes of the cycle and eventually achieves weak
gathering. At this point, TGα

contains the nodes of Gα in which k + 1
pebbles were found by an agent α. Given TGα

and Gα, agent α constructs
in its local memory a (shortest) path P = {e0, e1, . . . , es} with vertex
sequence V = {v0, v1, . . . , vs}, from the first to the last node of TGα

in
Gα, containing all nodes of TGα

. Here, el = (pi, pj), where pi is the port
number that led to vl, and pj the port number of vl that it arrived at
(i.e., the port numbers in the endpoints of the same edge). If P is not
a line in Gα, it marks all nodes of TGα

with a different character ��T and
resets pebblesFound to zero (this can be achieved in one round locally,
without visiting all nodes of TGα

again). Otherwise, it constructs a cycle
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C ′ assuming that the first and last pebbles f, l visited correspond to the
same pebble p ∈ P , i.e., f → p and l → p. In other words, it assumes
that the nodes v0, vs ∈ V correspond to the same node of the underlying
graph. To construct C ′, it sets P = {e1, . . . , es} and when it reaches vs
it moves through the port specified by e1. Then, it traverses C ′ in order
to verify if it is a cycle (the ports visited and the locations of the pebbles
must agree with C ′). If yes (note that this can only happen if its own
pebble is on the actual cycle of the underlying graph), it enters to the
second phase of the algorithm. Otherwise it moves back to the node where
it was in the beginning of the cycle detection step by following the reverse
path, and continues with the exploration of the graph. In order to avoid
situations where an agent α is blocked in consecutive unsuccessful cycle
detections, it does not count again the pebbles that belong on the same
nodes of G until the end of its current epoch (i.e., it marks all nodes in TGa

with��T ). Note that if C is the cycle of the underlying graph, then C ′ might
be a set of multiple traversals of C. For example, if C = {v0, v1, . . . , vm},
then C ′ = {v0, v1, . . . , vm, v0, v1, . . . , vm, v0, v1, . . . }. If C ≡ C ′, the agents
solve weak gathering. Otherwise, weak gathering will fail and the agents
continue moving only on the nodes of C ′ (second phase) until they find
again k + 1 pebbles, in which case, they reconstruct C ′. Finally, note
that α can now traverse the cycle both clockwise and counterclockwise,
though, the orientation might be different for each agent. We later explain
how to obtain chirality (i.e., common sense of orientation).

Phase 2. When an agent α enters to this phase, it means that is has
constructed a cycle C ′ in its local memory, and all nodes of C ′ are on
the actual cycle of the underlying graph. In this phase the agents assume
that all pebbles have reached the cycle, and they perform some actions
that would solve weak gathering in case that this assumption is true.
An agent can either be in state walking or gathering, and initially it is
in state gathering. In Grouping we explain how the agents form groups
when certain predicates are satisfied. We call a set of agents a group
if they are on the same node and move in the same direction. In the
first state (walking), it traverses the cycle counterclockwise (according
to its own sense of orientation), and when it visits k + 1 pebbles (i.e.,
pebblesFound = k + 1), it reconstructs a cycle C ′ as explained in cycle
detection and changes its state to gathering. In the second state, based
on the distances between the pebbles in Gα and the port labeling in cycle
C ′ it elects a node u ∈ C ′ as the meeting point. In Unique node election
we explain how this is achieved. If for any reason the agents do not agree
on u, weak gathering will not succeed, thus they reset pebblesFound to
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zero and their state becomes walking. As we show later, after O(n3 log n)
rounds all pebbles reach the cycle, and phase 2 will eventually succeed.
If they agree on u, they can also obtain chirality by utilizing the port
numbers of u. Consider a node u ∈ C with ports p1 and p2 that lead
to its neighboring nodes in C ′. Assume, w.l.o.g., that p1 < p2. Then,
α sets as clockwise the orientation that is defined by traversing p1 and
counterclockwise the one defined by traversing p2.

After determining the node u where they should meet, the agents
move for 2n rounds towards u by following the shortest path (we call
this the first step of state gathering). We now distinguish the following
cases for an agent α, depending on whether α reached u, or not, after 2n
rounds. If an agent arrived at node u after 2n rounds in state gathering,
it checks whether all agents are there. If yes, it terminates. Otherwise, it
starts moving clockwise on the cycle for n rounds (second step of state
gathering). As we show later, by the end of round 2n all agents that
entered to state gathering during a time window of length n are divided
into at most two groups. The rest of the agents that due to missing edges
did not reach the elected node after 2n rounds in state gathering, they
start moving counterclockwise as a group for n rounds (second step). We
want the agents in each group to start the second step of this phase at
the same time (the two groups may start at different rounds). However,
observe that the agents might not enter to state gathering at the same
time. In Grouping, we explain how the agents start walking on the cycle
as groups. At this point, there are two groups of agents moving towards
each other. In any case, the two groups of agents will either end up on the
same node, or they will cross each other, or they will become blocked on
the endpoints of the same edge. In Grouping, we explain how these groups
of agents merge after at most n rounds or terminate in neighboring nodes.

Blocked agents and termination condition. The overall idea is that if an
agent is blocked long enough for the rest of the agents to reach some
endpoint of the missing edge, then weak gathering is achieved and the
agents terminate. To achieve this, in each round, if an agent α is blocked,
it increases roundsBlocked by one and waits there until either the edge
becomes available again (in this case it resets roundsBlocked to zero), or
the termination condition is satisfied. In particular, if roundsBlockedα ≥
δn log n, for some small constant number δ and no other agent arrived at
the same node during that round, it places its second pebble and termi-
nates. The rest of the agents on the same node recognize that the number
of pebbles on that node was increased by one, thus they terminate. There
are two cases for the rest of the agents that are on the other endpoint w
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of the missing edge. Either the missing edge becomes enabled again, or
it remains disabled long enough for some other agent α′ ∈ w to place its
second pebble on w, and the same process occurs. In the first case, all
agents move on the other endpoint where the rest of the agents are (and
have terminated), they count that the total number of agents is k, and
they terminate.

Unique node election. The goal of this subroutine of the algorithm is to
break the symmetry in the cycle C of the graph and elect a unique node
as the meeting point of the agents. This is feasible in most cases, given the
topology of the underlying graph G, the port labeling of the nodes, and
the distances between the final positions of the pebbles in C. It is very
important that all agents elect, eventually, the same node, but this can
be achieved only if the information used to break the symmetry between
the agents is identical. During the exploration phase, an agent α stores
in its local memory information about the nodes as it visits them, in Gα.
However, due to the cycle and because the agents are placed arbitrarily
on the graph, the graphs G of two agents might be different. This means
that Gα cannot be used to break the symmetry, otherwise they might elect
different nodes. However, during the second phase of the algorithm, all
agents construct in their local memories a cycle C ′ which will eventually
be identical to each other. Thus, the final positions of the pebbles and
the port labeling of the nodes in C ′ can lead to the election of a unique
node as their meeting point. If the above configuration is symmetric, the
agents recognize that weak gathering cannot be achieved. In this case,
they continue executing the algorithm, as the pebbles might have not
reached their final positions.

Grouping. This subroutine of the algorithm is used in order to form groups
of agents in the following cases.

(1) During the first step in state gathering, the agents move towards
the elected node for 2n rounds. However, not all agents start this step at
the same time. The first predicate of grouping is responsible to synchronize
the agents so as to begin the second step at the same time, and then
continue moving as a group. In particular, when an agent α counts 2n
rounds of phase 2, it then moves either clockwise or counterclockwise,
depending on whether it reached the elected node or not. Let u be the
node where α was at the end of the first step of phase 2. Then, it moves
only for one round and waits there (at most n rounds) for the rest of the
agents in u to move at the same node as α. To achieve this, the agents in
u detect that the number of agents was decreased by one. If α crossed an
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agent during that round, it moves back to u and repeats the same process
again. When the rest of the agents in u reach α, they continue moving as
a group.

(2) If an agent in state walking visits the elected node u and there are
some other agents there, it assumes that they are in state gathering. In
this case, it enters to state gathering and waits there at most 2n rounds,
or until the first predicate of grouping is satisfied.

(3) When two agents or groups of agents cross each other or visit the
same node, they merge into a single group. To achieve this, when this hap-
pens, the group which is closer to the elected node u (say G1) by following
the clockwise path, reverses direction. The other group G2 waits until G1

catches them. Then, the agents that were in state gathering continue
walking in their initial direction, while the agents in state walking reverse
direction (if not already did). After a successful edge traversal of G1, if G2

is missing, it reverses direction again. In order to avoid situations where
the two agents or groups of agents get stuck, after their next successful
edge traversal they do not try to group (for one round). Similarly, if the
groups of agents visit the same node, the agents in state walking reverse
direction and perform the same procedure as in the previous case. Here,
the group of agents in state gathering does not do anything. Finally, after
a successful merging, the agents in state walking change to state gather-
ing. In the cases where the edge between the two groups is missing, they
wait until it becomes available again, or until the termination condition
is satisfied.

If in any of the previous cases the number of agents is k, they all
terminate.

Algorithm 1 First phase
Result: Identifies the nodes that form the cycle.
(1) Initialization of variables.
(2) Place a pebble on the initial node.
(3) Explore graph up to distance 2e, and create a mapping in G. Mark all nodes of G
where pebbles are found with T .
(4) Mark all nodes with✚C in G that have exactly one unmarked neighbor. When you
mark the node where the pebble is, move it on the unique unmarked neighbor.
(5) Upon marking k + 1 nodes with T , construct the (shortest) path C

′ that contains
all these nodes and traverse it. If successfully traversed, move to Phase 2. Otherwise,
mark these nodes with✚T , move to initial node and continue with the exploration.
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Algorithm 2 Second phase
Result: Solves weak gathering on some node of the cycle.
(1) State walking:
(i) Move counterclockwise.
(ii) Upon counting k+1 pebbles, elect a leader node u using the port labeling and the
positions of the pebbles, and change to state gathering.

(2) State gathering:
(i) Move towards u for 2n rounds.
(ii) If reached u, after round 2n move clockwise for n rounds. Otherwise, move coun-
terclockwise for n rounds.

(3) Grouping and termination:
(i) In each round check all predicates of grouping and perform the corresponding ac-
tions.
(ii) If at any time the number of agents is k, or the number of rounds that it is blocked
is more than δn log n, terminate.

2.2 Analysis

We first show that after the end of the first phase of the algorithm, all
agents correctly identify the nodes that form the cycle C, and then they
only move on C. In addition, because of the fact that an agent can be
blocked on a node of C indefinitely, we show that during the first phase
all agents reach some endpoint of the missing edge after at most δn log n,
for some small constant number δ, rounds.

We then continue and show that in the second phase of the algorithm
all agents eventually enter to state gathering, and they correctly solve
weak gathering.

First phase of the algorithm

Lemma 1. Let dt(pα, C) denote the (shortest) distance between the peb-
ble pα of an agent α and the closest node of the cycle C at round t. Then,
{dt(pα, C)}, t ≥ 0 is a decreasing sequence (i.e., dt ≥ dt+1).

Proof. Initially, the agents are arbitrarily placed on some nodes of the
graph. During the first phase they place their pebbles on these nodes and
start the exploration of the graph in epochs e in a DFS way, and up to a
maximum depth which depends on the epoch (stepsAway = 2e).

Call C the unique cycle and Gu the (connected) tree starting from
node u ∈ C and (C \ u) /∈ Gu, where an agent α is initially placed. As
agent α moves on the graph, it constructs in its local memory the graph
Gα. In order to mark a node w ∈ Gα with��C, all its neighbors v except one
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must already be marked in Gα. This can only happen initially on the leaf
nodes, then their neighbors, and so on. Now observe that all the nodes
of the cycle (including u) have two neighbors that belong to the cycle
C, thus, α cannot mark any of them. This means that all the nodes in
the shortest path between the current position of its pebble and u are
not marked in Gα, while the rest of the nodes v ∈ Gu will eventually
be marked. When α marks the node that its pebble is, it picks it, and
moves it on the unique neighbor that is not marked. Similarly, the above
argument will be satisfied for the new position of its pebble. Because
of this fact, a pebble can only move closer to the cycle every time the
corresponding agent moves it, and eventually it will reach u. ⊓⊔

Lemma 2 (Cycle detection). When an agent enters phase 2, its pebble
is on the cycle, and it only moves on the nodes of the cycle.

Proof. When an agent α encounters a pebble on an unmarked node of
Gα, it marks it with a special character T , and when it marks k+1 nodes
it executes the cycle detection procedure. Call C the set of nodes that
form the cycle in the underlying graph and TGα

the set of nodes that an
agent α marked in Gα.

The first step of the cycle detection procedure is to check whether the
shortest path P = {e0, e1, . . . , es}, with vertex sequence V = {v0, v1, . . . , vs}
which connects all the nodes in TGα

is a line in Gα, or not. If not, it re-
sets its pebblesFound variable to zero, changes their marks to��T , and the
procedure stops. Otherwise, it constructs a cycle C ′ in its local memory
and traverses it in order to verify if all nodes of C ′ are on the cycle.

In this step, while traversing C ′, if the port numbers do not match
with the ones visited, the cycle detection fails. Observe that if there exists
a node w ∈ V such that w /∈ C, then this procedure will fail. This is
because it will either need to traverse the edge through which it arrived
at a node that is not on the cycle, or it will not meet the k + 1 pebbles
of TGα

. This holds even in the case where the rest of the agents moved
their pebbles. Then, the agent α will surely pass through the nodes of the
initial positions of the pebbles and the procedure will fail.

If cycle detection succeeds, then all nodes of C ′ are on the cycle (in-
cluding the node where its own pebble is); α enters to the second phase
and it only moves on these nodes. ⊓⊔

In contrast to the literature on exploration of graphs, in our model
the agents cannot assign distinct labels on the nodes, thus recognize them
when encountered again (cf., e.g., [PP98]). This difficulty comes from the
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fact that the communication model that we consider does not allow the
agents to write information on the nodes other than leaving a constant
number of identical pebbles (i.e., one bit of information), indistinguishable
for all agents. For this reason, when an agent enters to the cycle and
completes a tour, the whole graph is again considered as unexplored.
However, in our algorithm we guarantee that after O(n3 log n) rounds, all
pebbles reach the cycle and all agents enter to the second phase which
solves weak gathering.

Lemma 3. The number of rounds until all pebbles reach the cycle is
bounded by O(n3 log n).

Proof. Call C the unique cycle and Gu the (connected) tree starting from
node u ∈ C and (C \u) /∈ Gu, where an agent α is initially placed. Let w
be the initial node of α, and d(u,w) > 0 the (shortest) distance between u
and w. In order for an agent to move its pebble (by Lemma 1 closer to the
cycle), it must first explore all nodes of Gu in the worst case (i.e., reach
all the leaves of Gu). The agents start from epoch e = 0 and perform DFS
up to distance 2e. In the worst case, the diameter of Gu is |Gu|−1. When
2e ≥ |Gu − 1| ⇒ e = ⌈log (|Gu| − 1)⌉ the agent moves its pebble on u by
the end if this epoch.

The number of steps in each epoch depends on the topology of the
graph. In particular, when an agent enters the cycle and completes a tour,
the whole graph can again be considered as unexplored, thus the agent
continues exploring nodes that has already visited in previous rounds.

In an epoch e, 2e

|C| complete tours can occur, where |C| is the size of
the cycle. The total number of complete tours of the cycle until epoch
e = ⌈log (|Gu| − 1)⌉ can be bounded by:

T =

⌈log (|Gu−1|)⌉∑

e=0

2e

|C|
=

2⌈log (|Gu|−1)⌉+1 − 1

|C|
< 2

|Gu|

|C|
(1)

Due to the 1-interval connectivity, the scheduler can block α when it
wants to traverse an edge of the cycle. During the DFS exploration, the
number of edge traversals on the cycle is 2|C| for every complete tour of
it. Now observe that if α is blocked for more than δn log n, for some small
constant number δ, rounds, it terminates, and as we show later gathering
is achieved. This means, that in the worst case which does not lead to
gathering, the scheduler blocks the agents for δn log n−1 rounds for each
edge traversal in C. In addition, for each cycle tour, n−|C| nodes (in the
worst case) can be explored without being blocked by the scheduler.
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In addition, when agent α visits k + 1 pebbles (including its own
pebble), it executes the cycle detection subroutine of the algorithm which
performs |C ′| edge traversals, where C ′ is the cycle constructed in the
local memory of α. We have that e ≤ ⌈log (|Gu| − 1)⌉ ≤ ⌈log n⌉, thus
|C ′| ≤ ǫn, for some small constant number ǫ.

By Lemma 2, for this to succeed, its own pebble first needs to reach the
cycle. However, the distance between its pebble and the cycle is d(u,w) >
0, thus, it will fail. Then, α performs |C ′| more edge traversals in order to
reach the node where it was in the beginning of the cycle detection step.
For each edge traversal, as before, α can remain blocked for δn log n − 1
rounds. For each complete tour of the cycle, it can perform cycle detection
only once. This is because after an unsuccessful cycle detection, the agents
mark with ��T the nodes with pebbles in Gα.

Therefore, the total number of rounds needed for a pebble to reach the
cycle, considering the worst case of the scheduler choices can be bounded
by:

S = T ((2|C|+ 2ǫn)(δn log n− 1) + 2(n− |C|))

= O(n3 log n)
(2)

⊓⊔

Lemma 4. Each agent in phase 1 of the algorithm visits all nodes of the
cycle every O(n log n) rounds, if not blocked by the scheduler.

Proof. Consider an agent α, initially in node u and distance d1 = d(u,C)
from the cycle C. When 2e = d1 + |C|/2 ⇒ e = log (d1 + |C|/2) ≤ log n,
the agent traverses all nodes of the cycle for the first time. The number
of rounds in each epoch depends on the topology of the graph. Let Se be
the set of nodes which are in distance at most 2e from the initial position
of agent α, and Se does not contain all nodes of C (if it contains all nodes
of C, then it will traverse C prior to the log n -th phase in the worst
case). Then, the total number of rounds of the DFS exploration until

epoch e = log n is
∑logn

e=0 2Se ≤
∑logn

e=0 2n = n log n. This means that it
takes n log n rounds to reach all nodes of the cycle for the first time, and
then e ≥ log n guarantees that in each phase the agent traverses the cycle
every at most 2n rounds (DFS exploration) in phase 1.

In order to find the number of rounds between the cycle traversals we
need to study the number of times that the cycle detection procedure is
executed, which may delay an agent from visiting all nodes of C. Observe
that only if the shortest path between the T -marked nodes is a line in Gα
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the agent stops the DFS exploration and traverses C ′. We now distinguish
two cases.

(1) C ′ contains all nodes of C: The agent α marks all k nodes with
pebbles and performs a complete tour of the cycle in order to visit a
(k+1)-th pebble. In this case, cycle detection might be executed, however,
C ′ contains all nodes of C. This means that when the cycle detection is
executed, the agent visits all nodes of the cycle after at most n rounds. In
case that this procedure fails, the agent traverses again the cycle after at
most n rounds, and then continues with the DFS exploration. Otherwise,
the agent enters to the second phase of the algorithm, which by Lemma
2 moves only on C.

(2) C ′ does not contain all nodes of C: Let TGα
be the T -marked nodes

of α in Gα, and |TGα
| = k + 1. Let P be the set of nodes with pebbles of

the underlying graph, and TGα✚✚≡P (there is some node in P which was
not visited by α). This can be the result of some other agent α′ moving
its pebble p on a different node and α has marked both positions of p
(otherwise C ′ would contain all nodes of C). However, in order for α to
start the cycle detection procedure, all nodes in TGα

have to be on a line
in Gα. This means that even in the case where α′ moved its pebble, α
will either pass through the node where p initially was, in which case α
decreases pebblesFound by one and unmarks the corresponding node in
Gα, or it will not mark the new position of p, as this will not be the first
time that it visited that node during that phase. In both cases, α will not
execute the cycle detection procedure.

Finally, for e ≤ log n, the agents traverse the cycle after at most n log n
rounds. For e ≥ log n, they traverse it every at most 3n rounds. ⊓⊔

Second phase of the algorithm We now show that phase 2 of the
algorithm successfully gathers all agents either at the same node, or at
the endpoints of the same edge.

Lemma 5. Let the variable roundsBlockedα of an agent α be δn log n,
for some small constant number δ. Then, all agents are gathered on the
endpoints of the missing edge and terminate.

Proof. Let α be an agent that is blocked on some node u of the cycle. By
Lemma 4 and because of the fact that the scheduler can only remove at
most one edge in each round, all other agents in phase 1 of the algorithm
perform a block-free execution, thus, after at most δn log n rounds, for
some small constant number δ, they traverse the cycle and they reach u.
An agent in phase 2 of the algorithm can either be in state walking or
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gathering. In the first case, after at most n rounds, it reaches u. In the sec-
ond case, an agent needs 2n rounds to move towards the elected meeting
point and then it walks the cycle (either clockwise or counterclockwise)
for n more rounds, which is enough to reach u.

Finally, all k agents end up on the two endpoints of the missing edge,
the termination condition of α and then of the rest of the agents, is
eventually satisfied. ⊓⊔

Lemma 6. Consider a set of agents S moving towards a node u in cycle
C, following the shortest path. After n rounds the agents of S are in at
most two nodes of C, and one of them is in u.

Proof. Consider a set of agents S1 ∈ S moving clockwise and a set of
agents S2 ∈ S moving counterclockwise. Consider two agents α1, α2 ∈ S1

moving towards u. Assume that in the shortest path to u, the distance
between α1 and u is d1 and the distance between α2 and u is d2.

The number of successful edge traversals until they reach u is at most
n/2. Assume that α1 didn’t reach u after n rounds. This means that it
was blocked for at least n/2 + 1 rounds. Since 1-interval connectivity in
this setting allows only one edge to be missing in each round, α2 can be
blocked for at most n/2−1 rounds (when not in the same node with α1).
Thus, if d1 < d2, α2 reaches α1 by round n, and if d1 > d2, it reaches u
by round n.

Now consider an agent α3 ∈ S2 moving towards u (different orienta-
tion from α1 and α2). Since α1 was blocked for at least n/2 + 1 rounds
and the agents follow the shortest path to u (they cannot be blocked on
the endpoints of the same edge), α3 can be blocked for at most n/2 − 1
rounds. Thus it reaches u by round n.

Overall, if an agent α is blocked for more than n/2 + 1 rounds, then
all agents that move in the same orientation towards α reach α by round
n, while the rest of the agents reach u. Otherwise, all agents reach u by
round n. ⊓⊔

Theorem 1. All agents after O(n3 log n) rounds enter phase 2, elect the
same node as the meeting point and solve weak gathering.

Proof. By Lemma 3, after O(n3 log n) rounds all pebbles reach the cycle,
and when this happens, by Lemma 2, all agents move only on the nodes
of the cycle (in phase 2).

Let r′ be the round that the last agent traverses all nodes of the cycle
for the first time in the second phase. This means that after r′ and because
all agents have obtained the same information (i.e., the port labeling and
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the locations of the pebbles), all agents agree on the meeting node. Let
also R = {r1, r2, . . . , rk} be the rounds that the k agents enter to state
gathering for the first time after r′.

In the second phase of the algorithm the agents can either be in state
walking or gathering. Consider a set of agents S1 that are in state gathering
and |ri − rj | < n, ∀i, j ∈ S1, and a second set of agents S2 contains the
rest of the agents.

At this point, by Lemma 6 all agents that enter phase 2 at the same
time, after at most n rounds are divided into at most two groups G1

and G2, and one of them (say G1) is on the elected node u. Thus, af-
ter 2n rounds all agents of S1 are divided into two groups. In addition,
the Grouping subroutine guarantees that the agents of G1 and G2 will
continue moving as groups during the second step of phase 2. We now
consider two cases.

(1) All agents of S1 reached u. Then, some of the agents of S2 reach
u and enter to state gathering, and the rest of the agents of S2, again
by Lemma 6, they become a group that did not reach u due to missing
edges. Observe that this group walks the cycle counterclockwise, while
the agents of S1 walk the cycle clockwise. At this point there are two
groups of agents moving towards each other. Therefore, the Grouping
procedure guarantees that after at most n rounds the two groups will
either merge (in this case they terminate), or they will become blocked
on the endpoints of the same edge until the termination condition will be
satisfied.

(2) In this case, the agents of S1 are divided into two groups at round
r1 + 2n. During the first 2n rounds, some of the agents of S2 may reach
u, thus enter to state gathering and continue moving as a group with G1.

(a) If the agents of G2 move clockwise, then the rest of the agents of
S2 may cross the agents of G2 or arrive on the same node. In both cases
they will merge into a single group.

(b) If the agents of G2 move counterclockwise, then the rest of the
agents of S2 end up on the same node with the agents of G2. This is
because the agents of G2 remain blocked long enough that at round r1 +
2n they did not reach u. Then, all of the agents in the clockwise path
between G2 and u after 2n rounds reach G2. In this case, the agents of
S2 will reverse direction (to clockwise), however G2 will continue moving
counterclockwise. Then, they reverse direction again because the agents
of G2 move counterclockwise. This procedure continues until they will
either reach u, or until some agent in G2 enters to the second step of



Gathering in 1-Interval Connected Graphs 21

phase 2. Then, they will cross each other and Grouping guarantees that
they will merge into a single group.

In all these cases, all agents reach either the same node and the termi-
nation condition is satisfied, or they become blocked at the endpoints of
the same missing edge where, by Lemma 5 they solve weak gathering. ⊓⊔

2.3 Towards dropping the additional assumptions

Knowledge of n Observe that in our algorithm, n is used in two cases.
The first case is on the termination condition where the agents terminate
if they are blocked long enough for the rest of the agents to reach the same
node or the other endpoint of the same (missing) edge. If we assume that
the agents do not know n then it is not clear how and whether it is
possible to achieve termination.

Our algorithm also uses n during the second phase, where the agents
need n in order to guarantee complete tours of the cycle C. In this case
we can replace n with |C ′|, where C ′ is the locally constructed cycle of an
agent. This is because for all agents |C ′| ≥ |C| throughout the execution.

Cross detection In [DLFP+18] the authors provide a mechanism which
avoids agent crossing. In particular, each agent constructs an edge labeled
bidirectional ring, such that the intersection of the labels assigned in the
edges of the clockwise direction with the ones of the counterclockwise
direction is empty. Then, the agents move on the actual ring subject to
the constraint that at round r they can traverse an edge only if the set
of labels of that edge contains r. This guarantees that two agents moving
in opposite directions will never cross each other on an edge of the actual
ring.

The above construction works only if all agents have the same refer-
ence point and have obtained the same sense of orientation. In the second
phase of our algorithm, all agents after O(n2 log n) rounds either solve
weak gathering (by being blocked for very long), or traverse all nodes of
the cycle and elect the same node as their meeting point. Therefore, the
labels of the logic rings of all agents eventually become the same and by
slightly modifying our algorithm (e.g., allow 4n rounds during the first
step in state gathering, and 2n during the second step), the Theorem 1
follows.

Pebbles In our algorithm each agent is supplied with two identical peb-
bles. It uses one pebble in the cycle detection subroutine, and the second
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one in the termination condition in order to notify the rest of the agents
that it was blocked for more than δn log n rounds.

For both cases, it might be possible to substitute the pebbles with
knowledge of n. In particular, when an agent α is blocked for δn log n
rounds it terminates. Then, the rest of the agents are gathered in the
endpoints of the same edge, and they move towards each other. After a
successful edge traversal of the group where the agent α terminated, they
count that the number of agents was decreased by one. In this case they
reverse direction. The other group of agents should then wait for the first
group to catch them up.

Regarding the detection of the cycle, when an agent explores a path
P of size more than n, it means that the cycle C is a subpath of P . When
an agent finds such a path of size more than n, it can move to the first
node of P and start traversing all subpaths of size i, 3 ≤ i ≤ n for at least
n rounds each. If the agent performs n successful edge traversals and the
port labeling of the nodes visited matches the one of P , then we believe
that the agent has successfully identified the nodes that form the cycle.

3 Open problems

An immediate open problem is whether we can achieve the same results if
the class of dynamics is the T -interval connectivity, for T > 1. If we con-
sider probabilistic algorithms, can we find a more efficient algorithm for
weak gathering in unicyclic graphs? In addition, can we extend the class
of solvable graphs if we impose a fairness assumption to the scheduler?
A very interesting question is whether the second phase of our algorithm
can be replaced by a modified asynchronous version of the algorithm of
Di Luna et al. ([DLFP+18]), where the starting times of the agents might
be different.

In Section 2.3 we argued that the communication model that we con-
sidered (i.e., the pebbles) can be substituted by knowledge of n. Finally,
in this setting it is not clear how to achieve termination without empow-
ering the agents with knowledge of n. We gave an intuition of how to
achieve both, however we leave them as open problems.
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