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Abstract
We study countably infinite MDPs with parity objectives. Unlike in finite MDPs, optimal strategies
need not exist, and may require infinite memory if they do. We provide a complete picture of
the exact strategy complexity of ε-optimal strategies (and optimal strategies, where they exist)
for all subclasses of parity objectives in the Mostowski hierarchy. Either MD-strategies, Markov
strategies, or 1-bit Markov strategies are necessary and sufficient, depending on the number of colors,
the branching degree of the MDP, and whether one considers ε-optimal or optimal strategies. In
particular, 1-bit Markov strategies are necessary and sufficient for ε-optimal (resp. optimal) strategies
for general parity objectives.
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1 Introduction

Background. Markov decision processes (MDPs) are a standard model for dynamic systems
that exhibit both stochastic and controlled behavior [17]. MDPs play a prominent role in
numerous domains, including artificial intelligence and machine learning [20, 19], control
theory [4, 1], operations research and finance [5, 18], and formal verification [7, 2].

An MDP is a directed graph where states are either random or controlled. Its observed
behavior is described by runs, which are infinite paths that are, in part, determined by the
choices of a controller. If the current state is random then the next state is chosen according
to a fixed probability distribution. Otherwise, if the current state is controlled, the controller
can choose a distribution over all possible successor states. By fixing a strategy for the
controller (and initial state), one obtains a probability space of runs of the MDP. The goal
of the controller is to optimize the expected value of some objective function on the runs.

The type of strategy necessary to achieve an optimal (resp. ε-optimal) value for a given
objective is called its strategy complexity. There are different types of strategies, depending
on whether one can take the whole history of the run into account (history-dependent; (H)),
or whether one is limited to a finite amount of memory (finite memory; (F)) or whether
decisions are based only on the current state (memoryless; (M)). Moreover, the strategy
type depends on whether the controller can randomize (R) or is limited to deterministic
choices (D). The simplest type, MD, refers to memoryless deterministic strategies. Markov
strategies are strategies that base their decisions only on the current state and the number
of steps in the history of the run. Thus they do use infinite memory, but only in a very
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2 Strategy Complexity of Parity Objectives in Countable MDPs

Safety Reach

{0, 1}-Parity {1, 2}-Parity

{0, 1, 2}-Parity {1, 2, 3}-Parity

{0, 1, 2, 3}-Parity {1, 2, 3, 4}-Parity

1-bit Markov

Markov MD

(a) ε-optimal strategies for infinitely branching
MDPs.

Safety Reach

{0, 1}-Parity {1, 2}-Parity

{0, 1, 2}-Parity {1, 2, 3}-Parity

{0, 1, 2, 3}-Parity {1, 2, 3, 4}-Parity

Markov MD

1-bit Markov

(b) Optimal strategies for infinitely branching
MDPs.

Figure 1 These diagrams show the strategy complexity of ε-optimal strategies and optimal
strategies (where they exist) for parity objectives. Depending on the position in the Mostowski
hierarchy, either MD-strategies (green), deterministic Markov-strategies (blue) or deterministic 1-bit
Markov strategies (red) are necessary and sufficient (and randomization does not help [12]). If the
MDPs are finitely branching then the Markov strategies can be replaced by MD-strategies (i.e., the
blue parts turn green), but the deterministic 1-bit Markov part (red) remains unchanged.

restricted form by maintaining an unbounded step-counter. Slightly more general are 1-bit
Markov strategies that use 1 bit of extra memory in addition to a step-counter.

Parity objectives. We study countably infinite MDPs with parity objectives. Parity
conditions are widely used in temporal logic and formal verification, e.g., they can express
ω-regular languages and modal µ-calculus [9]. Every state has a color, out of a finite set
of colors encoded as natural numbers. A run is winning iff the highest color that is seen
infinitely often is even. The controller wants to maximize the probability of winning runs.
The Mostowski hierarchy [15] is a classification of parity conditions based on restricting the
set of allowed colors. For instance, {1, 2, 3}-Parity objectives only use colors 1, 2, and 3.
This includes Büchi ({1, 2}-Parity) and co-Büchi objectives ({0, 1}-Parity), both of which
further subsume reachability and safety objectives.

Related work. In finite MDPs, there always exist optimal MD-strategies for parity
objectives. In fact, this holds even for finite turn-based 2-player stochastic parity games
[6, 23]. Similarly, there always exist optimal MD-strategies in countably infinite non-stochastic
turn-based 2-player parity games [22].

The picture is more complex for countably infinite MDPs. Optimal strategies need
not exist (not even for reachability objectives [17, 16]), and ε-optimal strategies for Büchi
objectives [10] and optimal strategies for parity objectives [13] require infinite memory.

The paper [13] gave a complete classification whether MD-strategies suffice or whether
infinite memory is required for ε-optimal (resp. optimal) strategies for all subclasses of parity
objectives in the Mostowski-hierarchy.

However, the mere fact that infinite memory is required for (a subclass of) parity does not
establish the precise strategy complexity. E.g., are Markov strategies (or Markov strategies
with finite extra memory) sufficient?

In [12] we showed that deterministic 1-bit Markov strategies are both necessary and suffi-
cient for ε-optimal strategies for Büchi objectives. I.e., deterministic 1-bit Markov strategies
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are sufficient, but neither randomized Markov strategies nor randomized finite-memory
strategies are sufficient. This solved a 40-year old problem in gambling theory from [10, 11].
The same paper [12] showed that even for finitely branching MDPs with {1, 2, 3}-Parity
objectives, optimal strategies (where they exist) need to be at least deterministic 1-bit Markov
in general, i.e., neither randomized Markov nor randomized finite-memory strategies are
sufficient.

While the lower bounds for ε-optimal strategies for Büchi objectives (resp. for optimal
strategies for {1, 2, 3}-Parity objectives) carry over to general parity objectives, the upper
bounds on the strategy complexity of ε-optimal (resp. optimal) parity remained open.
A basic upper bound and related conjecture. A basic upper bound on the complexity
of ε-optimal strategies for parity can be obtained by using a combination of the results of
[12] on Büchi objectives (1-bit Markov) and Lévy’s zero-one law as follows. (However, note
that the following argument does not work directly for optimal strategies.)

Informally speaking, Lévy’s zero-one law implies that, for a tail objective (like parity) and
any strategy, the level of attainment from the current state almost surely converges to either
zero or one. I.e., the runs that always stay in states where the strategy attains something
in (0, 1) is a null-set (cf. Appendix B). A consequence for parity is that almost all winning
runs must eventually, with ever higher probability, commit to winning by some particular
color. Thus, with minimal losses (e.g., ε/2), after a sufficiently long finite prefix (depending
on ε), one can switch to a strategy that aims to visit some particular color x infinitely often.
The latter objective is like a Büchi objective where the states of color x are accepting and
states of color > x are considered losing sinks. By [12], an ε/2-optimal strategy for such a
Büchi objective can be chosen 1-bit Markov. However, one would also need to remember
which color x one is supposed to win by and stick to that color. The latter is critical, since
strategies that switch focus between winning colors infinitely often (e.g., if they follow some
local criteria based on the value of the current state wrt. various colors) can end up losing.
Overall, the memory needed for such an ε-optimal strategy for parity is: dlog2(c)e bits for c
even colors to remember which color x one is supposed to win by and Markov plus 1 bit for
the Büchi strategy (see above), where the Markov step-counter also determines whether one
still plays in the prefix. Thus Markov plus (1 + dlog2(c)e) bits are sufficient. This argument
would suggest that more memory is required for more colors. However, our result shows that
this is not the case.

Our contributions. We show tight upper bounds on the strategy complexity of ε-optimal
(resp. optimal) strategies for parity objectives: They can be chosen as deterministic 1-bit
Markov, regardless of the number of colors. I.e., we provide matching upper bounds to the
lower bounds from [12].

In Section 3 we prove Theorem 1. An iterative plastering construction (i.e., fixing player
choices on larger and larger subspaces) builds an ε-optimal 1-bit Markov strategy where
the probability of never switching between winning even colors is ≥ 1− ε. Its correctness
relies heavily on Lévy’s zero-one law. The number of iterations is finite and proportional to
the number of even colors. It eliminates the need to remember the winning color x and the
dlog2(c)e part of the memory.

I Theorem 1. Consider an MDPM, a parity objective and a finite set S0 of initial states.
For every ε > 0 there exists a deterministic 1-bit Markov strategy that is ε-optimal from

every state s ∈ S0.

In Section 4 we prove Theorem 2. If an optimal strategy exists, then an optimal 1-bit
Markov strategy can be constructed by the so-called sea urchin construction. It is a very
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complex plastering construction with infinitely many iterations that uses the results of
Theorem 1 and Lévy’s zero-one law as building blocks. Its name comes from the shape of the
subspace in which player choices get fixed: a growing finite body (around a start set S0) with
a finite, but increasing, number of spikes, where each spike is of infinite size; cf. Figure 4.
E.g., if the initial states are almost surely winning then, at the stage with i spikes, this
strategy attains parity with some probability ≥ 1− 2−i already inside this subspace, and
in the limit of i → ∞ it attains parity almost surely. A further step even yields a single
deterministic 1-bit Markov strategy that is optimal from every state that has an optimal
strategy.

I Theorem 2. Consider an MDP M with a parity objective and let Sopt be the subset of
states that have an optimal strategy.

There exists a deterministic 1-bit Markov strategy that is optimal from every s ∈ Sopt.

In Theorem 1 and Theorem 2 the initial content of the 1-bit memory is irrelevant (cf.
Lemma 9, Lemma 18 and Remark 8).

Moreover, we show in Section 5 and Section 6 that in certain subcases deterministic
Markov strategies are necessary and sufficient (i.e., these require a Markov step-counter,
but not the extra bit): optimal strategies for co-Büchi and {0, 1, 2}-Parity, and ε-optimal
strategies for safety and co-Büchi. In the special case of finitely branching MDPs, these
Markov strategies (but not the 1-bit Markov strategies) can be replaced by MD-strategies.

Together with the previously established lower bounds, this yields a complete picture of
the exact strategy complexity of parity objectives at all levels of the Mostowski hierarchy, for
countable MDPs. Figure 1 gives a complete overview.

2 Preliminaries

A probability distribution over a countable set S is a function f : S → [0, 1] with
∑
s∈S f(s) = 1.

We write D(S) for the set of all probability distributions over S.
We studyMarkov decision processes (MDPs) over countably infinite state spaces. Formally,

an MDPM = (S, S2, S#,−→, P ) consists of a countable set S of states, which is partitioned
into a set S2 of controlled states and a set S# of random states, a transition relation −→ ⊆
S × S, and a probability function P : S# → D(S). We write s−→s′ if (s, s′) ∈ −→, and
refer to s′ as a successor of s. We assume that every state has at least one successor. The
probability function P assigns to each random state s ∈ S# a probability distribution P (s)
over its set of successors. A sink is a subset T ⊆ S closed under the −→ relation. An MDP
is acyclic if the underlying graph (S,−→) is acyclic. It is finitely branching if every state
has finitely many successors and infinitely branching otherwise. An MDP without controlled
states (S2 = ∅) is a Markov chain.

Strategies and Probability Measures. A run ρ is an infinite sequence s0s1 · · · of states
such that si−→si+1 for all i ∈ N; write ρ(i) def= si for the i-th state along ρ. A partial run is
a finite prefix of a run. We say that (partial) run ρ visits s if s = ρ(i) for some i, and that ρ
starts in s if s = ρ(0).

A strategy is a function σ : S∗S2 → D(S) that assigns to partial runs ρs ∈ S∗S2 a
distribution over the successors of s. A (partial) run s0s1 · · · is induced by strategy σ if for
all i either si ∈ S2 and σ(s0s1 · · · si)(si+1) > 0, or si ∈ S# and P (si)(si+1) > 0.

A strategy σ and an initial state s0 ∈ S induce a standard probability measure on sets
of infinite plays. We write PM,s0,σ(R) for the probability of a measurable set R ⊆ s0S

ω

of runs starting from s0. As usual, it is first defined on the cylinders s0s1 . . . snS
ω, where
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s1, . . . , sn ∈ S: if s0s1 . . . sn is not a partial run induced by σ then PM,s0,σ(s0s1 . . . snS
ω) def= 0.

Otherwise, PM,s0,σ(s0s1 . . . snS
ω) def=

∏n−1
i=0 σ̄(s0s1 . . . si)(si+1), where σ̄ is the map that

extends σ by σ̄(ws) = P (s) for all ws ∈ S∗S#. By Carathéodory’s theorem [3], this extends
uniquely to a probability measure PM,s0,σ on measurable subsets of s0S

ω. We will write
EM,s0,σ for the expectation w.r.t. PM,s0,σ. We may drop the subscripts from notations, if it
is understood.

Objectives. The objective of the player is determined by a predicate on infinite plays. We
assume familiarity with the syntax and semantics of the temporal logic LTL [8]. Formulas are
interpreted on the structure (S,−→). We use JϕKs ⊆ sSω to denote the set of runs starting
from s that satisfy the LTL formula ϕ, which is a measurable set [21]. We also write JϕK
for
⋃
s∈SJϕKs. Where it does not cause confusion we will identify ϕ and JϕK and just write

PM,s,σ(ϕ) instead of PM,s,σ(JϕKs).
Given a set T ⊆ S of states, the reachability objective Reach(T ) is the set of runs that

visit T at least once; and the safety objective Safety(T ) is the set of runs that never visit T .
Let C ⊆ N be a finite set of colors. A color function Col : S → C assigns to each state s

its color Col(s). The parity objective, written as Parity(Col), is the set of infinite runs
such that the largest color that occurs infinitely often along the run is even. To define this
formally, let even(C) = {i ∈ C | i ≡ 0 mod 2}. For � ∈ {<,≤,=,≥, >}, n ∈ N, and Q ⊆ S,
let [Q]Col�n def= {s ∈ Q | Col(s) � n} be the set of states in Q with color �n. Then

Parity(Col) def=
∨

i∈even(C)

(
GF[S]Col=i ∧ FG[S]Col≤i

)
.

The Mostowski hierarchy [15] classifies parity objectives by restricting the range of Col
to a set of colors C ⊆ N. We write C-Parity for such restricted parity objectives. In
particular, the classical Büchi and co-Büchi objectives correspond to {1, 2}-Parity and
{0, 1}-Parity, respectively. These two classes are incomparable but both subsume the
reachability and safety objectives. Assuming that T is a sink, Reach(T ) = Parity(Col) for
the coloring with Col(s) = 1 ⇐⇒ s /∈ T and Safety(T ) = Parity(Col) for the coloring with
Col(s) = 1 ⇐⇒ s ∈ T . Similarly, {0, 1, 2}-Parity and {1, 2, 3}-Parity are incomparable,
but they both subsume (modulo renaming of colors) Büchi and co-Büchi objectives.

An objective ϕ is called a tail objective (resp. suffix-closed) iff for every run ρ′ρ with some
finite prefix ρ′ we have ρ′ρ ∈ ϕ⇔ ρ ∈ ϕ (resp. ρ′ρ ∈ ϕ⇒ ρ ∈ ϕ). In particular, Parity(Col)
is tail for every coloring Col. Moreover, if ϕ is suffix-closed then Fϕ is tail.

Strategy Classes. Strategies σ : S∗S2 → D(S) are in general randomized (R) in the sense
that they take values in D(S). A strategy σ is deterministic (D) if σ(ρ) is a Dirac distribution
for all partial runs ρ ∈ S∗S2.

We formalize the amount of memory needed to implement strategies. Let M be a countable
set of memory modes. An update function is a function u : M× S → D(M× S) that meets
the following two conditions, for all modes m ∈ M:

for all controlled states s ∈ S2, the distribution u((m, s)) is over M× {s′ | s−→s′}.
for all random states s ∈ S#, we have that

∑
m′∈M u((m, s))(m′, s′) = P (s)(s′).

An update function u together with an initial memory m0 induce a strategy u[m0] :
S∗S2 → D(S) as follows. Consider the Markov chain with states set M × S, transition
relation (M× S)2 and probability function u. Any partial run ρ = s0 · · · si inM gives rise
to a set H(ρ) = {(m0, s0) · · · (mi, si) | m0, . . . ,mi ∈ M} of partial runs in this Markov chain.
Each ρs ∈ s0S

∗S2 induces a probability distribution µρs ∈ D(M), the probability of being in
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state (m, s) conditioned on having taken some partial run from H(ρs). We define u[m0] such
that u[m0](ρs)(s′) def=

∑
m,m′∈M µρs(m)u((m, s))(m′, s′) for all ρs ∈ S∗S2 and s′ ∈ S.

We say that a strategy σ can be implemented with memory M (and initial memory m0) if
there exists an update function u such that σ = u[m0]. In this case we may also write σ[m0]
to explicitly specify the initial memory mode m0. Based on this, we can define several classes
of strategies:

A strategy σ is memoryless (M) (also called positional) if it can be implemented with a
memory of size 1. We may view M-strategies as functions σ : S2 → D(S).
A strategy σ is finite memory (F) if there exists a finite memory M implementing σ.
More specifically, a strategy is k-bit if it can be implemented with a memory of size 2k.
Such a strategy is then determined by a function u : {0, 1}k × S → D({0, 1}k × S).
A strategy σ is Markov if it can be implemented with the natural numbers M = N as the
memory, initial memory mode m0 = 0 and a function u such that the distribution u(m, s)
is over {m + 1} × S for all m ∈ M and s ∈ S. Intuitively, such a strategy depends only on
the current state and the number of steps taken so far.
A strategy σ is k-bit Markov if it can be implemented with memory M = N × {0, 1}k,
m0 ∈ {0} × {0, 1}k and a function u such that the distribution u((n, b, s)) is over
{n+ 1} × {0, 1}k × S for all (n, b) ∈ M and s ∈ S.

Deterministic 1-bit strategies are central in this paper; by this we mean strategies that
are both deterministic and 1-bit.

Optimal and ε-optimal Strategies. Given an objective ϕ, the value of state s in an
MDPM, denoted by valM(s), is the supremum probability of achieving ϕ. Formally, we have
valM(s) def= supσ∈Σ PM,s,σ(ϕ) where Σ is the set of all strategies. For ε ≥ 0 and state s ∈ S,
we say that a strategy is ε-optimal from s iff PM,s,σ(ϕ) ≥ valM(s)− ε. A 0-optimal strategy
is called optimal. An optimal strategy is almost-surely winning if valM(s) = 1.

Considering an MD strategy as a function σ : S2 → S and ε ≥ 0, σ is uniformly ε-optimal
(resp. uniformly optimal) if it is ε-optimal (resp. optimal) from every s ∈ S.

Fixing and Safe Sets. Let σ be an MD strategy. Given a set S′ ⊆ S of states, write
M[σ, S′] for the MDP obtained fromM by fixing the strategy σ for all states in S′, that is,
M[σ, S′] def= (S, S2 \ S′, S# ∪ S′,−→, P ′) where P ′(s) def= σ(s) for all s ∈ S′.

For an objective ϕ and a threshold β ∈ [0, 1], denote by SafeM,σ,ϕ(β) the set of all states s
starting from which σ attains at least probability β; and denote by SafeM,ϕ(β) the set of
states whose value for ϕ is at least β. Formally,

SafeM,σ,ϕ(β) def= {s ∈ S | PM,s,σ(ϕ) ≥ β}, SafeM,ϕ(β) def= {s ∈ S | valM,ϕ(s) ≥ β}. (1)

3 ε-Optimal Strategies for Parity

In this section we prove Theorem 1, stating that ε-optimal strategies for parity objectives
can be chosen 1-bit Markov. Given an MDP we convert it by three successive reductions to
a structurally simpler MDP where strategies require less sophistication to achieve parity.

First reduction (Finitely Branching). This reduction converts an infinitely branching
MDPM to a finitely branching oneM′, with a clear bijection between the strategies inM
andM′. The construction, first presented in our previous work [12], replaces each controlled
state s, that has infinitely many successors (si)i∈N, with a “ladder” of controlled states
(qi)i∈N, where each qi has only two successors: qi+1 and si. Roughly speaking, the controller
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choice of successor sn at s inM, is simulated by a series of choices qi+1 at qi, 0 ≤ i < n,
followed by a choice of successor sn in state qn inM′, and vice versa.

To prevent scenarios when the controller inM′ stays on a ladder and never commits to
a decision, we assign color 1 to all states (qi)i≥1 on the ladder (q0 inherits the color of s).
Hence, a hesitant run on the ladder is losing for parity. So w.l.o.g. we can assume that the
givenM is finitely branching.

I Lemma 3.
1. Suppose that for every finitely branching acyclic MDP with a finite set S0 of initial states,

and a parity objective, there exist ε-optimal deterministic 1-bit strategies from S0.
Then even for every infinitely branching acyclic MDP with a finite set S0 of initial states
and a parity objective, there exist ε-optimal deterministic 1-bit strategies from S0.

2. Suppose that for every finitely branching acyclic MDP with a parity objective, there exists
a deterministic 1-bit strategy that is optimal from all states that have an optimal strategy.
Then even for every infinitely branching acyclic MDP with a parity objective, there exists
a deterministic 1-bit strategy that is optimal from all states that have an optimal strategy.

Second reduction (Acyclicity). A deterministic 1-bit Markov strategy can be seen as a
function σ : N × {0, 1} × S → {0, 1} × S, where σ has access to an internal bit b ∈ {0, 1},
which can be updated freely, and a step counter k ∈ N, which increments by one in each step.
Having b and k, σ produces a decision based on the current state of the MDP.

Following [12], we encode the step-counter from strategies into MDPs s.t. the current
state of the system uniquely determines the length of the path taken so far. This translation
allows us to focus on acyclic MDPs.

I Lemma 4. Consider MDPs with a parity objective and k ∈ N.
1. Suppose that for every acyclic MDPM′ and every finite set of initial states S′0 and ε > 0,

there exists a deterministic k-bit strategy that is ε-optimal from all states s ∈ S′0.
Then for every MDPM and every finite set of initial states S0 and ε > 0, there exists a
deterministic k-bit Markov strategy that is ε-optimal from all states s ∈ S0.

2. Suppose that for every acyclic MDP M′ and ε > 0, there exists a deterministic k-bit
strategy that is ε-optimal from all states. Then for every MDPM and ε > 0, there exists
a deterministic k-bit Markov strategy that is ε-optimal from all states.

3. Suppose that for every acyclic MDPM′, where S′opt is the subset of states that have an
optimal strategy, there exists a deterministic k-bit strategy that is optimal from all states
s ∈ S′opt. Then for every MDPM, where Sopt is the subset of states that have an optimal
strategy, there exists a deterministic k-bit Markov strategy that is optimal from all states
s ∈ Sopt.
By Lemma 4, the sufficiency of deterministic 1-bit strategies in acyclic MDPs implies

the sufficiency of deterministic 1-bit Markov strategies in general MDPs. Thus to prove
Theorem 1, it suffices to prove the following:

I Theorem 5. Consider an acyclic MDPM, a parity objective and a finite set S0 of states.
For every ε > 0 there exists a deterministic 1-bit strategy that is ε-optimal from every s ∈ S0.

Third reduction (Layered MDP). This reduction is in the same spirit of the previous one,
in which the bit b ∈ {0, 1} is transferred from strategies to MDPs. Given an MDPM, the
corresponding layered MDP L(M) has two copies of each state s ∈ S and each transition t ∈
−→1 ofM, one augmented with bit 0 and another with bit 1: (s, i) and (t, j) with i, j ∈ {0, 1}.
The states (s, i) are random if s ∈ S# and controlled if s ∈ S2 . All the (t, j) are controlled.
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If there is a transition t = (a, b) from state a to b inM, there will be two transitions from
(a, i) to (t, i), and four transitions from (t, i) to (b, j) in L(M); see Figure 2.

A 1-bit deterministic strategy inM at a state a picks a single successor b and may flip
the bit from i to j; this is simulated in L(M) with an MD strategy σ within two consecutive
steps: σ first chooses the transition t = (a, b) by σ(a, i) = (t, i) and then updates the bit
by σ(t, i) = (b, j) thereby moving from layer i to layer j. The controlled states (t, i) are
essential for a correct simulation, since otherwise the controller cannot freely flip the bit
(switch between layers) after it observes the successor chosen randomly at a random state.

I Definition 6 (Layered MDP). Given an MDP M = (S, S2, S#,−→1, P1) with coloring
Col1 : S → C, we define the corresponding layered MDP L(M) = (L,L2, L#,−→2, P2) with
coloring Col2 : L→ C as follows.

L
def= (S ∪ −→1)× {0, 1} where the set of controlled states is L2

def= (S2 ∪ −→1)× {0, 1}.
For all t ∈ −→1 such that t = (s, s′) and for all i, j ∈ {0, 1}, we have:
1. (s, i)−→2(t, i) and (t, i)−→2(s′, j),
2. P (s, i)((t, i)) def= P (s)(s′) iff s ∈ S#, and
3. Col2((s, i)) def= Col1(s) and Col2((t, i)) def= Col1(s′).

The layered MDP of an acyclic MDP is acyclic. For q ∈ S ∪ −→1, we refer to the copies
of q in layer 0 and layer 1 as siblings: (q, 0) and (q, 1). A set B ⊆ L is closed if for each
state (q, i) ∈ B its sibling is also in B. Denote by Cl(B) the minimal closed superset of B.

I Lemma 7. Consider an acyclic MDPM = (S, S2, S#,−→, P ) with a parity objective ϕ =
Parity(Col) and let L(M) be the corresponding layered MDP.

For every deterministic 1-bit strategy u[m0] inM there is a corresponding MD strategy τ
in L(M), and vice-versa, such that for every s0 ∈ S, PL(M),(s0,m0),τ (ϕ) = PM,s0,u[m0](ϕ).

I Remark 8. We note that in a layered system L(M), any two siblings have the same
value w.r.t. a parity objective ϕ. Moreover, any state s in M has an optimal strategy iff
(s, 0) ∈ L(M) has an optimal strategy iff its sibling (s, 1) has an optimal strategy.

Suppose τ is an MD strategy in L(M) that is optimal for all states that have an optimal
strategy. Let u be the update function of a corresponding 1-bit strategy inM, derived as
described in Lemma 7. Then for every state s inM that has an optimal strategy we have
PM,s,u[0](ϕ) = PL(M),(s,0),τ (ϕ) = PL(M),(s,1),τ (ϕ) = PM,s,u[1](ϕ). That is, both u[0] and
u[1] are optimal from s, so the initial memory mode is irrelevant. J

To prove Theorem 5, given an acyclic MDP, a set of initial states S0 and ε > 0, we
consider the layered MDP L(M) and set L0 = S0 × {0} of initial states. In the following
lemma, we prove that there exists a single MD strategy that is ε-optimal starting from every
state `0 ∈ L0 in L(M). This and Lemma 7 will directly lead to Theorem 5.

I Lemma 9. Consider an acyclic MDPM and parity objective ϕ = Parity(Col). Let L(M)
be the layered MDP of M and Col. For all finite sets L0 of states in L(M) and all ε > 0
there exists a single MD strategy that is ε-optimal for ϕ from every state `0 ∈ L0.

In the rest of this section, we prove Lemma 9. We fix a layered MDP L(M) (or simply L)
obtained from a given acyclic and finitely branching MDPM and a coloring Col : S → C,
where the set of states is L and the finite set of initial states is L0 ⊆ L. Let ϕ be the resulting
parity objective in L.

Recall that even(C) = 2N ∩ C denotes the set of even colors. We denote by emax the
largest even color in even(C) and assume w.l.o.g., that even(C) contains all even numbers
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a b c d
p

1− p

a, 0 b, 0 c, 0 d, 0

a, 1 b, 1 c, 1 d, 1

t, 0

t, 1

t′, 0

t′, 1

t′′, 0

t′′, 1

p

p

1− p

1− p

Figure 2 An MDPM (in grey) and the corresponding layered MDP L(M) with states of layer 0
and 1 in red and blue, respectively. Here, t = (a, b), t′ = (b, c) and t′′ = (b, d) are transitions ofM.

from 2 to emax inclusive. We have:

ϕ
def=

∨
e∈even(C)

(
GF[L]Col=e ∧ FG[L]Col≤e

)
=

∨
e∈even(C)

(
FGF[L]Col=e ∧ FG[L]Col≤e

)
since GF[L]Col=e is a tail objective

=
∨

e∈even(C)

F
(
GF[L]Col=e ∧ G[L]Col≤e

)
since FGA ∧ FGB = F(GA ∧ GB)

=
∨

e∈even(C)

Fϕe ,

where ϕe
def=
(
GF[L]Col=e ∧ G[L]Col≤e

)
. Indeed, ϕe is the set of runs that win through color e

(i.e., by visiting color e infinitely often and never visiting larger colors). Since the Fϕe are
disjoint, for all states ` and strategies σ, we have:

PL,`,σ(ϕ) =
∑

e∈even(C)

PL,`,σ(Fϕe). (2)

Fix ε > 0 and define γ def= ε
emax+2 . To construct an MD strategy σ̂ that is ε-optimal

starting from every state in L0 we have an iterative procedure. In each iteration, we define
σ̂ at states in some carefully chosen region; and continuing in this fashion, we gradually
fix all choices of σ̂. In an iteration, in order to fix “good” choices in the “right” region we
need to carefully observe the behavior of finitely many γ

2 -optimal strategies σ`0 , one for each
`0 ∈ L0, which must respect the choices already fixed in previous iterations. We thus view
these strategies σ`0 to be γ

2 -optimal not in L but in another layered MDP that is derived
from L after fixing the choices of partially defined σ̂.

In more detail, the proof consists of exactly emax
2 + 1 iterations: one iteration for each

even color e and a final “reach” iteration. Starting from color 2 and L0
def= L, in the

iteration e ∈ {2, · · · , emax}, we obtain a layered MDP Le from Le−2 by fixing a single choice
for each controlled state in a set fixe. Roughly speaking, a run that falls in the set fixe is
likely going to win through ϕe (win through color e). We identify a certain subspace of fixe,
referred to as coree, such that the following crucial fact holds: Once coree is visited the run
remains in fixe with probability at least 1− γ. At the final iteration, we fix the choices of
all remaining states to maximize the probability of falling into the union of coree sets. As
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mentioned, the majority of such runs that visit coree, for some color e, will stay in fixe forever
and thus win parity through color e. After all the iterations, all choices of all controlled
states are fixed, and this prescribes the MD strategy σ̂ from L0 in L.

In order to define the sets fixe we heavily use Lévy’s zero-one law and follow an inductive
transformation on objectives. Lévy’s zero-one states that, for a given set of (infinite) runs of
a Markov chain, if we gradually observe a random run of the chain, we will become more and
more certain whether the random run belongs to that set. This law has a strong implications
for tail objectives. It asserts that on almost all runs s0s1s2 · · · the limit of the value of si
w.r.t. a tail objective tends to either 0 or 1.

In each iteration e ∈ {2, · · · , emax}, we transform an objective ψe−2 to a next objective ψe
where ψ0

def= ϕ is the parity objective and the result of the last transformation is ψemax =∨
e∈even(C) Fcoree. We will also move from the MDP Le−2 to Le after the fixings so as to

maintain the following invariant: For all `0 ∈ L0, the value of `0 for ψe in Le is almost as
high as its value for ϕ in L, that is

valLe,ψe(`0) ≥ valL,ϕ(`0)− e · γ. (3)

Recall that ϕ =
∨
e∈even(C) Fϕe. Let Fix0

def= ∅ and write Fixe
def=
⋃
e′≤e Cl(fixe′) for e ∈

{2, 4, · · · , emax}. We define:

ψ0
def=

∨
e′>0

Fϕe′ ∧ G¬Fix0 = ϕ ψe
def=

∨
e′≤e

Fcoree′ ∨
∨
e′>e

(Fϕe′ ∧ G¬Fixe). (4)

At each transformation, we examine the disjunct χe
def= Fϕe ∧ G¬Fixe−2 in ψe−2. The set

of runs satisfying this objective χe not only win through color e but also avoid the previously
fixed regions. Roughly speaking, the aim is to transform χe to Fcoree, to move from ψe−2
to ψe. We apply Lévy’s zero-one law to deduce that the runs satisfying the χe are likely to
enter a region that has a high value for a slightly simpler objective, namely

θe
def= ϕe ∧ G¬Fixe−2. (5)

To do so, we observe in Le−2 the behavior of several arbitrary γ
2 -optimal strategies σ`0

for ψe−2, one for each `0 ∈ L0. Then, for each σ`0 , we apply Lévy’s zero-one law separately;
this provides that there exists a finite set Re of states that have a high value for θe, and
is reached by one of the σ`0 with probability as high as the probability of satisfying the
disjunct χe. Now we use our previous results [12] on the strategy complexity of Büchi
objectives and prove the existence of an MD strategy τe that is almost optimal for θe (error
less than γ), starting from every state in Re. We define sets fixe and coree to be the set of
states from which τe attains a high probability for θe in Le−2; see Figure 3. Define β def= 1− γ
and α def= 1− γ2, and

fixe
def= SafeLe−2 ,τe,θe (β) coree

def= SafeLe−2 ,τe,θe (α). (6)

We fix the strategy τe in the fixe-region to derive the MDP Le from Le−2. Formally,

Le
def= Le−2[τe,fixe]. (7)

Iteration e ∈ {2, · · · , emax}: For all states `0 ∈ L0, let σ`0 be a general (not necessarily MD)
γ
2 -optimal strategy w.r.t. ψe−2 in the layered MDP Le−2. Consider the Markov chain C`0

induced by Le−2, the fixed initial state `0 and strategy σ`0 .
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f ix2

core2

R2

τ2

R4 f ix4

core4
τ4

L0

n2

n4

Figure 3 The construction for Lemma 9. In the first iteration, for color 2, we fix the MD strategy
τ2 in the fix2-region. In the second iteration, for color 4, we fix τ4 in fix4, and so on for all even
colors. Everywhere else we fix an γ-optimal reachability strategy towards

⋃emax
e=2 coree (in green).

By definition (Equation 5), θe is suffix-closed and Fθe is tail. The strategy σ`0 attains Fθe
with probability at least as large as it achieves disjunct χe in ψe−2. We apply Lévy’s zero-one
law to deduce that the winning runs of Fθe likely reach a finite set Re of states that have
a high value for θe. In other words, most runs that eventually win through color e, while
eventually avoiding Fixe−2, will reach Re within a bounded number of steps.

I Lemma 10. Let s0 ∈ S and E be a suffix-closed objective. For all ε, ε′ > 0, there exist n
and a finite set F ⊆ SafeE(1− ε) such that Ps0

(FE ∧ F≤n F ) ≥ Ps0
(FE)− ε′.

By Lemma 10, there exist n`0 and a finite set R`0 ⊆ SafeLe−2 ,θe (α) such that

PLe−2,`0,σ`0
(Fθe ∧ F≤n`0 R`0) ≥ PLe−2,`0,σ`0

(Fθe)−
γ

2 . (8)

Define ne
def= max`0∈L0(n`0) and R def=

⋃
`0∈L0

R`0 . Write Re
def= {(s, 0) | ∃b · (s, b) ∈ R} for

the projection of Re on the layer 0.
I Remark 11. Suppose E ′ ⊆ E and ε > 0 are such that P(E ′) ≥ P(E)− ε. Then, for any R,
we have P(E ′ ∩R) ≥ P(E ∩ R)− ε.

Proof. We have:

P(E ′∩R) = P(E ′)−P(E ′\R) ≥ P(E)−ε−P(E ′\R) ≥ P(E)−ε−P(E\R) = P(E∩R)−ε .

J

We apply Remark 11 to Equation (8) to get

PLe−2,`0,σ`0
(Fθe ∧ G¬Fixe−2 ∧ FCl(Re)) ≥ PLe−2,`0,σ`0

(Fθe ∧ G¬Fixe−2)− γ

2 .

Since FG¬Fixe−2 ∧ G¬Fixe−2 = G¬Fixe−2 and χe = Fϕe ∧ G¬Fixe−2,

PLe−2,`0,σ`0
(χe ∧ FCl(Re)) ≥ PLe−2,`0,σ`0

(χe)−
γ

2 . (9)

We think of GF[S]Col=e as a Büchi condition on a slightly modified MDP. This allows us
to apply the following theorem from [12] about the strategy complexity of Büchi objectives.

I Theorem 12 (Theorem 5 in [12]). For every acyclic countable MDPM, a Büchi objective ϕ,
finite set I of initial states and ε > 0, there exists a deterministic 1-bit strategy that is ε-
optimal from every s ∈ I.
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Using Theorem 12, we prove the following.

B Claim 13. In MDP Le−2, there is an MD strategy τe, that is (α − β)-optimal for θe
from Re.

Notice that τe is used to define regions coree ⊆ fixe; see Equation (6) and Figure 3. Since
valLe−2,θe(`) = valLe−2,θe(`′) holds for all siblings ` and `′, all states in Re have value ≥ α
w.r.t. θe. We have chosen τe to be (α − β)-optimal, which implies PLe−2,`,τe

(θe) ≥ β for
all ` ∈ Re. This shows that Re ⊆ fixe. Strategy τe is also used to obtain Le from Le−2: for
all controlled states ` ∈ fixe, the successor is fixed to be τe(`) in Le, see Equation (7).

Invariant (3): Given a state `0 ∈ L0, this invariant states that, for all colors e, valLe,ψe(`0) ≥
valL,ϕ(`0) − e · γ holds. Recall that ψ0 = ϕ and L0 = L. To prove the invariant, by an
induction on even colors e, it suffices to prove the following:

valLe,ψe(`0) ≥ valLe−2,ψe−2(`0)− 2γ.

We construct a strategy π for ψe in Le such that PLe,`0,π
(ψe) ≥ valLe−2,ψe−2(`0) − 2γ.

Intuitively speaking, π enforces that most runs that win through colors e′, with e′ ≤ e,
eventually reach the coree′-region and most remaining winning runs always avoid the Fixe-
region.

The strategy π is defined by combining σ`0 and τe; recall that the strategy σ`0 is γ2 -optimal
w.r.t. ψe−2 starting from `0 in Le−2. We define π such that it starts by following σ`0 . If it
ever enters Cl(fixe) then we ensure that it enters fixe as well (in at most one more step).
Then π continues by playing as τe does forever.

The following claim concludes the proof of Invariant 3.

B Claim 14. PLe,`0,π
(ψe) ≥ valLe−2,ψe−2(`0)− 2γ.

We summarize the main steps in the proof of Claim 14 here. We first prove the claim
that if π ever enters Cl(fixe) then it is possible to define it in such a way that it actually
enters fixe.

Comparing ψe with ψe−2, one notices that two significant terms in the symmetric difference
of these two objectives are χe and Fcoree. Roughly speaking, we use Equation (9) to move
from χe to FCl(fixe). Then we move from FCl(fixe) to Fcoree by proving that PLe,`0,π

(Fcoree)
is almost as high as PLe−2,`0,π

(FCl(fixe)), modulo small errors. To derive the latter, we rely
on two facts: another application of Lévy’s zero-one law that guarantees PLe,`0,π

(θe ∧ Fcoree)
is equal to PLe,`0,π

(θe); and the fact that, as soon as π visits the first state ` ∈ fixe, it
switches to τe forever, and thus attains θe with probability at least β.

Reach iteration: After all emax
2 -iterations for even colors and the fixing, by Invariant (3),

for all `0 ∈ L0, we have:

valLemax ,ψemax
(`0) ≥ valL,ϕ(`0)− emaxγ. (10)

Recall that ψemax =
∨
e∈even(C) Fcoree. At this last iteration, we fix the choice of all

remaining states in Lemax such that the probability of ψemax is maximized. Recall that there
are uniformly ε-optimal MD strategies for reachability objectives [16]. Hence, there is a
single MD strategy τreach in Lemax that is uniformly γ-optimal w.r.t. ψemax ; in particular,
τreach is γ-optimal from every state `0 ∈ L0.

Let L′ def= Lemax [τreach, L]. Let σ̂ be the MD strategy in L that plays from L0 as prescribed
by all the fixings in L′. Since all choices in all the fixe-region are resolved according to τe,
e ∈ {2, · · · , emax}, we can apply Lévy’s zero-one law another time.
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Figure 4 Initial segment of the sea urchin construction. Li is the result of fixing τi inside BETAi

and then ρi inside the ki-bubble (the set of states reachable from the initial state(s) in ≤ ki steps).
Drawn here for i = 1, 2, 3, 4.

I Lemma 15. Let 0 < β1 < β2 ≤ 1 and E a tail objective. For s ∈ SafeE(β2), the following
holds: Ps(G SafeE(β1)) ≥ β2−β1

1−β1
.

By Lemma 15, for all states ` ∈ coree,

PLemax ,`,τe
(Gfixe) ≥

α− β
1− β ≥ 1− γ. (11)

States in fixe have a high value for θe and thus also for Fϕe.

I Lemma 16. Let 0 < β < 1 and E a tail objective. For all states s ∈ SafeE(β):
1. Ps(FGSafeE(β) \ E) = 0; and
2. Ps(E \ FGSafeE(β)) = 0.

By Lemma 16.2, we satisfy Fϕe almost surely:

PLemax ,`,τe
(Fϕe | Gfixe) = 1. (12)

Using Equations (10) and (11), we prove that following.

B Claim 17. The MD strategy σ̂ is ε-optimal for parity objective ϕ, from every state `0 ∈ L0.
This concludes the proof of Lemma 9.

4 Optimal Strategies for Parity

In this section we show Theorem 2, i.e., that optimal strategies for parity, where they exist,
can be chosen deterministic 1-bit Markov.

First we show the main technical result of this section.

I Lemma 18. Let L(M) be the layered MDP obtained from an acyclic and finitely branch-
ing MDP M and a coloring Col such that all states are almost surely winning for ϕ =
Parity(Col) (i.e., every state s has a strategy σs such that PL(M),s,σs(ϕ) = 1).

For every initial state s0 there exists an MD strategy σ that almost surely wins, i.e.,
PL(M),s0,σ(ϕ) = 1.
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Proof sketch. The full version of this rather complex proof can be found in Appendix E.
For some intuition consider Figure 4. The sea urchin construction is a plastering con-

struction with infinitely many iterations where MD strategies are fixed in larger and larger
subspaces. Its name comes from the shape of the subspace in which player choices are
fixed up-to iteration i: A growing finite body of states that are reachable from the initial
state s0 within ≤ ki steps, plus i different spikes of infinite size. Each spike is composed of
nested subsets ALPHAi ⊆ BETAi (and ⊆ GAMMAi, which is used only in the correctness
argument) that correspond to different levels of attainment of certain ε-optimal MD strategies
τi, obtained from Lemma 9. Strategy τi is then fixed in BETAi (and thus in ALPHAi). Other
MD strategies ρi are fixed elsewhere in the finite body, up-to horizon ki. Using Lévy’s
zero-one law, we prove that, once inside ALPHAi, there is a high chance of never leaving
the i-th spike BETAi. Moreover, almost all runs that stay in the i-th spike satisfy parity.
Finally, the strategies ρi ensure that at least 1/2 (by probability mass) of the runs from s0
that don’t stay in one of the first i spikes will eventually stay in the (i + 1)-th spike and
satisfy parity there. Thus, at the stage with i spikes, the fixed MD strategy attains parity
with some probability ≥ 1− 2−i already inside this fixed subspace. In the limit of i→∞,
the resulting MD strategy attains parity almost surely. J

I Definition 19. For a tail objective ϕ and an MDP M = (S, S2, S#,−→, P ), we define
the conditioned version of M w.r.t. ϕ to be the MDP M∗ = (S∗, S∗2, S∗#,−→∗, P∗) with
S∗ = {s ∈ S | ∃σ. PM,s,σ(ϕ) = valM(s) > 0} and S∗2 = S∗ ∩ S2 and S∗# = S∗ ∩ S# and

−→∗ = {(s, t) ∈ S∗ × S∗ | s−→t and if s ∈ S∗2 then valM(s) = valM(t)}

and P∗ : S∗# → D(S∗) so that P∗(s)(t) = P (s)(t) · valM(t)
valM(s) for all s ∈ S∗# and t ∈ S∗ with

s−→∗ t.

See Appendix C for a proof that P∗(s) is a probability distribution for all s ∈ S∗# and
therefore that the conditioned MDP M∗ is well-defined. The name stems from a useful
property (cf. Lemma 33.2) that for all strategies that are optimal for ϕ inM, the probability
inM∗ of any event is the same as that of its probability inM conditioned under ϕ.

The following theorem is a very slight generalization of [13, Theorem 5] (cf. Appendix E).
It gives a sufficient condition under which we can conclude the existence of MD optimal
strategies from the existence of MD almost-sure winning strategies.

I Theorem 20. Let ϕ be a tail objective. Let M = (S, S2, S#,−→, P ) be an MDP and
M∗ = (S∗, S∗2, S∗#,−→∗, P∗) its conditioned version wrt. ϕ. Then:
1. For all s ∈ S∗ there exists a strategy σ with PM∗,s,σ(ϕ) = 1.
2. Suppose that for every s ∈ S∗ there exists an MD strategy σ′′ with PM∗,s,σ′′(ϕ) = 1. Then

there is an MD strategy σ′ such that for all s ∈ S:(
∃σ ∈ Σ.PM,s,σ(ϕ) = valM(s)

)
=⇒ PM,s,σ′(ϕ) = valM(s)

I Theorem 21. Consider an acyclic MDPM and a parity objective.
There exists a deterministic 1-bit strategy that is optimal from all states that have an

optimal strategy.

Proof. Consider the corresponding layered system L(M) (cf. Definition 6), which is also
acyclic. Let Sopt be the subset of states that have an optimal strategy inM. Thus all states
in Sopt × {0, 1} have an optimal strategy in L(M) by Lemma 7.

We now use Theorem 20 to obtain an MD strategy σ′ in L(M) that is optimal for all
states in L(M) that have an optimal strategy. First, the parity objective is tail. Second, in
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L(M), any two siblings have the same value w.r.t. parity by Remark 8. Therefore the changes
from L(M) to its conditioned version L(M)∗ (wrt. the parity objective) are symmetric in
the two layers. Thus L(M)∗ is also a layered acyclic MDP (i.e., there exists some acyclic
MDPM′ s.t. L(M)∗ = L(M′)), and by Theorem 20.1 all states in L(M)∗ are almost surely
winning. Now we can apply Lemma 18 (generalized to infinitely branching acyclic layered
MDPs by Lemma 3) to L(M)∗ and obtain that for every state in L(M)∗ there is an MD
strategy that almost surely wins. By Theorem 20.2 there is an MD strategy σ′ in L(M) that
is optimal for all states that have an optimal strategy. In particular, σ′ is optimal for the
states in Sopt × {0, 1} in L(M). By Lemma 7, this yields a deterministic 1-bit strategy in
M that is optimal for all states in Sopt . J

In Theorem 21 the initial memory mode of the 1-bit strategy is irrelevant (recall Remark 8).
Theorem 2 now follows directly from Theorem 21 and Lemma 4(3).

5 Optimal Strategies for {0, 1, 2}-Parity

I Theorem 22. LetM = (S, S2, S#,−→, P ) be an MDP, ϕ a {0, 1, 2}-Parity objective and
M∗ = (S∗, S∗2, S∗#,−→∗, P∗) its conditioned version wrt. ϕ. Assume that inM∗ for every
safety objective (given by some target T ⊆ S∗) and ε > 0 there exists a uniformly ε-optimal
MD strategy. Let Sopt be the subset of states that have an optimal strategy for ϕ inM.

Then there exists an MD strategy inM that is optimal for ϕ from every state in Sopt.

The above result generalizes [13, Theorem 16], which considers only finitely-branching
MDPs and uses the fact that for every safety objective, an MD strategy exists that is
uniformly optimal. This is not generally true for infinitely-branching acyclic MDPs [13]. To
prove Theorem 22, we adjust the construction so that it only requires uniformly ε-optimal
MD strategies for safety objectives (in the conditioned MDPM∗).

In order to apply Theorem 22 to infinitely-branching acyclic MDPs, we now show that
acyclicity guarantees the existence of uniformly ε-optimal MD strategies for safety objectives.

I Lemma 23. For every acyclic MDP with a safety objective and every ε > 0 there exists
an MD strategy that is uniformly ε-optimal.

While we defined ε-optimality wrt. additive errors (cf. Section 2), our proof of Lemma 23
shows that the claim holds even wrt. multiplicative errors (in the style of [16]).

I Theorem 24. Consider an MDPM with a {0, 1, 2}-Parity objective and let Sopt be the
subset of states that have an optimal strategy.
1. IfM is acyclic then there exists an MD strategy that is optimal from every state in Sopt.
2. There exists a deterministic Markov strategy that is optimal from every state in Sopt.

Proof. Towards item 1, ifM is acyclic then also its conditioned versionM∗ (wrt. {0, 1, 2}-Parity)
is acyclic. Thus, by Lemma 23, inM∗ for every ε > 0 and every safety objective there is a
uniformly ε-optimal MD strategy. The result now follows from Theorem 22.

Item 2 follows from Item 1 and Lemma 4 (item 3 with k = 0). J

6 ε-Optimal Strategies for {0, 1}-Parity (co-Büchi)

I Theorem 25. Suppose thatM = (S, S2, S#,−→, P ) is an MDP such that for every safety
objective (given by some target T ⊆ S) and ε > 0 there exists a uniformly ε-optimal MD
strategy.
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Then for every co-Büchi objective (given by some coloring Col : S → {0, 1}) and ε > 0
there exists a uniformly ε-optimal MD strategy.

The precondition of Theorem 25 is satisfied by many classes of MDPs. Indeed, we obtain
the following.

I Corollary 26. Consider an MDPM and a co-Büchi objective.
1. IfM is acyclic then, for every ε > 0, there exists a uniformly ε-optimal MD strategy.
2. IfM is finitely branching then, for every ε > 0, there exists a uniformly ε-optimal MD

strategy.
3. For every ε > 0 there exists a deterministic Markov strategy that, from every initial state

s, attains at least valM(s)− ε.

Proof. Towards (1), for acyclic MDPs, uniformly ε-optimal strategies for safety can be
chosen MD by Lemma 23. Towards (2), for finitely branching MDPs there always exists even
a uniformly optimal MD strategy for every safety objective. In both cases the claim then
follows from Theorem 25. Claim (3) follows directly from (1) and Lemma 4 (item 2 with
k = 0). J
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A Reductions in Section 3 and related Lemmas

By the following lemma, the strategy complexity of general parity objectives does not depend
on the branching degree of the MDPs. However, this does not hold for particular parity
objectives with a restricted set of colors, since the construction introduces an extra color.

I Lemma 3.
1. Suppose that for every finitely branching acyclic MDP with a finite set S0 of initial states,

and a parity objective, there exist ε-optimal deterministic 1-bit strategies from S0.
Then even for every infinitely branching acyclic MDP with a finite set S0 of initial states
and a parity objective, there exist ε-optimal deterministic 1-bit strategies from S0.

2. Suppose that for every finitely branching acyclic MDP with a parity objective, there exists
a deterministic 1-bit strategy that is optimal from all states that have an optimal strategy.
Then even for every infinitely branching acyclic MDP with a parity objective, there exists
a deterministic 1-bit strategy that is optimal from all states that have an optimal strategy.

Proof. Towards item (1), we encode an infinitely branching acyclic MDPM into a finitely
branching acyclic MDPM′. Every controlled state x with infinite branching x→ yi for all
i ∈ N is replaced by a gadget x→ z1, zi → zi+1, zi → yi for all i ∈ N with fresh controlled
states zi. Infinitely branching random states with x pi−→ yi for all i ∈ N are replaced by a
gadget x 1−→ z1, zi

1−p′i−−−→ zi+1, zi
p′i−→ yi for all i ∈ N, with fresh random states zi and suitably

adjusted probabilities p′i to ensure that the gadget is left at state yi with probability pi, i.e.,
p′i = pi/(

∏i−1
j=1(1−p′j)). The fresh states are labeled with an unfavorable color that is smaller

than all other colors, e.g., −1.
We take an ε-optimal deterministic 1-bit strategy σ′ for parity from all states s ∈ S0 in

M′. We construct a 1-bit deterministic ε-optimal strategy σ for M as follows. Consider
some state x that is infinitely branching inM and its associated gadget inM′. Whenever a
run inM′ according to σ′ reaches x with some memory value α ∈ {0, 1} there exist values pi
for the probability that the gadget is left at state yi. Let p

def= 1−
∑
i∈N pi be the probability

that the gadget is never left. (If x is controlled then only one pi (or p) is nonzero, since σ′ is
deterministic. If x is random then p = 0.) Since σ′ is deterministic, the memory updates are
deterministic, and thus there are values α′i ∈ {0, 1} such that whenever the gadget is left
at state yi the memory will be α′i. We now define the behavior of the 1-bit deterministic
strategy σ at state x with memory α inM.

If x is controlled and p 6= 1 then σ′′ picks the successor state yi where pi = 1 and sets
the memory to α′i. If p = 1 then any run according to σ′ that enters the gadget does not
satisfy the objective. Thus σ performs at least as well inM regardless of its choice, e.g., pick
successor y1 and α′ = α.

If x is random then p = 0 and the successor is chosen according to the defined distribution
(which is the same inM andM′) and σ can only update its memory. Whenever the successor
yi is chosen, σ updates the memory to α′i.

In states that are not infinitely branching inM, σ does exactly the same inM as σ′ in
M′.

Since all states in the gadgets are labeled with color −1, σ performs at least as well in
M as σ′ inM′ and is thus ε-optimal from every s ∈ S0.

Towards item (2), the proof is almost identical, expect that we consider optimal strategies
from initial states s that have an optimal strategy. J

In order to show the existence of Markov (resp. 1-bit Markov) strategies, it suffices to
show the existence of memoryless (resp. 1-bit) strategies in an MDP that is made acyclic
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by encoding a step counter in the state space. (Note that deterministic 0-bit strategies are
MD strategies and 0-bit Markov strategies are Markov strategies.) This idea appears already
in [12] and can be formally stated as follows.

I Lemma 4. Consider MDPs with a parity objective and k ∈ N.
1. Suppose that for every acyclic MDPM′ and every finite set of initial states S′0 and ε > 0,

there exists a deterministic k-bit strategy that is ε-optimal from all states s ∈ S′0.
Then for every MDPM and every finite set of initial states S0 and ε > 0, there exists a
deterministic k-bit Markov strategy that is ε-optimal from all states s ∈ S0.

2. Suppose that for every acyclic MDP M′ and ε > 0, there exists a deterministic k-bit
strategy that is ε-optimal from all states. Then for every MDPM and ε > 0, there exists
a deterministic k-bit Markov strategy that is ε-optimal from all states.

3. Suppose that for every acyclic MDPM′, where S′opt is the subset of states that have an
optimal strategy, there exists a deterministic k-bit strategy that is optimal from all states
s ∈ S′opt. Then for every MDPM, where Sopt is the subset of states that have an optimal
strategy, there exists a deterministic k-bit Markov strategy that is optimal from all states
s ∈ Sopt.

Proof. The construction is similar for all three items.
Consider an MDPM = (S, S2, S#,−→, P ) with sets of initial states S0 (finite), S and

Sopt , respectively.
We transform it into an acyclic MDPM′ by encoding a step-counter into the states, i.e.,

M′ = (S′, S′2, S′#,−→′, P ′) where S′ def= S × N, S′2
def= S2 × N, S′#

def= S# × N, Col((s, n)) def=
Col(s), (s, n)−→′(s′, n+ 1) iff s−→s′ and P ′((s, n))((s′, n+ 1)) def= P (s)(s′).

For every deterministic k-bit strategy σ′ inM′ there is a corresponding deterministic
k-bit Markov strategy σ inM, and vice-versa. At any state s, σ in memory mode m and
step-counter n plays exactly like σ′ in memory mode m at state (s, n).

It follows from the definition of the colorings that σ (with memory mode m) attains the
same from any initial state s as σ′ (with memory mode m) attains from (s, 0). Moreover,
every state s has the same value as its corresponding state (s, 0).

1. InM′ we consider the set of initial states S′0
def= S0 × {0}, which is finite since S0 is finite.

By our assumption, for every ε > 0, there exists a deterministic k-bit strategy σ′ inM′
that is ε-optimal from all states s ∈ S′0. Thus σ is ε-optimal from all states s ∈ S0.

2. Like above, except that the set of initial states S0
def= S is not finite. Since σ′ is assumed

to be ε-optimal from all states in M′, in particular it is ε-optimal from all states in
S′0

def= S × {0}. Thus σ is ε-optimal from all states s ∈ S.
3. Here the set of initial states is Sopt. Every state s ∈ Sopt has the same value as its

corresponding state (s, 0) ∈ Sopt × {0} and the corresponding strategies σ and σ′ attain
the same from s and (s, 0), respectively. Therefore Sopt × {0} ⊆ S′opt . Since the strategy
σ′ is assumed to be optimal from all states s ∈ S′opt, it is optimal from all states in
Sopt × {0}, and thus σ is optimal from all states in Sopt .

J

For ease of presentation, we will, instead of showing the existence of 1-bit strategies in an
acyclic MDPM, show the existence of MD strategies in the corresponding layered MDP
L(M), which encodes the two memory modes into the states by having two copies of M
(called layers 0 and 1). The transitions and probability functions, as well as whether a state
is randomized, and its (parity) color, are lifted naturally.
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The next lemma shows the correspondence between deterministic 1-bit strategies inM
and MD strategies in L(M).

I Lemma 7. Consider an acyclic MDPM = (S, S2, S#,−→, P ) with a parity objective ϕ =
Parity(Col) and let L(M) be the corresponding layered MDP.

For every deterministic 1-bit strategy u[m0] inM there is a corresponding MD strategy τ
in L(M), and vice-versa, such that for every s0 ∈ S, PL(M),(s0,m0),τ (ϕ) = PM,s0,u[m0](ϕ).

Proof. For the “M =⇒ L(M)” direction, given u[m0], we define the MD strategy τ to
play in L(M) as follows. For b, b′ ∈ {0, 1},

for a controlled state s ∈ S2, if u[m0](b, s) = (b′, s′) meaning that u[m0] chooses s′ at s,
by taking a transition t = (s, s′), and updates the bit to b′, we define τ((s, b)) def= (t, b)
and τ((t, b)) def= (s′, b′);
for a random state s ∈ S#, if u[m0] updates the memory bit to b′ in case the random
successor resolves to s′, by taking a transition t = (s, s′), we define τ((t, b)) def= (s′, b′).

Similarly, for the “M ⇐= L(M)” direction, given τ in L(M), we define an update
function u, such that for all initial bit m0 ∈ {0, 1} the deterministic 1-bit strategy u[m0]
inM plays from any state s ∈ S as τ plays in L(M) from (s,m0). The construction is as
follows. For all b, b′ ∈ {0, 1} and all transitions t = (s, s′),

if s ∈ S2, and if τ((s, b)) = (t, b) and τ((t, b)) = (s′, b′), we define u(b, s) def= (b′, s′);
if s ∈ S#, and if τ((t, b)) = (s′, b′), we define u(b, s)(b′, s′) def= P (s)(s′).

Denote by Cτ the Markov chain obtained from L(M) after fixing τ , and by Cu[m0] the
Markov chain obtained fromM after fixing u[m0]. Observe there is a clear bijection between
the runs in the Markov chains Cτ and Cu[m0]. Since the parity colors are lifted accordingly,
we conclude that PL(M),(s0,m0),τ (ϕ) = PM,s0,u[m0](ϕ), as required. J

B Lévy’s zero-one law

We fix a finitely branching Markov chain C with state space S. We use the probability
measure Ps when starting in a state s.

For an event E ∈ F , the indicator function 1E : Sω → {0, 1} is defined by

1E(ρ) =
{

1 if ρ ∈ E ,
0 otherwise.

Below we recall Lévy’s zero-one law; we state this result for a specific family of sub σ-
algebras that is used throughout our proofs. Consider the simplest sequence of sub σ-algebras
(Fi)i∈N of F where each Fi is the σ-algebra generated by all events that depend only on the
length-i prefixes. Formally, for all i ∈ N, define the sub σ-algebra

Fi = {A · Sω ⊆ Sω | A ⊆ Si}.

Observe that F1 ⊂ F2 ⊂ · · · ⊂ F∞ where F∞ = F is the smallest σ-algebra containing
all the Fi. The sub σ-algebra Fi, i ∈ N, introduces an equivalence class ∼i on Sω where
ρ ∼i ρ′ if and only if for all E ∈ Fi, the condition ρ ∈ E ⇔ ρ′ ∈ E is met. Given a run ρ,
denote by [ρ]∼i the equivalence class of ρ. By definition of the Fi, if ρ ∈ s1 · · · siSω then
[ρ]∼i = s1 · · · siSω.
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Given a state s, define the random variable Ps(E | Fi) : Sω → [0, 1] ∪ {⊥} such that, for
all runs ρ ∈ s1 · · · siSω,

Ps(E | Fi)(ρ) =
{
Ps(E | [ρ]∼i) if Ps(s1 · · · si) 6= 0;
⊥ (read as undefined) otherwise.

(13)

By Lévy’s zero-one law for all events E ⊆ F∞ we have that

lim
i→∞

Ps(E | Fi) = 1E

holds P-almost-surely.
I Remark 27. Given a suffix-closed objective E and a run ρ ∈ s1 · · · siSω, if Ps(E | Fi)(ρ) is
defined, then

Ps1
(E | Fi)(ρ) = Ps1

(E | [ρ]∼i)
= Ps1

(E | s1 · · · siSω)
≤ Psi(E | siS

ω)
= Psi(E).

If E is tail then Ps1
(E | Fi)(ρ) = Psi(E).

For the fixed Markov chain C and ε > 0, we define SafeE(1− ε)
def= {s | Ps(E) ≥ 1− ε}.

I Lemma 28. Let s0 ∈ S and E be a suffix-closed objective and ε > 0. Then Ps0
(FE ∧

¬FSafeE(1− ε)) = 0.

Proof. Let s0 ∈ S. We have:

JG¬SafeE(1− ε)Ks0 = {s0s1 · · · | ∀ i .Psi(E) < 1− ε}
⊆ {ρ ∈ s0S

ω | ∀ i .Ps0
(E | Fi)(ρ) < 1− ε} by Remark 27

⊆ {ρ ∈ s0S
ω | lim

i→∞
Ps0

(E | Fi)(ρ) 6= 1}

It follows

Ps0
(E ∧ G¬SafeE(1− ε)) ≤ Ps0

(E ∩ {ρ ∈ s0S
ω | lim

i→∞
Ps0

(E | Fi)(ρ) 6= 1}) = 0 (14)

by Lévy’s zero-one law.
Let s0 ∈ S. We have:

Ps0
(FE ∧ ¬FSafeE(1− ε))

= Ps0
(FE ∧ G¬SafeE(1− ε))

= Ps0

( ⋃
s1···si∈S∗

s0s1 · · · si−1(E ∩ siSω) ∧ G¬SafeE(1− ε)
)

≤
∑

s1···si∈S∗
Ps0

(s0s1 · · · si−1(E ∩ siSω) ∧ G¬SafeE(1− ε)) union bound

≤
∑

s1···si∈S∗
Psi((E ∩ siS

ω) ∧ G¬SafeE(1− ε))

=
∑

s1···si∈S∗
Psi(E ∧ G¬SafeE(1− ε))

= 0 by Equation (14)
J
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I Lemma 10. Let s0 ∈ S and E be a suffix-closed objective. For all ε, ε′ > 0, there exist n
and a finite set F ⊆ SafeE(1− ε) such that Ps0

(FE ∧ F≤n F ) ≥ Ps0
(FE)− ε′.

Proof. By Lemma 28 we have

Ps0
(FE ∧ FSafeE(1− ε)) = Ps0

(FE) .

By continuity of measures it follows that there is n such that

Ps0
(FE ∧ F≤nSafeE(1− ε)) ≥ Ps0

(FE)− ε′ .

Let bubblen(s0) be the set of states that can be reached from s0 within at most n steps.
Since the Markov chain C is finitely branching, F def= SafeE(1− ε) ∩ bubblen(s0) is a finite set.
Then we have JF≤nF K = JF≤nSafeE(1− ε)K and the statement of the lemma follows. J

I Lemma 16. Let 0 < β < 1 and E a tail objective. For all states s ∈ SafeE(β):
1. Ps(FGSafeE(β) \ E) = 0; and
2. Ps(E \ FGSafeE(β)) = 0.

Proof. By Lévy’s zero-one law,

Ps({ρ | lim
i→∞

Ps(E | Fi)(ρ) = 1E(ρ)}) = 1, and

Ps({ρ | lim
i→∞

Ps(E | Fi)(ρ) 6= 1E(ρ)}) = 0.
(15)

On one hand Equation (15) implies that

Ps({ρ | lim
i→∞

Ps(E | Fi)(ρ) = 0 ∧ 1E(ρ) = 0}

∪ {ρ | lim
i→∞

Ps(E | Fi)(ρ) = 1 ∧ 1E(ρ) = 1}) = 1

⇒Ps({ρ | lim
i→∞

Ps(E | Fi)(ρ) = 0} ∪ {ρ | 1E(ρ) = 1}) = 1

⇔Ps({ρ | ∀ε > 0 ∃n∀i ≥ nPs(E | Fi)(ρ) < ε} ∪ E) = 1
⇒Ps({ρ | ∃n∀i ≥ nPs(E | Fi)(ρ) < β} ∪ E) = 1
⇒Ps(FG¬SafeE(β) ∪ E) = 1 by Remark 27

since
r

FG¬SafeE(β)
z
⊆

r
¬FGSafeE(β)

z

⇒Ps(¬FGSafeE(β) ∪ E) = 1
⇔Ps(FGSafeE(β) ∩ ¬E) = 0
⇔Ps(FGSafeE(β) \ E) = 0

On the other hand Equation (15) implies that

Ps({ρ | lim
i→∞

Ps(E | Fi)(ρ) 6= 1 ∧ 1E(ρ) = 1}) = 0

⇒Ps({ρ | lim
i→∞

Ps(E | Fi)(ρ) 6= 1} ∩ {ρ | 1E(ρ) = 1}) = 0

⇒Ps({ρ | ∀n ∃i ≥ nPs(E | Fi)(ρ) < β} ∩ {ρ | 1E(ρ) = 1}) = 0
⇔Ps(¬FGSafeE(β) ∩ E) = 0 by Remark 27
⇔Ps(E \ FGSafeE(β)) = 0

J
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I Corollary 29. Let 0 < β < 1 and E a tail objective. For all states s ∈ SafeE(β), we have
Ps(E | GSafeE(β)) = 1.

Proof. Since GSafeE(β) is contained in FGSafeE(β), Lemma 16 leads to Ps(GSafeE(β)\E) = 0.
Then,

Ps(E ∩ GSafeE(β)) = Ps(GSafeE(β))− Ps(GSafeE(β) \ E)
= Ps(GSafeE(β)).

By the above equality, we get that Ps(E | GSafeE(β)) = Ps(E∩GSafeE(β))
Ps(GSafeE(β)) = 1. J

I Corollary 30. Let 0 < β1, β2 < 1 and E a tail objective. For all states s we have

Ps(FG SafeE(β1) \ FG SafeE(β2)) = 0

Proof. We have that

FG SafeE(β1) \ FG SafeE(β2)
= [E ∩ (FG SafeE(β1) \ FG SafeE(β2))]
∪ [(FG SafeE(β1) \ FG SafeE(β2)) \ E ]
⊆ (E \ FG SafeE(β2)) ∪ (FG SafeE(β1) \ E).

(16)

Thus Ps(FG SafeE(β1) \ FG SafeE(β2)) ≤ Ps(E \ FG SafeE(β2)) + Ps(FG SafeE(β1) \ E) = 0, by
Lemma 16. J

I Lemma 15. Let 0 < β1 < β2 ≤ 1 and E a tail objective. For s ∈ SafeE(β2), the following
holds: Ps(G SafeE(β1)) ≥ β2−β1

1−β1
.

Proof. Write x for Ps(G SafeE(β1)). We condition the probability of E under G SafeE(β1).
By the law of total probability, we have

β2 ≤ Ps(E) = Ps(E | G SafeE(β1)) · x+ Ps(E | ¬G SafeE(β1)) · (1− x).

By Corollary 29, we have Ps(E | GSafeE(β1)) = 1. Hence we have β2 ≤ x+ β1 · (1− x); and
x ≥ β2−β1

1−β1
follows. J

C The Conditioned MDP

In this section we adapt some results from [13].
We will need the following lemma, which is a variant of [14, Lemma 20]:

I Lemma 31. Let ϕ be a tail objective. LetM = (S, S2, S#,−→, P ) be an MDP, and s0 ∈ S,
and σ be a strategy with PM,s0,σ(ϕ) = valM(s0). Suppose that s0s1 · · · sn for some n ≥ 0 is
a partial run starting in s0 and induced by σ. Then:
1. valM(sn) = PM,s0,σ(JϕKs0 | s0s1 · · · snSω).
2. If sn ∈ S# then valM(sn) =

∑
sn+1∈S P (sn)(sn+1) · valM(sn+1).

3. If sn ∈ S2 then valM(sn) = valM(sn+1) for all sn+1 ∈ supp(σ(s0s1 · · · sn)).

Proof. First we show PM,s0,σ(JϕKs0 | s0s1 · · · snSω) ≤ valM(sn). Define a strategy σ′ :
S∗S2 → D(S) by σ′(w) = σ(s0s1 · · · sn−1w) for all w ∈ S∗S2. Then we have PM,s0,σ(JϕKs0 |
s0s1 · · · snSω) = PM,sn,σ′(JϕKsn) ≤ valM(sn).

Next we show valM(sn) ≤ PM,s0,σ(JϕKs0 | s0s1 · · · snSω). Towards a contradiction, sup-
pose that valM(sn) > PM,s0,σ(JϕKs0 | s0s1 · · · snSω). Then, by the definition of valM(sn),
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there is a strategy σ′ with PM,sn,σ′(JϕKsn) > PM,s0,σ(JϕKs0 | s0s1 · · · snSω). Define a
strategy σ′′ that plays according to σ; if and when partial run s0s1 · · · sn is played, then σ′′
acts like σ′ henceforth; otherwise σ′′ continues with σ forever. Using the tail property we get:

PM,s0,σ′′(JϕKs0)
= PM,s0,σ′′(JϕKs0 | s0s1 · · · snSω) · PM,s0,σ′′(s0s1 · · · snSω)
+ PM,s0,σ′′(JϕKs0 \ s0s1 · · · snSω)
= PM,sn,σ′(JϕKsn) · PM,s0,σ(s0s1 · · · snSω)
+ PM,s0,σ(JϕKs0 \ s0s1 · · · snSω) def. of σ′′

> PM,s0,σ(JϕKs0 | s0s1 · · · snSω) · PM,s0,σ(s0s1 · · · snSω)
+ PM,s0,σ(JϕKs0 \ s0s1 · · · snSω) def. of σ′

= PM,s0,σ(JϕKs0)
= valM(s0) def. of σ

This contradicts the definition of valM(s0). Hence we have shown item 1.
Towards items 2 and 3, we extend σ : S∗S2 → D(S) to σ : S∗S → D(S) by defining

σ(ws) = P (s) for w ∈ S∗ and s ∈ S#. Then we have for all sn+1 ∈ S:

PM,s0,σ(s0s1 · · · snsn+1S
ω) = PM,s0,σ(s0s1 · · · snSω) · σ(s0s1 · · · sn)(sn+1) (17)

Further we have:

valM(sn)
= PM,s0,σ(JϕKs0 | s0s1 · · · snSω) by item 1

= PM,s0,σ(JϕKs0 ∩ s0s1 · · · snSω)
PM,s0,σ(s0s1 · · · snSω)

=
∑
sn+1∈S PM,s0,σ(JϕKs0 ∩ s0s1 · · · snsn+1S

ω)
PM,s0,σ(s0s1 · · · snSω)

= 1
PM,s0,σ(s0s1 · · · snSω) ·

∑
sn+1∈S

PM,s0,σ(s0s1 · · · snsn+1S
ω) ·

· PM,s0,σ(JϕKs0 | s0s1 · · · snsn+1S
ω)

=
∑

sn+1∈S
σ(s0s1 · · · sn)(sn+1) · PM,s0,σ(JϕKs0 | s0s1 · · · snsn+1S

ω) by (17)

=
∑

sn+1∈S
σ(s0s1 · · · sn)(sn+1) · valM(sn+1) by item 1

Thus we have shown item 2. Towards item 3, suppose sn ∈ S2. Then, by the tail property,
valM(sn) ≥ valM(sn+1) for all sn+1 with sn−→sn+1. Since σ(s0s1 · · · sn) is a probability
distribution, the equality chain above shows that valM(sn) = valM(sn+1) for all sn+1 ∈
supp(σ(s0s1 · · · sn)). Thus we have shown item 3. J

I Lemma 32. The conditioned versionM∗ ofM w.r.t. tail objective ϕ (cf. Definition 19 is
well defined.

Proof. By Lemma 31.2 we have that P∗(s) is a probability distribution for all s ∈ S∗#; hence
the conditioned MDPM∗ is well-defined. J

The following lemma is a reformulation of [13, Lemma 6]:
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I Lemma 33. Let ϕ be a tail objective. Let M = (S, S2, S#,−→, P ) be an MDP, and let
M∗ = (S∗, S∗2, S∗#,−→∗, P∗) be its conditioned version. Then:
1. For all σ ∈ ΣM∗ and all n ≥ 0 and all s0, . . . , sn ∈ S∗ with s0−→∗ s1−→∗ · · · −→∗ sn:

PM∗,s0,σ(s0s1 · · · snSω) = PM,s0,σ(s0s1 · · · snSω) · valM(sn)
valM(s0)

2. For all s0 ∈ S∗ and all σ ∈ ΣM with PM,s0,σ(ϕ) = valM(s0) > 0 and all measurable
R ⊆ s0S

ω we have PM∗,s0,σ(R) = PM,s0,σ(R | JϕKs0).

Proof. We prove item 1 by induction on n. For n = 0 it is trivial. For the step, suppose
that the equality in item 1 holds for some n. If sn ∈ S∗# then we have:

PM∗,s0,σ(s0s1 · · · snsn+1S
ω)

= PM∗,s0,σ(s0s1 · · · snSω) · P∗(sn)(sn+1)

= PM,s0,σ(s0s1 · · · snSω) · valM(sn)
valM(s0) · P∗(sn)(sn+1) ind. hyp.

= PM,s0,σ(s0s1 · · · snSω) · valM(sn)
valM(s0) · P (sn)(sn+1) · valM(sn+1)

valM(sn) def. of P∗

= PM,s0,σ(s0s1 · · · snsn+1S
ω) · valM(sn+1)

valM(s0)

Let now sn ∈ S∗2. If σ(s0s1 . . . sn)(sn+1) = 0 then the inductive step is trivial. Otherwise
we have:

PM∗,s0,σ(s0s1 · · · snsn+1S
ω)

= PM∗,s0,σ(s0s1 · · · snSω) · σ(s0s1 . . . sn)(sn+1)

= PM,s0,σ(s0s1 · · · snSω) · valM(sn)
valM(s0) · σ(s0s1 . . . sn)(sn+1) ind. hyp.

= PM,s0,σ(s0s1 · · · snSω) · valM(sn+1)
valM(s0) · σ(s0s1 . . . sn)(sn+1) def. of −→∗

= PM,s0,σ(s0s1 · · · snsn+1S
ω) · valM(sn+1)

valM(s0)

This completes the inductive step, and we have proved item 1.
Towards item 2, let s0 ∈ S∗ and σ ∈ ΣM such that PM,s0,σ(ϕ) = valM(s0) > 0. Observe

that σ can be applied also in the MDP M∗. Indeed, for any s ∈ S∗2, if t is a possible
successor state of s under σ, then valM(s) = valM(t) by Lemma 31.3 and thus t ∈ S∗.

Let again n ≥ 0 and s0, s1, . . . , sn ∈ S.
Suppose s0s1 · · · sn is a partial run inM∗ induced by σ. Then we have:

PM∗,s0,σ(s0s1 · · · snSω) · PM,s0,σ(ϕ)

= PM,s0,σ(s0s1 · · · snSω) · valM(sn)
valM(s0) · PM,s0,σ(ϕ) item 1

= PM,s0,σ(s0s1 · · · snSω) · valM(sn) assumption on σ
= PM,s0,σ(s0s1 · · · snSω) · PM,s0,σ(JϕKs0 | s0s1 · · · snSω) Lemma 31.1
= PM,s0,σ(JϕKs0 ∩ s0s1 · · · snSω)

Suppose s0s1 · · · sn is not a partial run inM∗ induced by σ. Hence PM∗,s0,σ(s0s1 · · · snSω) =
0. If s0s1 · · · sn is not a partial run inM induced by σ then PM,s0,σ(s0s1 · · · snSω) = 0.
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Otherwise, since σ is optimal, there is i ≤ n with valM(si) = 0, hence PM,s0,σ(JϕKs0 ∩
s0s1 · · · snSω). In either case we have PM∗,s0,σ(s0s1 · · · snSω) · PM,s0,σ(ϕ) = 0 =
PM,s0,σ(JϕKs0 ∩ s0s1 · · · snSω).

In either case we have the equality PM∗,s0,σ(R) = PM,s0,σ(R | JϕKs0) for cylinders R =
s0s1 · · · snSω. Since probability measures extend uniquely from cylinders [3], the equality
holds for all measurable R ⊆ s0S

ω. Thus we have shown item 2. J

The following lemma is [13, Lemma 7].

I Lemma 34. LetM = (S, S2, S#,−→, P ) be an MDP. Let ϕ be an objective that is prefix-
independent in {M}. Suppose that for any s ∈ S and any strategy σ with PM,s,σ(ϕ) = 1
there exists an MD-strategy σ′ with PM,s,σ′(ϕ) = 1. Then there is an MD-strategy σ′ such
that for all s ∈ S:(

∃σ ∈ Σ.PM,s,σ(ϕ) = 1
)

=⇒ PM,s,σ′(ϕ) = 1

Proof. We can assume that all states are almost-surely winning, since in order to achieve
an almost-sure winning objective, the player must forever remain in almost-surely winning
states. So we need to define an MD-strategy σ′ so that for all s ∈ S we have PM,s,σ′(ϕ) = 1.

Fix an arbitrary state s1 ∈ S. By assumption there is an MD-strategy σ1 with
PM,s1,σ1(ϕ) = 1. Let U1 ⊆ S be the set of states that occur in plays that both start
from s1 and are induced by σ1. We have PM,s1,σ1(JϕKs1 ∩ Uω1 ) = 1. In fact, for any s ∈ U1
and any strategy σ that agrees with σ1 on U1 we have PM,s,σ(JϕKs ∩ Uω1 ) = 1.

If U1 = S we are done. Otherwise, consider the MDPM1 obtained fromM by fixing σ1
on U1 (i.e., inM1 we can view the states in U1 as random states). We argue that, inM1,
for any state s there is an MD-strategy σ′1 with PM1,s,σ′1

(ϕ) = 1. Indeed, let s ∈ S be any
state. Recall that there is an MD-strategy σ with PM,s,σ(ϕ) = 1. Let σ′1 be the MD-strategy
obtained by restricting σ to the non-U1 states (recall that the U1 states are random states
inM1). This strategy σ′1 almost surely generates a run that either satisfies ϕ without ever
entering U1 or at some point enters U1. In the latter case, ϕ is satisfied almost surely: this
follows from prefix-independence and the fact that σ′1 agrees with σ1 on U1. We conclude
that PM1,s,σ′1

(ϕ) = 1.
Let s2 ∈ S \U1. We repeat the argument from above, with s2 instead of s1, and withM1

instead ofM. This yields an MD-strategy σ2 and a set U2 3 s2 with PM1,s2,σ2(JϕKs2∩Uω2 ) = 1.
In fact, for any s ∈ U2 and any strategy σ that agrees with σ2 on U2 and with σ1 on U1 we
have PM,s,σ(JϕKs ∩ Uω2 ) = 1.

If U1 ∪ U2 = S we are done. Otherwise we continue in the same manner, and so forth.
Since S is countable, we can pick s1, s2, . . . to have

⋃
i≥1 Ui = S. Define an MD-strategy σ′

such that for any s ∈ S2 we have σ′(s) = σi(s) for the smallest i with s ∈ Ui. Thus, if s ∈ Ui,
we have PM,s,σ′(ϕ) ≥ PM,s,σ′(JϕKs ∩ Uωi ) = 1. J

The following lemma is [14, Lemma 8].

I Lemma 35. Let S be countable and s ∈ S. Call a set of the form swSω for w ∈ S∗ a
cylinder. Let P,P′ be probability measures on sSω defined in the standard way, i.e., first on
cylinders and then extended to all measurable sets R ⊆ sSω. Suppose there is x ≥ 0 such
that x · P(C) ≤ P′(C) for all cylinders C. Then x · P(R) ≤ P′(R) holds for all measurable
R ⊆ sSω.

Proof. Let C = {C ⊆ sSω | C cylinder} denote the class of cylinders. This class generates an
algebra C∗ ⊇ C, which is the closure of C under finite union and complement. The classes C
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and C∗ generate the same σ-algebra σ(C). The class C∗ is the set of finite disjoint unions of
cylinders [3, Section 2]. Hence x · P(R) ≤ P′(R) for all R ∈ C∗.

Define

Q = {R ∈ σ(C) | x · P(R) ≤ P′(R)} .

We have C ⊆ C∗ ⊆ Q ⊆ σ(C). We show that Q is a monotone class, i.e., if R1,R2, . . . ∈ Q,
then R1 ⊆ R2 ⊆ · · · implies

⋃
iRi ∈ Q, and R1 ⊇ R2 ⊇ · · · implies

⋂
iRi ∈ Q. Suppose

R1,R2, . . . ∈ Q and R1 ⊆ R2 ⊆ · · · . Then:

x · P
(⋃

i

Ri
)

= sup
i
x · P(Ri) measures are continuous from below

≤ sup
i

P′(Ri) definition of Q

= P′
(⋃

i

Ri
)

measures are continuous from below

So
⋃
iRi ∈ Q. Using the fact that measures are continuous from above, one can similarly

show that if R1,R2, . . . ∈ Q and R1 ⊇ R2 ⊇ · · · then
⋂
iRi ∈ Q. Hence Q is a monotone

class.
Now the monotone class theorem (see, e.g., [3, Theorem 3.4]) implies that σ(C) ⊆ Q, thus

Q = σ(C). Hence x · P(R) ≤ P′(R) for all R ∈ σ(C). J

The following theorem is a variant of [13, Theorem 5].

I Theorem 20. Let ϕ be a tail objective. Let M = (S, S2, S#,−→, P ) be an MDP and
M∗ = (S∗, S∗2, S∗#,−→∗, P∗) its conditioned version wrt. ϕ. Then:
1. For all s ∈ S∗ there exists a strategy σ with PM∗,s,σ(ϕ) = 1.
2. Suppose that for every s ∈ S∗ there exists an MD strategy σ′′ with PM∗,s,σ′′(ϕ) = 1. Then

there is an MD strategy σ′ such that for all s ∈ S:(
∃σ ∈ Σ.PM,s,σ(ϕ) = valM(s)

)
=⇒ PM,s,σ′(ϕ) = valM(s)

Proof. Towards item 1, let s ∈ S∗. By the definition of S∗, there is a strategy σ with
PM,s,σ(ϕ) = valM(s) > 0. By Lemma 33.2, we have PM∗,s,σ(ϕ) = 1, as desired.

It remains to prove item 2. Suppose that for any s ∈ S∗ there exists an MD-strategy σ′′
with PM∗,s,σ′′(ϕ) = 1. By Lemma 34, it follows that there is an MD-strategy σ′ with
PM∗,s,σ′(ϕ) = 1 for all s ∈ S∗. We show that this strategy σ′ satisfies the property claimed
in the statement of the theorem.

To this end, let n ≥ 0 and s0, s1, . . . , sn ∈ S. If s0s1 · · · sn is a partial run inM∗ then,
by Lemma 33.1,

PM∗,s0,σ′(s0s1 · · · snSω) = PM,s0,σ′(s0s1 · · · snSω) · valM(sn)
valM(s0) ,

and thus, as valM(sn) ≤ 1,

valM(s0) · PM∗,s0,σ′(s0s1 · · · snSω) ≤ PM,s0,σ′(s0s1 · · · snSω) .

If s0s1 · · · sn is not a partial run inM∗ then PM∗,s0,σ′(s0s1 · · · snSω) = 0 and the previous
inequality holds as well. Therefore, by Lemma 35, we get for all measurable sets R ⊆ s0S

ω:

valM(s0) · PM∗,s0,σ′(R) ≤ PM,s0,σ′(R)

In particular, since PM∗,s0,σ′(ϕ) = 1, we obtain valM(s0) ≤ PM,s0,σ′(ϕ). The converse
inequality PM,s0,σ′(ϕ) ≤ valM(s0) holds by the definition of valM(s0), hence we conclude
PM,s0,σ′(ϕ) = valM(s0). J
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D Missing proofs in Section 3

We first recall our results [12] on the strategy complexity of Büchi objectives:

I Theorem 12 (Theorem 5 in [12]). For every acyclic countable MDPM, a Büchi objective ϕ,
finite set I of initial states and ε > 0, there exists a deterministic 1-bit strategy that is ε-
optimal from every s ∈ I.

We will prove that

B Claim 13. In MDP Le−2, there is an MD strategy τe, that is (α − β)-optimal for θe
from Re.

Proof. Consider the original MDPM. Given a set B ⊆ L in L, we use project(B) def= {s |
(s, b) ∈ B, b ∈ {0, 1}} to project the set intoM.

We first slightly modify M to obtain M′. The modification guarantees that, for all
states s and runs ρ ofM′,

sρ ∈
r

GF[S]Col=e
z

if and only if sρ ∈
r

GF[S]Col=e ∧ G[S]Col≤e ∧ G¬project(Fixe)
z
.

We redirect all out-going transitions of states s′ ∈ project(Fixe) or s′ with Col(s′) > e to
an infinite chain q0q1q2 · · · of controlled states where Col(qi) = 1 and qi−→qi+1. We also
update the color of all states s with Col(s) < e to 1.

The objective GF[S]Col=e is a Büchi Objective inM′. By Theorem 12, given the finite
set project(Re) of initial states, there exists a deterministic 1-bit strategy σ in M′ that
is (α− β)-optimal w.r.t. GF[S]Col=e for every state s ∈ project(Re) (with the memory bit
initially set to 0).

Since the fixed choices in Le−2 are only in the Fixe−2-region, strategy σ can be translated
in a natural way to a deterministic memoryless strategy σ′ in Le−2: For a state s ∈ S2 and
b ∈ {0, 1}, if σ chooses the successor state s′, by taking a transition t = (s, s′), and updates
the bit to b′, we define σ′((s, b)) def= (t, b) and σ′((t, b)) = (s′, b′). For a random state s ∈ S#
and b ∈ {0, 1}, if the strategy σ updates the memory bit to b′ in case the random successor
resolves to s′, by taking a transition t = (s, s′) , we define σ′((t, b)) def= (s′, b′). Recall that
the bit is initially set to 0 in σ. Consequently, the strategy σ′ is (α− β)-optimal for θe from
every state ` ∈ Re in the layered MDP Le−2. C

We next prove the main technical claim in Section 3:

B Claim 14. PLe,`0,π
(ψe) ≥ valLe−2,ψe−2(`0)− 2γ.

Proof. Recall the definition of π: it starts by following σ`0 . If it ever enters Cl(fixe) then we
ensure that it enters fixe as well (in at most one more step). Then π continues by playing
as τe does forever.

Below we argue that if π ever enters Cl(fixe) then it is in fact possible to choose the
layer in such a way that π enters fixe instead. Assume π enters Cl(fixe) at q after taking a
transition from p to q. Let q̄ ∈ fixe be the sibling of q. By construction,
1. either p ∈ −→1 ×{0, 1} is controlled: the controller switches the layer in p, by choosing q̄

rather than q and enters fixe;
2. or q ∈ −→1 × {0, 1} is controlled. By definition (6), the MD strategy τe attains a high

value from state q̄ for θe. Hence, τe(q̄) ∈ fixe. Hence, the controller can switch the layer
in q by playing τe(q̄) and enters fixe.
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For all e′ ∈ {2, 4, · · · , emax} define

χe′
def= Fϕe′ ∧ G¬Fixe−2 χ̃e′

def= Fϕe′ ∧ G¬Fixe.

We define

ψ
def=
∨
e′<e

Fcoree′ ∨
∨
e′>e

χe′

ψ′
def=
∨
e′<e

Fcoree′ ∨
∨
e′>e

χ̃e′
(18)

By definition of ψe−2 and ψe, see definition (4), we have ψe−2 = ψ∨χe and ψe = ψ′ ∨Fcoree.
For brevity, further define ρ def= FCl(fixe). Observe that Jψ ∧ ¬ρK ⊆ Jψ′K.

We first have that

PLe,`0,π(Fcoree)
≥PLe,`0,π(Fcoree ∧ ρ)
≥PLe,`0,π(¬Cl(fixe) until (Cl(fixe) ∧ Fϕe ∧ Fcoree ∧ G¬Fixe−2))

=
∑

`∈Cl(fixe)

PLe,`0,π(¬Cl(fixe) until `) · PLe,`,τe(θe ∧ Fcoree)

=
∑

`∈Cl(fixe)

PLe,`0,π(¬Cl(fixe) until `) · PLe,`,τe(θe) by Lemma 16.2

≥
∑

`∈Cl(fixe)

PLe,`0,π(¬Cl(fixe) until `) · β

=PLe,`0,π(ρ) · β
=PLe−2,`0,σ`0

(ρ) · β

=PLe−2,`0,σ`0
(ρ) · (1− γ)

≥PLe−2,`0,σ`0
(ρ)− γ

(19)

We use the law of total probability:

PLe−2,`0,σ`0
(ψe−2) = PLe−2,`0,σ`0

(ψ ∧ ¬ρ) + PLe−2,`0,σ`0
(χe) + PLe−2,`0,σ`0

(ψ ∧ ρ) (20)

In one hand, since Le and Le−2 only differ in the fixe-region, and since π plays as σ`0 on
all runs contained in ¬ρ:

PLe−2,`0,σ`0
(ψ ∧ ¬ρ) = PLe,`0,π(ψ ∧ ¬ρ) ≤ PLe,`0,π(ψ′)

In the other hand, by Equation (9):

PLe−2,`0,σ`0
(χe) ≤PLe−2,`0,σ`0

(χe ∧ ρ) + γ

2
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Applying the above to Equation (20) yields:

PLe−2,`0,σ`0
(ψe−2)

≤PLe,`0,π(ψ′) + PLe−2,`0,σ`0
(χe ∧ ρ) + PLe−2,`0,σ`0

(ψ ∧ ρ) + γ

2
=PLe,`0,π(ψ′) + PLe−2,`0,σ`0

((χe ∨ ψ) ∧ ρ) + γ

2 since χe and ψ are disjoint

≤PLe,`0,π(ψ′) + PLe−2,`0,σ`0
(ρ) + γ

2
≤PLe,`0,π(ψ′) + PLe−2,`0,π(Fcoree) + γ + γ

2 by Equation (19)

=PLe,`0,π(ψe) + 3γ
2

To conclude the proof we recall that σ`0 is γ
2 -optimal w.r.t ψe−2. C

B Claim 17. The MD strategy σ̂ is ε-optimal for parity objective ϕ, from every state `0 ∈ L0.

Proof. For the MD strategy σ̂, by the law of total probability, we have

PL,`0,σ̂(ϕ) ≥
∑

e∈even(C)

PL,`0,σ̂(Fϕe ∧ Fcoree) .

Let C′ be the set of even colors e where PL,`0,σ̂
(Fcoree) > 0. Then:

=
∑
e∈C′

PL,`0,σ̂(Fϕe | Fcoree) · PL,`0,σ̂(Fcoree)

≥
∑
e∈C′

PL,`0,σ̂(Gfixe | Fcoree) · PL,`0,σ̂(Fcoree) by Equation (12)

≥
∑
e∈C′

(1− γ) · PL,`0,σ̂(Fcoree) by Equation (11)

= (1− γ) ·
∑

e∈even(C)

PL,`0,σ̂(Fcoree)

≥ (1− γ) · PL,`0,σ̂(ψemax)

since τreach is γ-optimal and by Equation (10),

≥ (1− γ) · (valL,ϕ(`0)− emaxγ − γ)
≥ valL,ϕ(`0)− (emax + 2)γ

Recall that ε = (emax + 2)γ. Thus we have shown that the MD strategy σ̂ is ε-optimal
w.r.t. ϕ from every state `0 ∈ L0. C

E Missing proofs in Section 4

I Definition 36 (Bubbles). LetM be an MDP with states S, R ⊆ S, l ∈ N. The l-bubble
around R is the set

bubble(M, R, l) def= {s | ∃s0 ∈ R.∃τ.PM,s0,τ (F≤ls) > 0}

of states that can be reached from R in at most l steps. Any bubble around a closed set R ⊆ L
is closed.
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Recall that for an MD strategy τ , we write M[τ,R] for the MDP obtained from M
by fixing the strategy τ for all states in R. We will simply writeM[τ ] forM[τ, S], where
τ is fixed everywhere, and M[τ,R, l] def= M[τ, bubble(M, R, l)] that fixes τ in the l-bubble
around R.

I Lemma 18. Let L(M) be the layered MDP obtained from an acyclic and finitely branch-
ing MDP M and a coloring Col such that all states are almost surely winning for ϕ =
Parity(Col) (i.e., every state s has a strategy σs such that PL(M),s,σs(ϕ) = 1).

For every initial state s0 there exists an MD strategy σ that almost surely wins, i.e.,
PL(M),s0,σ(ϕ) = 1.

Proof. Directly from Lemma 37 (let L0
def= Cl({s0})). J

I Lemma 37. Let L(M) be the layered MDP obtained from an acyclic and finitely branch-
ing MDP M and a coloring Col such that all states are almost surely winning for ϕ =
Parity(Col) (i.e., every state s has a strategy σs such that PL(M),s,σs(ϕ) = 1).

For every finite closed set L0 of initial states there exists an MD strategy σ̂ that almost
surely wins from every state s0 ∈ L0. That is, ∀s0 ∈ L0. PL(M),s0,σ̂(ϕ) = 1.

Proof. We iteratively produce an infinite sequence L0,L1,L2, . . . of layered MDPs. They
have the same structure as L(M), but in each step from Li to Li+1 the choices in some
subset of states (reachable from L0) are fixed. In the limit all choices from all controlled
states reachable from L0 are fixed. Hence this prescribes an MD strategy σ̂ from L0 in L(M).
It is not sufficient that these fixings of MD strategies in subspaces are compatible with some
strategy almost sure winning for ϕ, since progress (e.g., towards visiting a particular color)
might only be made outside of the fixed subspace, and thus be delayed forever. Instead we
prove the stronger property that σ̂ ensures ϕ with some probability pi(s0) from s0 ∈ L0
already in the fixed subspace of Li alone, and that limi→∞ pi(s0) = 1. This then implies
that σ̂ is almost surely winning for ϕ in L(M).

The sea urchin construction.

Its name comes from the shape of the subspace where strategies are fixed: a finite body Hi

out of which come finitely many spikes (BETAi, where each spike is infinite). As the body
grows, more spikes are added. Eventually the sea urchin covers the entire space; see Figure 4.

The construction uses some global thresholds 1 > α > β > γ > 0, to be determined later.
Moreover, in each step from Li to Li+1 we will define the following notions.

Small error thresholds εj > 0 for j ∈ {0, 1, 2, 3}).
Thresholds li, ki ∈ N of a number of steps from L0.
Finite closed subsets of states Hi where H0

def= ∅ and Hi
def= bubble(L, L0, ki) for i > 0.

(Hi is finite, because L is finitely branching.)
Finite subsets Li ⊆ L as starting sets for certain modified objectives ϕi (see below).
MD strategies τi (for i > 0) and subsets of states ALPHAi ⊆ BETAi ⊆ GAMMAi ⊆ L,
where ALPHAi (resp. BETAi, GAMMAi) are the sets of states from which τi attains ≥ α
(resp. ≥ β, ≥ γ) for objective ϕi (see below) in Li−1 (and Li). Let ALPHA0 = BETA0 =
GAMMA0

def= ∅, ALPHAi
def= SafeLi−1 ,τi ,ϕi (α) (and similar for BETAi,GAMMAi).

We write ALPHA≤i
def=
⋃
j≤i ALPHAj and similar for BETA≤i,GAMMA≤i.

Let FIXi
def= BETA≤i ∪Hi. This is the subspace where choices are fixed in rounds up-to i.

Modified objectives ϕi with ϕ0
def= ϕ and ϕi+1

def= ϕ ∧ G(L \ Cl(FIXi)). For i > 0 the ϕi
are not strictly tail objectives, but they still enjoy the same properties as tail objectives
wrt. the Levy zero-one law; cf. Remark 11.
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In Li the choices inside FIXi are already fixed. Inside BETAi the strategy τi is fixed, and
inside Hi \ BETA≤i the choices are fixed according to another MD strategy ρi.
It follows from the properties above that we have the invariant

GAMMAi+1 ∩ Cl(FIXi) = ∅ (21)

In particular, the sets BETAj are disjoint for different j. However, for j′ > j, it is possible
that GAMMAj overlaps with BETAj′ (and GAMMAj′).

Base case.

We start with the MDP L0
def= L def= L(M). By assumption, in L0 all states are almost surely

winning for ϕ0
def= ϕ (the unrestricted parity objective). The invariant (21) is trivially satisfied

for i = 0, since Cl(FIX0) = ∅.

Step.

Now we define the step from Li to Li+1 for i ≥ 0. We assume that for all j ≤ i the
MD strategies τj and the sets ALPHAj ⊆ BETAj ⊆ GAMMAj and Hj are already defined.
Moreover, τj is fixed inside BETAj , and in Lj the strategy τj attains at least β for objective
ϕj from each state s ∈ BETAj . Moreover, some other MD strategy is fixed in Hj \ BETA≤j .
(All this trivially holds for the base case i = 0. For i > 0 our construction will ensure these
properties.)

We now consider Li. By s0 we denote initial states in L0. (General states are denoted
by s.) We show that in Li, all initial states s0 ∈ L0 are still almost surely winning for ϕ,
as witnessed by a resetting strategy σ defined below (where σ is generally not MD, except
inside the subspace FIXi). First we need a basic property of ALPHAj ,BETAj .

B Claim 38. Let 0 ≤ j ≤ i and σ be an arbitrary strategy in Li. If s ∈ ALPHAj then
PLi,s,σ(G BETAj) ≥ α−β

1−β .

Proof. By Lemma 15, since σ behaves just like τj in the relevant subspaces already fixed to
τj in Li. J

Recall that for every state s ∈ L there exists an almost surely winning strategy σ(s) for
ϕ in L. The resetting strategy σ in Li starts in L0 and behaves as specified in the three
different modes m1,m2,m3 as follows. For all j ≤ i:
1. In Hj it plays as prescribed by the fixing there, (starting in memory mode m1).
2. Whenever σ enters a set Cl(BETAj) \Hi then it switches to mode m2 and chooses the

layer in such a way that it enters even BETAj (in at most one more step) and continues
playing τj , as required by the fixing inside BETAj . 1 2 Inside BETAj , it plays τj that is
fixed in BETAj . It continues to play τj even in GAMMAj \ (BETA≤i ∪Hi).

3. While playing in mode m2 (or m1), upon reaching an unfixed state s outside of GAMMAj
(and outside of Hi), it goes to mode m3 and resets to an almost surely winning strategy
σ(s) for ϕ in L. It keeps playing σ(s) until (and if) it reaches the fixed part BETA≤i ∪Hi,
whereupon it continues as before with mode m2.

1 By Definition 6, either the current state or the next state allows to switch between layers; cf. the proof
of Claim 14.

2 Remember that (21) implies that the sets BETAj are disjoint.
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We will see that, not only is the resetting strategy σ almost surely winning for ϕ, but every
time it re-enters BETA≤i it has a lower-bounded chance of eventually staying in ALPHA≤i
forever.

We now classify the runs induced by the resetting strategy σ (from some initial state
s0 ∈ L0) according to how often which modes m1,m2,m3 are used.

First we note that, since Li is acyclic, under any strategy (and in particular σ), any run
can visit any finite set (in particular Hi) only finitely often and therefore has an infinite
suffix that is always outside Hi. Thus σ is eventually always not in mode m1.

By our invariant (21), playing in BETAi and GAMMAi is not restricted by our previous
fixings in BETA≤i−1 ∪ Hi−1. Thus, when playing from s ∈ BETAi in mode m2, we keep
playing τi even in GAMMAi. Analogously to Claim 38, the chance of staying in the set
GAMMAi can be lower bounded.

∀s ∈ BETAi PLi,s,σ[m2](G GAMMAi) ≥
β − γ
1− γ > 0 (22)

This again follows from Lemma 15, observing that σ behaves just like τi even inside GAMMAi
while staying in mode m2.

When playing from s ∈ BETAj for some j < i, a similar property holds. If a run
visits some state s′ ∈ Cl(BETAj′), for some j′ > j, then we can assume that we have even
s′ ∈ BETAj′ by our assumption on σ above, because outside of the fixed region the layer can
be chosen freely. Then the strategy switches from τj to τj′ from s′ ∈ BETAj′ . Otherwise we
keep playing τj while in GAMMAj , i.e., by Lemma 15, we get, for every s ∈ BETAj , that

PLi,s,σ[m2](G GAMMAj ∨ F BETA>j) ≥
β − γ
1− γ > 0. (23)

From (22) and (23), we obtain that the set of runs that infinitely often switch from mode m2
to m3 are a null-set. Moreover, as shown above, every run has an infinite suffix where the
mode is not m1. It follows that, except for a null-set, all runs either have an infinite suffix
in mode m2 or an infinite suffix in mode m3. Let R2 and R3 denote these subsets of runs,
respectively. I.e., we have ∀s0 ∈ L0

PLi,s0,σ(R2 ∪R3) = 1. (24)

In mode m3 the resetting strategy σ plays an almost surely winning strategy for ϕ outside
of Cl(FIXi) that is not impeded by the fixings in Li, and ϕ is a tail objective. Thus, for all
s0 ∈ L0,

PLi,s0,σ(R3) = PLi,s0,σ(R3 ∧ ϕ ∧ FG(L \ Cl(FIXi))). (25)

From the property that ϕ is tail and the definition of ϕi+1 as ϕ ∧ G(L \ Cl(FIXi)) we obtain
that, for all s0 ∈ L0,

PLi,s0,σ(R3) = PLi,s0,σ(R3 ∧ Fϕi+1) (26)

In mode m2 the resetting strategy σ plays some MD strategy τj in GAMMAj (for some
j ≤ i). Thus, for all s0 ∈ L0,

PLi,s0,σ(R2) = PLi,s0,σ(R2 ∧ FG GAMMA≤i). (27)

Since in mode m2 the resetting strategy σ plays some MD strategy τj with attainment ≥ γ
(resp. ≥ α) in GAMMAj (resp. ALPHAj), we can apply Levy’s zero-one law (Corollary 30)
and obtain even

PLi,s0,σ(R2) = PLi,s0,σ(R2 ∧ FG ALPHA≤i) (28)
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By (24), (26) and (28) we obtain

PLi,s0,σ(FG ALPHA≤i ∨ Fϕi+1) = 1 (29)

σ plays like τj inside ALPHAj which attains ≥ α for ϕ. By using Levy’s zero-one law
(Lemma 16(1)) for safety sets at level α, we obtain that PLi,s0,σ (ϕ ∧ FG ALPHA≤i) =
PLi,s0,σ (FG ALPHA≤i). Since Fϕi+1 ⊆ ϕ it follows from Equation (29) that PLi,s0,σ (ϕ) = 1,
i.e., the resetting strategy σ wins ϕ almost surely.

For s0 ∈ L0 let

pi(s0) def= PLi,s0,σ (ϕ ∧ G FIXi)

be the attainment for ϕ inside the fixed region FIXi of Li.
Since Hi is finite and Li is acyclic, almost surely Hi is eventually left forever. Moreover,

the sets ALPHAj are safety sets (at level α) for ϕ. It follows from Levy’s zero-one law
(cf. Corollary 29) that

pi(s0) = PLi,s0,σ (ϕ ∧ G FIXi) = PLi,s0,σ (G FIXi) (30)

Let’s now consider only those runs from states s0 ∈ L0 that do not satisfy G FIXi (the
rest satisfy ϕ already inside the fixed part of Li by (30)). From (29) we obtain

PLi,s0,σ ((FG ALPHA≤i ∨ Fϕi+1) ∧ ¬G FIXi)
= PLi,s0,σ (¬G FIXi)

(31)

Using Lemma 10, we show the following claim.

B Claim 39. For every ε1, ε2 > 0, there must exist a threshold li+1 and a finite set

L′i+1 ⊆ SafeLi ,(G ALPHA≤i∨ϕi+1 )(1− ε1)

such that, following σ from any state s0 ∈ L0, the chance of satisfying ¬G FIXi and within at
most li+1 steps reaching a state s in L′i+1 is at least PLi,s0,σ (¬G FIXi) (1− ε2).

PLi,s0,σ

(
¬G FIXi ∧ F≤li+1L′i+1

)
≥ PLi,s0,σ (¬G FIXi) (1− ε2) (32)

Proof. For those s0 ∈ L0 where PLi,s0,σ (¬G FIXi) = 0 the claim holds trivially.
We now consider the remaining cases of those states s0 ∈ L0 where PLi,s0,σ (¬G FIXi) > 0.

Let

δ
def= ε2 · min

s0∈L0
{PLi,s0,σ (¬G FIXi) > 0} (33)

where δ > 0 since L0 is finite. Let E def= G ALPHA≤i ∨ ϕi+1. By (29) we have for every
s0 ∈ L0

PLi,s0,σ(FE) = 1

We now consider the finitely many Markov chains Cs0 induced by playing σ in Li from the
finitely many initial states s0 ∈ L0. Thus we obtain for every s0 ∈ L0

PCs0
(FE) = 1 (34)

Since E is suffix-closed, we can apply Lemma 10 to each Markov chain Cs0 . Thus there exist
thresholds ls0 and finite sets

Ls0 ⊆ SafeCs0 ,(E)(1− ε1)
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such that

PCs0

(
F≤l

s0
Ls0
)
≥ PCs0

(FE)− δ = 1− δ (35)

where the last equality is due to (34). Let now L′i+1
def=
⋃
s0∈L0

Ls0 (which is finite, since it is
a finite union of finite sets) and li+1

def= maxs0∈L0 l
s0 (which is finite as the maximum of a

finite set of numbers).
For every s0 ∈ L0 we have

SafeCs0 ,(E)(1− ε1) ⊆ SafeLi ,(G ALPHA≤i∨ϕi+1 )(1− ε1)

since the required value for E = G ALPHA≤i ∨ ϕi+1 is witnessed by the strategy σ, and thus

L′i+1 ⊆ SafeLi ,(G ALPHA≤i∨ϕi+1 )(1− ε1)

as required. From (35) we obtain that for all s0 ∈ L0

PLi,s0,σ

(
F≤li+1L′i+1

)
≥ 1− δ (36)

Now we are ready to show (32). We have for all s0 ∈ L0

PLi,s0,σ

(
¬G FIXi ∧ F≤li+1L′i+1

)
= PLi,s0,σ

(
F≤li+1L′i+1

)
− PLi,s0,σ

(
G FIXi ∧ F≤li+1L′i+1

)
law of total prob.

≥ PLi,s0,σ

(
F≤li+1L′i+1

)
− PLi,s0,σ (G FIXi)

≥ 1− δ − (1− PLi,s0,σ (¬G FIXi)) by (36)
≥ 1− ε2 · PLi,s0,σ (¬G FIXi)− (1− PLi,s0,σ (¬G FIXi)) by (33)
= PLi,s0,σ (¬G FIXi) (1− ε2)

J

Notice that Li+1 ∩ FIXi = ∅, because every state in Li+1 must have a value ≥ 1 − ε1 for
ϕi+1. (In the special case of i = 0 we have FIX0 = ∅ and ϕ1 = ϕ and thus l1 = 0 and
L1 = L′1 = L0.) Also recall that

L′i+1 ⊆ SafeLi ,(G ALPHA≤i∨ϕi+1 )(1− ε1)
⊆ ALPHA≤i ∪ SafeLi ,ϕi+1 (1− ε1).

We define Li+1 as Li+1
def= L′i+1 \ ALPHA≤i.

Since ϕi+1
def= ϕ ∧ G(L \ Cl(FIXi)) and ϕ is a parity objective, we can, by Lemma 9 and

Remark 11, pick an MD strategy τi+1 that is ε0-optimal for ϕi+1 from all states in Li+1.
Based on this strategy τi+1 and parameters α > β > γ > 0, we define ALPHAi+1 ⊆

BETAi+1 ⊆ GAMMAi+1 ⊆ L to be the sets of states from which τi+1 attains at least values
α, β and γ, for ϕi+1, respectively. E.g.,

BETAi+1
def= SafeLi ,τi+1 ,ϕi+1 (β)

In particular, this definition satisfies our invariant (21), i.e., GAMMAi+1 ∩ Cl(FIXi) = ∅,
because a high attainment γ for ϕi+1 = ϕ ∧ G(L \ Cl(FIXi) requires that Cl(FIXi) is not
visited.

W.l.o.g., by choosing ε1, ε0 sufficiently small, we can assume that α < (1− ε1 − ε0), and
therefore that Li+1 ⊆ ALPHAi+1 ⊆ BETAi+1 (we only need ⊆ BETAi+1).
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Let L′i
def= Li[τi+1,BETAi+1]. Note that in L′i the strategy σ might not be able to reach

Li+1 with the same probability as in Li, because the choices in BETAi+1 are now fixed.
However, a similar strategy σ′ can reach BETAi+1 in L′i with at least the probability by which
σ reaches Li+1 in Li. We now define a new resetting strategy σ′ in L′i. It behaves like the
previous strategy σ until (and if) it reaches Cl(BETAi+1). Without restriction we can assume
that it reaches even BETAi+1 in this case (similar to the argument for σ above). Then it
plays like τi+1 while in GAMMAi+1. This is possible, since GAMMAi+1∩Cl(FIXi) = ∅ by our
invariant (21). If and when it exits GAMMAi+1 at some state s then it resets to some almost
surely winning strategy σ(s) for ϕ in L until it reaches BETAi+1 (or another previously fixed
part) again, etc.

From Claim 39 (Equation (32)) and the fact that σ′ behaves like σ until it reaches
BETAi+1 we obtain that

PL′
i
,s0,σ′

(
¬G FIXi ∧ F≤li+1 (ALPHA≤i ∨ BETAi+1)

)
≥ PLi,s0,σ (¬G FIXi) (1− ε2)
= PL′

i
,s0,σ′ (¬G FIXi) (1− ε2),

(37)

where the last equality holds because Li and L′i (resp. σ and σ′) coincide inside FIXi.
Analogously to Claim 38, from any state in BETAi+1, the chance of staying in the set
GAMMAi+1 can be lower-bounded.

∀s ∈ BETAi+1 PL′
i
,s,σ′(G GAMMAi+1) ≥ β − γ

1− γ > 0 (38)

GAMMAi+1 ∩ Cl(FIXi) = ∅ by (21) and σ′ continues to play τi+1 in GAMMAi+1. Since
G GAMMAi+1 ⊆ FG GAMMAi+1, we can apply Levy’s zero-one law (Corollary 30) to (38)
and obtain

∀s ∈ BETAi+1 PL′
i
,s,σ′(FG ALPHAi+1) ≥ β − γ

1− γ > 0. (39)

By combining (37) with (39), we get

PL′
i
,s0,σ′

(
¬G FIXi ∧ F≤li+1 (ALPHA≤i ∨ FG ALPHAi+1)

)
≥
(
PL′

i
,s0,σ′ (¬G FIXi) (1− ε2)

) β − γ
1− γ

By continuity of measures (recall that FX =
⋃
k∈N FkX), for every ε3 > 0 there must exist a

threshold ki+1 ≥ li+1 of steps such that, for all s0 ∈ L0,

PL′
i
,s0,σ′

(
¬G FIXi ∧ F≤ki+1ALPHA≤i+1

)
≥
(
PL′

i
,s0,σ′ (¬G FIXi) (1− ε2)

) β − γ
1− γ (1− ε3).

(40)

(Since L0 is finite, we can have the same multiplicative error (1− ε3) for all s0 ∈ L0.) (In the
special case of i = 0, we have k1 = 0, since L0 = L1 ⊆ ALPHA1.) Once inside ALPHA≤i+1,
there is a bounded chance ≥ α−β

1−β of staying inside BETA≤i+1 forever, by Claim 38. Thus
from (40) we get

PL′
i
,s0,σ′(¬G FIXi ∧ F≤ki+1 G BETA≤i+1) (41)

≥
((

PL′
i
,s0,σ′ (¬G FIXi) (1− ε2)

) β − γ
1− γ (1− ε3)

)
α− β
1− β
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Consider the finite ki+1-bubble Hi+1
def= bubble(L, L0, ki+1) around L0. Remember that in

finite MDPs, there are uniformly optimal MD strategies for reachability objectives [16].
Consequently, since Hi+1 is finite, there exists an MD strategy ρi+1 in L′i that is optimal
from Hi+1 for the objective of reaching ALPHA≤i+1 (from L0) inside Hi+1 without leaving
Hi+1. We fix ρi+1 inside Hi+1, and obtain our new MDP

Li+1
def= L′i[ρi+1, L0, ki+1]

See Figure 4 for an illustration after round i = 3. We define FIXi+1
def= BETA≤i+1 ∪Hi+1

as the region where the strategy is already fixed in Li+1. We now define an almost surely
winning resetting strategy σ′′ in Li+1, analogously as σ previously in Li. Similarly as in
Equation (30) for Li, we can derive the corresponding property for Li+1.

PLi+1,s0,σ′′ (ϕ ∧ G FIXi+1) = PLi+1,s0,σ′′ (G FIXi+1) (42)

Li+1, L′i and Li (resp. the strategies σ′′, σ′ and σ) coincide inside FIXi. Thus by (30) we
have

PLi+1,s0,σ′′ (G FIXi) = PL′
i
,s0,σ′ (G FIXi)

= PLi,s0,σ (G FIXi)
= pi(s0)

(43)

By the optimality of the reachability strategy ρi+1 that is fixed in Hi+1 and FIXi+1 =
BETA≤i+1 ∪Hi+1, we obtain from this and Equation (41) that

PLi+1,s0,σ′′(¬G FIXi ∧ G FIXi+1)

≥
(

(1− pi(s0))(1− ε2)β − γ1− γ (1− ε3)
)
α− β
1− β

(44)

The crucial question is how much σ′′ attains for ϕ in the fixed part alone, i.e., how large
is PLi+1,s0,σ′′ (ϕ ∧ G FIXi+1) = pi+1(s0) ? For all s0 ∈ L0 we have

pi+1(s0)
= PLi+1,s0,σ′′ (G FIXi+1)
= PLi+1,s0,σ′′ (G FIXi) + PLi+1,s0,σ′′(¬G FIXi ∧ G FIXi+1)

≥ pi(s0) + (1− pi(s0))
(

(1− ε2)β − γ1− γ (1− ε3)α− β1− β

)
,

where the first equality is due to (42) and the last inequation is due to Equations (43)
and (44).

We can suitably choose the parameters α, β, γ, ε2, ε3 such that
(

(1− ε2)β−γ1−γ (1− ε3)α−β1−β

)
is arbitrarily close to 1, and thus in particular ≥ 1/2, and obtain that pi+1(s0) ≥ pi(s0) +
(1 − pi(s0))/2. Since p0(s0) = 0, we get 1 − pi(s0) ≤ 2−i and thus limi→∞ pi(s0) = 1, as
required.

Finally, let σ̂ be the MD strategy in L that plays from L0 as prescribed by all the fixings
in
⋃
i FIXi in the systems Li. Then, for all s0 ∈ S0 and every i ∈ N, it holds that

PL,s0,σ̂ (ϕ) ≥ PLi,s0,σ̂ (ϕ ∧ G FIXi) = pi(s0) ≥ 1− 2−i

Since this holds for every i ∈ N we get that PL,s0,σ̂ (ϕ) = 1, i.e., the MD strategy σ̂ wins ϕ
almost surely from every s0 ∈ L0. J
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F Optimal Strategies for {0, 1, 2}-Parity

I Theorem 22. LetM = (S, S2, S#,−→, P ) be an MDP, ϕ a {0, 1, 2}-Parity objective and
M∗ = (S∗, S∗2, S∗#,−→∗, P∗) its conditioned version wrt. ϕ. Assume that inM∗ for every
safety objective (given by some target T ⊆ S∗) and ε > 0 there exists a uniformly ε-optimal
MD strategy. Let Sopt be the subset of states that have an optimal strategy for ϕ inM.

Then there exists an MD strategy inM that is optimal for ϕ from every state in Sopt.

In the rest of this section we prove Theorem 22. It generalizes [13, Theorem 16], which
considers only finitely-branching MDPs and uses the fact that for every safety objective,
an MD strategy exists that is uniformly optimal. This is not generally true for infinitely-
branching acyclic MDPs [13]. To prove Theorem 22, we adjust the construction so that it
only requires uniformly ε-optimal MD strategies for safety objectives (in the conditioned
MDPM∗).

I Theorem 40 (from Theorem B in [16]). For every MDPM there exist uniform ε-optimal
MD-strategies for reachability objectives.

The following simple lemma provides a scheme for proving almost-sure properties.

I Lemma 41 (Lem. 18 in [13]). Let P be a probability measure over the sample space Ω. Let
(Ri)i∈I be a countable partition of Ω in measurable events. Let E ⊆ Ω be a measurable event.
Suppose P(Ri ∩ E) = P(Ri) holds for all i ∈ I. Then P(E) = 1.

We need a few lemmas about safety objectives first. Recall the definition of safe sets
(Equation (1)).

I Lemma 42. Let M = (S, S2, S#,−→, P ) be an MDP, T ⊆ S, σ a strategy from state
s ∈ S and τ < 1. It holds that PM,s,σ(FG¬SafeM,Safety(T)(τ) ∧ FG(S \ T )) = 0.

Proof. For any n ∈ N define Zn
def= (S \ T )n. That is, ZnSω is the event that the first

n visited states are outside T . For every state s 6∈ SafeM,Safety(T)(τ) and every strategy
σ from s we have that limn→∞ PM,s,σ(ZnSω) < τ < (1 + τ)/2 by Equation (1). Let
n(s) ∈ N be the smallest number such that PM,s,σ(Zn(s)S

ω) ≤ (1 + τ)/2. Let L ⊆ S∗ be
the set of finite sequences s0s1 · · · sn−1 such that s0 6∈ SafeM,Safety(T)(τ) and n = n(s0) and
∀i < n. si ∈ (S \ T ) \ SafeM,Safety(T)(τ).

We show for all s ∈ S \ SafeM,Safety(T)(τ) and all k ∈ N that PM,s,σ(LkSω) ≤
( 1+τ

2
)k.

We proceed by induction on k. The case k = 0 is trivial. For the induction step let k ≥ 0.

PM,s,σ(Lk+1Sω) ≤ PM,s,σ(Zn(s)L
kSω)

≤ PM,s,σ(Zn(s)S
ω) · sup

s′∈S\SafeM,Safety(T)(τ)
PM,s′,σ(LkSω)

≤ PM,s,σ(Zn(s)S
ω) ·

(
1 + τ

2

)k
≤
(

1 + τ

2

)k+1

where the first inequality uses that L∩{s}S∗ ⊆ Zn(s), the third uses the induction hypothesis,
and the last the definition of n(s). This completes the induction proof.
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Write ϕ def= G¬SafeM,Safety(T)(τ) ∧ G (S \ T ). For all s ∈ S,

PM,s,σ(ϕ) = PM,s,σ(Lω) because JϕK = Lω

= lim
k→∞

PM,s,σ(LkSω) by continuity of measures

≤ lim
k→∞

(
1 + τ

2

)k
as shown above

= 0 because τ < 1

It follows that PM,s,σ(Xjϕ) = 0, for all s ∈ S and all j ∈ N and therefore that

PM,s,σ(FGSafeM,Safety(T)(τ) ∧ FG (S \ T ))
= PM,s,σ(Fϕ)

= PM,s,σ

( ⋃
j∈N

JXjϕKs
)

≤
∑
j∈N

PM,s,σ(Xjϕ) = 0 J

Now we show that if an MDP admits uniformly ε-optimal strategies for all safety objectives,
then optimal strategies for {0, 1, 2}-Parity (where they exist) can be chosen MD.

I Lemma 43. LetM = (S, S2, S#,−→, P ) be an MDP such that for every safety objective
(given by some target set T ⊆ S) and ε > 0 there exists a uniformly ε-optimal MD strategy.
Let s0 ∈ S, Col : S → {0, 1, 2}, ϕ = Parity(Col), and σ a strategy with PM,s0,σ(ϕ) = 1.
Then there is an MD-strategy σ′ with PM,s0,σ′(ϕ) = 1.

Proof. To achieve an almost-sure winning objective, the player must forever remain in states
from which the objective can be achieved almost surely. So we can assume without loss of
generality that all states are almost-sure winning, i.e., for all s ∈ S we have PM,s,σ(ϕ) = 1
for some strategy σ. We will define an MD-strategy σ′ with PM,s,σ′(ϕ) = 1 for all s ∈ S.

Recall that [S]Col 6=0 ⊆ S denotes the subset of states of color 1 or 2. Let T def= [S]Col 6=0 and
let σε be a uniformly ε-optimal MD strategy for Safety(T ), whose existence is guaranteed
by our assumption onM. The precise ε > 0 is immaterial, we only need that ε < 1

3 . The
MD-strategy σ′ will be based on special subsets (Equation (1)):

SafeM(τ) def= SafeM,σε,Safety(T)(τ) ⊆ S. (45)

We first define the MD-strategy σ′ partially for the states in SafeM( 1
3 ) and then extend the

definition of σ′ to all states. For the states in SafeM( 1
3 ) define σ′ def= σε (which is MD). LetM′

be the MDP obtained fromM by restricting the transition relation as prescribed by the partial
MD-strategy σ′ in SafeM( 1

3 ) (elsewhere the choices remain free). We define SafeM′(τ) forM′
as in Equation (45) forM. Thus, for any τ ∈ [0, 1], we have SafeM(τ) = SafeM′(τ). Indeed,
since M′ restricts the options of the player, we have SafeM(τ) ⊇ SafeM′(τ). Conversely,
let s ∈ SafeM(τ). The strategy σε attains PM,s,σε(G[S]Col=0) ≥ τ . Since σε can be applied
inM′, and results in the same Markov chain as applying it inM, we conclude s ∈ SafeM′(τ).
This justifies to write Safe(τ) for SafeM(τ) = SafeM′(τ) in the remainder of the proof.

Next we show that, also in M′, for all states s ∈ S there exists a strategy σ1 with
PM′,s,σ1(ϕ) = 1. This strategy σ1 is defined as follows. First play according to an almost-
surely winning strategy σ from the statement of the theorem. If and when the play visits
Safe( 1

3 ), switch to the MD-strategy σε. If and when the play then visits [S]Col 6=0, switch
back to an almost-surely winning strategy σ from the statement of the theorem, and so forth.
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We show that σ1 attains PM′,s,σ1(ϕ) = 1. To this end we will use Lemma 41. We
partition the runs of sSω into three events R0,R1,R2 as follows:
R0 contains the runs where σ1 switches between σε and σ infinitely often.
R1 contains the runs where σ1 eventually only plays according to σε.
R2 contains the runs where σ1 eventually only plays according to σ.

Each time σ1 switches to σε, there is, by definition of SafeM( 1
3 ), a probability of at least 1

3
of never visiting a color-{1, 2} state again and thus of never again switching to σ. It
follows that PM′,s,σ1(R0) = 0. By the definition of the switching behavior of σ1, we
have R1 ⊆ JFG[S]Col=0K ⊆ JϕK, and hence PM′,s,σ1(R1 ∩ JϕK) = PM′,s,σ1(R1). Since
PM,s,σ(ϕ) = 1 and ϕ is tail, we have that PM′,s,σ1(R2 ∩ JϕK) = PM′,s,σ1(R2). Using
Lemma 41, we obtain PM′,s,σ1(ϕ) = 1.

Next we show that for all s ∈ S the strategy σ1 defined above achieves PM′,s,σ1(FSafe( 2
3 )∨

F[S]Col=2) = 1. To this end we will use Lemma 41 again. We partition the runs of sSω into
three events R′1,R′2,R′0 as follows:
R′1 = JFG[S]Col=0Ks

R′2 = JGF[S]Col=2Ks

R′0 = sSω \ JϕKs

We have previously shown that PM′,s,σ1(ϕ) = 1 and hence that PM′,s,σ1(R′0) = 0. We
now invoke Lemma 42 with τ

def= 2
3 + ε < 1 and obtain that almost all runs in R′1

satisfy GFSafeM,Safety(T)(τ). Since σε is uniformly ε-optimal for Safety(T ) we have
SafeM,Safety(T)(τ) ⊆ Safe(τ − ε) = Safe( 2

3 ) and thus almost all runs in R′1 satisfy GFSafe( 2
3 ).

Since JGFSafe( 2
3 )K ⊆ JFSafe( 2

3 )K, we observe that

PM′,s,σ1(R′1 ∩ JFSafe(2
3) ∨ F[S]Col=2K) = PM′,s,σ1(R′1).

Since R′2 ⊆ JF[S]Col=2K, we also have that

PM′,s,σ1(R′2 ∩ JFSafe(2
3) ∨ F[S]Col=2K) = PM′,s,σ1(R′2).

By Lemma 41 we obtain PM′,s,σ1(FSafe( 2
3 ) ∨ F[S]Col=2) = 1.

Writing T ′ def= Safe( 2
3 )∪[S]Col=2 we have just shown that for all s ∈ S there is a strategy σ1

with PM′,s,σ1(FT ′) = 1. Since this holds for all s ∈ S, it follows from Theorem 40 that there
is an MD-strategy σ̂ for M′ with PM′,s,σ̂(FT ′) = 1 for all s ∈ S. We extend the (so far
partially defined) strategy σ′ by σ̂. Thus we obtain a (fully defined) strategy σ′ forM such
that for all s ∈ S we have PM,s,σ′(FT ′) = 1.

It remains to show that PM,s,σ′(ϕ) = 1 holds for all s ∈ S. To this end we will use
Lemma 41 again. We partition the runs of sSω into two events R′′1 ,R′′2 :
R′′1 = JGFSafe( 2

3 )Ks, i.e., R′′1 contains the runs that visit Safe( 2
3 ) infinitely often.

R′′2 = JFG¬Safe( 2
3 )Ks, i.e., R′′2 contains the runs that from some point on never visit

Safe( 2
3 ).

Recall that σ′ plays like σε inside of Safe( 1
3 ), that Safe( 2

3 ) ⊆ Safe( 1
3 ), and that σε is an

MD-strategy. Thus we can invoke Lemma 15 with β2
def= 2

3 and β1
def= 1

3 and conclude that
every time a run (according to σ′) enters Safe( 2

3 ), the probability that the run remains in
Safe( 1

3 ) forever is at least 1
2 . It follows that almost all runs in R′′1 eventually remain in Safe( 1

3 )
forever. That is, PM,s,σ′(R′′1 ∩ JFGSafe( 1

3 )K) = PM,s,σ′(R′′1). Since Safe( 1
3 ) ⊆ [S]Col=0, we

have JFGSafe( 1
3 )K ⊆ JFG[S]Col=0K ⊆ JϕK. Hence also PM,s,σ′(R′′1 ∩ JϕK) = PM,s,σ′(R′′1).
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We have previously shown that PM,s,σ′(FT ′) = 1 holds for all s ∈ S. Hence also
PM,s,σ′(GFT ′) = 1 holds for all s ∈ S. In particular, almost all runs in R′′2 satisfy GFT ′.
By comparing the definitions of R′′2 and T ′ we see that almost all runs in R′′2 even satisfy
GF[S]Col=2. Since JGF[S]Col=2K ⊆ JϕK, we obtain PM,s,σ′(R′′2 ∩ JϕK) = PM,s,σ′(R′′2). A final
application of Lemma 41 yields PM,s,σ′(ϕ) = 1 for all s ∈ S. J

We are ready to prove Theorem 22.

Proof of Theorem 22. Let M = (S, S2, S#,−→, P ) be an MDP and ϕ a {0, 1, 2}-Parity
objective. Since ϕ is tail, it is possible to define (see Definition 19) the conditioned version
M∗ = (S∗, S∗2, S∗#,−→∗, P∗) ofM wrt. ϕ. Assume that inM∗ for every safety objective
(given by some target T ⊆ S∗) and ε > 0 there exists a uniformly ε-optimal MD strategy.
Let Sopt be the subset of states that have an optimal strategy for ϕ inM.

By Theorem 20.1, all states inM∗ are almost sure winning for ϕ. By our above condition
about safety objectives inM∗, we can apply Lemma 43 toM∗ and obtain that for every
state inM∗ there is an MD strategy that is almost surely winning for ϕ. By Theorem 20.2,
there is an MD strategy inM that is optimal for ϕ from every state in Sopt , as required. J

In order to apply Theorem 22 to infinitely-branching acyclic MDPs, we now show that
acyclicity guarantees the existence of uniformly ε-optimal MD strategies for safety objectives.

I Lemma 23. For every acyclic MDP with a safety objective and every ε > 0 there exists
an MD strategy that is uniformly ε-optimal.

Proof. Let Safety(T ) be the safety objective and shortly write val(s0) = valM,Safety(T )(s0)
for the value of a state s0 w.r.t. this objective. Assume w.l.o.g. that the target T ⊆ S is a
sink and let ι : S → N be an enumeration of the state space.

Let σ be an MD-strategy that, at any state s ∈ S2, picks a successor s′ such that

val(s′) ≥ val(s)(1− ε2−ι(s)).

We show that PM,s0,σ(Safety(T )) ≥ val(s0)(1− ε) holds for every initial state s0.
Let’s write Post∗(s) ⊆ S for the set of states reachable from state s ∈ S and define

L(s) def=
∏
s′∈Post∗(s)(1− ε2−ι(s

′)). Further, let vals(n) be the random variable denoting the
value of the nth state of a random run that starts in s. In particular, vals(0) = val(s). An
induction on n using our choice of strategy gives, for every s0 ∈ S, that

E(vals0(n)) ≥ val(s0)L(s0). (46)

Indeed, this trivially holds for n = 0. For the induction step there are two cases.
Case 1: s0 ∈ S2 and σ(s0) = s. Then

E(vals0(n+ 1))

= E(vals(n))

≥ val(s)L(s) ind. hyp.

≥ val(s0)
(

1− ε2−ι(s0)
)
L(s) def. of σ

≥ val(s0)L(s0) acyclicity; def. of L(s0).
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Case 2: s0 ∈ S#. Then

E(vals0(n+ 1))

=
∑
s0−→s

P (s0)(s) · E(vals(n))

≥
∑
s0−→s

P (s0)(s) · val(s)L(s) by ind. hyp.

≥
∑
s0−→s

P (s0)(s) · val(s)
(

1− ε2−ι(s0)
)
L(s)

≥
∑
s0−→s

P (s0)(s) · val(s)L(s0) acyclicity; def. of L(s0)

= val(s0)L(s0).

Together with the observation that L(s0) > (1− ε) for every s0, we derive that

lim inf
n→∞

E(vals0(n)) ≥ val(s0)(1− ε). (47)

To show the claim, fix s0 ∈ S and shortly write P for PM,s0,σ here. Let [Xn¬T ] : Sω →
{0, 1} be the random variable that indicates that the nth state is not in the target set T .
Note that [Xn¬T ] ≥ vals0(n) because target states have value 0. We conclude that

P(Safety(T ))

= P

( ∞⋂
i=0

JXi¬T K

)
semantics of Safety(T ) = G¬T

= lim
n→∞

P

(
n⋂
i=0

JXi¬T K

)
cont. of measures from above

= lim
n→∞

P
(
JXi¬T K

)
T is a sink

= lim
n→∞

E([Xn¬T ]) definition of [Xn¬T ]

≥ lim inf
n→∞

E(val(n)) as [Xn¬T ] ≥ vals0(n)

≥ val(s0)(1− ε) by Equation (47). J

G ε-Optimal Strategies for {0, 1}-Parity

I Theorem 25. Suppose thatM = (S, S2, S#,−→, P ) is an MDP such that for every safety
objective (given by some target T ⊆ S) and ε > 0 there exists a uniformly ε-optimal MD
strategy.

Then for every co-Büchi objective (given by some coloring Col : S → {0, 1}) and ε > 0
there exists a uniformly ε-optimal MD strategy.

Proof. LetM = (S, S2, S#,−→, P ) be an MDP such that for all safety objectives, uniformly
ε-optimal strategies can be chosen MD. Let Col : S → {0, 1} be a coloring and ϕ =
Parity(Col) be the resulting co-Büchi objective.

We show that there exist uniformly ε-optimal MD-strategies for ϕ. I.e., for every ε > 0
there is an MD-strategy σε with ∀s0∈SPM,s0,σε(ϕ) ≥ valM(s0)− ε.

To construct this MD-strategy strategy σε, we first need several auxiliary notions.
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Let ε1 > 0 be a suitably small number (to be determined later) and τ1
def= 1− ε1 > 0. Let

τ2
def= 1− ε1/k + λ for a suitably large k ≥ 1 (to be determined later) and let λ < ε1/k (e.g.,

λ
def= ε1/(2k)). Thus τ2 < 1.
Let T def= Col−1({1}) be the set of states with color 1 and Safety(T ) the safety objective.

We have that ϕ = FG(S \ T ).
By our assumption on M, there exists a uniformly λ-optimal MD-strategy σopt-av for

Safety(T ). Let S′ def= SafeM,σopt-av,Safety(T)(τ1) be the set of states where σopt-av achieves
at least value τ1 for Safety(T ) (refer to Equation (1) for the definition of safe sets). In
particular S′ ⊆ S \ T , since τ1 > 0. FromM we obtain a modified MDPM′ by fixing all
player choices from states in S′ according to σopt-av.

We show that the value w.r.t. objective ϕ is only slightly smaller inM′, i.e.,

valM′(s0) ≥ valM(s0)− ε1 for every s0 ∈ S. (48)

Let s0 ∈ S. By definition of the value valM(s0), for every δ > 0 there exists a strategy σδ
inM from s0 s.t. PM,s0,σδ (ϕ) ≥ valM(s0)− δ. We define a strategy σ′δ inM′ from state s0
as follows. First play like σδ. If and when a state in S′ is reached, then henceforth play like
σopt-av. This is possible, since no moves from states outside S′ have been fixed inM′, and
all moves from states inside S′ have been fixed according to σopt-av. Then we have:

PM′,s0,σ′δ
(ϕ)

= PM,s0,σδ(ϕ)
− PM,s0,σδ(FS′) · PM,s0,σδ(ϕ | FS′)
+ PM,s0,σδ(FS′) · PM′,s0,σ′δ

(ϕ | FS′)

≥ PM,s0,σδ(ϕ)
− PM,s0,σδ(FS′) · PM,s0,σδ(ϕ | FS′)
+ PM,s0,σδ(FS′) · τ1

≥ valM(s0)− δ − PM,s0,σδ(FS′)(1− τ1)

≥ valM(s0)− δ − ε1

Since this holds for every δ > 0 we have valM′(s0) ≥ valM(s0)− ε1, thus (48).
Let S′′ def= SafeM,σopt-av,Safety(T)(τ2 − λ) as by definition of safe sets in Equation (1). In

particular, S′′ = SafeM′,σopt-av,Safety(T)(τ2 − λ), since σopt-av is a uniform MD-strategy that
has been fixed on the subset S′ in the step fromM toM′.

Let s0 ∈ S be an arbitrary state. By definition of the value w.r.t. ϕ of s0, for every ε′ > 0
there exists a strategy σε′ from s0 inM′ with PM′,s0,σε′ (ϕ) ≥ valM′(s0)− ε′.

Since τ2 < 1, can we apply Lemma 42 and obtain PM′,s0,σ̂(FSafeM′,Safety(T)(τ2)) ≥
PM′,s0,σ̂(ϕ) for every strategy σ̂ from s0 and thus in particular for σε′ .

Therefore, PM′,s0,σε′ (FSafeM′,Safety(T)(τ2)) ≥ valM′(s0)− ε′. Since this holds for every
ε′ > 0, in M′ the value of s0 w.r.t. the reachability objective FSafeM′,Safety(T)(τ2) is
≥ valM′(s0) for every state s0.

By Theorem 40, for every ε2 > 0 there exists a uniformly ε2-optimal MD-strategy σ′ in
M′ for this reachability objective. So we obtain

PM′,s0,σ′(FSafeM′,Safety(T)(τ2)) ≥ valM′(s0)− ε2 for every state s0. (49)

In particular, σ′ must coincide with σopt-av at all states in S′, since inM′ these choices
are already fixed.
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Since σ is a uniformly λ-optimal MD-strategy for Safety(T ) in M and M′, we have
SafeM′,Safety(T)(τ2) ⊆ SafeM′,σ,Safety(T)(τ2 − λ) = S′′ and thus by (49) we get

PM′,s0,σ′(FS′′) ≥ PM′,s0,σ′(FSafeM′,Safety(T)(τ2)) ≥ valM′(s0)− ε2. (50)

We obtain the MD-strategy σε inM by combining the MD-strategies σ′ and σopt-av. The
strategy σε plays like σopt-av at all states inside S′ and like σ′ at all states outside S′ (i.e., at
S \ S′).

In order to show that σε has the required property PM,s0,σε(ϕ) ≥ valM(s0)− ε, we first
estimate the probability that a play according to σε will never leave the set S′ after having
visited a state in S′′.

Let s ∈ S′′. Then, by applying Lemma 15 to the Markov chain obtained from applying
the MD-strategy σε toM, we obtain

PM,s,σopt-av (GS′) ≥ (τ2 − λ)− τ1
1− τ1

= (1− ε1/k)− (1− ε1)
ε1

= 1− 1
k
.

(51)

In particular we also have PM,s,σε(GS′) ≥ 1− 1
k , since σε coincides with σopt-av inside the

set S′. Finally we obtain for every s0 ∈ S

PM,s0,σε(ϕ) = PM,s0,σε(FG(S \ T )) by def. of ϕ
≥ PM,s0,σε(FS′′) · PM,s0,σε(FGS′ | FS′′) since S′ ⊆ S \ T
≥ PM′,s0,σ′(FS′′) · (1− 1/k) by (51)
≥ (valM′(s0)− ε2) · (1− 1/k) by (50)
≥ (valM(s0)− ε1 − ε2) · (1− 1/k) by (48)

This holds for every 1 > ε1, ε2 > 0 and every k ≥ 1, and moreover valM(s0) ≤ 1. Thus we
can set ε1 = ε2

def= ε/4 and k def= 2
ε and obtain PM,s0,σε(ϕ) ≥ valM(s0)− ε for every s0 ∈ S

as required. J
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