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Abstract

Population dynamics have traditionally focussed on large, homogeneous populations. How-
ever, real populations usually have some degree of structure that determines how individu-
als interact. This thesis is concerned with such structured population dynamics. Our first
direction is to add further realism to network-structured evolutionary processes, by con-
sidering ecological dynamics and environmental variation. To accommodate realistic eco-
logical dynamics we develop an individual-based model for evolution in network-structured
population in which birth and death events are decoupled. From this, we derive the evolu-
tionary graph theory model, gaining insight into the assumptions underpinning this model.
These ecological dynamics are then used to explain why certain networks allow adaptive
mutations to spread more successfully and to investigate the effect of clonal interference
on networks. In network-structured populations, environmental variation has thus far not
been considered. However, evolution in variable environments has been widely studied in
well-mixed populations. This variation leads to evolutionary bet-hedging, where species
hedge against these fluctuations to reduce their likelihood of extinction. We add such envi-
ronmental variation to the evolutionary graph theory framework, to explore the evolution of
bet-hedging strategies in network-structured populations. Variation can act either within
or between generations. In large well-mixed populations, it has been shown that selection
for bet-hedging against within-generational variation should not occur, contradicting em-
pirical observations. We show that in network-structured populations within-generational
variation can have a significant impact on the evolutionary process for any population size.

This realism adds further complexity to the evolutionary models, and therefore these
analyses rely mostly on stochastic simulations. Analytical results are challenging, since
network-structure causes the state space of the model to increase exponentially with pop-
ulation size. For some networks with sufficient symmetry, analytical results may be pos-
sible, however this does not facilitate systematic analysis of different network structures.
Therefore, approximation methods can be powerful. By adapting methods from statistical
physics, including moment-closure techniques, we develop node-level approximations to
the standard evolutionary graph theory dynamics on arbitrarily complex networks. Such
moment-closure methods are also commonly used to approximate network-based epidemic
models. In this setting, these approximations are efficient to analyse and provide theo-
retical insights, such as the epidemic threshold. However, it can be hard to relate these
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theoretical results to the underlying stochastic process, since these simplified models ex-
hibit a stable endemic equilibrium that is not present in the stochastic model. Building
on the existing methods, we develop a framework that is directly related to the underlying
stochastic process by approximating the expected number of infected individuals in the
quasi-stationary distribution. This describes the expected behaviour of the system given
that the disease-free state has not been reached, providing a picture of endemic disease
prevalence. These methods provide a toolkit for approximating network-structured popu-
lation dynamics, and can facilitate approximation of the more realistic dynamics obtained
through ecological dynamics and environmental variation.
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Chapter 1

Introduction

Evolution is a complex process in population biology, with applications ranging from

healthcare [51, 98, 104, 176, 182] to wildlife [110]. Evolution describes how the char-

acteristics of a population change over time, in order to become better suited to their

environment or adapt to changing environments. This happens through a combination of

mutation, which generates new characteristics, and competition, whereby the new char-

acteristics eventually replace the old characteristics. The work of Charles Darwin in “On

the Origin of species by Means of Natural Selection” [34] provides a ground on which

most evolutionary theory has been built. Darwin suggests that natural selection leads to

the evolution of populations; i.e. that nature will select for mutants with advantageous

characteristics, and eventually these will replace the existing characteristics. Such evo-

lution can act on any population, and the timescale depends on the rate of mutation,

lifespan, and selective pressure for each mutation from the environment. The complexity

of evolution has produced multiple modelling mechanisms, from the micro-scale, looking

at rates of mutation [63, 150], to the macro scale, looking at competition between different

types [21, 102, 109, 116].

The traditional approach to modelling evolution has been to use deterministic mod-

els under the assumption that the population is homogeneous. These assumptions are

made since they facilitate efficient analysis; using models such as adaptive dynamics [37]

and the replicator equation [28]. These models give insight into the evolutionary process,

however evolution is highly stochastic, since both mutation and the population dynamics

are random. To address this issue, stochastic evolutionary models have been developed,

such as the Moran process [116] and the Wright-Fisher model [45, 196]. These stochastic

1
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models assume that although a mutant may have a fitness advantage, it is not guaranteed

to take over a resident population, due to the random nature of birth and death. A key

difference between these models and the deterministic models is their finite population

size. Deterministic models often consider frequencies of each species, which corresponds to

the infinite population limit where stochasticity is assumed not to be important. However,

in stochastic models it has been observed that when taking the limit of infinite popula-

tions, stochastic effects can still be present for a finite initial mutant population [116],

and therefore even in large populations, ignoring the stochasticity may not be a realistic

assumption.

Another limiting factor in traditional evolutionary models is the assumption of well-

mixed populations, where all individuals interact with each other. Real populations usually

exhibit some degree of structure, which can correspond to spatial structure or social struc-

ture, for example. Population structure can have a significant impact on evolution, such

as amplifying the probability of an advantageous mutant taking over the population [102].

Therefore, structure needs to be considered when attempting to understand real systems.

A vital area for research into evolution today is in the healthcare environment. Many

current healthcare challenges are characterised by an underlying evolutionary process,

whether this is related to waning immunity due to evolving pathogens [41, 154], pathogens

evolving resistance to standard treatment regimes [98, 176] or the development of cancer

and its ability to defend against treatment [202]. Of particular focus in this thesis is the

study of the evolution of pathogens, since the study of epidemic dynamics involves systems

similar to those of evolutionary dynamics. This link is important because it facilitates the

use of existing techniques into modelling pathogen competition and evolution.

Antimicrobial resistance, for example, is an adaptation (which can potentially arise

through mutation or horizontal gene transfer) that enables pathogens to become more

resistant to current treatment options. This can lead to unchecked spread of a pathogen

and higher risk of death from infections. Addressing this requires understanding how these

mutant strains interact and compete with the existing resident strains. Using evolutionary

or epidemic theory alone may not be enough to understand this problem, and therefore

studying the two in tandem may grant further insight into the interactions between these

processes. This will also facilitate research into processes such as the spread of influenza and

HIV. Influenza outbreaks occur seasonally, with people becoming infected multiple times.

This is due to the wide range of influenza strains co-circulating, as well as mutation within

the strains producing new types that our bodies can no longer recognise and fight [41]. This
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complex interplay between mutation and competition presents a challenge to healthcare

modellers when trying to produce the vaccine each winter, since they need to predict which

strains will be most prevalent. Similarly, in HIV the rate at which the virus mutates within

hosts makes it a challenging pathogen to fight, because it can evolve to evade the immune

system [182].

Having a better understanding of the evolutionary process will allow us to combine

the traditional epidemic modelling process with evolution. Within this thesis, we do not

explore any particular examples of pathogens, but instead investigate similarities between

epidemic and evolutionary models, and study important properties of these two systems,

which may prove useful in understanding real healthcare challenges.

This chapter introduces the evolution and epidemic modelling frameworks that we

use in this thesis. We first introduce stochastic processes, in particular discrete-time and

continuous-time Markov chains, which form the basis of the models we use. After this

we introduce networks, describing notation and some examples. Networks are used to

represent the structure of the populations that we are modelling. The next step is the

introduction of the Moran process, which we then link to evolutionary graph theory, a

model for studying evolution in network-structured populations. Finally, the stochastic,

network-based SIS epidemic model is introduced. This chapter ends with an outline of the

research presented in this thesis.

1.1 Stochastic Processes

A stochastic process is a function that varies randomly [80, 130, 183]. This random vari-

ation means that knowing the value of the function at a given index (which can refer to

discrete steps or continuous time) does not allow one to know the future behaviour of the

function. Instead, it is only possible to know the probability of certain future realisations

being obtained. In biological scenarios, this uncertainty can be due to the random nature

of birth and death, or in the financial world, the uncertainty can be due to randomness

in the value of the underlying product. Stochastic processes can be developed to describe

these systems, granting some insight into the potential future outcomes.

Formally, a stochastic process is a function Σ of a random variable Z and an index

variable t [130, 183]; i.e.

Σ(t) = f(Z, t).
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Σ(t) takes values σ ∈ S, Z takes values z ∈ Ω, and the index variable t can correspond

to time or some counting variable, for example. Each of the possible realisations of Σ

corresponds to a value z of the random variable. Where the random variable Z selects a

realised value z from its state space Ω, the stochastic process Σ selects a realised sample

path σ from the space of all possible paths. In this thesis, we mainly focus our attention

on stochastic processes that act on finite or countable state spaces, since in the systems

we consider we are interested in discrete states.

1.1.1 Discrete-time Markov chain

Consider a stochastic process Σ(t), whose state space is finite and whose index variable

is a counting variable. That is, the process can take states from the finite set S, and the

index variable t comes from T = {0, 1, 2, ...}. This is a discrete-time stochastic process,

which we will denote by Σt. Such a process is called a discrete-time Markov chain if the

likelihood of future events depends only on the state of the system at the given time and

not the past behaviour (this is called the Markov property) [80, 183]. That is, given the

system has reached a certain state, the route that it took to reach this state has no impact

on the future dynamics. More formally, a stochastic process Σt is a Markov chain if and

only if

P (Σt = j|,Σ0 = σ0,Σ1 = σ1,Σ2 = σ2, ...,Σt−1 = i) = P (Σt = j|Σt−1 = i).

This is the transition probability of the process, and describes the structure of the Markov

chain. Using the transition probability, the probability distribution of the next time step

can be calculated, based on the initial distribution.

A Markov process is called stationary if this transition probability is time indepen-

dent [80, 183], so that the probability of moving between two states only depends on the

time steps considered, and not the value of t. The models in this thesis follow station-

ary processes, and therefore we will restrict our attention to such cases. The transition

probability therefore becomes

Pij = P (Σt = j|Σt−1 = i) = P (Σ1 = j|Σ0 = i),

which is independent of the current time t.
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1.1.2 Transition probability matrix

A discrete-time Markov chain can be completely defined by a one-step transition proba-

bility matrix and the initial probability distribution across its state space. The one-step

transition probability matrix, P , consists of entries Pij that denote the transition proba-

bilities from state i to state j. We can calculate the probability of being in a certain state

at any future time given an initial state by constructing a matrix P (n) that describes the

n-step transition probabilities of the Markov chain; i.e. each entry of P (n) describes the

probability of moving from a state i to a state j in n steps. It has been shown [80] that

the n-step transition probability matrix is the one step transition probability matrix to the

power of n; i.e. P (n) = Pn.

Denoting the current distribution by the row vector p0, such that each entry of p0 is the

probability of the Markov chain being in a certain state, the distribution in n time-steps

is given by

pn = p0P
n. (1.1)

1.1.3 Communicating classes

From a certain state of the Markov chain, it may be possible to reach either any other

state or only a subset of the state space. If a state j ∈ S can be reached from state i ∈ S,

then j is said to be accessible from i. State j is therefore accessible from state i if and

only if PNij > 0 for some integer N ≥ 0 [80], since PNij is the probability of reaching state

j from i in N steps.

If i is also accessible from j, these two states are said to communicate with each other.

This communication relation forms an equivalence relation on the state space of the Markov

Chain, whereby all individuals equivalent with respect to this relation communicate. We

refer to a subset of individuals that communicate with each other as a communicating

class, and the state space can be stratified into communicating classes. A property revealed

through this stratification is that although it may be possible to exit one class and enter

another, it will never be possible to re-enter the original class, since otherwise an individual

in this class would communicate with the second class. When the entire state space reduces

to a single communicating class, we say that the Markov Chain is irreducible [80].

If there exists a communicating class from which no other communicating class is

accessible, this is an absorbing class of the system, since once the process enters this class it

will never leave [80]. This is a particularly relevant concept in population dynamics, where



6 Christopher E. Overton

there often exists states of extinction from which it is impossible to enter a non-extinct class.

If an absorbing class is always accessible from any non-absorbing class then we know, with

probability one, that the system will eventually always enter one of the absorbing classes

and never leave, so these form the possible final states of the system. Figure 1.1 illustrates

how communicating classes are related to the transitions of the Markov process.

1 4

532

6

7

1

32

4

5

6

7

C1 C2 C3

Figure 1.1: Illustration of communicating classes. The upper figure shows which states can transition into
each other. The lower figure shows how these states can be grouped into communicating classes, and which
classes are accessible from others. Note that C3 is an absorbing class of the system.

1.1.4 Continuous-time Markov chain

Although discrete-time Markov chains can be useful, population dynamics often involve

continuous-time systems, which can be represented by continuous-time Markov chains.

A continuous-time Markov chain is a stochastic process on a finite or countable state

space which satisfies the Markov property (Equation (1.1)), but now the index variable is

continuous rather than discrete [130, 183], and represents time.

Therefore, we are interested in processes Y (t) with t ∈ [0,∞), which satisfy

P (Σ(t) = j|Σ(t1) = σ1,Σ(t2) = σ2, ...,Σ(tn) = i) = P (Σ(t) = j|Σ(tn) = i),

whenever t1 < t2 < ... < tn < t.
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Since this process is on a continuous index variable, a one-step transition probability

cannot be defined. Instead, the rate at which transitions occur is used to investigate the

model.

The rate at which the process leaves a state i and moves to state j is given by

qij = lim
h→0

Pij(h)

h
, (1.2)

where

Pij(t) = P (Σ(t) = j|Σ(0) = i).

The total rate at which the process leaves a state i, denoted by qi, is given by

qi = lim
h→0

1− Pii(h)

h
. (1.3)

Since we know

Pii(h) +

∞∑
j=0:j 6=i

Pij(h) = 1,

we must have

qi =

∞∑
j=0:j 6=i

qij . (1.4)

The transition rates qij are bounded such that 0 ≤ qij < ∞ [80]. For an infinite state

Markov chain it is possible that qi can be infinite. For Markov chains with a finite state

space however, qi is finite since Equation (1.4) becomes

qi =
N∑

j=0:j 6=i
qij .

Using these infinitesimal transition rates a matrix can be constructed called the transition

rate matrix (or Q-matrix), with entries Qij = qji if j 6= i and Qii = −qi [125]. Note

that in standard probability theory this matrix is usually defined as Qij = qij . We opt to

use the former, since this is commonly used in statistical physics and epidemiology, which

provides the basis to many of the methods that we develop. This matrix contains all the

information about the transitions of the Markov chain, and can be used to reconstruct the
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transition probabilities Pij(t). That is,

Pij(h) = Qjih+ o(h)

Pii(h) = 1 +Qiih+ o(h) (1.5)

The time evolution of the Markov chain can be described using a master equation

dp(t)

dt
= Qp(t), (1.6)

where p(t) is a column vector describing the probability that the Markov chain is in each

state; i.e. pi(t) = P (Σ(t) = i). This can be solved for any initial condition to describe the

future distributions of the Markov chain.

In the case where the state space of the process is uncountable, we refer to this as a

continuous-time Markov process rather than chain. For such a case, we cannot define a

transition matrix since we do not have a countable set of states to transition to.

1.1.5 Poisson process

A homogeneous Poisson process [80] is a stochastic process that is often used in modelling

population dynamics. The Poisson process is a continuous-time Markov chain Σ(t), that

counts the number of events up to time t, where in the time interval (t, t+h) the probability

of one event is λh+ o(h), and the probability of more than one is o(h).

Therefore the Poisson process has transition probability function

P (Σ(t+ h) = j|Σ(t) = i) =


λh+ o(h) for j = i+ 1

o(h) for j > i+ 1

0 for j < i.

The elements of the Q-matrix can be constructed from Equations (1.2) and (1.3).

Q =


−λ 0 0 . . . . . .

λ −λ 0 0 . . .
... λ

. . .
. . .

. . .
...

...
. . .

. . .
. . .

 .
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The Poisson process has many properties that are useful in modelling situations, since this

process can capture random processes in which only one event can take place at a time. For

such a process, we may wish to know the time between events. Under the Poisson process,

the waiting times between subsequent events are independent and identically distributed

according to an exponential distribution with parameter λ [80]. This grants insight into

the expected time to the next event, as well as characterising the waiting time with a

simple and well-known distribution.

1.1.6 Infinitesimal generators

Whilst the infinitesimal transition rates describe how the probability distribution of the

Markov chain changes with time, sometimes other functions of the process may be relevant.

The infinitesimal generator describes how the expected values of functions of a Markov

process change in infinitesimal time intervals. For a function f acting on the process Σ(t),

the infinitesimal generator, L, is defined as [130]

Lf(i) =
d

dt
E[f(Σ(t))|Σ(0) = i] = lim

t→0

E[f(Σ(t))|Σ(0) = i]− f(i)

t
.

As an example, this can be used to obtain the infinitesimal transition rates by taking the

function f(i) = 1{i=j}. In this case, we obtain

Lf(i) = lim
t→0

P (Σ(t) = j|Σ(0) = i)

t
= qij(t)

if i 6= j and

Lf(i) = lim
t→0

P (Σ(t) = j|Σ(0) = j)− 1

t
= −qj(t)

if i = j. These are equivalent to the infinitesimal transition rates from an initial distribution

i. Therefore, for continuous-time Markov chains, the infinitesimal generator, L, can be

taken as an alternative definition of the transition rate matrix Q. An advantage to using

L is that this can be used as an operator on various functions f , so can be used to find

various properties of the process. Additionally, the generator can be particularly important

in the case where the state space is uncountable, since here a matrix representation is not

applicable.

Two commonly used functions in Markov processes are the hitting probability and

expected hitting time. The hitting probability of a state A ∈ S is the probability that
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the process eventually reaches state A, given that it started in some state i. Defining TA

as the time when the process first enters state A, then the hitting probability, when the

process is initiated in state i, is given by

hA(i) = P (TA <∞|Σ(0) = i).

Applying the generator, we obtain

LhA(i) =
d

dt
E[hA(Σ(t))|Σ(0) = i].

Given that the Markov process starts in state i, the expected value of the hitting probability

does not change with time, and therefore this derivative must be equal to zero, giving

LhA(i) = 0.

If our initial state i = A, then the hitting probability is equal to 1, so we have hA(A) = 1.

The hitting probability can be found as the minimal non-negative solution tohA(i) = 1 if i = A,

LhA(i) = 0 if i 6= A.

The expected hitting time is the expected time until the Markov process reaches a state

A. The expected hitting time, starting from state i, is defined as

kA(i) = E[TA|Σ(0) = i].

Applying the generator to the expected hitting time, we obtain

LkA(i) =
d

dt
E[kA(Σ(t))|Σ(0) = i].

The derivative can be calculated by

d

dt
E[kA(Σ(t))|Σ(0) = i] = lim

h→0

E[kA(Σ(t+ h))|Σ(0) = i]− E[kA(Σ(t))|Σ(0) = i]

h
. (1.7)

Since both of the expectations on the right-hand side condition on Σ(0) = i, the expected

hitting time from 0 must be equal, which we will assume is equal to τ . The expected time
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from t+h therefore has to be τ − (t+h) and from t has to be τ − t. The difference between

these two is h, so Equation (1.7) becomes

d

dt
E[kA(Σ(t))|Σ(0) = i] = lim

h→0

−h
h

= −1.

Therefore,

LkA(i) = −1.

If our initial state i = A, then the expected hitting time is equal to 0, so we have kA(A) = 0.

The expected hitting time can be found as the minimal non-negative solution tokA(i) = 0 if i = A,

LkA(i) = −1 if i 6= A.

1.1.7 Embedded discrete-time processes

In the dynamics of biological populations, the main properties of interest are often related

to the long-term behaviour of the system. This can vary from steady-state dynamics across

the state space [21, 30, 109] to the probability of reaching certain absorbing states [19, 102,

129], for example. Within a continuous-time Markov chain there exists an embedded

discrete-time Markov chain that has the same long-term behaviour [94]. Therefore, this

behaviour can be found by analysing either the continuous-time process or the embedded

discrete-time process.

Consider a continuous-time Markov chain Σ(t). If we track the sequence of states that

Σ(t) enters, which we denote by Σn, then the process Σn follows the same trajectory as

Σ(t) and the long-term behaviour must be the same. Σn is a discrete-time process, simply

tracking the transitions of the continuous-time process Σ(t). Since Σ(t) satisfies the Markov

property, Σn must also satisfy the Markov property, and is therefore a discrete-time Markov

chain that is embedded into Σ(t).

To define this discrete-time Markov chain, we need to find the one-step transition

probability matrix, P̄ . For Σ(t), if the process starts in a state i, the probability that it

moves to state j in the next event is given by [94]

Qji∑
l∈S

Qli
. (1.8)



12 Christopher E. Overton

Therefore the probability that Yn moves from state i to state j has to be given by Equa-

tion (1.8), and we have the transition probability

P̄ij =
Qji∑

l∈S
Qli

.

This defines the transition probability matrix for the embedded discrete-time Markov chain.

1.1.8 Gillespie algorithm

The Gillespie algorithm is an individual-based simulation algorithm that is widely used

to obtain exact realisations of the dynamics described by the master equation (Equa-

tion (1.6)). This algorithm randomly samples the next state to which the system jumps,

and the time to the next jump, giving realisations of the state space with the relevant prob-

ability by considering how these probabilities are obtained from the master equation. The

expected dynamics of the system are calculated by averaging over a statistically significant

number of simulations.

Following [42], we denote by f(Σ(t), s) the probability that given Σ(t) = σ at time t

the next event happens in the interval [t+ s, t+ s+ δ). This probability is the intersection

of two events: no jump happening in the time interval [t, t + s) and a jump occurring in

[t+s, t+s+δ). Since the process is Markovian these events are independent, and therefore

f(Σ(t), s) = g(Σ(t), s)Wt+s(δ), where g(Σ(t), s) is the probability that no jump occurs in

[t, t+ s) and Wt+s(δ) is the probability of a jump occurring in [t+ s, t+ s+ δ).

The first term, g(Σ(t), s), can be split into the product of the probability that there is

no event in [t, t+ s− ε) and that there is no event in [t+ s− ε, t+ s), since the process is

Markovian. That is

g(Σ(t), s) = g(Σ(t), s− ε)g(Σ(t+ s− ε), ε).

Since no event has occurred, Σ(t + s − ε) = Σ(t). From the definition of the transition

probabilities (Equation (1.5)), we have

g(Σ(t+ s− ε), ε) = 1− ε
∑
n6=σ

Qnσ = 1− εH(σ),
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where H(σ) =
∑

n6=σ Qnσ. Therefore,

g(Σ(t), s) = g(Σ(t), s− ε)[1− εH(σ)].

This rearranges to

g(Σ(t), s)− g(Σ(t), s− ε)
ε

= −g(Σ(t), s− ε)H(σ),

which if we take the limit ε→ 0 becomes

dg(Σ(t), s)

ds
= −g(Σ(t), s)H(σ).

The initial condition is g(Σ(t), 0) = 1, since no event can occur instantaneously, and

therefore we have the solution

g(Σ(t), s) = e−sH(σ).

Now we consider the probability that an event occurs in the interval [t + s, t + s + δ),

Wt+s(δ). This is given by H(σ)δ. Therefore, we obtain

f(Σ(t), s) = δH(σ)e−sH(σ).

Alternatively, we can write

f(Σ(t), s) =

t+s+δ∫
t+s

f̃(τ)dτ,

where f̃(τ) is the probability density function for the time until the next event τ . To find

f̃(s), we need to take the derivative of f(Σ(t), s), which gives

f̃(s) = lim
δ→0

t+s+δ∫
t+s

f̃(τ)dτ −
t+s∫
t+s

f̃(τ)dτ

δ
= lim

δ→0

δH(σ)e−sH(σ)

δ
= H(σ)e−sH(σ).

Therefore, the time to the next event follows an exponential distribution with parameter

H(σ) =
∑

n6=σ Qnσ. When a transition occurs, we need to determine which transition took

place. If we condition on an event taking place at time s, then the probability that the
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transition is to state m is given by

Fm(σ) =
Qmσ
H(σ)

. (1.9)

Therefore, to simulate the stochastic process we need to sample two events. Firstly, sample

the time until the next transition by sampling from the probability distribution f̃ . Secondly,

determine which transition took place by sampling from distribution F . Upon deciding

which transition takes place, we can update the system accordingly, and then repeat the

simulation algorithm from the new initial state.

That is, we follow the algorithm [13, 84, 54]

1. Generate initial conditions: t = t0, σ = σ(0).

2. Calculate the Q-matrix.

3. Determine the time until the next transition, δt, by sampling from an exponential

distribution with parameter H(σ) =
∑

n6=σ Qnσ.

4. Determine which state the transition takes the system to, m, by sampling from the

distribution F (σ) (Equation (1.9)).

5. Update the system to the new state, σ = m, and the new time, t = t+ δt.

6. Repeat from step (2).

The probability that this algorithm returns a specific trajectory is equal to the probability

of that trajectory in the Markov process. In particular, the probability of the Markov

process being in a certain state at a given time is approximately

P (Σ(t) = j) ≈ number of simulations in which Σ(t) = j

total number of simulations
.

Taking the number of simulations to infinity, this converges to the true probability. For a

discrete-time Markov process, we can use this algorithm by setting the time until the next

transition in step (3) to be δt = 1.

1.1.9 Quasi-stationary distributions

If a Markov process has any absorbing states, then eventually the process will only be

distributed between these states in the limit of infinite time, provided an absorbing state is
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accessible from every state. This can be useful in some circumstances, such as in evolution-

ary models where it will give the likelihood of a species taking over a population. However,

in epidemiology for example, the knowledge that eventually a disease is guaranteed to die

out gives little insight into the impact it may have on a population. In such cases, it is

possible to instead investigate the dynamics of absorbing Markov chains conditioned on

not having entered any absorbing states.

For a Markov chain Σ(t), the conditional distribution is defined as the probability of

being in each state, given that the system is not in an absorbing state [33]. That is, the

conditional probability

ρ(Σ(t) = j) = P (Σ(t) = j|Σ(t) /∈ A),

where A is the set of all absorbing states. By the definition of conditional probabilities,

we have

ρ(Σ(t) = j) =


P (Σ(t)=j)

1−P (Σ(t)∈A) for j /∈ A

0 for j ∈ A.

The long-term behaviour of this conditional distribution can be solved to find the steady

state, which is called the quasi-stationary distribution (QSD) of the Markov chain. This

distribution is invariant under the conditional distribution, and is therefore similar to a

true stationary distribution of the Markov chain. This has been proven to exist and be

unique when the transient states form a single irreducible communicating class [33]. The

study of quasi-stationary distributions has been applied to various systems, to understand

how they behave when absorbing events are rare [31, 73, 85, 93, 137, 139, 147, 161].

1.1.10 Simulating the QSD

For Markov processes, we can simulate the dynamics of the master equation

dp(t)

dt
= Qp(t),

using the Gillespie algorithm. Using the output of these stochastic simulations, it is pos-

sible to calculate the dynamics of the conditional distribution, ρ [58]. From the Gillespie

algorithm,

P (Σ(t) = j) ≈ |{Σ(t) = j}|
|{Σ(t) ∈ S}|
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and

P (Σ(t) ∈ A) ≈ |{Σ(t) ∈ A}|
|{Σ(t) ∈ S}|

,

where {Σ(t) ∈ X} is the set of simulations in which the Markov process is in a state in the

set X at time t, |Z| is the cardinality of a set Z, and S is the full state space.

Therefore, the conditional probability that the Markov process is in state j at time t

is approximated by

ρ(Σ(t) = j) ≈
|{Σ(t)=j}|
|{Σ(t)∈S}|

1− |{Σ(t)∈A}|
|{Σ(t)∈S}|

=
|{Σ(t) = j}|

|{Σ(t) ∈ S}| − |{Σ(t) ∈ A}|
.

That is, to obtain the dynamics of the conditional distribution, only average over simu-

lations that have not yet reached an absorbing state. Averaging over these simulations

will give the conditional distribution, and we can continue the simulations in time until

the conditional distribution attains a steady-state to find the QSD. An issue with such

a method is that since this averages over simulations that are not extinct, as t increases

the number of non-extinct simulations decreases. Therefore, fewer simulations are used as

t increases, causing the results to become noisier. This means that to capture the QSD

accurately a large number of simulations are sometimes required.

Therefore, alternative methods have been proposed to simulate the QSD. In the above

case, we can run into issues when trying to find the QSD if the likelihood of reaching

the ground state is high, since there are very few surviving simulations over which we

can average. To account for this issue, instead of discounting any simulations that reach

a ground state, one can instead return any simulations that reach the ground state into

another state. This ensures that no simulation reaches the ground state, and therefore

avoids the noise related issues. To capture the QSD accurately, the state the process is

redistributed into has to be chosen carefully.

One approach is removing the probability of entering a ground state; i.e. if the system is

in a state that can directly enter the ground state, remove the probability of this event [58].

This method redistributes any simulations that enter the ground state into their previous

state, and has been found to provide a reasonable approximation to the QSD in some cases;

however, it can lead to the states “next” to extinction being overly expressed. The method

proposed by Oliveira and Dickman [35] instead redistributes the process into a randomly

chosen state, with probability proportional to the frequency of that state over the history
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of the simulation. Such a method captures the QSD exactly whilst avoiding the issue of

noise dominating the results, and therefore can be a superior method when studying the

QSD of stochastic processes that have a high probability of absorption.

1.2 Networks

Within this thesis, we focus on populations with an underlying structure that can be rep-

resented by a network (or graph). Many population dynamics models have focused on

well-mixed populations, where all individuals are identical and have the same interactions,

whereas in real populations there is often heterogeneity across the population, such as

variety in which individuals interact with each other. This can be particularly important

in evolution and epidemiology for example, since it means that not all individuals are com-

peting with each other or able to infect each other. This type of structural heterogeneity

can be captured using networks to describe which individuals are able to interact with

each other [91, 102]. Here, the population dynamics considered determines the nature of

the interaction.

When using well-mixed populations, it is natural to assume large population limits

and use deterministic dynamics, since this can make the mathematics more tractable and

yield closed-form solutions. However, as we discuss in the later sections of this introduction,

taking such limits can miss important stochastic behaviour of the systems. Adding network

structure makes the population finite, and therefore in this setting it is natural to study

stochastic population dynamics.

We define population structure as a directed network G = (V, E), where V = {1, ..., N}
is the set of all the nodes/vertices of the networks, which we can map via an arbitrary

bijection to the set of all individuals (or sites) in the population, and E is the set of edges

between nodes. If an edge (i, j) ∈ E exists, then node j can interact with node i. This

interaction can either be static or change with time. For the work in this thesis we focus

on static networks that are strongly connected; i.e. there exists a path between all nodes.

When considering connected networks, it is common to represent the network using an

adjacency matrix G, which contains information on the connections between nodes. For a

network G, the adjacency matrix has dimension N , such that each row corresponds to a

given node; i.e. row i describes the nodes that connect to node i. If there exists an edge

from node j to node i, that is (i, j) ∈ E , then Gij = 1, otherwise Gij = 0.

Work on network-structured populations often uses idealised networks, which have a



18 Christopher E. Overton

well-defined structure with a high level of symmetry. In this thesis, we primarily focus on

random networks. Here, we define a few key examples of idealised networks and random

network families that are used throughout the thesis. All example networks shown in the

figures here are undirected, however directed variants of the illustrated networks can also

be constructed.

1.2.1 Idealised networks

Idealised networks are popular because they have a high level of symmetry. This can facil-

itate efficient analysis of the population dynamics, which otherwise would not be possible

due to the complexity of considering each node on the network independently. Within this

thesis, we focus primarily on four types of idealised network: the complete network, the

star, the circle, and the square lattice.

Figure 1.2: 10 node complete network

Complete network

The complete network (Figure 1.2) represents the classical well-mixed population. In this

network, all nodes are connected to each other and interact. Since each node is identical

with respect to its position on the network, this allows the dynamics to focus on the number
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of nodes with certain properties and not be concerned with their position.

Figure 1.3: 10 node star

Star

On the star (Figure 1.3), there is one focal node which is connected to every other node in

the population, and all the other nodes are connected only to the focal node. Throughout

this thesis, we refer to the focal node as the central node, and the other nodes as leaf

nodes. Since all leaf nodes are identical with respect to their position, we can simplify

the dynamics by studying how the number of nodes with certain properties on leaf nodes

change, in tandem with how the properties of the central node change.
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Figure 1.4: 10 node circle

Circle

In the circle (Figure 1.4), each node is connected to exactly 2 other nodes in such a

way that the network forms a single closed loop. For certain dynamics, this network has

sufficient symmetry to facilitate efficient analysis of the population dynamics. For example,

in evolutionary graph theory (which we describe later) the dynamics ensure that on the

circle all nodes with the same properties are grouped together, and updating can only take

place at either end of this group, allowing the dynamics to be investigated by analysing

how the size of this group changes.
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Figure 1.5: 9 node square lattice

Square lattice

On the square lattice (Figure 1.5), nodes occupy the grid points on a square grid, with the

lines between grid points marking the edges between nodes. Two variations are considered.

One variation is the wrapped lattice, in which the outer edges are connected to their parallel

outer edges. This variant results in all nodes having exactly 4 neighbours. In this thesis,

we focus on the fixed variant, where the outer edges are not connected to each other. This

results in all interior nodes having 4 neighbours, the edge nodes having 3 neighbours and

the corner nodes having 2 neighbours.

The square lattice is perhaps one of the most commonly considered population struc-

tures. This is because it highly structures the population, creating large distances between

disjoint nodes on the network, whilst allowing for efficient analysis and approximation due

to the high degree of symmetry.
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1.2.2 Random networks

Figure 1.6: 10 node random k-regular network with average degree k = 4.

Random k-regular

Random k-regular networks (Figure 1.6) are designed such that edges are chosen at random

but the finished network will have every node with degree equal to k. Therefore, all

nodes behave similarly in terms of their interactions, but the structure will be random,

since loops can be of varying sizes and there are varying levels of clustering across the

structure. Allowing the population to be random can capture more realistic dynamics,

but still facilitates efficient approximation of population dynamics, since each node can be

assumed to behave reasonably similarly.

Erdős-Rényi

Erdős and Rényi (1959) [43] conducted a large volume of work on random networks. To

construct a random network, they described the following algorithm:

1. Define a set V of N vertices.
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Figure 1.7: 10 node Erdős-Rényi random network with average degree 3.2.

2. For every pair of vertices assign a link between the two with probability q, indepen-

dently for each pair.

Therefore, the expected number of edges for a randomly chosen vertex i is equal to k =

(N − 1)q. The resulting network is called the Erdős-Rényi random network (Figure 1.7).

The degree distribution of the network is given by a binomial distribution with n = N − 1

and p = q. Therefore, the probability that a node i has degree m is given by

P (deg(i) = m) =

(
N − 1

m

)
qm(1− q)n−1−m.

The advantage of the Erdős-Rényi random network over the random k-regular network

is that this type of population structure does not assume that all nodes have exactly

the same number of interactions, whilst still ensuring reasonably similar behaviour. This

can more accurately capture realistic populations, since although individuals are likely to

behave similarly in the number of interactions they form, it is unlikely that there will be

no heterogeneity.
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Figure 1.8: 10 node scale-free random network with average degree 4.

Scale-free

Although Erdős-Rényi random networks might capture desirable properties of some inter-

action networks, other networks, such as social interaction networks, have very different

structure. In social networks there tends to be a small number of highly connected nodes

and a large number of nodes with few connections. Such dynamics can be captured by a

scale-free network (Figure 1.8), which has a degree distribution that tends asymptotically

to a power law as the degree of interest increases. That is, for large k the fraction of nodes

with degree k follows

P (k) ∼ k−γ .

There are multiple proposed algorithms for generating such a network. A common method

is the Barabasi-Albert method [1]. This method uses preferential attachment to dictate

how new links are made in the population; i.e. when a new node is added it is more likely

to interact with high degree nodes than low degree nodes. The algorithm goes as follows.

1. Define an initial configuration of an m node complete network.

2. New nodes are than added to the population one at a time. These new nodes are

then connected to n < m existing nodes.
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3. For each new link, the probability that the link goes to node i already in the network

is given by pi = ki/
∑

j kj , where ki is the degree of node i. Here the sum is taken

over nodes j that are already in the network.

This algorithm ensures that new links are most likely to form to highly connected nodes,

and therefore we see a power law like distribution in the degree distribution of the network.

Figure 1.9: 34 node karate club network.

1.2.3 Zachary’s karate club

It is important to consider how biological processes might spread in a real population. In

this thesis, we consider a single real-world network when investigating our models. The

network we consider is Zachary’s karate club [201]. This network includes 34 individuals in a

university karate club. This club was studied over a period of three years, and links between

pairs who interacted outside the club were recorded. Using these links, an interaction

network was produced, which is shown in Figure 1.9. This is an example of a real human

social network, which might facilitate the spread of an infectious disease or evolution of

social ideas.
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In this network, it is observed that there are a few nodes who are highly connected, and

then the number of connections rapidly drop off, with a large number of nodes who interact

with only a few members of the network. Therefore, this network behaves similarly to a

scale-free network (though is perhaps not as extreme as a true scale-free network). This

agrees with the understanding that social networks tend to be scale-free in nature.

1.3 Stochastic evolutionary processes

An example where stochastic processes have been applied to population dynamics is in

the study of evolution. Traditionally, evolutionary dynamics described how frequencies

change in infinite populations using deterministic models; however, the methods used are

not effective in finite populations. In such a population, the stochasticity of nature can

have a significant impact on the dynamics, and therefore a stochastic approach can be

used to capture this. In this section, we introduce the Moran process as an example of

a stochastic evolutionary model. We then describe evolutionary graph theory, which is a

generalisation of the Moran process to graph-structured populations.

1.3.1 The Moran process

The Moran process [116] was constructed to model stochastic fluctuations in population

genetics through birth and death events. Since its conception, this model has been adapted

and applied when studying the evolution of finite populations in which all individuals are

assumed to have identical interactions, for example see [25]. This process assumes a finite

homogeneous population consisting of two types of individuals, all of whom are equally

likely to compete and interact. In each time step, a random individual is selected to produce

an identical offspring and another random individual is selected to die. This maintains a

constant population size, which we assume to be of size N , with one individual updating at

each time step. This process assumes that the mutation rate is negligible on the timescale

of the model, since reproduction produces identical offspring. If the two types have the

same fitness, then all individuals are equally likely to be selected to reproduce, but in the

more interesting case where one individual, say of type A, is fitter than the other, say of

type B, then we assume that the fitter individual will be more likely to reproduce. In

this case, an individual is selected to reproduce with probability proportional to its fitness,

before selecting another individual to die at random. That is, the probability of selecting
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an individual of type A to reproduce is

pA =
nAfA

nAfA + (N − nA)fB
,

where nX is the number of type X individuals and fX is the fitness of an individual of type

X, for X ∈ {A,B}. Similarly the probability of selecting a type B individual to reproduce

is

pB =
(N − nA)fB

nAfA + (N − nA)fB
= 1− pB.

Defining the reproduction probability in such a manner ensures that the fitter type will be

selected to reproduce with higher probability, and therefore is expected to be favoured in

the evolutionary process. Upon reproducing, the offspring replaces an individual chosen

at random. The dynamics of the process can be described by combining these two events.

From a state with i type A and N − i type B, it is possible to move to a state with i+ 1

type A, i− 1 type A, or remain unchanged. To move from i to i+ 1, a type A is selected

for birth and a type B is selected for death. Denoting by pi,i+1 the probability of moving

from i to i+ 1, we obtain

pi,i+1 =
ifA

ifA + (N − i)fB
N − i
N − 1

, 1 ≤ i ≤ N − 1,

Similarly the probabilities of the other transitions are given by

pi,i−1 =
(N − i)fB

ifA + (N − i)fB
i

N − 1
, 1 ≤ i ≤ N − 1,

pi,i = 1− pi,i+1 − pi,i−1, 1 ≤ i ≤ N − 1.

This process is Markovian, since the updating only depends on the system state at a given

time. Therefore, this process can be described by a discrete-time Markov chain with the

transition probabilities described above. This process has two absorbing states, correspond-

ing to the all A and all B states. Since the population is finite, the process will always reach

one of the two absorbing states, which is called fixation of that type. When investigating

this evolutionary process, there are two main avenues of interest; the probability that a

certain type fixates and expected time to reach fixation. In evolution, we are interested

in the probability that a rare mutant can arise and take over a resident population. This

is given by the probability that, starting from a subset of mutant individuals, the process
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eventually reaches the all mutant absorbing state. This is the hitting probability of the all

mutant absorbing state and is called the fixation probability.

Definition 1. Fixation probability - Fixation probability is the probability that a given

type eventually takes over the population. For a given type A, we refer to the fixation

probability of type A as the probability that from an initial subset of the population, type

A takes over the whole population.

Using the boundary conditions p0,0 = pN,N = 1, Karlin and Taylor [80] derived expres-

sions for the hitting probability for this type of Markov chain, which has subsequently been

extended to finite populations [7, 179]. Using the formula of Karlin and Taylor [80], the

fixation probability of i ∈ {1, ..., N} initial type A individuals invading a type B population

is given by

ρA(i) =

1 +
i−1∑
j=1

j∏
k=1

pk,k−1

pk,k+1

1 +
N−1∑
j=1

j∏
k=1

pk,k−1

pk,k+1

. (1.10)

Considering rare mutations, the fixation probability of a single initial type A is

ρA(1) =
1

1 +
N−1∑
j=1

j∏
k=1

pk,k−1

pk,k+1

. (1.11)

In the original work of Moran, fitness was assumed to be constant (independent of the

frequency of each type). We can therefore assume that the fitness of type A is r > 1 and

the fitness of type B is normalised to 1 (this can be done arbitrarily by relabelling of type

A and type B). In this case, the fixation probability of i initial mutant A individuals in a

resident B population can be shown to be given by the Moran probability

ρA(i) =
1− r−i

1− r−N
. (1.12)

What is particularly insightful about this simple equation, is that as the population size

becomes infinite, N → ∞, the fixation probability tends to 1 − r−i < 1. This shows

that even in infinite populations, fixation of an advantageous mutant is not guaranteed.

Therefore, a theoretically stronger individual may not succeed due to random fluctuations,

such as potentially being selected for death before having the opportunity to reproduce.
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This illustrates the stochastic nature of the evolutionary process, which is referred to as

random drift. The effect of random drift can be particularly pronounced if the fitness of

the type A individual is also equal to 1. Equation (1.12) only holds for r 6= 1. If r = 1

then we instead obtain [126]

ρA(1) =
1

1 +
N−1∑
j=1

j∏
k=1

1
1

=
1

N
.

This case is referred to as neutral drift, since the mutant individuals have no fitness ad-

vantage or disadvantage compared to the resident type, and therefore the only factor

determining which type fixates is the random drift. The fixation probability of 1/N is

intuitive, since all individuals are effectively identical, so each individual is equally likely

to eventually take over the population and fixate.

In addition to fixation probability, we can consider the time to fixation. This is im-

portant because it can affect the validity of assuming the mutation rate is negligible. If

time to fixation is fast, it might be reasonable to assume a subsequent mutation is unlikely

to take place, but if fixation is very slow this assumption is unrealistic, and we are likely

to encounter complications such as clonal interference [53]. This is particularly important

when considering evolution in structured populations, and understanding fixation time in

homogeneous populations is needed for comparison. Traulsen and Hauert [179], Antal et

al. [6] and Broom et al. [19] have derived expressions for the time to fixation for arbitrary

fitness functions for the well-mixed population.

1.3.2 Evolutionary graph theory

One of the limitations of traditional evolutionary models is the assumption of a well-mixed

population. In real populations, it is not generally the case that all individuals interact

and compete with each other, and most of the time individuals will only interact with a

subset of the population. Therefore, there is some intrinsic population structure governing

which individuals interact, and it is not natural to assume a well-mixed population. As

an attempt to address this issue, Lieberman et al. [102] introduced evolutionary graph

theory. This field is an adaptation of the Moran process to structured populations, where

the relationship structure can be represented by a connected graph. Connections in the

graph represent which individuals the offspring of a given individual can replace.
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We assume a population that consists of a finite set V of individuals, which have been

labelled via an arbitrary bijection to {1, 2, ..., N}, where N = |V|. The interactions between

individuals in the population can be described as a set of weighted, directed edges, E , where

eij ∈ E if and only if the offspring of individual j can replace individual i. The weight of

an edge eij represents the probability that the offspring of j replaces i. We can therefore

describe this population structure by a graph G = (V, E). This can be represented by a

weighted matrix W = (wij). We can also define the adjacency matrix of the graph G,

such that Gij = 1 if wij > 0, and zero otherwise. This shows which individuals are able to

interact with each other. The case we use throughout this thesis assumes that an offspring

of a given individual is equally likely to replace any connected individual, wij = a for all

i with eij ∈ E , and is guaranteed to replace an individual, such that
∑

iwij = 1. This

implies that wij = 1/kj , where kj is the out degree of node j.

Evolutionary graph theory was introduced using a dynamics called the invasion process

(or birth-death with selection on birth). This is similar to the Moran process, whereby first

an individual is selected for birth proportional to its fitness and then the offspring replaces

one of the connected individuals, proportional to the weight of these links (Figure 1.10).

We consider two types of individuals, which are labelled A and B. After a mutant arises in

the population, the mutation rate is assumed to be negligible on the time scale considered,

so that no further mutations arise until either the mutants take over the whole population

and “fixate”, or the mutants die out and the residents remain.

When considering the complete graph (complete network), the invasion process is equiv-

alent to the Moran process, since this graph represents the well-mixed population where all

individuals interact. Therefore, the fixation probability of i mutants with constant fitness

r > 1 is given by the Moran probability (Equation (1.12)).

In addition to showing that the complete graph yields the Moran probability, Lieberman

et al. [102] proved a theorem, called the isothermal theorem, which finds a set of graphs

that have fixation probability equivalent to the Moran probability. Under the invasion

process, a graph has fixation probability equal to the Moran probability if and only if

it is isothermal. An isothermal graph is a left stochastic graph,
∑N

i=1wij = 1 for all

j ∈ V, which satisfies the property that the incoming weights are equivalent for each

vertex,
∑N

j=1wij = 1 for all i ∈ V. This has been further generalised to graphs that are

not left stochastic via the circulation theorem, which requires the total incoming weights

to be equal to the total outgoing weights [102]. Since the conception of evolutionary graph

theory, other evolutionary dynamics, which we call update rules, have been defined that
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Figure 1.10: Update dynamics of the invasion process. A node is selected for birth proportional to its
fitness, indicated by the white arrow. One of the neighbouring individuals, indicated by question marks
is then replaced by an identical offspring of the selected individual. Therefore either one of the type B
individuals is replaced by another type B, and the system is unchanged, or a type A is replaced by a type
B, resulting in a new system state.

can be used within the evolutionary graph theory framework. For example, in death-birth

with selection on birth dynamics [129], first death takes place at random before selecting

a neighbouring individual of the dead node to reproduce, with probability proportional

to their fitness. Within these other dynamics the circulation theorem does not generally

hold, and Pattni et al. [140] have found conditions for a graph to be equivalent to Moran

for each update rule.

Studying which graphs are equivalent to the complete graph (and the Moran process)

has shown that it is a restrictive subset of all graphs. Therefore the question naturally

arises, how do other graphs affect the fixation probability? Many graphs have been found

that can amplify the fixation probability of advantageous mutants [102]. One example is

the star graph, which is a strong amplifier of selection.

On the star graph, the symmetry allows the dynamics to be studied via four transition

probabilities. That is, we consider the probability that a leaf node changes state, either to
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type A or type B depending on the state of the central node, or the central node changes

state, again to either type A or type B. Under the dynamics of the invasion process, these

transition probabilities are given by [60]

pAAi,i+1 =
fA

(i+ 1)fA + (N − 1− i)fB
N − 1− i
N − 1

pABi,i =
(N − 1− i)fB

(i+ 1)fA + (N − 1− i)fB

pBBi,i−1 =
fB

ifA + (N − i)fB
N − 1− i
N − 1

pBAi,i =
ifA

ifA + (N − i)fB
.

It can be shown that [60, 102], for the invasion process, the fixation probability of a single

initial mutant for large N is approximately

ρA(i) ≈ 1− r−2i

1− r−2N
. (1.13)

Comparing this to the Moran probability, the relative fitness of an advantageous mutant

on a star is amplified from r to r2. This illustrates the significant impact that structure

can have on selection. It has been discovered that under the invasion process, most random

graphs will amplify selection. Under death-birth with selection on birth however, the star

graph significantly suppresses selection, and it has been found that under these dynamics

most random graphs will suppress selection [70].

In graphs like the star, which are considered to amplify selection, amplification can

depend on the initial distribution mutants might take. If one assumes a uniform distribu-

tion, such that a mutant is equally like to arise in any node on the star, then the fixation

probability is given by Equation (1.13). However, mutations generally arise from imperfect

reproduction, when small genetic changes are introduced to the offspring. Therefore, mu-

tation will appear proportionally to the number of times an individual is replaced. Under

this assumption, since the central node of the star graph will be replaced the most often

a mutant is most likely to arise here. However, under the dynamics of the invasion pro-

cess the central node suppresses selection, since it is replaced if any of the leaf nodes are

selected for birth. In this case, the star suppresses selection rather than amplifying. This

has motivated research to find structures that, under the invasion process, can amplify
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selection for various initial mutant distributions [141].

In addition to affecting the fixation probability, graph structure can also affect other

properties of the evolutionary process, such as the time to fixation. Fixation time is

an important quantity to study, since this could lead to clonal interference [53]. Also,

understanding how long a mutant will take to spread through a population is useful in the

study of cancer for example, where slowing down the spread of an advantageous mutant

can give more time to treat the patients.

For the star graph, the mean fixation time has been studied in [60] for arbitrary evo-

lutionary games under the invasion process dynamics. Other works have also investigated

the time to fixation in the star graph and other complex graphs that amplify selection

under the invasion process [68, 69, 177]. It has been observed that most graphs increase

time to fixation relative to the complete graph, especially those that amplify selection, and

it is hypothesised with strong circumstantial evidence that the complete graph has the

shortest fixation time in all cases [114]. Therefore, although such population structures

may amplify the strength of selection for advantageous mutants, the increase in time to

fixation may adversely affect the mutant due to clonal interference.

1.3.3 Incorporating game theory

Another popular aspect of evolutionary graph theory is the incorporation of ideas from

evolutionary game theory. In this case, fitness is no longer assumed constant, but instead

depends on payoffs received from a series of interactions with connected individuals. The

payoff received from interactions can be described using a payoff matrix

A B( )
A a b

B c d
,

where a type A individual receives a from interacting with a type A and b from interacting

with a type B, and a type B receives c from interacting with a type A and d from interacting

with a type B. From this, we can derive functions for the payoff of each type. Denoting
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by πjC the payoff of a strategy C individual in node j, we have

πjA =

a
N∑
i=1

GijAi + b
N∑
i=1

GijBi

N∑
i=1

Gij

,

πjB =

c
N∑
i=1

GijAi + d
N∑
i=1

GijBi

N∑
i=1

Gij

,

where Ci = 1 if the individual in node i is of type C ∈ {A,B}, and is zero otherwise.

Recall that G is the adjacency matrix of the network, so Gij = 1 if there is a link from j

to i and zero otherwise. The fitness function of a type A individual occupying node j is

defined as

f jA = 1− w + wπjA, (1.14)

and similarly the fitness of a B individual occupying node j is given by

f jB = 1− w + wπjB, (1.15)

where w is a parameter dictating the strength of the evolutionary game on selection. It

has been shown that evolutionary games are highly sensitive to graph structure, and that,

under certain dynamics, graph structure can promote the evolution of strategies that would

lose in a well-mixed population [129]. For simple graphs, such as the star and complete

graphs, we can analyse the dynamics by substituting the fitness functions (f jA and f jB) in

place of fA and fB into the transition probabilities. However, due to the complexity of the

games we do not arrive at simple closed form expressions like Equations (1.12) and (1.13).

Instead we obtain an equation similar to Equation (1.10), which is relatively simple to

solve numerically to calculate the fixation probability.

1.3.4 Approximating evolutionary graph theory

Within evolutionary graph theory, the classical examples involve highly idealised graphs,

such as the complete graph, star, and circle. In general however, graphs do not have high

levels of symmetries that allow these analytical expressions to be derived and we need to
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study how each individual node in the population changes. Hindersin et al. [68] apply a

numerical method to solve the discrete-time transition equation (1.1) for the evolutionary

process. However, the complexity of this system scales exponentially and is not feasible

for large populations. Therefore, finding other methods is important.

One method is to use individual-based stochastic simulations. This method generates

sample trajectories of the evolutionary process, and by averaging over sufficient simulations

can accurately capture the expected behaviour, such as the fixation probability and time,

for any graph and evolutionary game. The issue with such a method is that, since for

many graphs the time to fixation can be very long, it is computationally expensive to run

a sufficient number of simulations to accurately capture the expected dynamics. To address

this issue, in the constant fitness case threshold numbers of advantageous mutants have

been derived, above which fixation is almost guaranteed [12]. This allows simulations to be

ended before fixation without significantly changing the results. This work improves the

efficiency of stochastic simulations, but is still time consuming and can make systematic

analysis of multiple graphs challenging.

Instead of studying the exact dynamics, results have been derived by approximating the

evolutionary process. One method to determine the relative strength of strategies playing

an evolutionary game on a graph is taking the weak selection limit [2, 129, 203]. This

method allows us to determine which strategy is preferred for various graphs with a closed

form expression.

The weak selection limit is close to neutral selection, and is a biologically relevant

limit [29, 128]. We will use this limit to analyse the dynamics of an arbitrary evolutionary

game on the complete graph. Although exact results can be found on the complete graph,

these are not a closed form result. By using the weak selection limit, approximate closed

form conditions can be found that describe which strategy will be favoured, giving useful

insight into the evolutionary process. The use of the weak selection limit has been applied to

complex graphs to obtain analytical results [2, 129], though here we focus on the complete

graph to give a simple illustration.

On the complete graph, all individuals of the same type are identical, and therefore

we can drop the index j from the fitness and payoff functions. Therefore, equations 1.14

and 1.15 become

fA = 1− w + wπA

fB = 1− w + wπB,
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Assuming the invasion process, the transition probabilities when there are j type X indi-

viduals are given by

pj,j+1 =
jfA

jfA + (N − j)fB
N − j
N

pj,j−1 =
(N − j)fB

jfA + (N − j)fB
j

N
,

and therefore the ratio of transition probabilities is

γj =
1− w + wπB
1− w + wπA

.

To take the weak selection limit we consider w � 1, which yields (via Taylor approximation

about w = 0)

γj ≈ 1− w(πA − πB).

The fixation probability for a single initial type A individual is given by Equation (1.11).

Since the ratio of transition probabilities on the denominator is given by γj , we can ap-

proximate the product in Equation (1.11) by

k∏
j=1

γj ≈ 1− w
k∑
j=1

(πA − πB),

since all the other terms involve higher orders of w, which we assume to be negligible.

To calculate which strategy is more likely to invade another, we find the ratio of fixation

probabilities, which is given by

ρB(1)

ρA(1)
=

1−
1 +

N−2∑
j=1

j∏
k=1

pk,k−1

pk,k+1

1 +
N−1∑
j=1

j∏
k=1

pk,k−1

pk,k+1


1 +

N−1∑
j=1

j∏
k=1

pk,k−1

pk,k+1

1
=

N−1∏
j=1

pk,k−1

pk,k+1
=

N−1∏
j=1

γk.

Under the weak selection limit, this can be shown [179] to be

ρB(1)

ρA(1)
= 1− w

2
[(a− b− c+ d)(N − 1)− a− b− c+ 3d+ (2b− 2d)N ].

Therefore, for the type A individual to be favoured (ρA(1) > ρB(1)) we require the second



Chapter 1. Introduction 37

term to be positive. For large populations, this term reduces to (a+ b− c− d)w/2, so the

condition for type A to be favoured is

0 < a+ b− c− d. (1.16)

We can also explore the fixation probability using the weak selection limit. It can be

shown [179] that the fixation probability of a single initial A individual is given by

ρA(1) =
1

N
+

w

4N

[
(a− b− c+ d)

2N − 1

3
− a− b− c+ 3d+ (2b− 2d)N

]
.

Using this formula, conditions under which the type X individual has a higher probability

to fixate than it would under neutral selection can be obtained; i.e. ρA(1) > 1/N . This

holds if the second term is positive. For large populations, this term reduces to [(a−b−c+

d)/3 + b− d]w/2, so the condition for the type A individual to be stronger than a neutral

individual is
a− b− c+ d

3
+ b− d > 0. (1.17)

Comparing these two conditions in their current form is not intuitive, so we wish to rear-

range these so that they impose a condition on the same relationship. In the case where

a− b− c+ d > 0 we can rearrange Equation (1.16) to

d− b
a− b− c+ d

<
1

2

and Equation (1.17) to
d− b

a− b− c+ d
<

1

3
.

Therefore, the conditions for A to be better than neutral selection is a subset of the

conditions under which A out-competes B. In the region where A outperforms B but

is not better than neutral, although A is more likely to invade B than vice versa, the

probability that A invades B is lower than the probability that the progeny of a specific B

individual would take over the population, and therefore A is unlikely to invade a resident

population of B.

If a− b− c+ d < 0 we can rearrange Equation (1.16) to

d− b
a− b− c+ d

>
1

2
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and Equation (1.17) to
d− b

a− b− c+ d
>

1

3
.

In this case, the conditions for A to be better than neutral selection contains the conditions

under which A out-competes B. In the region where A is better than neutral but does not

outperform B, a population of resident A individuals is likely to be invaded by a mutant

B individual, and a resident A population is even more likely to be invaded by a mutant

B. By taking the weak selection limit, we have been able to derive closed form conditions

describing which strategy will be favoured in the evolutionary process.

1.4 Stochastic epidemic processes

Another example of stochastic population dynamics is in epidemiology. The standard

approach to modelling in epidemiology is to stratify the host population into a finite

number of compartments, which represent the status of the individuals in the population.

For example, the infected compartment would contain all individuals who are infected with

the pathogen (and hence able to transmit the pathogen). The traditional epidemic models

of Kermack and McKendrick [86] use a deterministic dynamical system to describe the flow

of density between the different compartments. These approaches ignore any stochasticity

of the epidemic and any underlying structure within the compartments, such as further

stratification by age or contact structure.

In reality, the spread of infectious diseases is a stochastic process, and hence in this

thesis we consider stochastic epidemic models. Such models require the individual hosts

within each compartment to be treated explicitly. Therefore, we cannot simply use the

densities of the compartments but need to know the set of individuals within each com-

partment to evolve the system through time. We still consider these stochastic models as

being compartmental in nature, however instead of being interested in the density within

each compartment we focus on which compartment each individual belongs to. Following

the work with evolutionary models, we will refer to the compartment that an individual is

in as the state of that individual. That is, if an individual is in the infected compartment,

I, we will refer to this individual as being in state I.

Since infection spreads via contact between infected individuals and susceptible in-

dividuals, it is natural to think about epidemics occurring on a contact network. This

network describes which individuals are able to make contacts with each other. If one of
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the individuals is infected, it has the potential to make infectious contacts to its connected

neighbours. By using a contact network, it is possible to explore how the properties of the

network influence the epidemic process.

1.4.1 Markovian network-based SIS model

The Markovian network-based SIS model is a stochastic model describing how pathogens

spread on a host contact network [17, 61, 91, 136, 138, 139, 155]. In the model, individuals

can flip back and forth between just two states; susceptible and infected. When an indi-

vidual is infected, its neighbours in the network (or graph) that are susceptible are directly

at risk of becoming infected. Infected individuals eventually return to the susceptible state

and are again at risk of becoming infected. When all individuals are susceptible, they

remain so for all future time and the pathogen is said to have died out. The all-susceptible

state is thus an absorbing state. The model is thought to be a good mathematical repre-

sentation for the propagation of sexually transmitted diseases and computer viruses [40].

To formally construct this model, consider a finite set V of individuals, who are labelled

via an arbitrary bijection to {1, 2, . . . , |V|}. Let N = |V| < ∞. Individuals can be in one

of two states: susceptible, denoted by S, or infected, denoted by I. An individual j ∈ V,

while infected, makes infectious contacts to an individual i ∈ V \{j} according to a Poisson

process with rate Tij ≥ 0. If a susceptible individual k ∈ V receives an infectious contact, it

immediately becomes infected for an exponentially distributed time period with mean 1/γk,

after which it immediately becomes susceptible again. We assume that the transmission

matrix T is strongly connected; i.e. every individual is at risk of infection if at least one

individual is infected.

This model is described by a continuous-time Markov chain {Σ(t) : t ≥ 0} with finite

state space {S, I}N , parameterised by an irreducible square matrix T with non-negative

entries and a vector γ with positive entries. Let σα ∈ {S, I}N denote a state of the

population. Let Σi(t) denote the status of individual i at time t, and for a given state σα,

let σαi denote the status of individual i in that state.

From a given state σα, we can transition to a new state in which one individual has

changed state; from S to I or I to S. If the status of individual i is changing, we denote

the new state by σi→Xα , where X ∈ {S, I} is the new status of i. The transition rates for

the Markov chain are given in Table 1.1, where δ is the Kronecker delta.
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Table 1.1: Transitions for the Markovian network-based SIS model

from to at rate

σα : σαi = S σi→Iα

∑
j∈V TijδIσαj

σα : σαi = I σi→Sα γi

The time evolution of the Markov chain is captured by the master equation,

dp(t)

dt
= Qp(t),

where Pα(t) = P (Σ(t) = σα) is the probability that the system is in state σα at time t ≥ 0,

and Q is a matrix of transition rates (obtained from Table 1.1). Although this can be

solved to determine the future behaviour, in many cases this is infeasible since the matrix

Q grows exponentially with N .

One of the key properties of the model is the presence of a unique absorbing state

corresponding to the disease-free state. This is the only absorbing state of the system, and

therefore, for finite population size and parameters the trajectories will always enter this

state and remain here. This is demonstrated in Figure 1.11, where it can be seen that the

expected behaviour of the model tends towards extinction.
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Figure 1.11: Output of stochastic simulations for the Markovian network-based SIS model on a 36 node
square lattice. Simulation 1 is a simulation that took a relatively long time to reach extinction, simulation 2
is a simulation that went extinct relatively quickly, and the simulation average is the average across 10,000
simulations. The left-most plot has a low transmission rate, and this increases as the plots move from left
to right.

This model has also been referred to as the contact process [103], where it was con-

structed as a type of interacting particle system. This is important, because evolutionary

models such as the voter model have also been derived from interacting particle systems,

suggesting that there are similarities between the two modelling frameworks.

1.4.2 Moment-closure approximations for network-based SIS

Due to the prohibitive computational cost of solving the master equation, approximation

methods are useful. The heterogeneous mean-field and pair-approximation methods, which

we briefly describe here, can be interpreted as approximating the expected behaviour of

the stochastic model. For detailed derivations and analysis of these models see [91].

Under the heterogeneous mean-field model, we assume that: all individuals with the

same degree can be treated identically, the status of neighbouring individuals are indepen-

dent, the recovery rate is identical for all individuals (γi = γ for all i ∈ V), and whenever

two nodes are connected the transmission rate is identical (Tij = τ for all i, j ∈ V with

Tij > 0). Additionally, we assume that the network is undirected for simplicity, so that

Tij = Tji. The rate of change in the expected number of susceptible and infected individ-
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uals, stratified by the degree of the individual, is then approximated by [91]

˙[Sk] ≈ −τ
∑
l∈M
|Ck,l|

[Sk]

|Ck|
[Il]

|Cl|
+ γ[Ik]

˙[Ik] ≈ τ
∑
l∈M
|Ck,l|

[Sk]

|Ck|
[Il]

|Cl|
− γ[Ik],

where [Sk] is the expected number of susceptible individuals of degree k at time t, |Ck| is

the number of degree k nodes, |Ck,l| is the number of pairs involving a degree k node and a

degree l node, andM is the set of unique degrees on the network. Above, and throughout,

we use ‘dot’ notation for derivatives with respect to time. Whilst the assumption of

neighbouring individuals being independent is unrealistic, the resulting model has low

computational cost, and hence it is popular to study.

Instead of assuming statistical independence between individuals, models have been

derived by writing down exact equations for the expected number of individuals and pairs:

[Ṡk] =γ[Ik]−
∑
l∈M

τ [SkIl]

[İk] =− γ[Ik] +
∑
l∈M

τ [SkIl]

[ ˙SkIl] =γ([IkIl]− [SkIl]) + τ(
∑
m∈M

[SkSlIm]−
∑
m∈M

[ImSkIl]− [SkIl])

[ ˙SkSl] =γ([SkIl] + [IkSl])− τ(
∑
m∈M

[SkSlIm] +
∑
m∈M

[ImSkSl])

[ ˙IkIl] =τ([SkIl] + [IkSl]− 2γ[IkIl] + τ(
∑
m∈M

[ImSkIl] +
∑
m∈M

[IkSlIm]), (1.18)

where [AkBl] is the expected number of pairs at time t, between degree k and l individuals

in states A and B respectively, and [AkBlCh] is the expected number of triples at time t,

between degree k, l and h individuals, in states A, B and C respectively.

Solving this system exactly involves deriving a full hierarchy of equations describing

triples and quads and so on [40], and therefore we wish to approximate this system by

closing the hierarchy early. This can be done by expressing triples as some function of

pairs and individuals. To approximate the triples, we analyse the number of edges starting

from a susceptible node, following [40, 91]. The total number of SA edges (for A ∈ {S, I})
from a degree k node to a degree l node is [SkAl]. Since we have [Sk] susceptible degree k
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nodes, we have approximately [SkAl]/(k[Sk]) edges leading from a given susceptible degree

k node to a given degree l node in state A. Therefore, for a chosen susceptible degree k

node the probability that two neighbours, with degree l and m, are in states A and B is

given by [AlSk][SkBm]/k2[Sk]
2. We have k(k − 1) choices of the two neighbours, and [Sk]

choices of the susceptible node, and therefore we can approximate the expected number of

triples [AlSkBm] as

[AlSkIm] ≈ k − 1

k

[AlSk][SkIm]

[Sk]
.

This approximation makes the homogeneity assumption that the neighbours of susceptible

degree k nodes are interchangeable and the states of pairs are independent. Using this

expression, the system of equations (1.18) is closed at the level of pair terms, which allows

the system to be solved with reasonably low computational cost.

These two models act at the population level, since they describe how the expected

number of individuals with certain traits change. Following the motivation behind these

models, node-level models have been developed that describe how the probability of in-

dividual nodes being infected change with time. Such models have been referred to as

individual-based models [167, 168], node-level models [134], propagation models [91] or

quenched mean-field [44, 107]. The advantage of such models over the population-level

models is that we do not need to make any homogeneity assumptions about the underlying

populations, and therefore properties such as clustering, directed edges and degree het-

erogeneity are naturally captured. The downside however is that the computational cost

scales with at least the number of nodes.

Under Markovian network-based SIS, the dynamics of individual nodes are given by [167]

˙〈Si〉 = −
∑
j

Tij〈SiIj〉+ γi〈Ii〉,

˙〈Ii〉 =
∑
j

Tij〈SiIj〉 − γi〈Ii〉, (1.19)

where 〈Ai〉 represents the probability P (Σi(t) = A) with A ∈ {S, I}, and 〈AiBj〉 represents

the probability P (Σi(t) = A,Σj(t) = B) with A,B ∈ {S, I}.
This equation exactly describes the rate of change for individual nodes in terms of
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pairs. Pairs of nodes are exactly described by

˙〈SiIj〉 =
∑
k

Tjk〈SiSjIk〉 −
∑
k

Tik〈IkSiIj〉

−(Tij + γj)〈SiIj〉+ γi〈IiIj〉,
˙〈SiSj〉 = −

∑
k

Tjk〈SiSjIk〉 −
∑
k

Tik〈IkSiSj〉,

˙〈IiIj〉 =
∑
k

Tjk〈IiSjIk〉+
∑
k

Tik〈IkSiIj〉 − (γi + γj)〈IiIj〉

+Tij〈SiIj〉+ Tji〈IiSj〉, (1.20)

where 〈AiBjCk〉 represents the probability P (Σi(t) = A,Σj(t) = B,Σk(t) = C) with

A,B,C ∈ {S, I}. To solve this requires a hierarchy of equations up to full system size.

Following similar logic to the population-level equations, this system can be approximated

by making assumptions of statistical independence. Assuming that the states of individuals

are independent, 〈SiIj〉 ≈ 〈Si〉〈Ij〉, we can close the hierarchy at the level of individuals.

Alternatively, we can assume independence at the level of pairs. The natural assumption

of statistical independence to apply to pairs is that, given three nodes in a line, if the state

of the central node is known then the states of the outer two nodes are independent. For all

triples in the system above, the central node in the configuration is always the centre node

of a line between the two outer nodes. Therefore, if we consider the triple 〈AiBjCk〉, this

can be approximated as a function of lower order terms by using conditional probabilities

and assuming statistical independence. By the definition of conditional probabilities, we

obtain

〈AiBjCk〉 = 〈AiCk|Bj〉〈Bj〉.

Assuming that the states of nodes i and k are independent given the state of node j, this

becomes

〈AiBjCk〉 ≈ 〈Ai|Bj〉〈Ck|Bj〉〈Bj〉 =
〈AiBj〉〈BjCk〉

〈Bj〉
, (1.21)

which closes the hierarchy at the level of pairs. Other methods to approximate triples

in terms of pairs and individuals have been proposed [82, 157, 167], however we do not

consider them in this chapter.

The population-level methods described above can be derived rigorously from the node-
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level methods [167]. In the exact case, we have

[Ak] =
∑
j:kj=k

〈Aj〉

and

[AkBl] =
∑
i:ki=k

∑
j:kj=l

〈AiBj〉

where A,B ∈ {S, I} and ki is the degree of node i. Using this, the rate of change for the

population-level terms can be derived. From this, we can also approximate the node-level

quantities as

〈Ai〉 ≈
[Aki ]

|Cki |
, (1.22)

and

〈AiBj〉 ≈
[AkiBkj ]

|Cki,kj |
. (1.23)

The models described here exhibit an epidemic threshold, above which the pathogen per-

sists and below which the pathogen dies out (illustrated in Figure 1.12 for the node-level

pair-based model). For the population-level models and individual-based node-level model,

above these thresholds a unique, globally stable equilibrium exists [82, 83, 91, 96, 184]. For

the node-level pair-based model, the disease-free solution has been shown to become unsta-

ble as the transmission rate increases [107], at which point we have shown that an endemic

equilibrium solution exists (Appendix 5.A). Numerically, this endemic equilibrium appears

to be unique and globally attracting, similar to the endemic solutions in the other models.

High above the epidemic threshold, the endemic equilibrium solutions of these models

approximate the behaviour of the stochastic model for a long time, since the time to disease

fade out is very long. However, as the transmission rate decreases, the endemic equilibrium

does not capture the dynamics of the stochastic process. This is illustrated in Figure 1.12.

Therefore, it is unclear how to relate these deterministic models to the stochastic process.

1.4.3 Other epidemic dynamics

The SIS model represents pathogens that do not grant host immunity upon recovery, hence

infected individuals return to the susceptible compartment. Many pathogens however do
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Figure 1.12: Comparing the standard pair-based model with the output of stochastic simulations on a
36 node square lattice. We plot the expected number of infected individuals against time for each of the
methods. As the figures move from left to right the transmission rate increases. In the right-most figure,
steady state-like behaviour is observed in the stochastic model, since the expected time to extinction is
very long.

confer host immunity, which can either be lifelong or wane after some period of time.

To capture such dynamics, other compartments can be introduced to represent immune

individuals. The standard approach, based on the original epidemic model of Kermack

and Mckendrick, is the SIR model [86]. In this model, there is a new compartment called

removed, which contains individuals who have just left the infected compartment. These

individuals are no longer susceptible to infection. To capture waning immunity, removed

individuals can be allowed to transition back to the susceptible compartment, at which

point they will be able to become infected again, resulting in the SIRS model [78].

The SIR model allows the complexities of immunity to be captured. Another important

aspect of many pathogens is a latent period, where an infected individual may not be able

to transmit the infection. This can be captured by adding another compartment called

exposed, which contains individuals who have been exposed to the pathogen but are not

yet infectious to other potential hosts. Adding this compartment to the SIR model results

in the SEIR model [101].

1.4.4 Epidemiology of evolving pathogens

Understanding evolution is important for improving the future of healthcare, due to the

presence of evolutionary processes in many healthcare challenges. For example, to under-

stand cancer we need to understand how tumour cells mutate, compete and interact, which
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is essentially an evolutionary process. Some insight has been gained into tackling cancer

by using evolutionary game theory to predict how treatments may affect the tumour [202].

In this thesis however, we focus on infectious diseases.

With the discovery of antimicrobial compounds, many historically fatal diseases have

become easy to treat in the last century. However, the future impact of such diseases is

not so clear, since from the first widespread use of antimicrobials we have witnessed a

steady rise of pathogens that are resistant to the treatments [195]. This is leading towards

a tipping point, since the rate at which resistance is appearing vastly outweighs the rate

at which new treatments are developed. Therefore, we are starting to see infections where

the pathogen is resistant to all the recommended treatment options. This could lead to a

public health crisis where we are no longer able to treat infections that we would previously

consider simple. Understanding how to control the development of resistance is therefore

of vital interest, and is a key area where the study of evolution overlaps with epidemiology.

Additionally, evolution plays a key role in the persistence of many viral infections, such

as influenza and HIV. Influenza has multiple coexisting sub-types, which mutate frequently

enabling them to become unrecognisable to the host immune system, and therefore im-

munity can wane, allowing the pathogen to persist. The presence of many sub-types also

presents a huge issue in vaccine design, as modellers need to predict which strain will be

most prevalent in order to design a vaccine each flu season. This involves studying the com-

petition between the various coexisting strains, which again is a key aspect in evolutionary

processes. This thesis explores both evolutionary and epidemic models and focusses on

exploring the relations between the two types of model.

1.5 Outline

Here we provide an outline of the contents of this thesis. All the work presented is new

and where work has been published or submitted for publication details are given.

In Chapter 2, we develop a biologically motivated general model for evolution in network

structured populations. Evolutionary graph theory, despite being a popular model with

mathematicians and theoreticians, has not been widely applied to real world populations,

illustrating the need for a more biologically relevant model. Using the model that we

develop, evolutionary graph theory can be derived as a special case, which illuminates the

underpinning biological assumptions behind this framework. Additionally, our model can

be used to obtain the SIS epidemic model as a special case, deriving a link between network-
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based evolutionary processes and SIS. This work has been submitted for publication as a

research article. For this chapter, I developed the research question, constructed and

analysed the model, and wrote the manuscript, along with collaborators K. Pattni and K.

Sharkey.

In Chapter 3, we investigate how bet-hedging strategies may evolve in network struc-

tured populations. Evolutionary bet-hedging describes how species adapt and change in

variable environments, where the conditions experienced by individuals (and therefore their

fitness) can change with time. In well-mixed populations, this is well understood, with var-

ious empirical and theoretical studies. However, the effect of population structure has not

been thoroughly explored. Using the framework of evolutionary graph theory, we find ev-

idence supporting the existence of within-generational bet-hedging. Such bet-hedging has

been observed empirically, but widely dismissed by theoretical conclusions derived from

well-mixed models. This work has been submitted for publication as a research article.

For this chapter, I designed the project and, with the help of my supervisor K. Sharkey,

performed the analysis and writing.

In Chapter 4, we approximate the dynamics of evolutionary graph theory, applying nu-

merical approximation techniques from the epidemic and statistical physics literature. We

first construct exact equations describing the behaviour of individual nodes in the popula-

tion. From these node-level systems, we gain insight into existing approximation methods

that have been shown to perform well in various scenarios. Additionally, we construct new

methods that can be applied to study the transient dynamics of the evolutionary process as

well as the fixation probabilities of different types. The proposed methods can be applied

to a wide range of graphs, and grant insight into how the network properties affect the

evolutionary dynamics from different initial conditions. The ability to explore different

initial conditions is often not captured by similar approximations due to homogeneity as-

sumptions, and can be crucial when studying which nodes on a graph present the largest

invasion risk. This work has been published in the Journal of Theoretical Biology as a

research article [134]. For this work, working with K. Sharkey I developed the research

questions and the models. I analysed the models and wrote the manuscript with the help

of my collaborators M. Broom and C. Hadjichrysanthou.

In Chapter 5, approximation methods are developed to capture the quasi-stationary

distribution in the Markovian network-based SIS epidemic model. In epidemic models, the

transient behaviour is the key area of interest, since knowing that eventually the disease

will go extinct does not give any insight into the impact it may have on a population.
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Therefore, it is important to study dynamics if extinction does not occur, which is given by

the quasi-stationary distribution. Using moment-closure methods similar to Chapter 4, we

develop an approximation method that can accurately capture the QSD for any network

and parameters. This work forms a research article in preparation. For this chapter, I

designed the project, conducted the analysis and wrote the manuscript, with assistance

and feedback from collaborators R. Wilkinson, J. Miller, A. Loyinmi and K. Sharkey.



Chapter 2

Eco-Evolutionary Dynamics in

Network Structured Populations

2.1 Introduction

The metapopulation model of Levins [99] was one of the first models to consider discrete

spatial structure in the form of spatially separated sites that can be empty or occupied

by a local population of infinite size whose individuals can migrate to other sites. This

model has been extended in various ways, for example, a network of sites was considered in

[64]. Metapopulation models are characterised by their extinction-colonisation dynamics,

where local populations on occupied sites can go extinct and unoccupied sites become

colonised by migrants. This means it is possible to have both occupied and unoccupied

sites. These extinction-colonisation dynamics are ubiquitous for models based on similar

discrete spatial structure. In structured epidemic models [66, 115], where sites are seen as

hosts who can carry infectious disease, the susceptible-infected-susceptible (SIS) dynamics

consist of colonisation events in the form of susceptible hosts getting infected and extinction

events in the form of infected hosts recovering. In individual-based lattice models, such

as the competing contact process [38], sites can accommodate at most one individual so

extinction is a death event and colonisation is a birth event. A notably different model is the

individual-based framework of evolutionary graph theory [102] (described in Section 1.3.2),

where each site always has one individual present on it. Due to this restriction, this

framework differs in terms of the dynamics used in the aforementioned models where

empty sites are allowed. Dynamics that allow empty sites have been applied to biologically

50
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relevant scenarios, for example, in the case of epidemic models: foot-and-mouth disease

[83], sexually transmitted diseases [40] and influenza [166]. On the other hand, evolutionary

graph theory is dominated by theoretical discussions about the importance of population

structure on evolution [102, 20, 60]. To bridge the gap between these models, we need to

study them within a single framework that will allow us to view their relationship in terms

of the underlying biological assumptions made at the individual level.

In [22], evolution was described using the principals of birth, mutation, interaction

and death acting at the level of individuals. Using this model it is possible to rigorously

derive population-level models of evolution such as the classical models of [46] and [197],

and the canonical equation of adaptive dynamics [36]. Furthermore, different biological

insights can be obtained by changing the timescale of the individual-level processes, since

the evolutionary dynamics predicted at the population level will be qualitatively different.

In [23], continuous spatial structure was incorporated into the individual-based model

of [22], such that individuals can move and interact within a certain spatial range. This

was similarly used to provide biological insights into population-level models, for example,

a large interaction range with weak migration and mutation results in a metapopulation

[99], where individuals are organised in spatially isolated clusters.

In this chapter, we extend this individual-based model to a discrete spatial structure

represented by a network, such that each node represents a site that can be occupied by

multiple individuals. Building the framework in this way allows us to use the methods in

[22] to consider different evolutionary models by changing the timescale of individual-level

processes. In the case where mutation rates tend to zero, we are essentially considering

only the ecological dynamics, and as the mutation rate increases we obtain eco-evolutionary

dynamics. In the latter case, we can then consider where ecological and evolutionary pro-

cesses happen at similar timescales which, for example, is the case in RNA viruses [57].

Our framework would be particularly useful in cases where structure plays an important

role, where examples include the compartmental nature of lungs that allows antibiotic re-

sistance to evolve in cystic fibrosis patients [11, 131] and tumour evolution where structure

promotes diversity [124].

This chapter is structured as follows. Section 2.2 describes our framework to model

evolution in a network-structured population with eco-evolutionary dynamics based on

individual-level processes as in [22]. Section 2.3 gives a result showing that ecological

dynamics can be suppressed in our framework’s eco-evolutionary dynamics by using a neg-

ative ecological feedback loop. In Section 2.4, we use our framework to construct a spatial
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birth and death model with ecologically motivated birth and death rates, which includes

the SIS epidemic model [66] as a special case. We then apply the result in Section 2.3 to

this model to derive evolutionary graph theory dynamics. Section 2.5 studies the long-term

behaviour of a mutant invading a resident population in the spatial birth and death model

in the cases without and with clonal interference. In particular, we look at the fixation

probability. Without clonal interference, it is shown that adding intra-site competition

and removing natural death increases the fixation probability of a mutant with an ad-

vantageous birth rate. With clonal interference, we consider the fixation probability of a

mutant before another advantageous mutant arises. In this case, increasing the mutation

rate reduces the amount of time available for a mutant to fixate before interference and,

therefore, the circulation theorem from evolutionary graph theory no longer holds.

2.2 Evolution modelling framework with network structure

and eco-evolutionary dynamics

We consider a population in which individuals are distributed over a finite number of

connected sites. Individuals and sites represent different things depending on the modelling

context. Examples can be found in the metapopulation and epidemiology literature such

as the fragmented habitat of fritillary butterflies [65] and farms housing livestock infected

with foot and mouth disease [108]. The sites are assumed to be arranged on a network such

that individuals can spread to a connected site only. Examples of natural and artificial

networks where the spread of individuals is restricted to nearest neighbours include email

networks spreading computer viruses [123] and livestock movement networks [90].

The framework describes a birth and death process. This means that the population is

updated in continuous time through either a birth or death event that respectively increases

or decreases the population size by one. In [22] these events are described at the individual

level incorporating interaction and mutation. We do this but also take into account the

network structure. For birth events, individuals are assumed to reproduce asexually giving

rise to an offspring that is of identical type when there is no mutation or of a different type

when there is mutation. Individuals spread upon birth such that offspring can be placed

onto a connected site where they mature immediately and remain until death. Examples

of where this type of spreading dynamics can be used include modelling dispersal in plants

[47], spread of social behaviour like alcoholism [159] and spread of infectious disease in
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epidemics. For death events, it is assumed that individuals free up any space that they

previously occupied. Deaths and births are assumed to be independent events allowing the

population size and density to fluctuate.

Mutation allows the introduction of a continuous number of new types into the popu-

lation. In this case, when the evolution of a population is studied over a large period of

time multiple different types can appear that could potentially result in clonal interference

[53], where two or more adaptive mutations are in competition with one another. This

also allows consideration of a richer adaptive landscape. Interaction between individuals

on the same site and potentially different sites as well can affect birth and/or death. In

particular, interaction allows the consideration of frequency dependent selection over the

adaptive landscape through the use of evolutionary game theory [109].

The mathematical description of the framework is as follows. We consider N distinct

sites that are connected to each other in a network. If two sites are connected, then

individuals can spread from one to the other. This network is represented by a connected

graph G = (V, E), where V is the set of sites and E is the set of weighted edges between

sites. If there exists an edge between two sites, then individuals can place their offspring

in the connected site. This can also be represented by a matrix W with entries Wmn ≥ 0,

such that site n is connected to site m (and therefore individuals can spread offspring from

n to m) if Wmn > 0. Each site can be occupied by multiple individuals. Each individual i

is characterised by a separate position and trait such that i = (Ui, Xi) where the phenotype

is given by Ui ∈ U ⊂ Rl, and the position is given by Xi ∈ X = {1, 2, . . . , N}. This way

of characterising individuals is taken from [23], but here X is a discrete set. The state

of the population at a given point in time is given by the multiset I containing elements

i = (Ui, Xi). Since I is a multiset, if both i = (u, x) and j = (u, x), and i, j ∈ I, then

there are at least two copies of (u, x) in I. We define the multiset In = {i ∈ I : Xi = n} to

represent the individuals present in site n; it therefore follows that In ⊆ I. As in [22], the

individual-level processes follow a Poisson process, but in our case the network structure

W can have an impact. The death rate of individual i ∈ I is given by d(i, I,W ). The birth

rate of individual i ∈ I when their offspring is spread to site x is given by b(i, x, I,W ).

The probability that an offspring of individual i carries a mutation is µ(i). The probability

that individual i gives birth to an offspring with trait w is given by M(Ui, w) such that

M(Ui, w) = 0 if w /∈ U .

Putting this together gives a model of population evolution described by a continuous-

time Markov process, which we will denote by Σ(t). Let I be the state of the population at
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time t. The infinitesimal dynamics of the population after t is described by the generator

L that acts on real bounded functions φ as follows

Lφ(I) =
∑
i∈I

∑
n∈X

[1− µ(i)]b(i, n, I,W )[φ(I ∪ {(Ui, n)})− φ(I)]

+
∑
i∈I

∑
n∈X

µ(i)b(i, n, I,W )

∫
Rl

[φ(I ∪ {(w, n)} − φ(I)]M(Ui, w)dw

+
∑
i∈I

d(i, I,W )[φ(I \ {i})− φ(I)]. (2.1)

The event described by the first line is an offspring born with no mutation, the second line

is an offspring born with a mutation and the last line is an individual dies.

When studying the evolution of a population, we are interested in eventually reaching

some population state A from an initial state I. If we define TA as the first time the

Markov process reaches A, then we can use this to investigate whether the process reaches

A or not. The hitting probability of A from a state I is the probability that TA is finite,

given that the Markov process starts in state I; i.e. P (TA < ∞|Σ(0) = I). The hitting

time is the expected time to reach A from I; i.e. E[TA|Σ(0) = I]. From the infinitesimal

generator, the hitting probability, denoted hA(I), is given by solvingLhA(I) = 0,

hA(A) = 1.
(2.2)

The generator can also be used to find the hitting time, denoted kA(I), by solvingLkA(I) = −1,

kA(A) = 0.

The derivation of the hitting probability and time are given in Section 1.1.6.

2.3 Suppressing ecological dynamics in eco-evolutionary dy-

namics

Here we show that we can suppress ecological dynamics in the eco-evolutionary dynamics

proposed, leaving evolutionary dynamics that are based on ecologically motivated assump-
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tions. In models that only consider evolutionary dynamics, such as the Moran process

[116] and evolutionary graph theory [102], these underlying ecological assumptions are

lost. This is because their evolutionary dynamics are directly defined from the assumption

of fixed population size and density, rather than treating it as a consequence of suppressing

ecological dynamics.

In ecology, the carrying capacity describes the maximum population size that can be

sustained in a given environment. This depends on the composition of the population,

since different types may have different carrying capacities. When ecological dynamics are

suppressed however, the carrying capacity does not depend upon the composition of the

population. To achieve this behaviour, we will create a negative ecological feedback loop

that balances out opposing ecological forces pushing the system toward an equilibrium. For

example, there is negative feedback between predators and their prey where an increase in

predators leads to decrease in prey and vice versa [15]. In our framework, the ecological

forces that result in a birth oppose those that result in a death. We therefore balance out

these forces such that a population converges to a given size regardless of its composition.

The equilibrium state we consider is a population of size N with each site having density

1. A negative ecological feedback loop around this state is created by modifying the birth

and death rates. The Heaviside step function

Hm[n] =

0 n < m,

1 n ≥ m

is used to identify the conditions required for this negative ecological feedback loop to act.

The modified death rate of individual i amplifies its death rate by c if present on a site

with multiple occupancy but otherwise has no effect; that is,

D(c, i, I,W ) = cH2[|IXi |]d(i, I,W ) c ≥ 1.

Similarly, the modified birth rate of individual i amplifies its birth rate onto site n by c if

site n is empty but otherwise has no effect; that is,

B(c, i, n, I,W ) = cH0[−|In|]b(i, n, I,W ) c ≥ 1.

The infinitesimal generator for the modified birth and death rates, denoted Lc, is given by

Equation (2.1) but with b replaced by B and d replaced by D. The parameter c controls



56 Christopher E. Overton

the strength of the negative ecological feedback loop’s effect. For c = 1, there is no effect.

For c > 1, there is an effect making it more likely that individuals sharing a site will die

and that offspring are placed onto empty sites. In the limit c → ∞, there is maximum

effect. In this case, ecological dynamics are suppressed resulting in fixed population size

and density.

When ecological dynamics are suppressed, the system updates through a replacement

event where a birth and a death are coupled. This is formally shown by considering the

hitting probability. Using the generator Lc, the hitting probability in the limit as c→∞
of the eco-evolutionary dynamics can be shown (Appendix 2.A) to reduce to

hA(I) =
1

λI

∑
i∈I

[∑
j∈I

r(i, j, Ui, I,W )[1− µ(i)]hA(I ∪ {(Ui, Xj)} \ {j})

+

∫
Rl
r(i, j, w, I,W )µ(i)hA(I ∪ {(w,Xj)} \ {j})M(Ui, w)dw

]
(2.3)

where λI is the rate of leaving state I and r(i, j, u, I,W ) is the rate at which individual i’s

offspring of type u replaces individual j in state I. This shows that in the limiting dynamics

we have derived, the population is updated through replacement events that happen with

rate r. Dropping W for brevity, it is shown in Appendix 2.A that the replacement rate r

for Equation (2.3) is given by

r(i, j, u, I) = b(i,Xj , I)
d(j,K(u, j))∑

k∈K(u,j)Xj

d(k,K(u, j))
+ d(j, I)

b(i,Xj , I \ {j})∑
k∈I\{j}

b(k,Xi, I \ {j})
(2.4)

where K(u, j) = I ∪ {(u,Xj)}, and K(u, j)Xj represents the individuals on site Xj in this

state. We can see that there is both a birth-death (BD) and death-birth (DB) component

in r. The first term is a BD component where individual i first gives birth to an offspring

that is placed onto site Xj who then replaces individual j. The second term is a DB

component where individual j dies first and then individual i gives birth to an offspring

that is placed onto site Xj , hence replacing individual j.



Chapter 2. Eco-Evolutionary Dynamics in Network Structured Populations 57

2.4 Framework Application I: Deriving evolutionary graph

theory dynamics from a spatial birth and death process

In this section, we construct a model from our framework by using ecologically motivated

birth and death rates, which we will refer to as the spatial birth and death model (SBD).

This model contains the SIS epidemic model [66] and competing contact process [38] as

special cases. By applying the result from Section 2.3, this model gives evolutionary

dynamics based on birth and death rates, which we refer to as SBD evolutionary dynamics.

These evolutionary dynamics will be compared to those of evolutionary graph theory that

are based on fitness, a measure of reproductive success. If they are equivalent, fitness

can be interpreted in terms of birth and death rates, uncovering hidden assumptions and

providing biological insight into evolutionary graph theory dynamics.

The ecological dynamics for SBD use density-dependent regulation of population size

based on [77]. Individuals on the same site compete for survival through pairwise interac-

tions resulting in the death of an individual. This competition has negative feedback such

that increasing population size results in increased competition and vice versa. For indi-

vidual i, let δUi be the natural death rate and γUi,Uj be the death rate due to competition

with individual j. It is specified in [77] that the inverse of γ can be interpreted as the

payoff in terms of evolutionary games [109]. That is, a larger payoff is received when γ is

lower. The death rate is then given by

d(i, I,W ) = δUi +
∑

j∈IXi\{i}

γUi,Uj ,

where self-interactions have been discounted. It is assumed that γu,v > 0 ∀u, v ∈ U to

ensure negative feedback. The birth rate is given by

b(i, n, I,W ) = s|In|βUiWnXi s ∈ [0, 1].

The birth rate of individual i is βUi . It is weighted by WnXi to capture the network effect

of individual i’s position when placing its offspring in site n. We added s|In| to capture

the ability of an offspring to survive when invading site n depending on its occupancy. For

0 < s < 1, there is negative feedback such that survival decreases as occupancy increases

and vice versa. For s = 0, the convention that 00 = 1 is used implying that offspring

cannot invade and only survive on vacant sites. For s = 1, offspring always survive when
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invading.

SBD forms a basis for the susceptible-infected-susceptible (SIS) epidemic model [66] and

its various extensions. The SIS model captures the ecological dynamics of an infection as it

spreads between hosts. A host can be infected (I) or susceptible (S) and is represented by

a node in a network. Infection can only spread from an infected to a susceptible. Becoming

infected is therefore proportional to the number of infected neighbours. Infected individuals

recover and become susceptible independent of their neighbours. SIS dynamics generally

consider a single pathogen type, but multi-species SIS-type dynamics are obtained from

SBD as follows. Each site is a host, with a vacant site representing S and an occupied site

representing I. The presence of individual i on a site indicates having infection Ui, i.e. the

trait of individual i. The death rate represents recovery from infection and can be defined

as follows

d(i, I,W ) = δUi .

We have set γu,v = 0 for all u, v ∈ U . Recovery from infection Ui happens with rate δUi .

The birth rate represents spread of infection and can be defined as follows

b(i, n, I,W ) = 0|In|βUiWnXi . (2.5)

We have set s = 0 to restrict spread of infection to S (vacant sites) only. Infection Ui

spreads with rate βUi and is weighted by WnXi to capture the effect of network structure.

Constructing the SIS model using SBD allows us to consider extensions that have eco-

evolutionary dynamics. A straightforward extension is the competing contact process [38].

This uses SIS dynamics to study inter-host competition where two different infections are

competing to occupy hosts. Other extensions, such as [16], allow hosts to carry more than

one infection. Here, there is intra-host competition where infections compete within a host.

In our setting, this can be achieved when s > 0. Therefore, SBD allows us to consider a

combination of inter and intra-host competition between infections.

In evolutionary dynamics, a model of interest is evolutionary graph theory. We wish to

investigate whether such a model can be obtained from the SBD eco-evolutionary dynamics.

To do this, we first apply the result from Section 2.3 to obtain SBD evolutionary dynamics.



Chapter 2. Eco-Evolutionary Dynamics in Network Structured Populations 59

In this case, the replacement rate (Equation 2.4) is given by

r(i, j, u, I,W ) = sβUiWXjXi

δUj + γUj ,u

δUj + γUj ,u + δu + γu,Uj
+ δUj

βUiWXjXi∑
k∈I\{j}

βUkWXjXk

.

The exponent of s is 1 in the BD component as every site has one individual in this case.

The hitting probability in SBD, denoted hSBD
A (I), is given by substituting this replacement

rate into Equation (2.3). On the other hand, the hitting probability in evolutionary graph

theory, denoted hEGT
A (I), is obtained by solving Equation (2.2) using an infinitesimal

generator for evolutionary graph theory that we define as follows

LEGTφ(I) =
∑
i∈I

[∑
j∈I

[1− µ(i)]R(i, j, Ui, I,W )[φ(I ∪ {(Ui, Xj)} \ {j})− φ(I)]

+ µ(i)

∫
Rl
R(i, j, w, I,W )[φ(I ∪ {(w,Xj)} \ {j})− φ(I)]M(Ui, w)dw

]

where R is the replacement rate in evolutionary graph theory dynamics. This generator

with continuous mutations has not been considered before but it allows direct comparisons

between hSBD and hEGT. In particular, the hitting probability in evolutionary graph theory

is given by

hEGT
A (I) =

1

λI

∑
i∈I

[∑
j∈I

R(i, j, Ui, I,W )[1− µ(i)]hEGT
A (I ∪ {(Ui, Xj)} \ {j})

+

∫
Rl
R(i, j, w, I,W )µ(i)hEGT

A (I ∪ {(w,Xj)} \ {j})M(Ui, w)dw

]
, (2.6)

whose form is similar to that of hSBD. Therefore, for equivalence between SBD evolutionary

dynamics and evolutionary graph theory dynamics, we check whether they have the same

hitting probabilities, that is, hSBD
A (I) = hEGT

A (I). For the comparisons we make, we

consider standard and other definitions of the replacement rate R.

Standard evolutionary graph theory dynamics

In evolutionary graph theory, three families of dynamics are generally considered [163];

link (L), death-birth (DB), and birth-death (BD) dynamics. In link dynamics, a link in
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the network is selected, then the offspring of the individual at the start of the link replaces

the individual at the end of the link. In death-birth (birth-death), an individual is first

selected for death (birth) before a neighbouring individual is selected for birth (death).

Each of these families have two distinct cases, given in [140], where individuals are selected

for either birth or for death. If selection is on birth we append birth to the end of the

dynamics (e.g. birth-death with selection on birth, BDB), and similarly for death (e.g.

link with selection on death, LD). Selection is dependent on the fitness of the individuals.

In evolutionary game theory [109], fitness is the average payoff received by an individual.

Payoffs depend upon the strategy played in a game specifying the rules of interactions

between individuals. When fitness is constant it does not depend upon the interactions

with other individuals. The fitness of individual i will be denoted fUi and is assumed to be

independent of its site. The replacement rates for the standard evolutionary graph theory

dynamics are given in Table 2.1 and only hold for those states where each site has density

1; i.e. for I such that |I|x = 1 ∀x ∈ X .

The conditions required to obtain the standard evolutionary graph theory dynamics

from SBD evolutionary dynamics are summarised in Table 2.2, excluding BDD dynamics

which could not be obtained. Details are given in Appendix 2.B. The conditions specify

whether s, β, δ, γ are suppressed, identical for all traits, proportional to fitness and subject

to other requirements. With the exception of LD dynamics, these conditions extend to the

case where fitness is not constant such that it could depend upon the system state and

not just the trait of an individual. The following insights are obtained from deriving the

dynamics in this way:

� The standard evolutionary graph theory dynamics use only one component of SBD

evolutionary dynamics. Those using the BD component are obtained by suppressing

the natural death rate by setting δu = 0 ∀u ∈ U . This can be viewed as a biological

scenario where individuals rarely die naturally but undergo intense intra-site compe-

tition with invaders. Those that can successfully invade are therefore more likely to

spread. Fitness is interpreted as the birth rate when it acts on birth. The inverse

fitness is interpreted as the death rate due to competition when it acts on death. On

the other hand, those using the DB component are obtained when offspring cannot

survive on occupied sites (s = 0). Biologically, this can be viewed as invasion be-

ing difficult, hence those types that can outlive their competitors are more likely to

spread. Inverse fitness is interpreted as the natural death rate when it acts on death.
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Table 2.1: Standard evolutionary graph theory dynamics

Dynamics Description R(i, j, u, I,W )

Death-
Birth-
Death
(DBD)/
Voter
Model

Individual j dies inversely propor-
tional to its fitness and is replaced
by neighbour i with probability pro-
portional to WXjXi .

1/fUj∑
n∈I

1/fUn

WXjXi∑
k∈I\{j}

WXjXk

Death-
birth-birth
(DBB)

Individual j dies randomly, with
probability 1/N , and is then re-
placed by neighbour i with proba-
bility proportional to fUiWXjXi .

1

N

fUiWXjXi∑
k∈I\{j}

fUkWXjXk

Link-birth
(LB)

Individual i replaces j with proba-
bility proportional to fUiWXjXi .

fUiWXjXi∑
n,k∈I

fUnWXkXn

Link-death
(LD)

Individual i replaces j with proba-
bility proportional to WXjXi/fUj .

WXjXi/fUj∑
n,k∈I

WXkXn/fUk

Birth-
death-birth
(BDB)/
Invasion
Process

Individual i is chosen proportional
to fitness, then replaces a neighbour
j with probability proportional to
WXjXi .

fUi∑
n∈I

fUn

WXjXi∑
k∈I

WXkXi

Birth-
death-
death
(BDD)

Individual i is selected randomly
who then replaces neighbour j pro-
portional to WXjXi/fUj .

1

N

WXjXi/fUj∑
k∈I

WXkXi/fUk
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Table 2.2: Assumptions required for all u, v ∈ U to obtain standard evolutionary graph theory dynamics
from the SBD evolutionary dynamics. BDD dynamics are not listed as they could not be obtained.

Dynamics Suppressed Identical Proportional to Fitness Other

LB δu = 0 γu,v = γv,u βu = fu s > 0

LD δu = 0 βu = βv γu,v = 1/fu, u 6= v s > 0, |U| = 2, µ(i) = 0

BDB δu = 0 γu,v = γv,u βu = fu s > 0, W is left stochastic

DBD s = 0 βu = βv δu = 1/fu –

DBB s = 0 δu = δv βu = fu –

Fitness is interpreted as the birth rate when it acts on birth.

� Link dynamics is a type of BD dynamics. In their definitions in Table 2.1, the order

of birth and death is ambiguous. They are therefore classified separately from BD

and DB dynamics. This hides intra-site competition within these dynamics. In LB

dynamics intra-site competition is random with both individuals equally likely to die.

In LD dynamics an individual dies inversely proportional to fitness due to intra-site

competition.

� BDD dynamics cannot be obtained from SBD evolutionary dynamics. It requires

birth and movement to be separate, which have been combined in our framework.

This is evident in its definition (Table 2.1), where the term representing birth does

not specify where an offspring is placed. To be able to obtain it we have to combine

movement with death. In this case, an offspring is placed on a neighbouring site

depending upon how likely the incumbent individual dies. Offspring placement is

independent of neighbours in BDB so can be obtained from SBD evolutionary dy-

namics. This means that BDB and LB are related as they share the same spreading

mechanism. In fact, [140] shows BDB is obtained from LB when W is left stochastic.

Therefore, they have a different effect on birth rate. In LB position affects birth

rate, which is βUi
∑

x∈X WxXi for i. In BDB the birth rate of i is βUi regardless of

position.

� DBD and DBB can be obtained from SIS-type epidemic dynamics. This is because
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they share the same spreading mechanism and do not have intra-site competition.

They are obtained by setting βu →∞ ∀u ∈ U in Equation (2.5), resulting in vacant

sites immediately being occupied by offspring. This is how [39] uses the contact

process to obtain the voter model [72], which has identical dynamics to DBD. This

illustrates that pathogen evolution, at least at the between host level, is likely to

behave similarly to death-birth evolutionary dynamics rather than birth-death.

� There is no self-replacement in DBD and DBB. This means an individual cannot be

replaced by its own offspring. Deriving them from SBD evolutionary dynamics spec-

ifies that death happens first followed by birth, preventing self-replacement. This in-

formation is lost in the standard definitions (Table 2.1), which allow self-replacement.

This implies that self-replacement is only possible in BD type dynamics. In fact, DBD

can be obtained from our derivation of LD when W is right stochastic. In this case

self-replacement is allowed as LD is a type of BD dynamics. However, using this

definition is limited due to the restrictions on LD (see Table 2.2).

Other evolutionary graph theory dynamics

BDB and DBB are combined in [204] using a parameter to allow a smooth transition

between the two. Setting the parameter to 1 gives BDB, 0 gives DBB and a value in the

0 to 1 range gives a combination of them. SBD evolutionary dynamics are a viable and

biologically motivated alternative to such a kind of dynamics.

The DB dynamics in [81] are obtained from SBD evolutionary dynamics by setting

s = 0. In this case the birth and death events depend upon an individual’s trait. Their

dynamics are not based on fitness but parameters similar to δ and β. As their system is

constructed in discrete time, these parameters are weights giving the likelihood of death

and birth.

2.5 Framework Application II: Long-term behaviour of a

spatial birth and death process

In certain circumstances, the SBD model behaves like existing models. However, these

may not be realistic and therefore it is important to understand the behaviour of the SBD

model outside of these circumstances. This biologically motivated framework can provide

useful insights into the evolutionary process, and illuminate when conclusions from existing
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models, such as evolutionary graph theory, may and may not be relevant. We will analyse

the long-term behaviour of the SBD model for eco-evolutionary and evolutionary dynamics,

both with and without clonal interference.

2.5.1 No clonal interference

Here we assume that adaptive mutations arise in succession, as in the classic model of

[118]. This means a mutant either fixates or goes extinct in a resident population before

another mutation arises. This behaviour is obtained in our framework in the rare mutation

limit, µ(i)→ 0 ∀i. This is confirmed by [22] who derive adaptive dynamics [36, 113] in this

limit. However, we could also consider no mutation, µ(i) = 0 ∀i, which is consistent with

evolutionary graph theory [3]. We assume no mutation because the results are identical

for the evolutionary scenario considered.

We consider an evolutionary scenario that is typically the case in evolutionary graph

theory. There are two types; type B (trait 0) and type A (trait 1), so U = {0, 1}. A mutant

type A is introduced into a resident B population by randomly replacing a resident. The

two types compete and eventually one fixates; i.e. all individuals are type A or type B.

We are interested in the probability of type A fixating.

The fixation probability is formally defined in our framework as follows. Let R = {I :

Ui = 0 ∀i ∈ I} be the set of states where type B fixate; i.e. there is at least one B but no

A. Similarly, let M = {I : Ui = 1 ∀i ∈ I} be the set of states where type A fixate. The

probability that type A fixate from state I is given by, ρA(I) = lim
t→∞

P (Σ(t) ∈ M|Σ(0) =

I). Since we are only interested in when the process reaches R or M, these are absorbing

states of the Markov process, and therefore this is equivalent to the hitting probability of

the setM. Therefore, the type A fixation probability is calculated by solving the equation
LcρA(I) = 0 I /∈M∪R,

ρA(I) = 0 I ∈ R,

ρA(I) = 1 I ∈ M.

(2.7)

For the fixation probability, an initial state is generally assumed to have 1 type A and

N − 1 type B, with each site occupied by one individual only. This allows us to make

comparisons with evolutionary graph theory where these are the possible initial states.

Let I0 = {(0, x) : x = 1, . . . , N} be the state where there is one B on each site. The
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average fixation probability of a randomly placed initial type A is calculated as follows,

ρ̄A =
1

N

∑
i∈I0

ρA(I0 \ {i} ∪ {(1, Xi)}).

A type A mutant is assumed to be equally likely to appear on any given site. For conve-

nience, we will denote the average fixation probability for a given value of c as ρ̄Ac .

Complete Diamond Circle Spade Line Star

Figure 2.1: All undirected 4 node networks.

The SBD model will be used to compare the average type A fixation probability for

different dynamics. Type A individuals are assumed to have identical death rates to type

B (δ0 = δ1 and γu,v = γv,u ∀u, v ∈ {0, 1}) but an advantageous birth rate (β1 > β0). The

following cases are considered:

1. We start with SIS-type dynamics (δ0 = δ1 > 0 and s = 0).

2. We then allow invasion (δ0 = δ1 > 0 and s = 1).

3. We then disallow natural death (δ0 = δ1 = 0 and s = 1).

For numerical evaluation of ρ̄A in these cases, we set β0 = 3, β1 = 10, γu,v = 5 ∀u, v ∈ {0, 1}
and δ0 = δ1 = 1 when greater than 0. This is plotted against the negative ecological

feedback loop amplifier, c. We start from c = 1 with eco-evolutionary dynamics and

gradually increase c to converge to evolutionary dynamics. This is done for all undirected

networks with 4 sites as shown in Figure 2.1. 4 sites are chosen since this produces a small

set of structurally distinct networks to investigate. For each network, W is left stochastic

with self-loops included; i.e. all outgoing weights from a site with k neighbours are 1/(k+1).

This implies that a type u individual has birth rate βu regardless of position. The different

cases are all shown in Figure 2.2. From these cases we observe that

ρ̄A in (i) < ρ̄A in (ii) < ρ̄A in (iii) (2.8)
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for all networks. SIS-type dynamics are therefore the least beneficial for the advantageous

mutant we have considered. Moving from (i) to (ii), we observe that allowing invasion is

beneficial, since ρ̄A shifts higher with the networks maintaining their order. As we move

from (ii) to (iii), disallowing natural death provides a further benefit, since again ρ̄A shifts

higher. However, the networks now reverse their order, showing that the total effect of

allowing invasion and disallowing natural death is largest in the star and smallest in the

complete network. This is investigated further by analytically calculating ρ̄A in the star

and complete networks for evolutionary dynamics.

Average Fixation probability for a complete network with SBD evolutionary

dynamics

Consider a complete network with arbitrary weights

Wij = w > 0 ∀i, j ∈ {1, . . . , N}. (2.9)

For evolutionary dynamics, we only need to consider population states with one individual

on each site. The position of type B and type A individuals does not matter in these states

due to site homogeneity. Therefore, states with the same number of type A individuals,

k (which means there are N − k residents), are lumped together and referred to by this

number. We are interested in the rate at which the system transitions from some state k to

a state with an additional trait u individual; i.e. with k− (−1)u type A. The replacement

rate for such a transition is denoted rk,u. For SBD evolutionary dynamics, this is given by

rk,u = k(N − k)

(
sβuw

δ1−u + γ1−u,u
δ0 + δ1 + γ0,1 + γ1,0

+ δ1−u
βu

β0(N − k − u) + β1(k − 1 + u)

)
.

(2.10)

The average fixation probability of a single initial type A on the complete network (Equa-

tion (2.9)) is given by [80]

ρ̄Acomp =
1

1 +
N−1∑
m=1

m∏
n=1

rn,0
rn,1

. (2.11)
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Figure 2.2: Average fixation probability (ρ̄A) of a type A in all undirected networks with 4 sites. Three
different cases are considered, labelled (i)-(iii) on the right-hand side. For all cases, we set β0 = 3, β1 = 10,
and γu,v = 5 ∀u, v ∈ {0, 1}. For each case individually we have (i) s = 0 and δu = 1, (ii) s = 1 and δu = 1,
and (iii) s = 1 and δu = 0 for all u ∈ {0, 1}. In case (i), ρ̄A is calculated analytically solving Equation (2.7).
In cases (ii) and (iii), ρ̄A is calculated by running 105 simulations.

The term rn,0/rn,1 is the rate of a type B increasing divided by the rate of a type A

increasing. It is known as the backward bias of A or forward bias of B, and follows from

Equation (2.10):

rk,0
rk,1

=
sβ0w

(δ1+γ1,0)
(δ0+δ1+γ0,1+γ1,0) + δ1

β0
(N−k)β0+(k−1)β1

sβ1w
(δ0+γ0,1)

(δ0+δ1+γ0,1+γ1,0) + δ0
β1

(N−k−1)β0+kβ1

.
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The bias and average fixation probability are shown in Table 2.3 for the cases previously

considered (page 65). The average fixation probabilities shown are a closed-form version of

Equation (2.11) such that: (i) is obtained from [70]; (ii) is not shown due to its complexity;

(iii) is obtained from the Moran probability [116] as the bias is constant. Comparing the

biases in Table 2.3 reveals

Bias (i) > Bias (ii) > Bias (iii). (2.12)

Details are given in Appendix 2.C. In particular, the key requirement for Equation (2.12)

to hold is that β1 > β0, which is already assumed to be the case. Equation (2.12) holding

implies that Equation (2.8) holds for all N > 1, since a larger bias gives a lower fixation

probability as seen in Equation (2.11). As N → ∞ the difference between these cases

diminishes because their biases all converge to β0/β1.

In Figure 2.3, ρ̄A in the complete network (Equation (2.9)) is numerically evaluated for

different values of c. It shows that ρ̄A converges to ρ̄Acomp as c gets larger. This confirms that

the negative ecological feedback loop functions as desired. These plots are generated by

setting the competition rates to γu,v = 5 ∀u, v ∈ {0, 1}, which is relatively high compared

to the birth rate of residents (β0 = 3) and mutants (β1 / 5). This means that the number

of individuals on a site would be close to one due to the intense competition between

individuals sharing a site. The average fixation probability is therefore similar for all

values of c. However, as the birth rate of type A increases (β1 ' 5) a clear separation

of the fixation probability occurs for different values of c, since now the birth rate can

overcome the competition in a site allowing more than one individual on a site. This

allows more mutants to coexist on a site enabling them to easily overcome the type B,

thus explaining why the average fixation probability is larger for c = 1 than c → ∞ for a

higher type A birth rate.

Average fixation probability for a star with SBD evolutionary dynamics

Consider the star with arbitrary weights

W11 = Wi1 = wc > 0, Wii = W1i = wl > 0 ∀i ∈ {2, . . . , N}. (2.13)

Site 1 is called the centre site as it is connected to all other N − 1 sites. All other sites

are called the leaves as they are only connected to the centre site. As before, we only
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Table 2.3: Bias and fixation probability for the complete network for SBD evolutionary dynamics. Cases
considered assume advantageous type A with β1 > β0 (further details on page 65).

Case/ EGT Dynamics Bias
(
rk,0
rk,1

, k = 1, . . . , N − 1
)

Fixation probability (ρ̄Acomp)

(i) SIS-type dynamics
(δ0 = δ1 > 0, s = 0)/
DBB

β0

β1

kβ1 + (N − k − 1)β0

(N − k)β0 + (k − 1)β1

N − k
N

1− (β0/β1)k

1− (β0/β1)N−1

(ii) then allow invasion
(δ0 = δ1 = δ > 0, s =
1)/ None

sβ0w
1
2 + δ β0

(N−k)β0+(k−1)β1

sβ1w
1
2 + δ β1

(N−k−1)β0+kβ1

Not shown, see text.

(iii) then disallow nat-
ural death (δ0 = δ1 =
0, s = 1)/ LB, BDB

β0/β1
1− (β0/β1)

1− (β0/β1)N

consider population states with one individual on each site due to evolutionary dynamics

being used. In such states, the position of type B and type A individuals present on

leaves does not matter, since the leaves are identical. The population state is then given

by (u, k) where u is the centre individual’s type and k is the number of type A on leaves

(N − 1 − k is the number of residents on leaves). Since u ∈ {0, 1}, in state (u, k) there

are 1− u ≤ k ≤ N − 1− u type A on the leaves provided that there is at least one A and

one B in the population. Let r(u, k, u′, k′) be the rate of transitioning from state (u, k)

to (u′, k′). We only need to consider the two transitions where a change in state occurs.

First, for SBD evolutionary dynamics a type u centre can replace a type 1 − u leaf with

rate

r(u, k, u, k − (−1)u) = k1−u(N − 1− k)u
(
swcβu

δ1−u + γ1−u,u
δ0 + δ1 + γ0,1 + γ1,0

+ δ1−u

)
. (2.14)

Second, a type u centre is replaced by a type 1− u leaf with rate

r(u, k, 1− u, k) = k1−u(N − 1− k)u
(
swlβ1−u

δu + γu,1−u
δ0 + δ1 + γ0,1 + γ1,0

+ δu
β1−u

(N − 1− k)β0 + kβ1

)
.

(2.15)
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Figure 2.3: Average fixation probability (ρ̄A) of a type A in the complete network when using the SBD
evolutionary dynamics, for various values of c, with β0 = 3, δu = 1 and γu,v = 5 ∀u, v ∈ {0, 1}. For c→∞,
ρ̄A is given by ρ̄Acomp. For other values of c, ρ̄A is calculated by running 104 simulations. As c gets larger
we can see that ρ̄A converges to ρ̄Acomp.

With these rates, the average fixation probability in the star, denoted ρ̄Astar, is obtained

using the formula of [60] (see Appendix 2.D). For the three cases considered (page 65), ρ̄A

is given in Appendix 2.D. For N → ∞, it is shown in Appendix 2.E that Equation (2.8)

holds for the star (Equation (2.13)).

To investigate the interplay between the BD and DB components of the SBD evolu-

tionary dynamics, we consider the case where we set wc = 1/N and wl = 1/2 so that the

birth rate is exactly βu ∀u ∈ {0, 1}. As N gets larger the rate of replacing the centre

individual is dominated by the BD component and the rate at which a leaf individual is

replaced is dominated by the DB component. This means that the less connected leaf

individuals are more reliant on BD to spread their offspring whereas the highly connected

centre individual is more reliant on DB to spread its offspring.

Figure 2.4 shows the average fixation probability, ρ̄A, for different values of c in the

star. Its qualitative properties are similar to that of the complete network and we once
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again see that the negative ecological feedback loop functions as desired.
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Figure 2.4: Average fixation probability (ρ̄A) of a mutant in the star when using the SBD evolutionary
dynamics, for various values of c, with β0 = 3, δu = 1 and γu,v = 5 ∀u, v ∈ {0, 1}. For c→∞, ρ̄A is given
by ρ̄Astar. For other values of c, ρ̄A is calculated by running 104 simulations. As c gets larger we can see
that ρ̄A converges to ρ̄Astar.

Comparison of average fixation probabilities for complete network and star

In [102] it is shown that when using BDB dynamics the star amplifies the average fixation

probability when compared to the complete network; i.e. ρ̄Astar > ρ̄Acomp. This is consistent

with what is observed in the earlier plots. By using SBD evolutionary dynamics, we can

explain why and show when the star is no longer an amplifier.

In source-sink metapopulation dynamics [149], a source is a site that is a net exporter

of individuals whereas a sink is a site that is a net importer of individuals. This means

that a source site is advantageous in comparison to a sink site, since more offspring are

produced. In case (iii), the replacement rates (equations (2.14) and (2.15)) show that a

leaf site behaves like a source when wl > wc and a sink when wl < wc. This is because
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the birth rate from a leaf to the centre is proportional to wl, whereas from the centre to

a leaf is proportional to wc. The star is therefore an amplifier in case (iii) when BDB

is in operation; i.e. when wc = 1/N and wl = 1/2. This is verified in Figure 2.5 which

illustrates that ρ̄Astar > ρ̄Acomp when wl > wc, ρ̄
A
star < ρ̄Acomp when wl < wc, and wl = wc is

the boundary between amplification and suppression where ρ̄Astar = ρ̄Acomp.

The natural death rate plays a fundamental role since it can prevent a leaf site from

being a source. This is shown in case (ii) where leaf individuals are adversely affected

compared to the centre individual, as seen in the replacement rates (equations (2.14) and

(2.15)). In particular, a leaf individual has to compete with other leaf individuals when

the centre individual dies but this is not the case for the centre individual when a leaf

individual dies. Another way to look at this is that a natural death rate limits the amount

of time a leaf individual has to spread its offspring before it dies. This is verified in Figure

2.6, where increasing the death rate causes ρ̄Astar − ρ̄Acomp to decrease, such that the star is

no longer an amplifier of selection. This is consistent with [60], which shows that the star

is not an amplifier under DBD and DBB dynamics.

2.5.2 With clonal interference

In this section, we no longer assume that adaptations are successive and take into account

the effect of clonal interference, which has been demonstrated in a range of asexual or-

ganisms [79]. For clonal interference in unstructured populations, it was shown that the

fixation probability of a beneficial mutation decreases as the population size and mutation

rate increases [53]. In addition to this, fixation is a rare event where a beneficial mutation

beats clonal interference by having a large selective advantage. The inclusion of clonal

interference will therefore provide a better understanding of the impact that population

structure has on the fixation probability of an adaptive mutation.

To study the effect of clonal interference, we consider the case where a type B (trait

0) resident population can be invaded by two kinds of mutant, types A (trait 1) and C

(trait 2); i.e. U = {0, 1, 2}. We will assume that there is a constant mutation probability,

µ(i) = µ ∀i, and the mutation function in Equation (2.1) is defined as follows

M(u, v) =

1
2 u 6= v,

0 u = v
∀u, v ∈ {0, 1, 2}.
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Figure 2.5: Plot of ρ̄Astar − ρ̄Acomp against the number of sites (N) when using SBD evolutionary dynamics
with β0 = 3, β1 = 4, γu,v = 5 and δu = 0 ∀u, v ∈ {0, 1}. It shows that the star is no longer an amplifier
when wc > wl.

This means that the probability that a type u produces a type v 6= u offspring is µ/2. Note

that in this case the integral in Equation (2.1) is changed to a summation because of the

discrete number of mutations. The fixation probability before clonal interference is then

defined as a type A mutant fixating in a population of type B residents before a type C

mutant fixates in the population. This measures how successful a type A mutant is against

the typeB residents when there is a possibility of type C mutants appearing and interfering.

This fixation probability can be calculated as follows. Let R = {I : Ui = 0 ∀i ∈ I}
be the set of states where type B fixate; i.e. there is at least one B but no A or C.

Similarly, let M1 = {I : Ui = 1 ∀i ∈ I} be the set of states where type A fixate and

M2 = {I : Ui = 2 ∀i ∈ I} be the set of states where type C fixate. The probability that

type A fixate from state I is given by, ρA(I) = lim
t→∞

P (Σ(t) ∈ M1|Σ(0) = I). Since we

are only interested in when the process reaches R, M1 or M2, these are absorbing states

of the Markov process, and therefore this is equivalent to the hitting probability of the set
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Figure 2.6: Plot of ρ̄Astar − ρ̄Acomp against the number of sites (N) when using SBD evolutionary dynamics
with β0 = 3, β1 = 8, γu,v = 5 and δu = 0, 0.21, 1 ∀u, v ∈ {0, 1}. It shows that the star is no longer an
amplifier as the natural death rate increases.

M1. Therefore, the type A fixation probability is calculated by solving
LcρA(I) = 0 I = {(u, x) /∈M1 : ∃u = 1}

ρA(I) = 0 I ∈ R ∪M2,

ρA(I) = 1 I ∈ M1,

These equations specify that we are solving for the probability of hitting a state inM1 be-

fore reaching a state in R∪M2. With I0 defined as before, the average fixation probability

with clonal interference is defined as follows

ρ̄A =
1

N

∑
i∈I0

ρA(I0 \ {i} ∪ {(1, Xi)}),

where we are assuming that a mutant is equally likely to appear on any given site in order
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to allow comparisons with results in evolutionary graph theory.

Clonal interference reduces the amount of time that a mutant of type A has to fixate,

since the longer it takes the more likely a mutant of type C will appear. Without clonal

interference, the complete network has the lowest fixation time whereas, for example, the

star is substantially higher [52, 177? ]. We should therefore expect the complete network

to be least affected as the mutation rate increases in comparison to the star and other

networks. Furthermore, the circulation theorem [102] in evolutionary graph theory that

identifies structures whose fixation probability is equal to the Moran probability is based

on the assumption that there is an infinite amount of time to fixate. Since these networks

do not have equal fixation time, we should therefore expect this theorem to fail when

there is clonal interference. To show that this is indeed the case, we plot the average

fixation probability with clonal interference for different mutation rates in Figure 2.7 for

all networks with 4 sites when using SBD evolutionary dynamics with parameters β0 = 1,

β1 = 2, β2 = 3, δu = 0, γu,v = 1 for all u, v ∈ {0, 1, 2}. For the networks, W is defined

to be left stochastic as it was before. This means that the dynamics are equivalent to

BDB. When µ = 0 we see that the fixation probability is identical for complete and circle

structures because the circulation theorem holds, in particular, this is true because the

incoming weight is equal to the outgoing weight for each site. However, this is no longer

the case when µ > 0. The average fixation probability under clonal interference decreases

in all structures, with the complete structure being the least affected.

2.6 Discussion

In this chapter, we have developed a biologically motivated model for evolution in network-

structured populations. The model we built is individual-based and accommodates eco-

evolutionary dynamics. These dynamics allow the population size, density and composition

to change as opposed to evolutionary dynamics that only allow the composition to change.

We showed that using a negative ecological feedback loop allows suppression of ecologi-

cal dynamics in our framework’s eco-evolutionary dynamics, leaving us with evolutionary

dynamics only. By changing the strength of this feedback loop we can move between

eco-evolutionary and evolutionary dynamics. For example, death-birth evolutionary graph

theory dynamics can be recovered from the multi-species SIS epidemic model by strength-

ening this feedback loop. Since death-birth can be obtained from epidemic-type dynamics,

this suggests that pathogen evolution is more likely to follow death-birth rather than
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Figure 2.7: Comparison of average fixation probability with clonal interference (ρ̄A) when using SBD
evolutionary dynamics. The parameters are set as follows β0 = 1, β1 = 2, β2 = 3, δu = 0, γu,v = 1 for all
u, v ∈ {0, 1, 2}.

birth-death evolutionary dynamics. This is important to understand evolution in many

healthcare challenges, such as antimicrobial resistance. Moving away from models with

evolutionary dynamics only is important because fixed population size and density are an

exception [27, 112] and this allows us to capture biological processes more accurately. For

example, [151] compared evolutionary graph theory to a model with eco-evolutionary dy-

namics. This model showed that the decoupling of births and deaths promotes cooperation

of cells in the epithelium, since it allows cooperators to cluster more effectively.

Using our framework, we defined a birth and death model where the ecological dynam-

ics specify that the carrying capacity is dependent upon the population composition. In

these ecological dynamics the intra-site competition is taken from [77], which provides a

way to consider evolutionary games [109]. This birth and death model contains the SIS

epidemic model and its variations, such that the birth rate is seen as the infection rate and

the death rate as the recovery rate. The evolutionary dynamics of this model is used to
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obtain evolutionary graph theory dynamics, which are based on the fitness of individuals;

a measure of their reproductive success. For all except one of the standard evolution-

ary graph theory dynamics, we were able to relate fitness to birth and death rates. We

found that, depending upon the dynamics, fitness is either proportional to the birth rate

or inversely proportional to the death rate, which is in line with what is expected. By nu-

merically investigating the shift from eco-evolutionary dynamics to evolutionary dynamics,

we identified when the assumptions behind evolutionary dynamics may be realistic. As the

relative strength of the mutant type increases, the evolutionary dynamics diverge from the

eco-evolutionary dynamics. For the complete network, the negative ecological feedback

loop does not need to be too strong to make the eco-evolutionary dynamics approach the

evolutionary dynamics. For more extreme networks like the star however, this feedback has

to be very strong to see agreement between the models, suggesting that the assumptions

behind evolutionary dynamics may be more realistic for some population structures than

others.

Long term population evolution was studied using the birth and death model (SBD),

in the cases where clonal interference is and is not allowed. When there is no clonal

interference, it is assumed that a mutant type invades a resident population and either

fixates or goes extinct. The time to fixation depends upon the size and network structure

of the population [52]. When there is no interference an infinite amount of time is allowed

for the fixation of a mutant. The circulation theorem [102] in evolutionary graph theory

is based on this assumption. However, when clonal interference is allowed a mutant has

limited time to fixate before another beneficial mutation appears. In particular, the higher

the mutation rate the more likely it is another beneficial mutation will appear and interfere

with the current mutant trying to fixate, so time to fixation without interference is reduced.

In this case, the circulation theorem does not hold as the infinite time to fixation assumption

no longer holds.

To conclude, we have produced a biologically justified model that can be applied to

realistic populations. By deriving existing models we have given biological insight into

their underlying assumptions. This has opened the avenue for further investigations.
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Appendix 2.A Hitting probability for modified dynamics

Dropping W from the birth and death rates for brevity, we have that

0 = lim
c→∞

LchA(I) ⇐⇒

0 = lim
c→∞

∑
i∈I

∑
x∈X

[1− µ(i)]B(c, i, x, I)[hA(I ∪ {(Ui, x)})− hA(I)]

+
∑
i∈I

∑
x∈X

µ(u)B(c, i, x, I)

∫
Rl

[hA(I ∪ {(w, x)} − hA(I)]M(Ui, w)dw

+
∑
i∈I

D(c, i, I)[hA(I \ {i})− hA(I)].

Let

λI = lim
c→∞

∑
i∈I

∑
x∈X

B(c, i, x, I) +D(c, i, I).

then rearranging gives

hA(I) = lim
c→∞

1

λI

∑
i∈I

[∑
x∈X

B(c, i, x, I)

(
[1− µ(i)]hA(I ∪ {(Ui, x)})

+ µ(i)

∫
Rl
hA(I ∪ {(w, x)})M(Ui, w)dw

)
+D(c, i, I)hA(I \ {i})

]
.

We assume that the population starts in a state I where |I|x = 1 ∀x ∈ X , we then have

that

hA(I) =
1

λI

∑
i∈I

[∑
x∈X

b(i, x, I)

(
[1− µ(i)]hA(I ∪ {(Ui, x)})

+ µ(i)

∫
Rl
hA(I ∪ {(w, x)})M(Ui, w)dw

)
+ d(i, I)hA(I \ {i})

]
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since all sites have density 1. From state I we consider the following different states J
that the population can transition to.

1. For J = I ∪ {(u, x)} we have that

hA(J ) = lim
c→∞

1

λJ

∑
j∈J

[∑
y∈X

(
[1− µ(j)]B(c, j, y,J )hA(J ∪ {(Uj , y)})

+ µ(j)B(c, j, y,J )

∫
Rl
hA(J ∪ {(w, y)}M(Uj , w)dw

)

+D(c, j,J )hA(J \ {j})

]
.

The birth rate in this case is given by

lim
c→∞

B(c, j, y,J ) = lim
c→∞

cH0[−|Jy |]b(j, y,J ) = b(j, y,J )

as H0[−|J |y] = 0 ∀y ∈ X as there are no empty sites. Similarly, the death rate in

this case is given by

lim
c→∞

D(c, j,J ) = lim
c→∞

c
H2[|IXj |]d(j,J ) = lim

c→∞
c
δXj,xd(j,J )

as site x is the only site with two individuals and δm,n is the Kronecker delta function.

This means that

lim
c→∞

B(c, j, y,J )

λJ
= 0 ∀j ∈ J , y ∈ X

and

lim
c→∞

D(c, j,J )

λJ
=

lim
c→∞

c
δXj,xd(j,J )∑

k∈J
lim
c→∞

cδXk,xd(k,J )
=
δXj ,xd(j,J )∑
k∈Jx

d(k,J )
.

The hitting probability from state J is then given by

hA(J ) =
∑
j∈Jx

d(j,J )hA(J \ {j})∑
k∈Jx

d(k,J )
.
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2. For J = I \ {i} such that i ∈ I, by following a similar set of arguments as we have

for case 1 we obtain the hitting probability from state J as follows

hA(J ) =
∑
j∈J

b(j,Xi,J )∑
k∈J

b(k,Xi,J )

(
[1− µ(j)]hA(J ∪ {(Uj , Xi)})

+ µ(j)

∫
Rl
hA(J ∪ {(w,Xi)})M(Uj , w)dw

)
.

Substituting the hitting probability from J for these two cases into the hitting proba-

bility from I gives

hA(I) =
1

λI

∑
i∈I

[∑
x∈X

b(i, x, I)

(
[1− µ(i)]

∑
j∈Ix∪{(Ui,x)}

d(j, I ∪ {(Ui, x)})hA(I ∪ {(Ui, x)} \ {j})

∑
j∈Ix∪{(Ui,x)}

d(j, I ∪ {(Ui, x)})

+ µ(i)

∫
Rl

∑
j∈Ix∪{(w,x)}

d(j, I ∪ {(w, x)})hA(I ∪ {(w, x)} \ {j})

∑
j∈Ix∪{(w,x)}

d(j, I ∪ {(w, x)})
M(Ui, w)dw

)

+ d(i, I)
∑

j∈I\{i}

b(j,Xi, I \ {i})∑
j∈I\{i}

b(j,Xi, I \ {i})(
[1− µ(j)]hA(I \ {i} ∪ {(Uj , Xi)})

+ µ(j)

∫
Rl
hA(I \ {i} ∪ {(w,Xi)})M(Uj , w)dw

)]

This can be rewritten as follows

hA(I) =
1

λI

∑
i∈I

∑
j∈I

[(
b(i,Xj , I)

d(j,J (i, j))∑
k∈J (i,j)Xj

d(k,J (i, j))
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+ d(j, I)
b(i,Xj , I \ {j})∑

k∈I\{j}

b(k,Xi, I \ {j})

)
[1− µ(i)]hA(J (i, j) \ {j})

+

∫
Rl

(
b(i,Xj , I)

d(j,K(w, j))∑
k∈K(w,j)Xj

d(k,K(w, j))

+ d(j, I)
b(i,Xj , I \ {j})∑

k∈I\{j}

b(k,Xi, I \ {j})

)
µ(i)hA(K(w, j) \ {j})M(Ui, w)dw

]

where J (i, j) = I ∪ {(Ui, Xj)} and K(w, j) = I ∪ {(w,Xj)}. This can then be further

simplified by writing

hA(I) =
1

λI

∑
i∈I

∑
j∈I

(
r(i, j, Ui, I)[1− µ(i)]hA(J (i, j) \ {j})

+

∫
Rl
r(i, j, w, I)µ(i)hA(K(w, j) \ {j})M(Ui, w)dw

)
where r(i, j, u, I) is the rate at which the offspring of individual i replaces j given that the

offspring has trait u.

Appendix 2.B Deriving standard evolutionary graph theory

dynamics

We need to show that the hitting probability for SBD evolutionary dynamics (Equation

2.3) is equivalent to that of evolutionary graph theory dynamics (Equation 2.6). We start

by observing that for all the standard evolutionary graph theory dynamics, the replacement

rate satisfies

R(i, j, u, I) = R(i, j, v, I) ∀u, v ∈ U (2.16)

and therefore

λI =
∑
i∈I

∑
j∈I

R(i, j, Ui, I)[1− µ(i)] +

∫
Rl
R(i, j, w, I)µ(i)M(Ui, w)dw
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=
∑
i∈I

∑
j∈I

R(i, j, I),

where R(i, j, I) is the replacement rate with the type of the offspring dropped. Further-

more, for all the standard evolutionary graph theory dynamics the following also holds

λI =
∑
i∈I

∑
j∈I

R(i, j, I) = 1

since the replacement rates are defined as probabilities. We then require that the replace-

ment rate r for SBD evolutionary dynamics have the same property as in Equation (2.16),

that is,

r(i, j, u, I) = r(i, j, v, I) ∀u, v ∈ U , (2.17)

we can therefore use r(i, j, I) as the offspring type can be dropped, and

R(i, j, I) =
r(i, j, I)∑

n∈I

∑
k∈I

r(n, k, I)
.

This ensures that the hitting probability is identical for both types of dynamics. Recall

that the replacement rate for SBD evolutionary dynamics is given by

r(i, j, u, I,W ) = sβUiWXjXi

δUj + γUj ,u

δUj + γUj ,u + δu + γu,Uj
+ δUj

βUiWXjXi∑
k∈I\{j}

βUkWXjXk

.

We can now consider which of the standard evolutionary graph theory dynamics we can

obtain from these dynamics.

LB dynamics Setting δu = 0 and γu,v = γv,u ∀u, v ∈ U satisfies Equation (2.17) and

gives

r(i, j, I)∑
n∈I

∑
k∈I

r(n, k, I)
=

βUiWXjXi∑
n∈I

∑
k∈I

βUnWXkXn

which is identical to the LB dynamics when βu = fu ∀u ∈ U .
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BDB dynamics Doing the same as with the derivation of LB dynamics, but setting W

to be left stochastic gives

r(i, j, I)∑
n∈I

∑
k∈I

r(n, k, I)
=

βUi∑
n∈I

βUn
WXjXi

which is identical to the BDB dynamics when βu = fu ∀u ∈ U .

DBD dynamics Setting s = 0 and βu = βv ∀u, v ∈ U satisfies Equation (2.17) and gives

r(i, j, I)∑
n∈I

∑
k∈I

r(n, k, I)
=

δUj
WXjXi∑

k∈I\{j}

WXjXk

∑
n∈I

∑
k∈I\{n}

δUn
WXnXk∑

m∈I\{n}

WXnXm

=
δUj∑

n∈I
δUn

WXjXi∑
k∈I\{j}

WXjXk

which is identical to DBD dynamics when δu = 1/fu ∀u ∈ U .

DBB Dynamics Setting s = 0 and δu = δv ∀u, v ∈ U satisfies Equation (2.17) and gives

r(i, j, I)∑
n∈I

∑
k∈I

r(n, k, I)
=

δUj
βUiWXjXi∑

k∈I\{j}

βUkWXjXk

∑
n∈I

∑
k∈I\{n}

δUn
βUkWXnXk∑

m∈I\{n}

βUmWXnXm

=
1

N

βUiWXjXi∑
k∈I\{j}

βUkWXjXk

which is identical to DBB dynamics when βu = fu ∀u ∈ U .

LD Dynamics To obtain LD dynamics, we have to assume there is no mutation and

that there are only two types; i.e. |U| = 2. Note that excluding transitions to the same

state will not affect hA so if we discount transitions to the same state, we would require
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that

R(i, j, I)∑
n∈I

∑
k∈I

Uk 6=Un

R(n, k, I)
=

r(i, j, I)∑
n∈I

∑
k∈I

Uk 6=Un

r(n, k, I)
for Uj 6= Ui. (2.18)

Setting δu = 0 and βu = βv ∀u ∈ U simplifies the RHS of Equation (2.18) to

WXjXi

γUj ,Ui
γUj ,Ui + γUi,Uj∑

n∈I

∑
k∈I

Uk 6=Un

WXkXn

γUk,Un
γUk,Un + γUn,Uk

=
WXjXiγUj ,Ui∑

n∈I

∑
k∈I

Uk 6=Un

WXkXnγUk,Un

which for γu,v = 1/fu when u 6= v ∀u, v ∈ U is equivalent to the LHS of Equation (2.18)

when using LD dynamics.

Appendix 2.C Showing strict order in bias for the complete

network

We want to show that Equation (2.12) holds. For simplicity, we can write Bias(ii) as follows

x+ a

y + b
=
δ β0

(N−k)β0+(k−1)β1
+ sβ0w

1
2

δ β1
(N−k−1)β0+kβ1

+ sβ1w
1
2

.

Equation (2.12) can be then be rewritten in the following way

x

y
>
x+ a

y + b
>
a

b
,

which implies that

0 > ay − bx.

Expanding this equation gives

0 > ay − bx
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0 > sβ0w
1

2
δ

β1

(N − k − 1)β0 + kβ1
− sβ1w

1

2
δ

β0

(N − k)β0 + (k − 1)β1

0 >
1

(N − k − 1)β0 + kβ1
− 1

(N − k)β0 + (k − 1)β1

0 > (N − k)β0 + (k − 1)β1 − [(N − k − 1)β0 + kβ1]

0 > β0 − β1

which is indeed as the case as it is assumed that β1 > β0.

Appendix 2.D Average fixation probability of the star net-

work

In [60], the average fixation probability is given by

ρ̄Astar =
ρAstar—centre + (N − 1)ρAstar—leaf

N
.

Here, ρAstar—centre is the fixation probability of a type A mutant starting in the centre and

ρAstar—leaf is the fixation probability of a mutant starting in a leaf. They are given by

ρAstar—centre =
p(1, 0, 1, 1)

A(1, N − 1)
and ρAstar—leaf =

p(0, 1, 1, 1)

A(1, N − 1)

where

A(l,m) = 1 +

m−1∑
j=l

p(1, j, 0, j)

j∏
k=l

p(0, k, 0, k − 1)

p(1, k, 1, k + 1)

and

p(u, k, u, k − (−1)u) =
r(u, k, u, k − (−1)u)

r(u, k, u, k − (−1)u) + r(u, k, 1− u, k)
,

p(u, k, 1− u, k) =
r(u, k, 1− u, k)

r(u, k, u, k − (−1)u) + r(u, k, 1− u, k)
.
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For each of the cases considered, ρ̄Astar is given by:

ρ̄Astar((i)) =

1
N
N−1
N + N−1

N
β1

(N−2)β0+2β1

1 +

N−2∑
j=1

β0

(N − j)β0 + jβ1

j∏
k=1

(N − k)β0 + kβ1

(N − 1− k)β0 + (k + 1)β1

,

ρ̄Astar((ii)) =

1
N

swcβ1/2+δ

s(wcβ1+wlβ0)/2+δ N
N−1

+ N−1
N

swlβ1/2+δ
β1

(N−2)β0+β1

s(wlβ1+wcβ0)/2+δ
(N−2)β0+2β1
(N−2)β0+β1

1 +
∑N−2

j=1

swlβ0/2+δ
β0

(N−1−j)β0+jβ1
s(wlβ0+wcβ1)/2+δ

(N−j)β0+jβ1
(N−1−j)β0+jβ1

∏j
k=1

swcβ0/2+δ
swcβ1/2+δ

s(wcβ1+wlβ0)/2+δ
(N−k)β0+kβ1

(N−1−k)β0+kβ1
s(wcβ0+wlβ1)/2+δ

(N−1−k)β0+(k+1)β1
(N−1−k)β0+kβ1

,

ρ̄Astar((iii)) =

1
N

wcβ1
wcβ1+wlβ0

+ N−1
N

wlβ1
wlβ1+wcβ0

1 +

N−2∑
j=1

wlβ0

wlβ0 + wcβ1

(
β0

β1

wcβ1 + wlβ0

wcβ0 + wlβ1

)j .

Appendix 2.E Proof for the star network

We want to show that Equation (2.8) holds for the star when N →∞. In case (i) we have

that

lim
N→∞

ρ̄Astar((i)) = 0.

In case (ii) we have that

lim
N→∞

ρ̄Astar((ii)) =

wlβ1
wlβ1+wcβ0+2δ

1 +
wlβ0

wlβ0 + wcβ1 + 2δ

∞∑
j=1

(
wcβ0 + 2δ

wcβ1 + 2δ

wcβ1 + wlβ0 + 2δ

wcβ0 + wlβ1 + 2δ

)j .

The denominator in this case converges to

1 +
ar

1− r
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where

a =
wlβ0

wlβ0 + wcβ1 + 2δ
,

r =
wcβ0 + 2δ

wcβ1 + 2δ

wcβ1 + wlβ0 + 2δ

wcβ0 + wlβ1 + 2δ
.

Let

x =
wlβ1

wlβ1 + wcβ0 + 2δ
,

we therefore have that

lim
N→∞

ρ̄Astar((ii)) =
x(1− r)

1 + r(a− 1)
.

In case (iii) we have that

lim
N→∞

ρ̄Astar((iii)) =
xδ=0(1− rδ=0)

1 + rδ=0(aδ=0 − 1)

where xδ=0, aδ=0, rδ=0 are x, a, r with δ = 0. We have that

lim
N→∞

ρ̄Astar((ii)) < lim
N→∞

ρ̄Astar((iii))

if r > rδ=0, a < aδ=0, x < xδ=0, which is indeed the case since β1 > β0 and δ > 0 (in case

(ii)). This therefore gives

lim
N→∞

ρ̄Astar((i)) < lim
N→∞

ρ̄Astar((ii)) < lim
N→∞

ρ̄Astar((iii))

as required.



Chapter 3

Evolutionary bet hedging in

structured populations

Traditional evolutionary models consider constant environments, where the fitness of in-

dividuals does not change in time. However, many real populations feature fluctuating

environments, which may alter the fitness of different individuals. Many traits in biological

populations have been explained by selection for risk-spreading to safeguard against envi-

ronmental variation, known as evolutionary bet-hedging [14, 100, 160, 162, 173, 174, 186].

In a stochastically varying environment, a species that maximises its mean reproductive

rate, or mean fitness, is not necessarily the strongest, since this could coincide with in-

creased sensitivity to fluctuations in the environment. A bet-hedger is defined as a strategy

that has lower mean fitness than its rival, but is selected over the rival since it has reduced

variation in its fitness, due to being less sensitive to these fluctuations. For example,

consider a simple habitat that fluctuates between a short wet season and a long dry sea-

son. Mean fitness would be maximised by adapting to the dry season. However, such an

adaptation may result in terrible performance during the wet season. A generalist, who is

equally adapted to both seasons, will have lower mean fitness, but is protected from the

environmental fluctuations and therefore has reduced variation in its fitness across seasons.

An ecological example of bet-hedging can be observed in the delayed germination strat-

egy in desert annuals [24, 145, 186]. These plants release multiple seeds, most of whom

germinate in the next season with a fraction remaining dormant until future seasons. Such

a strategy reduces mean fitness, since some dormant seeds may be lost before germination.

However, this strategy also reduces the variation in fitness, because it ensures that not

88
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all offspring will die if next season is bad. Bet-hedging adaptations have also evolved in

microbial communities under turbulent environments [14, 100]. These examples consider

between-generational variation [55], whereby all individuals experience the same conditions

at any time. Mathematically, adaption to counter this type of variation is easily described

and understood assuming evenly mixed populations of species [55, 74, 173].

Environmental variation can also act locally on individuals, causing within-generational

(or demographic) variation. In this context, the fitness of an individual can be different

from that of another individual of the same type at a given time, but both will have fitness

drawn from the same distribution. One example is where predation levels across the habitat

are variable. Assuming a cost of spreading offspring across numerous sites, the strategy

to maximise fitness corresponds to choosing a single nesting location. However, since this

site could be predated, a bet-hedger could evolve that spreads offspring across numerous

sites to reduce the predation risk. An ecological example of potential bet-hedging against

within-generational variation has been observed in female sierra dome spiders [189]. These

females exhibit a multiple paternity strategy, whereby the primary mate is the victor of a

fight among potential suitors, and secondary mates are selected at random. Mean fitness

would be maximised by only selecting the primary mate, but random secondary mating

hedges against the fight only taking place between weak suitors. Many other examples

are similar and focus on multiple-paternity as a bet-hedging strategy [48, 160, 189, 198].

Other work has identified strategies in Cabbage Butterflies [158] and Aphids [188] that

potentially evolved as bet-hedgers against within-generational variation.

Despite the ecological observations, current mathematical models in well-mixed pop-

ulations lead to the conclusion that such variation does not drive evolutionary adaption

unless the population is unrealistically small [55, 74, 75], contradicting and challenging

the ecological observations [26, 74, 75]. Such challenges have potentially led to the lack of

examples of bet-hedging against within-generational variation in recent literature, apart

from cases restricting themselves to small population sizes [160].

Real populations are often not well-mixed and typically exist within some defined pop-

ulation structure, such as spatial or social structure. Some population structures consist

of distinct groups of individuals within patches (or demes). Bet-hedging in such pop-

ulations has been investigated using metapopulation models and deme-structured mod-

els [97, 170, 171, 199]. These cases have demonstrated that within-generational bet-hedging

strategies can evolve in metapopulations, provided the deme (or patch) contains sufficiently

few individuals. Here we generalise the study of bet-hedging to arbitrarily structured pop-
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ulations, which can capture interaction/competition structure as well as deme-structure.

Mathematically, evolution in structured populations is described by evolutionary graph

theory [102, 129], which we build upon to incorporate variation. By analysing the evo-

lutionary process in structured populations, we show that the selective pressure for bet-

hedging strategies can only increase with both within and between generational variation.

This supports the conclusions from metapopulations in providing an explanation for the

ecological observations. Importantly, we show that population structure can facilitate

within-generational bet-hedging regardless of population size and we discuss how different

types of structure impact its selection.

3.1 Methods

3.1.1 Evolutionary model

To determine the impact of population structure on the evolution of bet-hedging strategies

we model the dynamics of the process. We are interested in when a bet-hedging strategy

has a competitive advantage over the non bet-hedging strategy, which we call the normal-

type. Evolution in structured populations (generally in a non-variable environment) is

described by evolutionary graph theory [6, 19, 20, 71, 102, 151]. Here, population structure

is represented by an undirected left stochastic graph.

We consider a population with two types (or strategies) of individuals, the bet-hedging

strategy A and the normal-type strategy B, either of which can play the role of the resident.

The population structure is defined by a graph G = (V, E), where V is the set of nodes and

E is the set of edges between these nodes.

Following [8, 156, 192], the fitness of an individual is proportional to its birth rate.

Therefore, an individual is first selected to die at random, resulting in a vacant node in the

population, which the neighbouring (connected) individuals of this node compete to replace

with an identical offspring, with probability proportional to their fitness (Figure 3.1). Since

offspring are identical, there is no further mutation until one strategy eliminates the other.

Following [129], we refer to these dynamics as DBB. Whilst we focus on these dynamics,

we discuss other dynamics, such as the invasion process, in Section 3.2.3.
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Figure 3.1: The update dynamics of the evolutionary process. First, an individual is randomly selected
for death, indicated by the white arrow, resulting in a vacant node. This becomes the type of one of its
neighbours, with probabilities proportional to their fitness. Either the selected node becomes occupied by
a bet-hedger A or a normal-type B.

Traditional evolutionary graph theory dynamics do not capture variation in fitness,

which is present in many real-world populations. To incorporate this, we treat fitness as a

random variable that changes value with the environmental state. This general definition of

fitness can account for the potential between and/or within-generational variation discussed

above, and captures the many special cases currently studied [14, 56, 132, 160, 180, 186,

198, 199, 200].

To describe how this stochastic process changes, we define the probability of moving

from one state to another, where a state represents which nodes are occupied by A and

which are occupied by B. From any state S that is not all A or all B, we can move to

a state S+ with more type A individuals or S− with more type B individuals, or remain

in state S. To move from S to S+ we require a B individual to die followed by selecting

an A individual for reproduction. For a given node j, the probability of death is 1/N .

After the individual in node j is selected for death the neighbouring individuals, which

we will refer to as the selection group (Figure 3.2), compete to replace j. We will refer to
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the probability of selecting a certain type (given that an individual has been selected for

death) as the selection probability of that type. Therefore the probability of moving to a

state S+ is given by the sum of probabilities that a type B is selected for death multiplied

by the type A selection probability. That is,

P (S → S+) =
N∑
j=1

1

N
BS
j P (type A selected to reproduce | j dies ∩ state S) (3.1)

and similarly the probability of moving to a state with more B individuals is given by

P (S → S−) =

N∑
j=1

1

N
ASj P (type B selected to reproduce | j dies ∩ state S), (3.2)

where ASj = 1 if and only if the individual in node j is type A in state S, and zero otherwise.

These two probabilities dictate how the system evolves at each time step, and therefore

provide a measure of the relative strength between the competing strategies.

Definition 2. Evolutionary bet-hedging - Evolutionary bet-hedging describes a strat-

egy with a lower mean fitness than their competitors but also a lower variation in fitness.

Such strategies can be favoured in the evolutionary process if their fitness variation is

sufficiently low.

3.1.2 Impact of fitness variation

An obvious measure of variation is the variance, which is convenient since it is easily

calculated. However, it has limitations; for example, if two distributions have equal mean

and variance it gives no insight into which is more varied. This information is captured

in the higher order moments of the distributions, such as the skew and kurtosis. A more

comprehensive representation of variation is given by the convex order [165, 194], such that

if one distribution is greater than another in convex order then it is more variable. Convex

order describes variability by ordering the expected values of convex functions, which are

sensitive to the variation. Convex order has been used to describe variability in population

models of infectious diseases [194] and for investigating the effect of variability in group

size on the evolution of collective action [143]. In these contexts, convex order is used as a

precise measure of variability.
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Figure 3.2: The selection neighbourhood. After an individual is selected for death (square node), the
connected individuals (in dashed circles) compete to replace this individual. It can be seen that the
different structures can influence the number of nodes in the selection neighbourhood and which nodes are
included.

For two random variables X and Y , we say that X is less than Y in convex order (and

therefore less variable than Y ), denoted X ≤cx Y , if and only if E[φ(X)] ≤ E[φ(Y )] for all

convex functions φ. A useful result that can be obtained from convex ordering is [165]

X ≤cx Y =⇒ E[X] = E[Y ],Var(X) ≤ Var(Y ),

so if one random variable is less than another in convex order then its variance cannot be

larger than the other. Establishing convex order can be difficult, but there are methods

for doing this and under certain circumstances, this ordering of distributions reduces to

an ordering of the variance of the distributions [165]. However, for our purposes, we only

need to use this as a precise ordering of variability between any two distributions.

In the evolutionary process, selective pressure is governed by the selection probabilities

on the right-hand side of Equations (3.1) and (3.2). For any given replacement event, the

selection group consists of m bet-hedgers and n normal-types, so the selection probability
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depends on m and n. The bet-hedger selection probability can be shown (Appendix 3.A)

to reduce to

P (A reproduces |m type A and n type B) = E


m∑
i=1

f iA

m∑
i=1

f iA +
n∑
j=1

f jB

 , (3.3)

where f iA is the fitness of a bet-hedger i and f jB is the fitness of a normal-type j. Here,

the bet-hedgers in the selection group (immediate neighbours of the individual selected for

death) are labelled from 1 to m and the normal-types are labelled from 1 to n, so that

m+n = k where k is the size of the selection group. Noting that the selection probability of

a normal-type among m bet-hedgers and n normal-types is 1 minus the selection probability

of a bet-hedger among m bet-hedgers and n normal-types, the strength of selection can be

represented solely by the bet-hedger selection probability. Equation (3.3) is the expected

value of a convex function of normal-type fitness. Therefore, by the definition of convex

order, increasing the variation of normal-type fitness in convex order can only increase this

function, and therefore can only increase the selection probability of the bet-hedger.

To obtain the selection probability (Equation 3.3), the bet-hedger fitness is averaged

over the total fitness of the surrounding individuals. For within-generational variation,

each individual can sample a different value at the same time. Therefore, as the selection

group size increases, whilst maintaining a similar proportion γ of bet-hedgers to normal-

types (such that m/n ≈ γ), the sum over the normal-types becomes less sensitive to the

variation in normal-type fitness. This can be seen by transforming the summations on

the right-hand side of Equation (3.3) into sample averages and applying the law of large

numbers. Consequently, the selection probability becomes less sensitive to this variation

as we increase selection group size, and for large selection groups, selection for reduced

within-generational variation is diminished. This explains the result in large well-mixed

populations that within-generational bet-hedging should not evolve [55]. However, since

the selection group depends on the degree of the node in which an individual is chosen

for death (see Figure 3.2 for an illustration), if the degree of this node is low then within-

generational variation can have a large impact on the selection probability, regardless of

population size.

By taking small clusters of fully connected individuals, inter-connected with a sparse
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number of edges, we can create metapopulations. In this case, if the cluster size is small,

the selection group will be small and within-generational bet-hedging can evolve, agreeing

with predictions from metapopulation models [97, 170, 171, 199].

For between-generational variation, the fitness distributions within each type always

sample the same value. Therefore, there is no diminishing effect due to large selection

groups, and there will be selection for between-generational bet-hedging for all graphs and

population sizes. Since there is no significant impact of population structure on selection,

and evolution of between-generational bet-hedging has been widely explored mathemati-

cally [55, 74, 173], we focus on within-generational bet-hedging for the remainder of this

chapter, and hence will drop the prefixed within-generational in what follows.

3.1.3 Approximate result for the variance

For evolutionary bet-hedging models, approximate results are often derived using a sec-

ond order Taylor approximation [49, 55, 152, 153, 170, 171, 173]. For this analysis, we

assume that bet-hedgers have constant fitness, so that the selection probability is a func-

tion of normal-type fitness. This analysis however can be applied to variable bet-hedger

fitness. Applying a second order Taylor expansion about the normal-type mean fitness

yields (Appendix 3.B.1)

P (A reproduces | m type A and n type B) ≈ mc

(mc+ nd)
+

mnc

(mc+ nd)3
σ2 (3.4)

where c is the fitness of the bet-hedging type, and d and σ2 are the expected value and

the variance of the normal-type fitness, respectively. This suggests that mean and variance

are key measures controlling the selection probability. Therefore, increasing the variation

through the variance is likely to increase the selection probability of the bet hedger. We

again observe that selection for bet-hedging depends on the size of the selection group

rather than population size, since the second term in Equation (3.4) diminishes with m

and n.

For the bet-hedger to be favoured in a given replacement event, we require the selec-

tion probability of the bet-hedger in this event to be larger than the selection probability

of the normal-type in the opposite event. That is, we require the bet-hedger selection

probability from m bet-hedgers against n normal-types to be larger than the normal-type

selection probability from m normal-types against n bet-hedgers. Using Equation (3.4),
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the variance at which these are equal, which we call the critical variance, is approximated

by (Appendix 3.B.2)

σ2
k,m ≈

(dm+ nc)2(dn+mc)2(d− c)
((d2m3 + d2n3 − dm3c+ 3dm2nc+ 3dmn2c− dn3c+m3c2 + n3c2)c)

. (3.5)

From the derivative of Equation (3.5) with respect to m (Appendix 3.B.2), we see that

increasing m from 1 to k/2 causes the critical variance to increase. This implies that the

critical variance is largest in the evenly-mixed scenario, m = n = k/2, where

σ2
k,k/2 ≈

(d− c)(c+ d)2k

(4c)
.

In this scenario, a linear increase in the critical variance is required as k increases, showing

that critical variance quickly grows with selection group size.

3.1.4 Fixation

The results in sections 3.1.2 and 3.1.3 focus on the relative strength of each strategy for

a given selection event. However, the evolutionary process consists of multiple selection

events with different selection groups. Therefore, the fixation probability determines the

overall strength of each strategy. Since increasing variation in normal-type fitness increases

the relative strength of bet-hedgers, we assume that the bet-hedger fixation probability will

also increase.

Assuming that fixation probability is increasing with normal-type variation, it is useful

to find the level of variation at which the bet-hedger becomes favoured in the evolutionary

process; i.e. the fixation probability of a bet-hedger invading a normal-type population is

higher than the normal-type invading bet-hedgers. We call this the overall critical variation.

Subject to the assumptions of the Taylor approximation, there is a level of variation in the

normal-type fitness at which the bet-hedger is favoured for a given selection event. We

assume that there is also a critical variation for arbitrary fitness distributions. For certain

distributions, such as the gamma distribution, this can be calculated using numerical

methods (e.g. Appendix 3.C.1). Alternatively, this critical variation can be approximated

by setting the variance of the distribution to be given by Equation (3.5). Since there is

a level of variation at which, for a given selection group, the bet-hedger will be favoured,

eventually the bet-hedger will be favoured in every selection group. Therefore, the overall
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critical variation must exist.

On random k-regular graphs, the conclusions from the selection probability can easily

be applied to fixation probability, since each selection group is of size k. Here, if the bet-

hedger is favoured in every scenario for a size k selection group, they must be favoured

overall. From the Taylor approximation, if the bet-hedger is favoured in the evenly-mixed

scenario then the bet-hedger is favoured in every scenario, so we assume that the critical

variation for the evenly-mixed scenario provides an upper bound for the overall critical

variation. Extending the conclusions to arbitrary graphs is less clear, since there can be

variability in node-degree. In such cases, it is not obvious how the cumulative effects of

different selection group sizes will affect the relative strength of bet-hedgers. To investigate

this, and to confirm that our assumptions hold, we investigate the fixation probability

numerically in the next section.

3.2 Numerical results

Here we investigate the fixation probability numerically using stochastic simulations, in

order to test the hypotheses from Section 3.1.4. Bet-hedgers have constant fitness and

normal-type fitness is given by a gamma distribution. The gamma distribution is bounded

below by zero and here convex ordering reduces to ordering the variance. Therefore, this

makes sense as a fitness distribution and variation is easily controlled.

3.2.1 Regular graphs

To investigate the effect of variation on fixation, consider four 50 node graphs: a complete

graph, and three random k-regular random graphs, with degrees 16, 8 and 4. To determine

which strategy is stronger, the ratio of the bet-hedger fixation probability to the normal-

type fixation probability is calculated. The overall critical value for each graph is given

by the variation at which this ratio is equal to 1. We compare this to the upper bounds

predicted by the evenly-mixed critical value, calculated exactly (see Appendix 3.C.1) and

using the Taylor approximation.

It can be seen in Figure 3.3 that increasing the variation increases the bet-hedger fixa-

tion probability and decreases the normal-type fixation probability for all graphs, support-

ing the assumption from Section 3.1.4. Since the selection probability has large sensitivity

to the degree of the graph (Equation (3.3)), for graphs with high degree, such as the com-
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Figure 3.3: The impact of changing the within-generational variation in normal-type fitness on the overall
relative strength of bet-hedgers on four 50 nodes graphs. Bet-hedgers have constant fitness with mean
equal to 0.95, whereas normal-type fitness is fitness drawn from a gamma distribution, with mean equal
to 1. Starting with a randomly placed initial bet-hedger, 1,000,000 simulations are run until fixation of
either type. From this, the probability that the bet-hedger type takes over the population is calculated,
giving the bet-hedger fixation probability. We repeat with a single normal-type invading a bet-hedger, and
plot the ratio of bet-hedger fixation probability to the normal-type fixation probability (the solid lines with
markers). If this ratio is below 1 (indicated by the horizontal line) the normal-type is favoured, otherwise
the bet-hedger is favoured. The overall critical variance is the x-coordinate when each ratio crosses 1.
The exact upper bounds are indicated by the dashed vertical lines and the approximate upper bounds are
marked by the dash-dotted vertical lines.

plete graph, variation has little impact on the selection probability. Therefore, here the

normal-type variance only has a slight impact on the fixation probability. This agrees with

the traditional results obtained for well-mixed populations [55, 162]. However, reducing the

average degree of the graph significantly increases the impact of variation on the fixation

probability. Therefore, on such graphs, variation can play a key part in the evolutionary

process.

The evenly-mixed critical value provides an upper bound on the overall critical varia-
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tion, as assumed in Section 3.1.4. The upper bound provides a good approximation to the

overall critical value for each graph tested, which we can use to gain insight into how much

variation is required for the bet-hedger to be favoured in random k-regular graphs. Under

the gamma distribution, the evenly-mixed critical value linearly increases with selection

group size (Appendix 3.C.2), showing that increasing selection group size can quickly sup-

press selection for bet-hedging strategies. Comparing the Taylor approximation to the true

upper bound, we observe that this provides a rough approximation to the true bound when

the variance required for the bet-hedger to be favoured is low. However, as the variance

required increases (in this case by increasing selection group size) the discrepancy between

the two increases.

3.2.2 Impact of degree heterogeneity

Changing the average degree of the graph changes the strength of selection for reduced

variation on random k-regular random graphs, which have no variability in the degree of

different nodes. However, it is important to consider how degree variability will affect the

evolutionary process.

To investigate the effect of degree variability, first consider the star graph and the

circle, which have the same average degree in the limit of large population size. On the

star graph, there is one focal individual who is connected to every other individual, who

are only connected to the focal individual. This graph has high degree variability, with one

node having degree N − 1 and all others having degree 1, where N is the population size.

On the circle, individuals are connected in a loop, so all nodes have degree 2 and there is

no variability.

On the star graph selection only takes place when the individual in the central node is

replaced (Appendix 3.D.1), and the size of the selection group is N−1. When the leaf node

individuals are replaced, only the central node can be chosen, so no selection takes place.

Therefore, the bet-hedger can only be favoured if it is favourable over the normal-type with

selection group size N − 1. In this case, selection for reduced variation quickly diminishes

with population size. On the circle the selection group size for every replacement event is 2

(Appendix 3.D.2). Therefore the bet-hedger only needs to be favoured in a size 2 selection

group, and there is no diminishing selection with population size.

Although an extreme case, this shows that increasing the variability in the degree

distribution of the graph may reduce the selection for bet-hedging. We investigate this nu-
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Figure 3.4: The impact of changing the variation in the degree distribution of the graph, whilst keeping
the average degree unchanged, on selection for within-generational bet-hedging. Bet-hedgers have constant
fitness with mean equal to 0.99, whereas normal-type fitness is drawn from a gamma distribution, with
mean equal to 1. Starting with a randomly placed initial bet-hedger, 1,000,000 simulations are run until
fixation of either type. From this, the probability that the bet-hedger type takes over the population is
calculated, giving the bet-hedger fixation probability. We repeat with a single normal-type invading a
bet-hedger, and plot the ratio of bet-hedger fixation probability to the normal-type fixation probability
(the solid lines with markers). If this ratio is below 1 (indicated by the horizontal line) the normal-type is
favoured, otherwise the bet-hedger is favoured. The overall critical variance is the x-coordinate when each
ratio crosses 1.

merically using three different classes of random graph: random k-regular, Erdős-Rényi [43]

and scale-free. Keeping the average degree constant, degree variability will be lowest for the

random k-regular and largest for the scale-free. Figure 3.4 shows that increasing the degree

variability increases the overall critical variation, hence reducing selection for bet-hedgers.
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3.2.3 General evolutionary dynamics

This chapter has focused on death-birth with selection on birth dynamics. However, other

evolutionary dynamics have been suggested for evolution in structured populations, such

as birth-death with selection on death [6]. Under these dynamics, if fitness is taken to be

a measure of survivability rather than birth rate, then adding population structure allows

bet-hedging against within-generational variation to take place. This is because here the

selection groups in Equation (3.3) only depend on local competition between the immediate

neighbours. There are also dynamics that have global rather than local competition, such

as the invasion process (birth-death with selection on birth) [102] and death-birth with

selection on death [106]. Within such global update mechanisms, evolution does not select

for bet-hedging against within-generational variation. This is because global competition

results in the selection probabilities always involving every individual within the popula-

tion, so the effect is diminished by the law of large numbers. Therefore, it can be seen that

within-generational bet-hedging is facilitated by local competition between subsets of the

population.

3.3 Discussion

Evolutionary bet-hedging explores how variation in fitness can affect the evolutionary pro-

cess, showing that individuals with lower mean fitness can be preferred when their fitness

is sufficiently less sensitive to these variations. A key area of discussion within evolution-

ary bet-hedging is the existence of strategies that potentially bet-hedge against within-

generational variation; i.e. variations that affect individuals of the same type differently

within each generation. Such strategies have been observed [48, 158, 160, 188, 189, 198],

however mathematical theory has widely challenged their existence, instead suggesting that

evolution should not select for this type of variation.

Traditional work has been limited to well-mixed populations. Real-populations how-

ever often exhibit some degree of structure, and this structure can have a significant impact

on the evolutionary process. These impacts include amplifying the probability of advanta-

geous mutants taking over a population [102] and facilitating the evolution of cooperative

strategies in social dilemmas [129]. Using metapopulation structure has demonstrated

that within-generational variation can be important when the patches are sufficiently

small [97, 170, 171, 199]. By analysing bet-hedging strategies in generally structured pop-
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ulations, we have shown that within-generational variation can be a key factor in selection,

and strategies that bet-hedge against such variation can be favoured in the evolutionary

process, regardless of population size.

Whether bet-hedging is favoured depends strongly on the structure of the population.

We have shown that as long as the average degree of the graph is reasonably low and

degree variability is not too high, selection for within-generational bet-hedging is strong.

In such populations, bet-hedging strategies are likely to evolve, underpinning the results of

some ecologists who have used bet-hedging against within-generational variation to explain

observed strategies [158, 160, 188, 189]. Many real-world population structures will have

these properties, such as parasitic waps [190] and plants [76], since individuals compete

with a subset of the whole population and there will not be huge variability in the size of

competing groups. Since our result only depends on the local competition aspect of the

dynamics, it is reasonable to extend our conclusions to real-world evolutionary processes

in which competition happens between small subsets of the population at any given time.

Therefore, within-generational variation is important in empirical systems and within-

generational bet-hedging is likely to be observed. This justifies the existing observations

and can motivate further empirical research to identify within-generational bet-hedging

species, which have not been fully explored, perhaps due to the existing theoretical con-

clusions [97, 160].

Appendix 3.A Selection probability

Given that an individual has been selected for death, one of the neighbours of this individual

must be selected for birth, with probability one. We are therefore interested in deriving the

probability that the selected individual is a bet-hedging type. We can assume without loss

of generality that there are m bet-hedgers and n normal-type neighbours around the focal

individual. We can label the bet-hedgers arbitrarily from 1 to m and the normal-types

arbitrarily from 1 to n, such that bet-hedger i has fitness distribution f iA and normal j

has fitness distribution f jB. The individuals in the neighbourhood compete and a random

individual is selected with probability proportional to their fitness to reproduce.

Once we have sampled the fitness values for each individual, the total fitness is given by
m∑
i=1

f iA+
n∑
j=1

f jB, and therefore the probability of selecting bet-hedger i is f iA/(
m∑
i=1

f iA+
n∑
j=1

f jB),
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and normal j is f jB/(
m∑
i=1

f iA+
n∑
j=1

f jB). Therefore the probability of selecting any bet-hedger

is given by
m∑
i=1

f iA

m∑
i=1

f iA +
n∑
j=1

f jB

. (3.6)

When selecting which individual reproduces, we draw a random number from the uniform

distribution between 0 and 1. If this number is smaller than Equation (3.6) then we

select a bet-hedger, otherwise we select a normal. Therefore, the selection probability of a

bet-hedger, before sampling any of the fitness values, is given by

P (A reproduces |m type A and n type B) = P

N <

m∑
i=1

f iA

m∑
i=1

f iA +
n∑
j=1

f jB

 ,

where N ∼ U(0, 1). Defining Y =
n∑
j=1

f jB and X =
m∑
i=1

f iA, we have

P

(
N <

X

X + Y

)
=

∞∫
−∞

∞∫
−∞

x
x+y∫
0

fN,X,Y (n, x, y)dndxdy

=

∞∫
−∞

∞∫
−∞


x
x+y∫
0

fN |X,Y (n|x, y)dn

 fX,Y (x, y)dxdy

=

∞∫
−∞

∞∫
−∞

(
x

x+ y

)
fX,Y (x, y)dxdy

= E
[

X

X + Y

]
.
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Appendix 3.B Taylor approximation

3.B.1 Selection probability approximation

Let X be any random variable and f be an infinitely differentiable function of X. We can

approximate the expected value of f(X) by performing a Taylor expansion:

E [f(X)] = E [f(µX + (X − µX)]

≈ E
[
f(µX) + f ′(µX)(X − µX) +

1

2
f ′′(µX)(X − µX)2

]
,

where µX is the expected value of X. Since E [(X − µX)] = 0, this simplifies to

E [f(µX)] ≈ f(µX) +
1

2
f ′′(µX)σ2

X ,

where σ2
X is the variance of X.

If we define Y =
n∑
j=1

f jB and X =
m∑
i=1

f iA, and assume that X is constant then the

selection probability is simply the expected value of a function of Y , f(Y ) = X
X+Y , and we

can approximate this as

E
[

X

X + Y

]
≈ µX
µX + µY

+
1

2

µX
(µX + µY )3

σ2
Y .

Since Y =
n∑
j=1

f jB and X =
m∑
i=1

f iA, µX = mc, µY = nd and σ2
Y = nσ2

f iB
.

3.B.2 Critical variance

Assume we have m bet-hedgers in the selection group. We want to know when a bet-hedger

would have a higher relative strength in this scenario, and therefore we want to compare

the selection probability P (A|m) to the selection probability of a normal-type when there

are m normal-types in the selection group, P (B|k −m) = 1 − P (A|k −m). When these

two probabilities are equal, the two types are equally favoured in such a scenario. Finding

the variance for which these two are equal therefore gives the critical variance at which the

bet-hedger becomes stronger in this scenario. Setting P (A|m) = P (B|k −m) under the
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Taylor approximation we get

mc

mc+ nd
+

mcnσ2

(mc+ nd)3
= 1− nc

nc+md
+

ncmσ2

(nc+md)3
,

which we can solve for σ2 to obtain

σ2
k,m =

(dm+ nc)2(dn+mc)2(d− c)
(d2m3 + d2n3 − dm3c+ 3dm2nc+ 3dmn2c− dn3c+m3c2 + n3c2)c

.

This gives the critical variance at which the bet-hedging type is stronger, when there are

A bet-hedgers competing among k individuals.

In this expression, n = k −m, so this can be written in terms of k and m only. We

can treat k as fixed since this is the selection group size, and therefore we can investigate

how changing m affects the critical variance. We first note that we are only interested in

m ∈ {1, ..., k/2}, since for m > k/2 these scenarios are already considered to obtain the

critical variance, i.e. for m > k/2 the critical variance is the same as for m = k−k/2 < k/2.

Taking the derivative with respect to m of the critical variance, and assuming k is

constant, we obtain

f(m) =
∂σ2

k,m

∂m
=
g(m)h(m)

z(m)

where

g(m) =
3(d− c)2m2

2
− 3k(d− c)2m

2
+ k2(d2 +

1

2
dc+ c2),

h(m) = 2((−d+ c)m+ dk)(d− c)3((d− c)m+ ck)(k − 2m),

z(m) = c(3(d− c)2m2 − 3k(d− c)2m+ k2(d2 − dc+ c2))2k.

Both h(m) and z(m) are strictly positive for all m (when d > c) so to investigate how

changing m alters the sign of f(m) we only need to analyse g(m). Taking the derivative

of g(m) with respect to m of this we obtain

g′(m) = 3(d− c)2m− 3k(d− c)2

2

which is negative for m ≤ k/2. Therefore the minimum value of g(m) for m ∈ {1, ..., k/2}
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occurs at k/2 and is equal to

g(
k

2
) =

5k2(c+ d)2

8

which is positive. Since this is the minimum value, g(m) must be positive for all m ∈
{1, ..., k/2}, and therefore f(m) > 0 for all m ∈ {1, ..., k/2}. This implies that σ2

k.m is an

increasing function of m for m ∈ {1, ..., k/2} and therefore the maximal value of σ2
k,m occurs

at m = k/2. Therefore if the bet-hedger is favoured when the selection group consists of

k/2 bet-hedgers and k/2 normal-types then the bet-hedger is favoured in every scenario.

Appendix 3.C Gamma distribution properties

3.C.1 Calculating the upper bound

To calculated the upper bound exactly we wish the find the variation (which is equivalent

to variance for the gamma distribution) at which the probability of selecting a bet-hedger

to reproduce in the evenly-mixed scenario; i.e. k/2 bet-hedger versus k/2 normal-types, is

equal to 1/2.

If we assume that the bet-hedger has constant fitness c and that the normal-type fitness

is drawn from a gamma distribution, f jB ∼ Γ(d/θ, θ), then we need to find the value of θ

which satisfies
∞∫

0

mc

mc+ z
T

1

Γ(mdθ )θ
md
θ

z
md
θ
−1e−

z
θ dz =

1

2
.

To solve this we define

f(θ) =

∞∫
0

mc

mc+ z
T

1

Γ(mdθ )θ
md
θ

z
md
θ
−1e−

z
θ dz − 1

2
.

Solving f(θ) = 0 analytically is challenging due to the complex nature of the integral.

However, for given values of θ it is easy to solve the integral numerically, since m = k/2,

c and d are all known. Therefore we can construct a minimisation problem, where we aim

to minimise the function |f(θ)|. Since the integral is an increasing function of θ, which

we know from the definition of convex order, f(θ) is an increasing function and therefore

|f(θ)| does not have local minima, and therefore minimising this function can be efficiently

implemented in Matlab (or other language) to find the true critical value for θ.
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3.C.2 Linear upper bound

Our results from the Taylor approximation suggest that the upper bound on the overall

critical variance required for the bet-hedger to be favoured is given by the evenly mixed

scenario; i.e. m = n = k/2. Here we explore how changing selection group size impacts the

critical variance for this scenario (and therefore the upper bound) using the exact selection

probability, when the normal-type fitness is drawn from a gamma distribution. For the

gamma distribution convex order reduces to ordering the variance of the distributions,

so we can represent the critical variation using the critical variance. We assume that bet-

hedgers have constant fitness equal to c and normal-types have fitness f jB = Yj ∼ Γ(d/θ, θ),

such that the normal-type have mean fitness d and variance in fitness given by dθ. The

selection probability of a bet-hedger is given by

P (A|m) = E

 mc

mc+
m∑
j=1

Yj

 .

Since each Yj is independent and identically distributed we can write Z =
m∑
j=1

Yj ∼

Γ(md/θ, θ). Therefore we can now write the selection probability as

P (A|m) = E
[

mc

mc+ Z

]
=

∞∫
0

mc

mc+ z

1

Γ(mdθ )θ
md
θ

z
md
θ
−1e−

z
θ dz.

The critical variance for the evenly mixed scenario, σ2
k,m = dθk,m, needs to satisfy

∞∫
0

mc

mc+ z

1

Γ( md
θk,m

)θ
md
θk,m

k,m

z
md
θk,m

−1
e
− z
θk,m dz =

1

2
,

where m = n = k/2. Changing the selection group size to hk, we are interested in the

selection probability with x = hm bet-hedgers. The critical variance dθhk,hm needs to

satisfy
∞∫

0

hmc

hmc+ z

1

Γ( hmd
θhk,hm

)θ
hmd

θhk,hm

hk,hm

z
hmd

θhk,hm
−1
e
− z
θhk,hm dz =

1

2
.
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Using a change of variable z′ = z/h this becomes

∞∫
0

hmc

hmc+ hz′
1

Γ( hmd
θhk,hm

)θ
hmd

θhk,hm

hk,hm

(hz′)
hmd

θhk,hm
−1
e
− hz′
θhk,hm hdz′ =

1

2
.

Now if we set σ2
k,hm = dθk,hm = dhθk,m = hσ2

k,m then this reduces to

∞∫
0

mc

mc+ z′
1

Γ( md
θk,m

)θ
md
θk,m

k,m

(z′)
md
θk,m

−1
e
− z′
θk,m dz′ =

1

2
,

which we know holds, and therefore for the gamma distribution the critical variance in the

evenly mixed scenario increases linearly with the size of the selection group.

Appendix 3.D Idealised graphs transition probabilities

3.D.1 Star transition probabilities

On the star there are a few possible distinct transitions that can occur. If a bet-hedger is

in the central node, the changes that can happen to the system are either the individual

in this node dying and being replaced by a normal-type from the leaf nodes, or a normal-

type individuals on a leaf node can die and be replaced by a bet-hedger from the central

node. Similarly, if the central node is a normal-type either this individual can die and be

replaced by a bet-hedger from a leaf node, or a bet-hedger leaf node individual can die

and be replaced by a normal-type from the central node. Due to the symmetry of the leaf

nodes, we can group all of these events together so that we only have these four possible

state transitions to consider. Let pAAi,i+1 denote the probability that we go from a state with

a bet-hedger in the central node and i bet-hedgers on the leaves to a state with A on the

central node and i+ 1 bet-hedgers on the leaves. Let pABi,i denote the probability that we

go from a state with a bet-hedger in the central node and i bet-hedgers on the leaves to a

state with a normal-type in the central node and i bet-hedgers on the leaves. The system

transitions is described by the following system of equations

pAAi,i+1 =
n− i
n+ 1

,
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pABi,i =
1

n+ 1
E


n−i∑
j=1

f jB

i∑
j=1

f jA +
n−i∑
j=1

f jB

 ,
pBBi,i−1 =

i

n+ 1
,

pBAi,i =
1

n+ 1
E


i∑

j=1
f jA

i∑
j=1

f jA +
n−i∑
j=1

f jB

 .
Selection is only taking place when an individual on a leaf node replaces the central node.

This is because when a leaf node individual dies only the central node can replace this,

so there is no competition based selection taking place. When we look at the selection

probability for the central node being replaced it is clear that the selection group has size

n, which is equal to N − 1 for population size N . Therefore, if we consider a sufficiently

large population the impact of within-generational variation on the selection probability

rapidly diminishes due to the law of large numbers, and therefore there is no selection for

within-generational bet-hedging on a large star graph.

3.D.2 Circle transition probabilities

On the circle, if we assume that we start with a cluster of connected bet-hedger individuals

with no normal-type individuals between them, the symmetries of the graph allow us to

consider the number of bet-hedger individuals rather than their locations, since the group

of bet-hedgers can only change at the two boundaries where they meet normal-types.

Denoting pi,i+1 as the probability of moving from a state with i bet-hedgers to i + 1

bet-hedgers, we can describe the transition probabilities between different states with the

following equations

p1,0 =
1

N
, (3.7)

pi,i+1 =
2

N
E

[
f jB

f jA + f jB

]
, i < N − 1
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pi,i−1 =
2

N
E

[
f jB

f jA + f jB

]
, i > 1

pN−1,N =
1

N
,

where j is arbitrary since the fitness distributions for a given type are independent and

identically distributed. From this we can see that on the circle there will always be selection

for a reduction in within-generational variation, potentially paving the way for a within-

generational bet-hedging strategy to evolve.



Chapter 4

Methods for approximating

stochastic evolutionary dynamics

on graphs

The dynamics of evolutionary graph theory can be considered analytically and precise

results can be derived for a number of simple graphs, such as the circle, star and complete

graphs [19, 20, 102], mainly due to their symmetry. Analytic approaches for investigating

evolutionary dynamics on complex graphs have also been proposed. However, such methods

are usually limited by assumptions such as large populations [127, 129] or are specifically

designed for investigating evolutionary processes under weak selection [2, 203], where the

evolutionary game has only a small effect on reproductive success.

Important quantities of interest such as the exact fixation probability and time can, in

principle, be obtained by solving the discrete-time difference equations of the underlying

stochastic model [68], although this is only feasible for very small populations unless there

are simplifying symmetries. Individual-based stochastic simulations [12, 105] provide nu-

merically accurate representations of the evolutionary process on arbitrary graphs but have

limited scope for generating conceptual insights into the dynamics on their own. They can

also be computationally expensive on larger graphs, but as a precise representation of the

underlying stochastic model, they allow us to evaluate the accuracy of approximate models

by comparison.

In this chapter, we develop approximations to the stochastic model by using insights

111
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from methods in statistical physics that have also been used extensively for epidemic mod-

elling [18, 83, 88, 142, 166, 168]. Such methods have been applied to develop pair approx-

imations for evolutionary processes on graphs which satisfy the homogeneity assumption

that all individuals can be considered identical and interchangeable [59, 67, 117, 144, 175].

However, the underlying assumptions linking these models to the stochastic dynamics are

not always clear. One contribution of this work is to derive these models explicitly by

identifying the required assumptions. The starting point for all of our approximations is

to derive an equation to describe the time-evolution of the state of any given individual

node. From this equation, various routes to approximation become apparent by applying

different assumptions. We then investigate the applicability and accuracy of the resulting

approximation methods.

Evolutionary graph theory is traditionally explored as a discrete-time stochastic model.

While it is possible to work with these dynamics, it is easier to work with a continuous-

time approximation to the process. The continuous-time system is represented by a master

equation describing how the probability of being in each system state changes. From the

master equation we obtain exact equations (with respect to the continuous-time process)

for the probabilities of the states of individual nodes (Theorem 4.1.1). These equations

can then be approximated by adopting moment-closure methods. We focus on evaluating

the probability that at the end of the evolutionary process, an initial subset of mutants

placed on the graph will take over the whole population and ‘fixate’. Using this continuous-

time system is justified because the fixation probability and expected time to fixation are

identical to those of the original discrete-time process. Within this framework we study

when accurate approximations can be derived.

In Sections 4.1.1-4.1.3 we recap the stochastic evolutionary dynamics and the master

equation, and derive a description of how node-level quantities change in the master equa-

tion. We then discuss and develop various techniques that can be used to approximate these

systems of equations in Section 4.2. Within these approximation frameworks, we derive

the pair approximation models used in the literature, which we will call the homogenised

pair approximation, and the exact neutral drift model, and build new node-level approx-

imation methods. In Section 4.3 we demonstrate how the different methods can be used

to approximate the dynamics of the original discrete-time process. Section 4.3.1 studies

how the methods perform when approximating the fixation probability of a single initial

mutant placed on idealised and on complex graphs. Section 4.3.2 then shows how the

methods perform when studying the evolutionary game dynamics in a Hawk-Dove game.
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In Section 4.4 we discuss the results obtained from the methods developed and the insights

these can give.

4.1 The stochastic model

4.1.1 Stochastic evolutionary dynamics

In this Chapter we consider the stochastic dynamics of evolutionary graph theory, as

described in Section 1.3.2. Here, we consider a population whose relationship structure is

represented by a strongly connected undirected graph G = (V, E) where V = {1, 2, ..., N} is

the set of nodes and E denotes the set of edges. This can be represented by an adjacency

matrix G, where Gij = 1 if j is connected to i, and Gij = 0 otherwise, with Gii = 0 for all

i ∈ V. We consider populations consisting of two types of individuals, type A and type B,

either of which can be in the role of invading mutant in a resident population. Each node

is occupied by either an A or a B individual. Therefore we can let Ai = 1 if and only if

node i is occupied by an A individual and Ai = 0 otherwise and let Bi denote the same

for individuals of type B. Since Bi = 1 − Ai, the state of the system can be represented

by the values of Ai at any given time.

To compare the relative strength of individuals, we need to define their fitness. This

can be done as in Section 1.3.3, where the fitness of a type A in node j is given by

f jA = 1− w + w

a
N∑
i=1

GijAi + b
N∑
i=1

GijBi

N∑
i=1

Gij

, (4.1)

and of a type B in node j is given by

f jB = 1− w + w

c
N∑
i=1

GijAi + d
N∑
i=1

GijBi

N∑
i=1

Gij

, (4.2)

The special case of constant fitness is given by setting w = 1 and by setting a = b = r and

c = d = 1.

Traditional evolutionary graph theory considers a discrete-time Markovian evolutionary
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process in which only one event can happen at each time step. When an event occurs, one

individual reproduces and a connected individual dies, with the offspring replacing it. We

refer to the mechanism by which this takes place as an update mechanism or rule. The

probability of a certain event taking place depends upon this update mechanism. Some of

the most commonly considered update mechanisms are birth-death with selection on birth

(invasion process) [102], death-birth with selection on birth [106], birth-death with selection

on death [6] and death-birth with selection on death (voter model) [129]. The methods

developed in this chapter will be presented in the general case, and can be applied to any of

the above update rules, but we shall focus on the invasion process when generating specific

examples. In the invasion process, we select an individual to reproduce in proportion to

their fitness (selection on birth) and then the offspring replaces a connected individual

selected uniformly at random for death (birth then death).

4.1.2 The master equation

To approximate the discrete-time evolutionary process we first construct a continuous-time

process that has the discrete-time process embedded (Section 1.1.7). To do this we model

each (replacement) event using a Poisson process. The rate at which each event happens

is equal to the probability of that event in the discrete-time model. Therefore, the total

event pressure will be the sum of all such probabilities, which is equal to one, so that the

time until the next event follows a Poisson process with rate parameter one. We then

determine which event takes place using the relevant probability. Under this continuous-

time system the fixation probability and expected time to fixation will be identical to those

of the discrete-time system, since we use the same probabilities whenever an event occurs

and the expected time between events is constant. This is important because these are the

main quantities of interest in evolutionary dynamics.

We will use this system to build approximation methods to study the original discrete-

time process. We choose to use continuous-time because it enables us to build a system of

ordinary differential equations to approximate the dynamics, which allows us to make use

of efficient numerical solvers and enables us to derive some analytic results.

Since this evolutionary process is a continuous-time Markov chain, we can construct a

master equation (see Section 1.1.4) to describe the dynamics. Let Si = (s1, s2, ..., sN ) be a

state of the system, where i ∈ {1, ..., 2N} and where sj = 1 if node j is a type A individual

and sj = 0 otherwise. We define S1 = (0, 0, ..., 0) and S2N = (1, 1, ..., 1) to be the states
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consisting of only B individuals and only A individuals, respectively.

We introduce a vector p(t) which represents the probabilities of each system state at

time t. That is, the ith entry of p(t), pi(t), is the probability that the system is in state Si

at time t. This Markovian evolutionary process has 2N possible states and the transitions

between them are governed by a 2N × 2N transition rate matrix Q whose entries depend

upon the graph and update mechanism we consider.

We write the rate of change in the state probabilities using the master equation of the

Markov process:
dp

dt
= Qp. (4.3)

Such an equation can be constructed for any graph under a Markovian update mechanism.

The absorbing states correspond to the all type B or all type A states, S1 and S2N , so are

given by p1 and p2N .

Since we consider a strongly connected adjacency matrix G, provided we have at least

one type A and one type B it is possible to get to either of the absorbing states and therefore

from any mixed initial condition the system will always end up distributed between these

two states. We define the fixation probability ρA(Si) of type A from an initial state Si to

be the probability of being in the all A absorbing state, that is

ρA(Si) = lim
t→∞

(p2N (t)|pi(0) = 1),

where pi(0) is the probability of being in the state Si at time t = 0. Similarly we define

the fixation probability of type B as

ρB(Si) = lim
t→∞

(p1(t)|pi(0) = 1).

The computational cost of implementing system (4.3) increases exponentially with N [68],

and thus the computation of the fixation probability becomes infeasible as the population

size increases. Therefore it is of interest to build approximation methods. Pair approxima-

tions of the master equation have been developed under the homogeneity assumption that

all nodes on the underlying graph are identical and interchangeable [67, 175], which can

give interesting insight into the evolutionary dynamics. However the homogeneity assump-

tions made in these approximations result in the loss of insight into graph and node-specific

dynamics, so we aim to develop approximations of the master equation which can capture

this information.
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4.1.3 Node-level equations

We approximate the master equation by approximating the dynamics of the state probabil-

ities of individual nodes in the population. This is motivated by approaches in statistical

physics and epidemic modelling [18, 88, 166, 168], and first requires exact equations de-

scribing how the probability of each node being occupied by a certain type changes with

time, which can be derived from the master equation (4.3).

Definition 4.1.1. Let χ(Ωt
j→i|St) denote the rate at which the individual in node j replaces

the individual in node i at time t given that the system is in state S at time t; we refer to

this as the replacement rate.

Definition 4.1.2. Xt
C denotes the event that the set of nodes C is in state X at time t;

for example At{i} is the event that node i is in the type A state at time t.

Throughout this chapter we shall use the shorthand Bt
{i}A

t
{j}X

t
C to represent the intersec-

tion of events Bt
{i} ∩A

t
{j} ∩X

t
C .

Theorem 4.1.1. Under any Markovian update mechanism, for a structured population

represented by the adjacency matrix G, the rate of change of the probability that the indi-

vidual in node i is an A individual is

dP (At{i})

dt
=

N∑
j=1

∑
XV \{i,j}

GijP (Bt
{i}A

t
{j}X

t
V \{i,j})χ(Ωt

j→i|Bt
{i}A

t
{j}X

t
V \{i,j})

−
N∑
j=1

∑
XV \{i,j}

GijP (At{i}B
t
{j}X

t
V \{i,j})χ(Ωt

j→i|At{i}B
t
{j}X

t
V \{i,j}), (4.4)

where the sum over XV \{i,j} is over all possible states of the nodes V \{i, j}.

Proof. See Appendix 4.A.

This theorem can be applied to any update mechanism by choosing an appropriate defi-

nition for the replacement rate, χ(Ωt
j→i), which we shall define for the invasion process as

an example.

Example 4.1.1 (Invasion process). The invasion process (described in Section 1.3.2 and

Figure 1.10) is an adaptation of the Moran process [116] to structured populations. Each
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event is determined by selecting an individual to reproduce with probability proportional to

its fitness. It produces an identical offspring which replaces one of the connected individuals

which is chosen uniformly at random. Therefore the rate at which the individual in node j

replaces the individual in node i at time t under the invasion process rules is given by

χ(Ωt
j→i|S) =

f tj |S
F t|S

1

kj
, (4.5)

where f tj is the fitness of the individual occupying node j at time t, F t =
N∑
m=1

f tm is the

total fitness of the population, and kj denotes the degree of node j. Here, the factor f tj/F
t

is the rate at which node j is selected to reproduce, and 1/kj is the probability of replacing

the neighbouring individual i which is selected uniformly at random.

When calculating χ(Ωt
j→i) in Equation (4.4), we will use the following expression for the

fitness of the individual at a given node j at time t,

f tj = 1− w + wP (At{j})

a
N∑
i=1

GijP (At{i}) + b
N∑
i=1

GijP (Bt
{i})

N∑
i=1

Gij

+ wP (Bt
{j})

c
N∑
i=1

GijP (At{i}) + d
N∑
i=1

GijP (Bt
{i})

N∑
i=1

Gij

, (4.6)

which is a sum of equations (1.14) and (1.15) weighted by the node probabilities. We

use this definition because when we evaluate Equation (4.6) given that the system is in a

particular state S, as required by Equation (4.4), the values of P (At{k}) and P (Bt
{k}) are

either 1 or 0, which leads to the fitness of node j in that particular system state (Equations

(1) and (2)). However, by defining fitness in terms of the node probabilities, this allows us

to have a description of fitness which we can approximate (see Sections 4.2.2 and 4.2.3).

4.2 Approximating the stochastic model

In other fields, such as epidemiology, the construction of node-level equations such as

Equation (4.4) can lead to a hierarchy of moment equations whereby these equations are
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written in terms of pair probabilities, pairs are written in terms of triples and so on, until

the full system state size is reached and the hierarchy is closed (see Section 1.4.2). This

is useful when we can find appropriate closure approximations to close this hierarchy at

a low order. However, we see that such an approach cannot be used here because we

condition against the full system state in Equation (4.4) which means that the full system

size appears even at the first order. We therefore attempt to find other methods to simplify

this system of equations.

In this section, we will describe three different techniques to derive approximations for

this system. The first technique yields a system of equations that becomes computation-

ally infeasible in some circumstances, but by applying homogeneity assumptions to the

underlying graph, we can derive the existing pair approximation models currently used in

the literature [59, 67, 117, 144, 175] (Section 4.2.1). To reduce computation costs, we then

develop methods based on restricting the number of states that we condition against in

the replacement rate. We first obtain a method whose computational complexity scales

linearly with the population size N and, after an appropriate scaling, approximates the

fixation probability well on a wide range of graphs (Section 4.2.2). Then, in Section 4.2.3,

we obtain a method which, although it scales with N2, provides a good approximation to

the evolutionary dynamics over the whole time series for various graphs, and in particular

provides a very accurate approximation to the initial dynamics of the evolutionary process

on all graphs.

4.2.1 Deriving the homogenised pair approximation model

One way of simplifying (4.4) is to assume that the fitness f tj does not need to be normalised

by the total fitness F t in the replacement rate (e.g. as in Equation (4.5) for the invasion

process). This approximation is justified because it does not change the final value to

which the exact node-level equations converge (and therefore the fixation probability),

and will only transform the time series until fixation. Making this assumption, the node

level equations simplify so that we only sum over the neighbours of the individual that

we selected based on fitness. That is, when looking at the event where node j replaces

node i, if we are selecting on death we need to condition against the state of all neighbours

of i, and if selecting on birth we need to condition against the state of all neighbours of

j. As an example, we shall assume here that selection occurs on birth so that we require

conditioning on the neighbourhood of node j, however we can also make similar arguments
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when selecting on death. Using χ̄ to represent this modification of χ in (4.4) and Q to

represent the new probability distribution with the modified time series we obtain

dQ(At{i})

dt
=

N∑
j=1

∑
XNj\{i}

GijQ(Bt
{i}A

t
{j}X

t
Nj\{i})χ̄(Ωt

j→i|Bt
{i}A

t
{j}X

t
Nj\{i})

−
N∑
j=1

∑
XNj\{i}

GijQ(At{i}B
t
{j}X

t
Nj\{i})χ̄(Ωt

j→i|At{i}B
t
{j}X

t
Nj\{i}), (4.7)

where Nj is the neighbourhood of node j; i.e. all nodes that are connected to j. To solve

this system exactly requires the development of equations describing how the probability

of each possible neighbourhood of nodes changes. This in turn would lead to a hierarchy of

equations which is computationally similar to the master equation. However it is possible

to develop approximation methods by assuming independence at the level of lower-order

terms, such as individuals or pairs of nodes, and approximating the neighbourhood prob-

abilities as a function of these.

For example, we can make a pair approximation by using conditional probabilities

and assuming statistical independence at the level of pairs to rewrite the neighbourhood

probability in terms of pair probabilities. From the definition of conditional probabilities,

the right hand side of Equation (4.7) can be written as

dQ(At{i})

dt
=

N∑
j=1

∑
XNj\{i}

GijQ(At{j})Q(Bt
{i}X

t
Nj\{i}|A

t
{j})χ̄(Ωt

j→i|Bt
{i}A

t
{j}X

t
Nj\{i})

−
N∑
j=1

∑
XNj\{i}

GijQ(Bt
{j})Q(At{i}X

t
Nj\{i}|B

t
{j})χ̄(Ωt

j→i|At{i}B
t
{j}X

t
Nj\{i}). (4.8)

If we assume statistical independence of all nodes in the neighbourhood of j, given the

state of j, we can rewrite the neighbourhood probability Q(At{j})Q(Bt
{i}X

t
Nj\{i}|A

t
{j}) as

Q(At{j})Q(Bt
{i}X

t
Nj\{i}|A

t
{j}) ≈ Q(At{j})Q(Bt

{i}|A
t
{j})

∏
l∈Nj\{i}

Q(Xt
{l}|A

t
{j}),

where Xt
{l} is event where node l is in the same state as it is in the event Xt

Nj\{i}. Substi-
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tuting this into Equation (4.8) gives

dQ(At{i})

dt
≈

N∑
j=1

∑
XNj\{i}

GijQ(At{j})Q(Bt
{i}|A

t
{j})

∏
l∈Nj\{i}

Q(Xt
{l}|A

t
{j})χ̄(Ωt

j→i|Bt
{i}A

t
{j}X

t
Nj\{i})

−
N∑
j=1

∑
XNj\{i}

GijQ(Bt
{j})Q(A{i}|Bt

{j})
∏

l∈Nj\{i}

Q(Xt
{l}|B

t
{j})χ̄(Ωt

j→i|At{i}B
t
{j}X

t
Nj\{i}).

Since Q(Bt
{i}|A

t
{j}) = Q(Bt

{i}A
t
{j})/Q(At{j}), in order to evaluate these equations we require

additional equations describing how pair probabilities change with time or some appropri-

ate closure of pairs in terms of single node probabilities. From the master equation we can

derive exact equations describing pairs. For the probability P (Bt
{i}A

t
{j}) we obtain

dP (Bt
{i}A

t
{j})

dt
=

N∑
k=1

∑
XV \{i,j,k}

GjkP (Bt
{i}B

t
{j}A

t
{k}X

t
V \{i,j,k})χ(Ωt

k→j |Bt
{i}B

t
{j}A

t
{k}X

t
V \{i,j,k})

−
N∑
k=1

∑
XV \{i,j,k}

GjkP (Bt
{i}A

t
{j}B

t
{k}X

t
V \{i,j,k})χ(Ωt

k→j |Bt
{i}A

t
{j}B

t
{k}X

t
V \{i,j,k})

+
N∑
k=1

∑
XV \{i,j,k}

GikP (Bt
{k}A

t
{i}A

t
{j}X

t
V \{i,j,k})χ(Ωt

k→i|Bt
{k}A

t
{i}A

t
{j}X

t
V \{i,j,k})

−
N∑
k=1

∑
XV \{i,j,k}

GikP (At{k}B
t
{i}A

t
{j}X

t
V \{i,j,k})χ(Ωt

k→i|At{k}B
t
{i}A

t
{j}X

t
V \{i,j,k}).

(4.9)

We can now apply the same assumption regarding total fitness that we used for the single

node probabilities so that

dQ(Bt
{i}A

t
{j})

dt
=

N∑
k=1

∑
XNk\{i,j}

GjkQ(Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j})χ̄(Ωt

k→j |Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j})

−
N∑
k=1

∑
XNk\{i,j}

GjkQ(Bt
{i}A

t
{j}B

t
{k}X

t
Nk\{i,j})χ̄(Ωt

k→j |Bt
{i}A

t
{j}B

t
{k}X

t
Nk\{i,j})
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+

N∑
k=1

∑
XNk\{i,j}

GikQ(Bt
{k}A

t
{i}A

t
{j}X

t
Nk\{i,j})χ̄(Ωt

k→i|Bt
{k}A

t
{i}A

t
{j}X

t
Nk\{i,j})

−
N∑
k=1

∑
XNk\{i,j}

GikQ(At{k}B
t
{i}A

t
{j}X

t
Nk\{i,j})χ̄(Ωt

k→i|At{k}B
t
{i}A

t
{j}X

t
Nk\{i,j}).

(4.10)

Using conditional probabilities, the neighbourhood probability Q(Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j})

can be written as

Q(Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j}) = Q(Bt

{j}A
t
{k})Q(Bt

{i}X
t
Nk\{i,j}|B

t
{j}A

t
{k})

We can now assume statistical independence of the remaining nodes given the state of j

and k so that

Q(Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j}) ≈ Q(Bt

{j}A
t
{k})Q(Bt

{i}|B
t
{j}A

t
{k})

∏
l∈Nk\{i,j}

Q(Xt
{l}|B

t
{j}A

t
{k}).

Since we know that node i is connected to node j we can assume that given the state of

node j, the state of node i is independent of node k, and similarly the state of any node

in the neighbourhood of k is independent of node j, which gives us

Q(Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j}) ≈ Q(Bt

{j}A
t
{k})Q(Bt

{i}|B
t
{j})

∏
l∈Nk\{i,j}

Q(Xt
{l}|A

t
{k}).

Substituting this into Equation (4.10) gives

dQ(Bt
{i}A

t
{j})

dt
≈ (4.11)

N∑
k=1

∑
XNk\{i,j}

GjkQ(Bt
{j}A

t
{k})Q(Bt

{i}|B
t
{j})

∏
l∈Nk\{i,j}

Q(Xt
{l}|A

t
{k})χ̄(Ωt

k→j |Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j})

−
N∑
k=1

∑
XNk\{i,j}

GjkQ(At{j}B
t
{k})Q(Bt

{i}|A
t
{j})

∏
l∈Nk\{i,j}

Q(Xt
{l}|B

t
{k})χ̄(Ωt

k→j |Bt
{i}A

t
{j}B

t
{k}X

t
Nk\{i,j})
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+

N∑
k=1

∑
XNk\{i,j}

GikQ(At{i}B
t
{k})Q(At{j}|A

t
{i})

∏
l∈Nk\{i,j}

Q(Xt
{l}|B

t
{k})χ̄(Ωt

k→i|At{i}A
t
{j}B

t
{k}X

t
Nk\{i,j})

−
N∑
k=1

∑
XNk\{i,j}

GikQ(Bt
{i}A

t
{k})Q(At{j}|B

t
{i})

∏
l∈Nk\{i,j}

Q(Xt
{l}|A

t
{k})χ̄(Ωt

k→i|Bt
{i}A

t
{j}A

t
{k}X

t
Nk\{i,j}).

While this system is closed, its computational complexity increases exponentially with the

maximum node degree of the graph, so it is not numerically feasible for graphs with highly

connected nodes. While this could potentially be addressed by introducing approximations

for nodes with high degree and this may lead to accurate models, here we continue towards

a simplified model. To do this, we follow the same process as in epidemic models and make

a homogeneity assumption by assuming that any pair is equally likely to be in any given

state [91, 166]; i.e. Q(Xt
{i}|Y

t
{j}) = Q(Xt|Y t) for all pairs (i, j). This leads to

dQ(At{i})

dt
≈

N∑
j=1

∑
XNj\{i}

GijQ(At{j})Q(Bt|At)kj−nXQ(At|At)nX χ̄(Ωt
j→i|Bt

{i}A
t
{j}X

t
Nj\{i})

−
N∑
j=1

∑
XNj\{i}

GijQ(Bt
{j})Q(At|Bt)nX+1Q(Bt|Bt)kj−nX−1χ̄(Ωt

j→i|At{i}B
t
{j}X

t
Nj\{i}),

where kj is the degree of node j and nX is the number of type A individuals in state

XNj\{i}. Since the transition rate only depends on the number of type A and type B

individuals in the neighbourhood of node j and not on their positions, the summand on

the right hand side is equal for all states XNj\{i} which have the same configuration of

A and B individuals. The frequency of a certain neighbourhood state across all possible

configurations is given by the binomial coefficient, so that

dQ(At{i})

dt
≈

N∑
j=1

kj−1∑
n=0

Gij

(
kj − 1

n

)
Q(At{j})Q(Bt|At)kj−nQ(At|At)nχ̄(Ωt

j→i|n)

−
N∑
j=1

kj−1∑
n=0

Gij

(
kj − 1

n

)
Q(Bt

{j})Q(At|Bt)n+1Q(Bt|Bt)kj−n−1χ̄(Ωt
j→i|n),

where χ̄(Ωt
A→B|n) is the rate at which we select one of the type A individuals to reproduce
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and replace a type B, given that there are n type A individuals and kj−n type B individuals

in the neighbourhood of the selected node.

Since we have assumed that any pair is equally likely, this assumption only holds when

every node in the graph forms k connections, which are chosen at random. Therefore we

require that node i is equally likely to be connected to any other node and all nodes are

topologically equivalent, so that the probability that a given node of type B is connected

to x type A neighbours is given by a binomial distribution with n = k and p = Q(At|Bt).

Therefore the probability of an individual being type A changes with rate

dQ(At)

dt
≈ kQ(At|Bt)Q(Bt)

k−1∑
n=0

(
k − 1

n

)
Q(Bt|At)k−nQ(At|At)nχ̄(Ωt

A→B|n)

− kQ(Bt|At)Q(At)
k−1∑
n=0

(
k − 1

n

)
Q(At|Bt)n+1Q(Bt|Bt)k−n−1χ̄(Ωt

B→A|n+ 1).

This assumption would best represent a network where all nodes have the same degree and

edges are chosen at random at every time step. In practice, this assumption is reasonable for

networks with little variation in their degree distribution and without significant structural

rigidity. Therefore, whilst this assumption may accurately approximate a k-regular random

graph it may not perform well on a square-lattice. This may also perform reasonably well

on Erdős-Réyni random graphs, since these have reasonably low degree variation, but will

not perform well on a scale-free random graph, which has very high degree variation.

We can also apply these assumptions to the pair-level equations to obtain a closed

system of equations which are efficient to solve numerically. The resulting model is equiv-

alent to the model in [117], which was justified by using the assumption that the pop-

ulation occupies a regular graph, such that all individuals have degree k, and that all

nodes are topologically equivalent, such that every pair of individuals is equally likely to

be connected. We have shown that by applying these assumptions to the exact node-level

equations (Equation (4.4)) we can derive these models.

Similarly we can obtain a pair approximation model for the dynamics where we select

on death by conditioning against the state of the neighbours of node i. Applying analogous

assumptions to the previous example then leads to the model in [59]. These models have

been shown to yield interesting qualitative results about the relative strengths of different

strategies in evolutionary games on graphs. However, the homogeneity assumptions made
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result in losing important aspects of the structure, such as how individual nodes in the sys-

tem can behave differently. In the next sections we will attempt to develop approximation

methods which can capture this node-specific information.

As we alluded to earlier, a natural method would be to use Equation (4.7) as a basis

for this. However, difficulties in implementing this method on general graphs as well as

the number of equations that result leads us to a different direction for the present work.

4.2.2 An unconditioned fitness approximation model

Here we develop a method which removes the need to include the probability of whole

neighbourhoods by removing the conditioning in the replacement rate. This causes the

replacement rate to only depend on the marginal probabilities of the state of each node

rather than the full system state. This assumption also motivated a model in [175] in which

the authors construct a population-level approximation describing how the expected num-

ber of individuals of each type change with time. Under this assumption, Equation (4.4)

becomes

dP (At{i})

dt
≈

N∑
j=1

∑
XV \{i,j}

GijP (Bt
{i}A

t
{j}X

t
V \{i,j})χ(Ωt

j→i)

−
N∑
j=1

∑
XV \{i,j}

GijP (At{i}B
t
{j}X

t
V \{i,j})χ(Ωt

j→i).

Since χ(Ωt
j→i) is now the same for all system states,

dP (At{i})

dt
≈

N∑
j=1

GijP (Bt
{i}A

t
{j})χ(Ωt

j→i)−
N∑
j=1

GijP (At{i}B
t
{j})χ(Ωt

j→i).

Adding and subtracting
N∑
j=1

GijP (At{i}A
t
{j})χ(Ωt

j→i) we obtain

dP (At{i})

dt
≈

N∑
j=1

[
GijP̄ (Bt

{i}A
t
{j})χ(Ωt

j→i) +GijP (At{i}A
t
{j})χ(Ωt

j→i)
]
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−
N∑
j=1

[
GijP (At{i}B

t
{j})χ(Ωt

j→i) +GijP̄ (At{i}A
t
{j})χ(Ωt

j→i)
]

≈
N∑
j=1

GijP (At{j})χ(Ωt
j→i)−

N∑
j=1

GijP (At{i})χ(Ωt
j→i),

which is a closed set of N equations with at most N summands on the right hand side.

Therefore by defining P̄ as an approximation to the probability distribution P we obtain

the closed system

dP̄ (At{i})

dt
=

N∑
j=1

GijP̄ (At{j})χ(Ωt
j→i)−

N∑
j=1

GijP̄ (At{i})χ(Ωt
j→i), (4.12)

which is easy to solve numerically for an arbitrary graph.

Example 4.2.1 (Neutral drift). In the special case of neutral drift, i.e. when all individuals

have identical fitness, the unconditioned fitness model gives the exact fixation probability.

With the dynamics of the invasion process under neutral drift we obtain χ(Ωt
j→i) = 1

Nkj
,

and therefore Equation (4.12) can be written as

dP̄ (At{i})

dt
=

N∑
j=1

GijP̄ (At{j})
1

Nkj
−

N∑
j=1

GijP̄ (At{i})
1

Nkj
,

which is equivalent to the exact node equation (4.4) for the invasion process under neutral

drift [164]. The unconditioned fitness model is also exact for all update mechanisms under

neutral drift, but we do not write the equations explicitly here.

As the population size N increases, the solution to Equation (4.12) moves further away

from the exact fixation probability obtained either by solving the master equation (4.3)

or from the output of stochastic simulations. To obtain a reasonable approximation to

the fixation probability from a given initial condition we construct a scaling factor for the

constant fitness case by comparing the ratio between the solution of Equation (4.12) on

a complete graph to the exact fixation probability on a complete graph. We choose the

complete graph because the exact fixation probability can be calculated analytically in

this case. Whilst we consider the constant fitness case, it may also be possible to find a

suitable scaling factor in the frequency dependent fitness case, however using a complete

graph may no longer be appropriate because the relative strength of different strategies in
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some games is strongly affected by the average degree of the graph [129].

Example 4.2.2 (Invasion process). For constant fitness under the dynamics of the invasion

process, the exact fixation probability for m initial mutant A individuals on a complete graph

is equivalent to the Moran probability [102]:

ρA(m) =
1− 1

rm

1− 1
rN

.

Since the fixation probability is known, we now need to solve Equation (4.12) on the com-

plete graph to derive the ratio between the two. In the constant fitness case this can be

done analytically, with the scaling factor for m initial mutants given by

ρA(m)

lim
t→∞

Ac(t)
=

1− 1
rm

1− 1

rN

1
r−1

(
−1 +

√
1 + m(r2−1)

N

) , (4.13)

where Ac(t) = 1
N

N∑
j=1

P̄ (At{j}). The derivation of this can be found in Appendix 4.B.

We can now define two methods for predicting the fixation probability under any Marko-

vian update mechanism.

� Method 1 (Unconditioned fitness model) Solve Equation (4.12) to provide an ap-

proximation to the dynamics of the evolutionary process.

� Method 2 (Scaled unconditioned fitness model) Solve Equation (4.12) and then

use a scaling factor, the ratio of the exact fixation probability and the solution to

Equation (4.12) for the complete graph, to provide an approximation to the fixation

probability from a given initial condition.

In Section 4.3 we investigate the numerical performance of these two methods. Note that

for the purpose of this work we have found the scaling factor for Method 2 under the

invasion process (Equation (4.13)). However, the method can be applied to other update

mechanisms, such as death-birth with selection on birth, by finding an appropriate scaling

factor, which can be done by solving Equation (4.12) (either analytically or numerically)

and comparing to the exact fixation probability on the complete graph. For example,

see [70] for the exact fixation probability on a complete graph under the DB-B dynamics.
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4.2.3 A contact conditioning approximation model

In Section 4.2.2 we restricted the conditioning so that we only require the marginal proba-

bilities of the individual nodes. However, this removes a significant amount of information

from the dynamics. In the evolutionary process, when considering a replacement event the

two nodes of most interest are the node selected for birth and the node selected for death.

Therefore, here we follow a similar method but retain conditioning on the states of these

two key nodes. Since we restrict the conditioning to only the states of the relevant contact,

when looking at the term χ(Ωt
j→i|Bt

{i}A
t
{j}X

t
V \{i,j}) in Equation (4.4) we condition only

on the states of the nodes i and j and obtain

χ(Ωt
j→i|Bt

{i}A
t
{j}X

t
V \{i,j}) ≈ χ(Ωt

j→i|Bt
{i}A

t
{j}).

Under the above condition, Equation (4.4) becomes

dP (At{i})

dt
≈

N∑
j=1

∑
XV \{i,j}

GijP (Bt
{i}A

t
{j}X

t
V \{i,j})χ(Ωt

j→i|Bt
{i}A

t
{j})

−
N∑
j=1

∑
XV \{i,j}

GijP (At{i}B
t
{j}X

t
V \{i,j})χ(Ωt

j→i|At{i}B
t
{j}). (4.14)

To see the effect of this assumption on the rates, consider χ(Ωt
j→i|Bt

{i}A
t
{j}). Here we con-

dition only against node i being in state B and node j being in state A rather than against

the entire system state. Consequently in the fitness equation (4.6) we have P (Bt
{i}) = 1

and P (At{j}) = 1 giving

f tj |Bt
{i}A

t
{j} = fback + w

bTij + a
∑
l 6=i
GjlP (At{l}) + b

∑
l 6=i
GjlP (Bt

{l})

N∑
l=1

Gjl

.
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In Equation (4.14), the chance of selecting node j is now independent of the state Xt
V \{i,j}

of the remaining nodes which enables the equation to be reduced to

dP (At{i})

dt
≈

N∑
j=1

GijP (Bt
{i}A

t
{j})χ(Ωt

j→i|Bt
{i}A

t
{j})−

N∑
j=1

GijP (At{i}B
t
{j})χ(Ωt

j→i|At{i}B
t
{j}).

(4.15)

This gives an approximate equation for individuals in terms of pairs. We then need to build

equations to describe pair-level probabilities. Similar methodologies have been followed to

describe epidemics propagated on networks [166, 168].

Applying the same conditioning to the exact pair-level equation (4.9) we obtain

dP (Bt
{i}A

t
{j})

dt
≈ (4.16)

N∑
k=1

GjkP (Bt
{i}B

t
{j}A

t
{k})χ(Ωt

k→j |Bt
{j}A

t
{k})−

N∑
k=1

GjkP (Bt
{i}A

t
{j}B

t
{k})χ(Ωt

k→j |At{j}B
t
{k})

+

N∑
k=1

GikP (Bt
{k}A

t
{i}A

t
{j})χ(Ωt

k→i|Bt
{k}A

t
{i})−

N∑
k=1

GikP (At{k}B
t
{i}A

t
{j})χ(Ωt

k→i|At{k}B
t
{i}).

(4.17)

Similar formulae can be constructed for all possible pairs, writing pairs in terms of triples.

In a similar way, triples can be written in terms of quads and so on, up to the full system

size N which is then closed. Therefore, when using this method we obtain a hierarchy

similar to the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy [18, 88] in

statistical physics. However, here the hierarchy only represents an approximation to the

original dynamics. Solving this system exactly is no simpler than evaluating Equation (4.3)

since evaluating the hierarchy in full is comparable in numerical complexity, so we wish to

find approximation methods to reduce this.

With this hierarchy, we can apply techniques developed in statistical physics to approx-

imate higher-order terms as functions of lower-order terms (as described in Section 1.4.2

for SIS epidemic models). In particular we can close the system of equations (4.15) and

(4.17) at the level of pairs by approximating all triples in Equation (4.17) in terms of pair-

level and individual-level probabilities. Similar techniques have been applied for many

stochastic processes including in epidemiology [83, 91, 166, 168] and evolutionary dynam-

ics [67, 129, 175] leading to models which can be numerically evaluated.
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To close the system, we require a functional form that can approximate triple prob-

abilities in terms of individual and pair probabilities. One method is to approximate a

triple P (At{i}B
t
{j}C

t
{k}) as the product of all possible pairs among these nodes divided by

the product of all individuals, i.e.

P (At{i}B
t
{j}C

t
{k}) ≈

P (At{i}B
t
{j})P (Bt

{j}C
t
{k})P (At{i}C

t
{k})

P (At{i})P (Bt
{j})P (Ct{k})

. (4.18)

This closure is commonly attributed to Kirkwood [172] because it is derived from the

Kirkwood superposition which approximates triples in terms of pairs in thermodynam-

ics [87, 89]. This is often applied to nodes i, j, k that form a 3-cycle in the graph, which

we call a ‘closed triple’, although it can be applied to any triple of nodes. It has been

shown that this closure maximises the entropy of these thermodynamic systems [172], and

it also ensures that symmetry is preserved across the triple. This closure has commonly

been adapted to probabilistic systems, such as the BBGKY hierarchy [18, 88] and epidemic

modelling [82, 166, 169]. However, the Kirkwood closure for probabilities does not define a

probability distribution since we can obtain P (Bt
{i}A

t
{j}) + P (Bt

{i}B
t
{j}) 6= P (Bt

{i}), which

has been observed numerically [157]. In spite of this it has been shown to yield accurate

approximations in these probabilistic systems [157, 166, 172].

Another closure can be obtained by using conditional probabilities and assuming sta-

tistical independence, as described in Section 1.4.2. We have

P (At{i}B
t
{j}C

t
{k}) = P (At{i}|B

t
{j}C

t
{k})P (Bt

{j}C
t
{k}),

which, when we assume statistical independence of nodes i and k given j, simplifies to

P (At{i}B
t
{j}C

t
{k}) ≈ P (At{i}|B

t
{j})P (Bt

{j}C
t
{k}) =

P (At{i}B
t
{j})P (Bt

{j}C
t
{k})

P (Bt
{j})

. (4.19)

Typically this closure is applied to nodes on a graph where nodes i and j are connected

and nodes j and k are connected but where there is no connection between nodes i and k,

which we call an ‘open triple’. However, it could be applied to any triplet of nodes. This

closure method is thought to be most accurate on trees [91, 157, 168], and has been shown

to be exact for such graphs under the SIR epidemic model [92, 168, 169].

We can adopt either closure to remove triples and close the system. For example, if we
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are using the Kirkwood closure to approximate all triples in Equation (4.17) we obtain the

system of equations

dP̄ (At{i})

dt
=

N∑
j=1

GijP̄ (Bt
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t
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Gik
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k→i|At{k}B

t
{i}),

where P̄ represents the approximation to the probability distribution P . However, note

that using this closure for all triples will eventually require equations for every pair of

nodes in the system, whether they are connected or not.

It is also useful to use a combination of the two methods whereby the Kirkwood clo-

sure (4.18) is used for closed triples, and (4.19) is used for open triples [82, 166]. In this

work we shall use this combined approach to obtain a closed system. However, we find

that unlike in epidemiology, this standard approach does not produce good results. We

therefore also try using just the Kirkwood closure because this permits explicit correla-

tions between nodes which are not linked, although as indicated above, this substantially

increases computational complexity because the system of equations will scale with N2

rather than the number of connected individuals in the graph.

With the contact conditioning model we define two different methods to approximate

the evolutionary dynamics.

� Method 3 (Open and closed triples) Solve Equation (4.15) together with equations

for pairs by using two different closures for different types of triples. First consider

a triple P (At{i}B
t
{j}Z

t
{k}), Z ∈ {A,B}, where there is no link between nodes i and k.
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We call this an open triple, and can approximate it as

P (At{i}B
t
{j}Z

t
{k}) ≈

P (At{i}B
t
{j})P (Bt

{j}Z
t
{k})

P (Bt
{j})

.

If there exists a link between nodes i and k we call this a closed triple, and approxi-

mate this using the Kirkwood closure,

P (At{i}B
t
{j}Z

t
{k}) ≈

P (At{i}B
t
{j})P (Bt

{j}Z
t
{k})P (At{i}Z

t
{k})

P (At{i})P (Bt
{j})P (Zt{k})

.

Using this method it is only necessary to use pairs which have a link between them

in the graph, and so it scales with Nd, where d is the average degree of the graph.

� Method 4 (Kirkwood closure only) Solve Equation (4.15) together with equations

for pairs by using the Kirkwood closure for all triples. That is, we approximate any

triple P (At{i}B
t
{j}Z

t
{k}), Z ∈ {A,B} as

P (At{i}B
t
{j}Z

t
{k}) ≈

P (At{i}B
t
{j})P (Bt

{j}Z
t
{k})P (At{i}Z

t
{k})

P (At{i})P (Bt
{j})P (Zt{k})

.

This method requires the use of every pair of nodes in the system, not just those

which are directly connected, and so scales with N2.

4.3 Results

4.3.1 A comparison of the different methods: fixation probabilities for

constant fitness

Here we investigate the fixation probability of a single initial A individual placed in a

given node on the graph under the dynamics of the invasion process. Figure 4.1 compares

Method 1 (unconditioned fitness model) under the invasion process against stochastic sim-

ulation on a four-node star graph. On such small graphs, Method 1 appears to provide a

reasonable approximation to the expected dynamics and to the fixation probability. How-

ever, for such small populations exact solutions are easy to obtain, and hence we want to

test larger population sizes. When the population size is increased, this method fails to

accurately predict the fixation probability, appearing to tend towards zero with increasing
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Figure 4.1: Comparison of the marginal probabilities for each node on the graph being a mutant A plotted
against time as given by Method 1 (solid lines) versus stochastic simulation of the discrete-time system
(circles), when applied to the invasion process on a 4-node star graph. We consider (a) dynamics initiated
with a single A individual on a leaf node and (b) dynamics initiated with a single A individual on the
central node. Each line represents the marginal probability of a certain node in the graph being occupied
by an A individual, the corresponding colours between solid lines and circles represent the same node on
the graph. The stochastic process is simulated 10,000 times from the same initial condition until fixation
of either the mutant or resident strategy. The probabilities represent, for a given node at a given time,
the proportion of simulations for which that node is a mutant. Method 1 is numerically integrated to
approximate the probability of each node being a mutant at a given time. This is the constant fitness case
where A individuals have fitness 1.2 and B individuals have fitness 1.

population size (for example, see Table 4.1, where it can be seen that increasing the size

from 20 to 35 to 50 moves the solution closer to zero on random graphs). To account for

this, we use Method 2 (scaled unconditioned fitness model).

Method 2 represents a scaling of the approximation from Method 1 where the scaling

is derived analytically from the fixation probability for a complete graph. Consequently,

it makes sense to only consider the approximation of the fixation probability rather than

the whole time series. Predictions of the fixation probability of a single A individual

when placed on various graphs using the different approximation methods are shown in

Tables 4.1 and 4.2. We first observe that the accuracy of the method does not significantly

differ for different population sizes, so this overcomes the issue with Method 1. For both

the Erdős-Réyni [43] and scale-free random graphs, we start the process in three different

initial conditions; a high-degree initial node, a low-degree initial node and an average

degree initial node. This is because under the dynamics of the invasion process, a low

degree node is known to act as an amplifier of selection and a high degree node is known

to act as a suppressor [6, 164], and so we potentially expect different performance of the

methods when initiated from nodes of different degree. In the random k-regular random
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graph, since all nodes have equal degree, we only consider results for one initial node. In

addition to the random graphs (Table 4.2), we also investigate a star graph, a square lattice

and Zachary’s karate club [201]. On these graphs we initiate the dynamics from a high

degree and low degree node. We observe that Method 2 performs best on the k-regular

random graph and that generally it performs very well on any graph that does not strongly

amplify or suppress the average fixation probability compared to the Moran probability,

such as the Erdős-Réyni random graph and the square lattice. However on graphs which

amplify (or suppress) average fixation probability, such as the scale-free random graph, the

approximation becomes less accurate. On the star graph, which significantly amplifies the

fixation probability, the approximation is very far from the true value. This is unsurprising

because Method 2 is constructed to give the exact fixation probability on complete graphs.

For Zachary’s karate club, Method 2 provides a reasonable approximation, but does not

capture the strong amplifying effect of the low degree node.

In order to improve upon the accuracy of Method 2 we developed the contact condition-

ing model to retain more information from the system. The contact conditioning model

yields a hierarchy which offers no useful reduction in computational complexity, compared

to the master equation (4.4). Therefore we developed Method 3 (open and closed triples

approximation), analogous to closures used in epidemiology. However, through numerical

evaluation we found that this only yields good approximations for simple graphs, such as

line graphs and complete graphs for which we have exact analytic results in any case. On

other graphs, the fixation probability approximation is equal to 1 (Tables 4.1 and 4.2) for

an advantageous mutant of type A, and so this method is not particularly informative.

While the specific reason for this convergence to 1 (or 0 if the mutant is disadvanta-

geous) is unclear, it seems likely that it is associated with graph-wide correlations caused

by having two absorbing states. To address this we developed Method 4 (Kirkwood clo-

sure only). Through testing multiple graphs we observe (Tables 4.1 and 4.2) that the best

results are obtained on Erdős-Réyni and random k-regular graphs, with some accuracy

lost on scale-free random graphs. We observe that on the 20 node star graph, inaccura-

cies result in a significantly amplified approximation when initiated on the low degree leaf

nodes, and for the 35 and 50 node star graphs the approximations initiated on the leaf

node are close to 1. This is potentially due to the time to convergence on large stars being

very long, which allows these inaccuracies to compound so that the system converges to

this uninformative solution. This failure does not occur on these stars if we reduce the

fitness advantage, suggesting that as the size of the star becomes very large the method
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Table 4.1: The fixation probability starting from a single mutant A individual placed on a specific node on
single realisations of random graphs. To evaluate the fixation probability using the approximate methods,
we solved them until a steady-state was reached and calculated the average probability of a node being a
mutant (the methods do not always give exactly the same value for each node). We compare this to the
fixation probability as calculated by the proportion of 10,000 stochastic simulations in which the type A
individuals fixated. Constant fitness is assumed, where A individuals have fitness 1.2 and B individuals
have fitness 1. All graphs were generated to have an average degree of 5.

Graph Fixation probability
Method 1 Method 2 Method 3 Method 4 Simulation

20 node Erdős-Réyni - initial degree 10 0.0193 0.0604 1.0000 0.0654 0.0784

20 node Erdős-Réyni - initial degree 2 0.1055 0.3301 1.0000 0.2874 0.3098

20 node Erdős-Réyni - initial degree 5 0.0424 0.1326 1.0000 0.1343 0.1575

20 node scale-free - initial degree 10 0.0190 0.0594 1.0000 0.0681 0.0783

20 node scale-free - initial degree 2 0.0945 0.2956 1.0000 0.3004 0.3153

20 node scale-free - initial degree 5 0.0475 0.1486 1.0000 0.1490 0.1606

20 node random k-regular 0.0547 0.1711 1.0000 0.1516 0.1722

35 node Erdős-Réyni - initial degree 10 0.0126 0.0671 1.0000 0.0782 0.0940

35 node Erdős-Réyni - initial degree 2 0.0628 0.3346 1.0000 0.3255 0.3191

35 node Erdős-Réyni - initial degree 5 0.0315 0.1679 1.0000 0.1572 0.1730

35 node scale-free - initial degree 10 0.0089 0.0474 1.0000 0.0844 0.0724

35 node scale-free - initial degree 2 0.0444 0.2366 1.0000 0.4743 0.2929

35 node scale-free - initial degree 5 0.0223 0.1188 1.0000 0.1950 0.1546

35 node random k-regular 0.0313 0.1668 1.0000 0.1631 0.1750

50 node Erdős-Réyni - initial degree 10 0.0083 0.0630 1.0000 0.0787 0.0820

50 node Erdős-Réyni - initial degree 2 0.0332 0.2521 1.0000 0.4175 0.3060

50 node Erdős-Réyni - initial degree 5 0.0272 0.2065 1.0000 0.2275 0.2120

50 node scale-free - initial degree 10 0.0056 0.0425 1.0000 0.0872 0.0660

50 node scale-free - initial degree 2 0.0307 0.2331 1.0000 0.3912 0.2840

50 node scale-free - initial degree 5 0.0154 0.1169 1.0000 0.1868 0.1530

50 node random k-regular 0.0219 0.1667 1.0000 0.1533 0.1640

will only work under weak selection. On random graphs, which do not significantly am-

plify fixation, this issue is also observed, but only when the fitness advantage of one type

is sufficiently high. This issue starts when the fitness advantage is at about 50%, below

which the solution converges to intermediate values on all random graphs tested. In ad-

dition to testing the star graph as an example of an extreme structure, we also tested a

square lattice of various sizes, on which we find that Method 4 significantly underestimates

the fixation probability. The square lattice is considered as an extreme scenario for this

method because it contains many short cycles of order four, for which the correlations are

not explicitly captured by the Kirkwood closure, which describes triples. Presenting the

star graph and square lattice therefore illustrate the cases where this method is expected to

perform least well. Testing Zachary’s karate club [201] illustrates how this method might
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Table 4.2: The fixation probability starting from a single mutant A individual placed on a specific node
on the example graphs. To evaluate the fixation probability using the approximate methods, we solved
them until a steady-state was reached and calculated the average probability of a node being a mutant
(the methods do not always give exactly the same value for each node). We compare this to the fixation
probability as calculated by the proportion of 10,000 stochastic simulations in which the type A individuals
fixated. Constant fitness is assumed, where A individuals have fitness 1.2 and B individuals have fitness 1.

Graph Fixation probability
Method 1 Method 2 Method 3 Method 4 Simulation

20 node star - initial degree 1 0.0574 0.1796 1.0000 0.3801 0.2895

20 node star - initial degree 19 0.0030 0.0094 1.0000 0.0217 0.0184

25 node square lattice - initial degree 2 0.0662 0.2546 1.0000 0.1532 0.2388

25 node square lattice - initial degree 4 0.0332 0.1277 1.0000 0.0780 0.1444

34 node Zachary’s karate club - initial degree 2 0.0482 0.2498 1.0000 0.4285 0.3160

34 node Zachary’s karate club - initial degree 16 0.0061 0.0314 1.0000 0.0461 0.0450

36 node star - initial degree 1 0.0322 0.1717 1.0000 1.0000 0.2971

36 node star - initial degree 35 0.0009 0.0051 1.0000 0.0209 0.0090

36 node square lattice - initial degree 2 0.0483 0.2646 1.0000 0.1363 0.2462

36 node square lattice - initial degree 4 0.0242 0.1326 1.0000 0.0689 0.1385

49 node star - initial degree 1 0.0224 0.1697 1.0000 1.0000 0.3070

49 node star - initial degree 48 0.0005 0.0035 1.0000 0.0260 0.0059

49 node square lattice - initial degree 2 0.0367 0.2734 1.0000 0.1241 0.2494

49 node square lattice - initial degree 4 0.0184 0.1369 1.0000 0.0609 0.1477

perform on a real world graph. On this graph we find that Method 4 provides a reasonable

approximation to the fixation probabilities (Table 4.2).

We also observed, as shown in Tables 4.1 and 4.2, that Method 4 performs most accu-

rately when initiated on a node with average to high degree. In addition to approximating

the fixation probability, Method 4 can be used to approximate the dynamics across the

whole time series, and in particular provides a very accurate approximation to the initial

dynamics for all graphs tested (see Figure 4.2 for results on two 20 node graphs as an

illustration). This accuracy holds even for the large star graphs when initiated on the leaf

node, for which the final approximation was close to 1.

4.3.2 The Hawk-Dove game with the contact conditioning model

So far, we have considered the constant fitness case. Here we briefly consider the effective-

ness of Method 4 when applied to the Hawk-Dove game under the dynamics of the invasion

process. Method 2 relies on finding a suitable scaling factor, whilst Methods 1 and 3 were

both observed in Section 4.3.1 to yield non-informative results on the type of graphs we

test here and so we do not investigate these methods in this context.
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Figure 4.2: Comparison of the early dynamics of the marginal probabilities for each node on the graph
being a mutant A plotted against time as given by Method 4 (solid lines) versus stochastic simulation
(dashed lines), when applied to the invasion process on (a) an Erdős-Réyni random graph with 20 nodes
and average degree of 4 and (b) a scale-free graph with 20 nodes and average degree 4, both initiated with
a single A individual in a chosen node. Each line represents the marginal probability of a certain node in
the graph being occupied by an A individual, the corresponding colours between the solid lines and dashed
lines representing the same node on the graphs. The discrete-time stochastic process was simulated 10,000
times from the same initial condition, from which we obtained the probability for each node being a mutant
at a given time as the proportion of simulations for which that node is a mutant. Method 4 was numerically
integrated to approximate the probability of each node being a mutant at a given time. We use a dashed
line with interpolation between integer time points for the discrete-time system to enable easier comparison
of the dynamics. The game considered is the constant fitness case where the A individuals have fitness 1.2
and the B individuals have fitness 1.

The Hawk-Dove game [109, 110] represents a simple model of how animals compete

over food, territory and other resources. Animals interact over a resource with either

an aggressive or non-aggressive strategy, which we call the Hawk and Dove strategies,

respectively. We let the resource yield a payoff V which both players try to obtain. When

two Hawks interact, they fight over the resource with one taking the payoff V , and the

other accruing a cost C from the fight, and therefore the average payoff received by a Hawk

interacting with a Hawk is (V − C)/2. When a Hawk meets a Dove, the Dove retreats

without a fight receiving a payoff 0, allowing the Hawk to take the whole resource, receiving

payoff V . If two Doves meet, they either share the resource, or each takes the whole reward

without a fight with probability 1/2, so that the average payoff received by a Dove from
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this interaction is V/2. Therefore, in this game the payoff matrix is given by

H D( )
H (V − C)/2 V

D 0 V/2
.

Figure 4.3 illustrates results from this game on a scale-free graph, an Erdős-Réyni random

graph, a random k-regular graph and a square lattice. Here we add a background fitness

to the individuals, so that the fitness of a type X individual is given by fback + fX . This

is to ensure that fitness is always positive. We consider two cases; firstly where the fight

cost is low using parameters fback = 2, w = 1, V = 1 and C = 1.5, and secondly where

the fight cost is high using parameters fback = 2, w = 1, V = 1 and C = 4. In each case

we compare the results of Method 4 to stochastic simulation, initiated with a population

consisting of half Hawks and half Doves to minimise the chance of early extinction events.

We observe that when the cost is low the approximation is reasonable, with all 3 random

graphs providing a good approximation, and some accuracy lost on the square lattice.

However, as we increase the cost, C, we observe that the approximation does not perform

well. This is because the contact conditioning assumption seems to amplify the strength

of the Hawk strategy, with the rate at which an individual becomes a Hawk under this

assumption being greater than it will be in the exact case.

4.4 Discussion

Evolutionary graph theory [102] was introduced as a way of adding spatial structure to

the stochastic evolutionary dynamics considered by Moran [116]. Analytic results on these

stochastic dynamics focused on idealised cases of simple graphs [6, 19]. In order to study

arbitrary graphs, methods usually follow certain restrictions, such as focusing on the evo-

lutionary process under weak selection or infinitely large populations [2, 129, 203]. Alter-

natively, individual-based stochastic simulations give very accurate results but are limited

by computational time [12, 105].

The focus of this chapter has been the attempt to develop a general method that can

approximate the stochastic dynamics on a wide range of graphs by adapting methods from

statistical physics and epidemiology. In doing this, we have provided a derivation of existing

(homogenised) pair-approximation models from the master equation [59, 67, 117, 144, 175]
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Figure 4.3: Comparison of the expected number of individuals playing the Hawk strategy in a Hawk-
Dove game plotted against time as given by Method 4 versus stochastic simulation, when played on (a) a
scale-free graph (b) an Erdős-Réyni graph (c) a random k-regular graph and (d) a 7 by 7 square lattice.
Except for the square lattice, each graph has 50 nodes and an average degree of approximately 4. The solid
lines represent the solution of Method 4 and the circles represent stochastic simulations of the discrete-time
system, evaluated every 1000 time steps, in the case where C = 1.5. The dashed lines represent the solution
of Method 4 and the crosses represent stochastic simulations of the discrete-time system, evaluated every
1000 time steps, in the case where C = 4. To generate the stochastic simulation results the discrete-time
stochastic process was simulated 10,000 times from the same well mixed initial condition until fixation was
reached. By taking the average number of Hawks at each time step we determined the expected number
of Hawks at a given time. Method 4 is numerically integrated to give the probability of each node being a
Hawk at a given time, from which we obtained the expected number of Hawks by summing over all nodes.

(Section 4.2.1). Additionally, we also derived an individual-level model which has the

neutral drift model [164] as a special case (Section 4.2.2).

We start with a representation of the stochastic evolutionary process using a master

equation [68], from which we develop exact equations describing individual node probabili-

ties. We then apply ideas for approximating the master equation based around developing
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hierarchies of moment equations. Such methods were originally developed in physics [18, 88]

and later used in epidemiology and ecology [67, 82, 142, 168, 169]. The key idea behind

these techniques is to write deterministic differential equations to describe how the prob-

abilities of the states of individuals and pairs change over time.

We find that a major difference between evolutionary graph theory and other areas in

which these methods have been applied is that here, event probabilities depend on the states

of all individuals in the population. As a result, we do not obtain a precise BBGKY-like

hierarchy, which relies on neighbouring particle-particle interactions. Another difference

is that in evolutionary dynamics, we have two absorbing states, which potentially leads

to system-wide correlations that cannot be captured on a local level. It is worth noting

that some alternative nearest-neighbour interaction evolutionary models, which may yield

such a hierarchy directly, have also been considered [178]; however, in this work we have

restricted our attention to the classic evolutionary graph theory dynamics.

In spite of these differences, some progress could be made towards approximating evo-

lutionary dynamics. The first step was to write down equations for the rate of change of

the state probabilities for individual nodes (Theorem 4.1.1). This led to equations which

required conditioning against the probability of the state of the entire system, and there-

fore required the development of methods to simplify this. Motivated by an objective of

deriving homogenised pair-approximation models used in the literature, our first approach

was to modify the replacement rate by removing the normalisation by the total fitness

(Section 4.2.1). This has the effect of altering the speed at which events occur but does

not alter the final fixation probability. The resulting system of equations describes indi-

vidual and pair probabilities in terms of the probability of their entire neighbourhoods.

This could provide a basis to accurately approximate the fixation probability by finding

appropriate moment closures to express the neighbourhoods as functions of individual and

pair probabilities. However, this is difficult to implement and the number of equations

increases exponentially with the maximum degree of the graph, making it infeasible in

general without further approximation. By making further assumptions about the graph

such that all individuals and pairs of a given type are identical and interchangeable, we

were able to derive the homogenised pair approximation models [59, 117], which have been

shown to give interesting results for various evolutionary games.

To obtain an approximation which is numerically feasible in general, we first ignored

any conditioning, similar to a model in [175] which uses this assumption to construct a

population level approximation. The resulting model (Equation (4.12)) was found to work
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well for small graphs and contains the exact neutral drift model [164] as a special case.

However, as population size increases, the predictions for the fixation probability of a

single mutant individual were observed to tend to zero. By solving this system for the

fixation probability on a complete graph, we obtained a scaling factor which enabled this

model to give a reasonable prediction of fixation probability from a given initial condition

with a single mutant individual on any graph. Due to the construction of this method, it

will perform best on graphs which yield average fixation probability close to the Moran

probability.

To generate a more accurate model and one which does not require an artificial scaling

factor, we investigated models with some level of conditioning (Section 4.2.3). Conditioning

against a single node results in the same level of complexity as conditioning against pairs

of nodes and so we elected to produce results for the latter. In this case, we conditioned

against the pair of nodes directly involved in the replacement event. However, in order to

use this model on large graphs, we require the use of moment closure approximations. We

found that the standard method used in other areas with different closures for open and

closed triples [82, 166] was not effective here because while it provides very good results

on simple structures, on most graphs it predicts fixation probabilities of either zero or one.

It seems likely that this is caused by neglecting important graph-wide correlations across

open triples associated with the two absorbing states of the system.

By using the Kirkwood closure method for all triples, including open ones, we obtained

a method which provides informative predictions on the majority of graphs tested. We

investigated square lattices and star-type graphs, as these are two extreme population

structures which we use as worst case scenarios. The lattice is extreme as moment closure

methods do not perform well on such graphs. The star is extreme because this type of graph

significantly amplifies the fixation probability, which seems to amplify the accumulated

error in the approximation methods. For all three types of random graph considered, and

Zachary’s karate club, this method provides a reasonable approximation to the fixation

probability. When the degree of the initial mutant node is not low the approximation

can be very accurate. However, if we initiate on a low degree node, the method performs

less well, potentially due to such nodes amplifying the fixation probability in the invasion

process, again leading to inaccuracies in the solution being amplified. Despite potential

inaccuracies in the fixation probability approximation, we observe that this method is

particularly accurate for the early-time behaviour of these systems for any graph, and

therefore can give interesting insights into this behaviour. The method is computationally
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feasible for reasonably large N , however, the computational complexity scales with N2

rather than with N which is more typical for epidemic models. Nevertheless, this still

represents a significant reduction over the master equation which scales with 2N .

The novelty of this work is the adaption of well-established techniques from other fields

to the study of evolutionary dynamics at the level of individual nodes. The contribution is

two-fold. Firstly we have obtained insight into existing models by deriving them from the

master equation. Secondly, the advantage of looking at node-level quantities rather than a

homogenised model is that we gain the ability to compare dynamics from different initial

conditions on the same graph, which is not present in many other approximation methods.

Furthermore, the initial dynamics of Method 4 are very accurate (Figure 4.2), allowing

us to see how the probability of each node being a mutant flows through the population.

Although we chose to work in continuous time here and examples study the invasion

process, similar methods could be followed directly in discrete-time and the methods are

applicable to any Markovian update rule.

Appendix 4.A Proof of Theorem 4.1.1

Proof. By total probability rules we have that

dP (At{i})

dt
=

d

[ ∑
XV \{i}

P (At{i}X
t
V \{i})

]
dt

=
∑

XV \{i}

dP (At{i}X
t
V \{i})

dt
, (4.20)

where XV \{i} is the state of the nodes in the system not including i.

Consider a set state XV \{i} of the remaining nodes. The rate of change in the full

system state probability P (At{i}X
t
V \{i}) is given by

dP (At{i}X
t
V \{i})

dt
=
∑
YV \{i}

P (At{i}Y
t
V \{i})χ(At{i}Y

t
V \{i} → At{i}X

t
V \{i})

+ P (Bt
{i}X

t
V \{i})χ(Bt

{i}X
t
V \{i} → At{i}X

t
V \{i})

−
∑
YV \{i}

P (At{i}X
t
V \{i})χ(At{i}X

t
V \{i} → At{i}Y

t
V \{i})
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− P (At{i}X
t
V \{i})χ(At{i}X

t
V \{i} → Bt

{i}X
t
V \{i}), (4.21)

where χ(At{i}X
t
V \{i} → Bt

{i}X
t
V \{i}) is the rate at which the system moves from state

At{i}X
t
V \{i} to state Bt

{i}X
t
V \{i}.

Consider the terms which involve changing the state of the individual in node i in

Equation (4.21). By expanding the rate into the sum of separate event rates we obtain

P (Bt
{i}X

t
V \{i})χ(Bt

{i}X
t
V \{i} → At{i}X

t
V \{i}) =

P (Bt
{i}X

t
V \{i})

N∑
j=1

Gijχ(Ωt
j→i|Bt

{i}X
t
V \{i})1(At{j}∈X

t
V \{i})

,

and

P (At{i}X
t
V \{i})χ(At{i}X

t
V \{i} → Bt

{i}X
t
V \{i}) =

P (At{i}X
t
V \{i})

N∑
j=1

Gijχ(Ωt
j→i|At{i}X

t
V \{i})1(Bt{j}∈X

t
V \{i})

,

where 1(Bt{j}∈X
t
V \{i})

is an indicator function on the event Bt
{j} being part of the event

Xt
V \{i}. That is, the state of node j in the state X is type B. The χ(Ωt

j→i|At{i}X
t
V \{i})

term is the rate at which the individual in node j replaces the individual in node i, given

that the system is in state At{i}X
t
V \{i}, as defined in Definition 4.1.1. Rearranging these

and substituting into Equation (4.21) gives

dP (At{i}X
t
V \{i})

dt
=

N∑
j=1

GijP (Bt
{i}X

t
V \{i})χ(Ωt

j→i|Bt
{i}X

t
V \{i})1(At{j}∈X

t
V \{i})

−
N∑
j=1

GijP (At{i}X
t
V \{i})χ(Ωt

j→i|At{i}X
t
V \{i})1(Bt{j}∈X

t
V \{i})

+
∑
YV \{i}

P (At{i}Y
t
V \{i})χ(At{i}Y

t
V \{i} → At{i}X

t
V \{i})

−
∑
YV \{i}

P (At{i}X
t
V \{i})χ(At{i}X

t
V \{i} → At{i}Y

t
V \{i}).

By substituting this into Equation (4.20) we obtain
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dP (At{i})

dt
=
∑

XV \{i}

N∑
j=1

GijP (Bt
{i}X

t
V \{i})χ(Ωt

j→i|Bt
{i}X

t
V \{i})1(At{j}∈X

t
V \{i})

−
∑

XV \{i}

N∑
j=1

GijP (At{i}X
t
V \{i})χ(Ωt

j→i|At{i}X
t
V \{i})1(Bt{j}∈X

t
V \{i})

+
∑

XV \{i}

∑
YV \{i}

P (At{i}Y
t
V \{i})χ(At{i}Y

t
V \{i} → At{i}X

t
V \{i})

−
∑

XV \{i}

∑
YV \{i}

P (At{i}X
t
V \{i})χ(At{i}X

t
V \{i} → At{i}Y

t
V \{i}).

Clearly the last two sums cancel, so we can simplify this to

dP (At{i})

dt
=

N∑
j=1

∑
XV \{i,j}

GijP (Bt
{i}A

t
{j}X

t
V \{i,j})χ(Ωt

j→i|Bt
{i}A

t
{j}X

t
V \{i,j})

−
N∑
j=1

∑
XV \{i,j}

GijP (At{i}B
t
{j}X

t
V \{i,j})χ(Ωt

j→i|At{i}B
t
{j}X

t
V \{i,j}),

as required.

Appendix 4.B Derivation of the scaling factor (Equation 4.13)

Consider a system with rate of change given by

dP̄ (At{i})

dt
=

N∑
j=1

GijP̄ (At{j})χ(Ωt
j→i)−

N∑
j=1

GijP̄ (At{i})χ(Ωt
j→i).

Since we are interested in the complete graph, we have that Gij = 1 for j 6= i, and Gi,i = 0.

Let Ac denote the average probability that a node is of type A on the complete graph at

time t. That is

Ac(t) =
1

N

N∑
j=1

P̄ (At{j}) =
S

N
.
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Since we are considering constant fitness we have

χ(Ωt
j→i) =

P̄ (At{j})(r − 1) + 1

N∑
k=1

P̄ (At{k})(r − 1) + 1

=
P̄ (At{j})(r − 1) + 1

N + (r − 1)S
,

which gives us

dS

dt
=

N∑
i=1

dP̄ (At{i})

dt
=

N∑
i,j=1

(P̄ (At{j})− P̄ (At{i}))(P̄ (At{j})(r − 1) + 1)

N + (r − 1)S
.

Writing G =
N∑

i,j=1
(P̄ (At{j})− P̄ (At{i}))P̄ (At{j}), and H =

N∑
i,j=1

(P̄ (At{j})− P̄ (At{i})) we have

dS

dt
=

(r − 1)G+H

N + (r − 1)S
.

Clearly H = 0, so we obtain

dS

dt
=

(r − 1)G

N + (r − 1)S
.

Note that
N∑

i,j=1
(P̄ (At{j})− P̄ (At{i}))

2 =
N∑

i,j=1
P̄ (At{j})

2 + P̄ (At{i})
2− 2P̄ (At{j})P̄ (At{i}) = 2G,

so that

dG

dt
=

1

2

d

dt

( N∑
i,j=1

(P̄ (At{j})− P̄ (At{i}))
2
)

=
N∑

i,j=1

(P̄ (At{j})− P̄ (At{i}))
d(P̄ (At{j})− P̄ (At{i}))

dt
.

Considering the last term on the right hand side we have

d

dt
(P̄ (At{i})− P̄ (At{j})) =

1

N + (r − 1)S

N∑
k=1

(
P̄ (At{k})(P̄ (Ak)

t − P̄ (At{i})) + P̄ (At{k})(P̄ (At{j})

− P̄ (At{k}))
)
(r − 1) + (P̄ (At{k})− P̄ (At{i}))

+ (P̄ (At{j})− P̄ (At{k}))



Chapter 4. Methods for approximating stochastic evolutionary dynamics on graphs 145

=

∑
k=1

P̄ (At{k})(P̄ (At{j})− P̄ (At{i}))(r − 1) + (P̄ (At{j})− P̄ (At{i}))

N + (r − 1)S

=
(P̄ (At{j})− P̄ (At{i}))

(
(r − 1)S +N

)
N + (r − 1)S

= −(P̄ (At{i})− P̄ (At{j})).

Thus,

dG

dt
=

N∑
i,j=1

(P̄ (At{j})− P̄ (At{i}))
2 = −2G =⇒ G = Ae−2t = (N −m)me−2t,

since G(0) = (N −m)m. Therefore we have

dS

dt
=

(r − 1)(N −m)me−2t

N + (r − 1)S

⇒ NS +
r − 1

2
S2 = −1

2
(r − 1)(N −m)me−2t + C.

At t = 0 we have S =
∑
P̄ (At{j}) = m, which gives

C = Nm+
(r − 1

2

)
Nm = Nm

(r + 1

2

)
,

and so we can solve to obtain

S =

(
−N ±

√
N2 + 4 r−1

2

(
Nm r+1

2 − (N −m)m r−1
2 e−2t

))
r − 1

.

Only the positive root makes sense, so we obtain

Ac =
1

r − 1

(
− 1 +

√
1 +

m(r2 − 1)

N
− (r − 1)2

(N −m)m

N2
e−2t

)
.

Thus, we have lim
t→∞

Ac(t) = 1
r−1

(
− 1 +

√
1 + m(r2−1)

N

)
.



Chapter 5

Approximating the

quasi-stationary distribution in

network-based SIS

Understanding the stochastic dynamics of the Markovian network-based SIS model (Sec-

tion 1.4.1) can be challenging since a large number of simulations are required, which uses

a lot of computational time and yields relatively little in theoretical insight. Deterministic

SIS models, such as mean-field models [96, 184, 185, 187] and pair-approximation mod-

els [50, 61, 83, 82, 91, 107, 167], on the other hand, can yield theoretical insights. One

example is the epidemic threshold, below which the pathogen goes extinct and above which

the pathogen reaches a stable endemic equilibrium solution [136]. These deterministic mod-

els can be interpreted as modified versions of stochastic SIS dynamics, which are obtained

by making statistical independence assumptions. However, the presence of this stable en-

demic equilibrium means it is not clear how to relate these results back to the underlying

stochastic process, since the only stable solution to the stochastic model is the disease-free

state. Although this is the only stable solution, the time it takes to be reached can be

extremely long. Therefore, the dynamics of the pathogen before absorption are important

to understand, which is given by the quasi-stationary distribution (Section 1.1.9).

Quasi-stationary behaviour is commonly used to describe the long-term behaviour of

finite Markov chains with absorbing states. Examples include: modelling the spread of a

computer virus across a network with cure and reinfection [85, 119, 139, 191], chemical

146
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reactions in which materials or catalysts can be exhausted [31, 32, 133, 137, 146], and

wildlife management models [73, 93, 111, 135, 148, 147, 161]. Within Markovian SIS

dynamics, various statistics have been derived using the concept of the QSD [5, 9, 10, 62].

This includes use by Wilkinson and Sharkey [193] to derive a measure of the invasion

probability, by Ferreira and colleagues [44] to approximate the epidemic threshold, and by

N̊asell [122] to account for the influence of epidemic and demographic forces on the time

to extinction.

These statistics provide theoretical insights into the epidemic, however the calcula-

tion of the QSD can require a large number of stochastic simulations, and therefore it is

necessary to derive approximation methods. Thus far, approximations have focused on

well-mixed populations. Kriscio and Lefevre [95] used a conditional birth-and-death pro-

cess to approximate the QSD of Markovian SIS epidemic dynamics, which has since been

extended by N̊asell [120, 121]. Allen and Burgin [4] used a system of ordinary differential

equations to approximate the conditional probability distribution, which yields the QSD

as a steady-state.

In network-structured populations, the endemic equilibrium of the deterministic SIS

models approximates the quasi-stationary distribution when sufficiently above the epidemic

threshold [91, 184]. The aim of this chapter is to extend these methods (Section 1.4.2) to

approximate the expected number of infected individuals in the QSD for all parameter

values. Whilst we focus on SIS dynamics, the techniques we use are applicable to other

Markov processes. For example, in Markovian network-based SIR the methods can be

applied similarly by building on the pair-based approximations in [168]. The complication

in extending this work to SIR is in defining the absorbing states, since there will be multiple

disease-free states.

This chapter is structured as follows. In Section 5.1, we recap the Markovian network-

based SIS modelling framework and the master equation. In Section 1.4.2 we described

moment-closure approximations to the SIS model. These are hard to relate to the stochas-

tic process, so we aim to develop a novel modelling framework that is directly related to this

process. We do this via the quasi-stationary distribution, which we define in Section 5.2.

Sections 5.3 and 5.4 focus on deriving individual-based and pair-based approximation meth-

ods that capture the QSD. We then analyse the performance of the proposed methods on

different contact networks in Section 5.5.
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5.1 Markovian SIS dynamics on a contact network

In this section, we briefly recap the SIS dynamics, as defined in Section 1.4.1. We consider a

population of N individuals. The model is described by a continuous-time Markov chain on

this population, parameterised by an N×N irreducible square matrix T with non-negative

entries and an N×1 vector γ with positive entries. The matrix T is the transmission matrix

of the epidemic, and represents the rate at which individuals infect each other. The vector

γ represents the rates at which each individual in the population recovers.

Let σα ∈ {S, I}N denote a state of the population. We assume throughout that state

σ1 corresponds to the all susceptible state. Let Σi(t) denote the status of individual i at

time t, and for a given state σα, let σαi denote the status of individual i in that state. The

time evolution of the Markov chain is captured by the master equation,

dp(t)

dt
= Qp(t), (5.1)

where Pα(t) = P (Σ(t) = σα) is the probability that the system is in state σα at time

t ≥ 0, and Q is a matrix of transition rates (obtained from Table 1.1). In particular, P1(t)

denotes the probability that all individuals are susceptible at time t. Although this can be

solved to determine the future behaviour, in many cases this is infeasible since the matrix

Q grows exponentially with N .

5.2 The quasi-stationary distribution

Let us construct a vector ρ(t), such that ρα(t) is the conditional probability that the system

is in state σα at time t given that at least one individual is infected; i.e. ρα(t) = P (Σ(t) =

σα|Σ(t) 6= σ1), where σ1 is the disease-free state. We have

ρα(t) =
P (Σ(t) = σα ∩ Σ(t) 6= σ1)

P (Σ(t) 6= σ1)
=

P (Σ(t) = σα ∩ Σ(t) 6= σ1)

1− P (Σ(t) = σ1)

=
P (Σ(t) = σα)

1− P (Σ(t) = σ1)
=

Pα(t)

(1− P1(t))
, (5.2)



Chapter 5. Approximating the quasi-stationary distribution in network-based SIS 149

for α 6= 1. For α = 1, ρ1(t) = 0 for all t. Here we have assumed that P1(t) 6= 1. Using

(5.2) and the master equation (5.1), the time derivative of ρα(t) is given by

dρσ
dt

=

0 if α = 1

dρα
dt = d

dt

(
Pα(t)

(1−P1(t))

)
= (QP )α

1−P1
+ Pα(QP )1

(1−P1)2
if α = 2, 3, . . . , 2N .

(5.3)

We suppress the explicit time dependence of P and ρ in favour of compactness.

The state space for the Markov chain is finite and consists exhaustively of one absorbing

state and a communicating class of transient states. The non-absorbing states form a

communicating class of transient states because the contact network is strongly connected

and the vector γ of recovery rates is positive. Thus, there exists a unique quasi-stationary

distribution (QSD), independent of initial conditions, which is equivalent to the limiting

conditional distribution [33]. This QSD is similar to a true stationary distribution in that

it is invariant under the conditional distribution. Therefore, the QSD, q, defined as

qα =

0 if α = 1

P ∗α
1−P ∗1

, if α = 2, 3, . . . , 2N ,
(5.4)

for some P ∗, is a globally stable equilibrium of system (5.3). Therefore, to find q we need

to find some P ∗ satisfying

0 =
(QP ∗)α
1− P ∗1

+
P ∗α(QP ∗)1

(1− P ∗1 )2
α = 2, 3, . . . , 2N . (5.5)

However, finding P ∗ directly is in many cases infeasible since the size of Q grows exponen-

tially with the population size.

5.3 Individual-based approximations

Instead of solving Equation (5.5) exactly, approximations can be made by making assump-

tions regarding correlations between individual nodes, similar to the standard approxima-

tion models described in Section 1.4.2.
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5.3.1 Node-level equations

The probability of a node i being infected under the conditional distribution ρ is given by

ρ(Σi(t) = I) =
∑

α:σαi=I
ρα(t). Taking the derivative and using (5.2),

d

dt
(ρ(Σi(t) = I)) =

∑
α:σαi=I

dρα
dt

=

∑
α:σαi=I

(QP )α

1− P1
+

(QP )1

(1− P1)2

∑
α:σαi=I

Pα. (5.6)

The numerator on the first term corresponds to the rate of change in the probability that

node i is infected, which is given by 〈İi〉 in Equation (1.19). The summation in the second

term corresponds to the probability that node i is infected, 〈Ii〉. Therefore, we can write

d

dt
(ρ(Σi(t) = I)) =

〈İi〉
1− P1

+
(QP )1

(1− P1)2
〈Ii〉.

(QP )1 is the rate at which the system enters the absorbing state. The system can only reach

the absorbing state from a state with a single infected individual, in node j for example,

which transitions to the all susceptible state at rate γj . Therefore (QP )1 =
∑
j
γj〈IjS〉,

where we use 〈IjS〉 to denote the probability that node j is infected and all other nodes

are susceptible. Using this along with Equation (1.19), we obtain

d

dt
(ρ(Σi(t) = I)) =

∑
j Tij〈SiIj〉 − γi〈Ii〉

1− P1
+

〈Ii〉
(1− P1)2

∑
j

γj〈IjS〉. (5.7)

Approximating (5.7) by assuming that the states of individuals are independent gives

d

dt
(ρ(Σi(t) = I)) ≈

∑
j Tij〈Si〉〈Ij〉 − γi〈Ii〉

1−
∏
k〈Sk〉

+
〈Ii〉

(1−
∏
k〈Sk〉)2

∑
j

γj〈Ij〉
∏
k 6=j
〈Sk〉. (5.8)

The probability of node i being infected in the quasi-stationary distribution is given by

〈I∗i 〉/(1−P ∗1 ), where P ∗ is a solution to Equation (5.5). Therefore, to find the approxima-

tion to this quantity under this independence assumption, we first need to find a steady

state of Equation (5.8), which is given by vectors 〈X〉∗ and 〈Y 〉∗ satisfying,

0 =

∑
j Tij〈Xi〉∗〈Yj〉∗ − γi〈Yi〉∗

1−
∏
k〈Xk〉∗

+
〈Yi〉∗

(1−
∏
k〈Xk〉∗)2

∑
j

γj〈Yj〉∗
∏
k 6=j
〈Xk〉∗, (5.9)
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for all i. From 〈X〉∗ and 〈Y 〉∗, the probability that i is infected in the QSD is approximated

by computing 〈Yi〉∗/(1−
∏
k〈Xk〉∗) . However, we are only interested in solutions of (5.9)

that are feasible; i.e. 〈Yi〉∗ ∈ [0, 1], 〈Xi〉∗ = 1 − 〈Yi〉∗ for all i. To obtain such a solution,

define

〈Ẏi〉 =
∑
j

Tij〈Xi〉〈Yj〉 − γi〈Yi〉+

〈Yi〉
∑
j
γj〈Yj〉

∏
k 6=j
〈Xk〉

1−
∏
k

〈Xk〉

〈Xi〉 = 1− 〈Yi〉. (5.10)

Equation (5.10) is positively invariant in [0, 1]N (see Appendix 5.B.1), so therefore pro-

vided 〈Xi〉 ∈ [0, 1] and 〈Yi〉 ∈ [0, 1] at t = 0, any solution will be a feasible solution to

Equation (5.9). The equilibrium can be found by solving Equation (5.10) until a steady

state is reached. Note that 〈Yi〉 = 0 for all i is an equilibrium of this system; however,

since we are studying the QSD, only non-zero solutions are interesting.

Theorem 1. For a complete network, when the transmission rate is non-zero there exists

a steady-state solution to Equation (5.10) in the interval (0, 1).

Proof. See Appendix 5.B.2.

We have not proven uniqueness, but this holds numerically for all parameters tested.

This existence and uniqueness also holds numerically for complex networks. Since there is

always a solution in (0, 1), the solution only approaches 0 in the limit Tij → 0 for all (i, j)

(or γ →∞).

Theorem 2. As Tij → 0 for all (i, j) (or γ →∞), the QSD approximation,
∑

i〈Yi〉/(1−∏
k〈Xk〉), approaches 1.

Proof. See Appendix 5.B.3.

This is consistent with the true QSD, for which the expected number of infected in-

dividuals is bounded below by 1, and shows that this model has the required properties.

It has been observed that the steady-state of the standard individual-based model (Equa-

tion 1.19) captures the dynamics of the meta-stable state when sufficiently above the epi-

demic threshold [184]. This meta-stable state corresponds with the QSD, and hence in this

region the standard model captures the QSD. This can be seen by comparing the standard

model to the QSD model. In Equation (5.10), since the probability of each node being
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susceptible decreases as the transmission rate increases, if the population is sufficiently

large the product over susceptible nodes approaches zero. In this case, Equation (5.10)

tends towards the standard individual-based model.

5.3.2 Degree heterogeneous population-level equations

The node-level equations give detailed insight into the dynamics of individual nodes in the

QSD, however the number of equations scales with N . To build approximations with a

reduced number of equations, population-level models can be constructed for undirected

networks. The rate of change in the expected number of infected individuals with a given

degree, under the conditional distribution, is found by taking the sum over the probability

that each node with this degree is infected

∑
i:ki=k

∑
α:σαi=I

dρα
dt

=
∑
i:ki=k

∑j Tij〈SiIj〉 − γi〈Ii〉
1− P1

+
〈Ii〉

(1− P1)2

∑
j

γj〈IjS〉

 .

The numerator in the first term on the right-hand side is the rate of change in the probabil-

ity that an individual is infected. Taking the sum over all nodes with the same degree, this

gives the rate of change in the expected number of infected individuals with that degree,

which is given by Equation (1.18). Taking the sum of 〈Ii〉 over all nodes with the same

degree gives the expected number of infected nodes with that degree. Therefore, assuming

Tij = τ whenever Tij > 0, we obtain

∑
i:ki=k

∑
α:σαi=I

dρα
dt

=
τ
∑

l∈M[SkIl]− γ[Ik]

1− P1
+

[Ik]

(1− P1)2

∑
j

γ〈IjS〉, (5.11)

where [Ak] is the expected number of individuals with degree k in state A, [AkBl] is the

expected number of pairs between individuals of degree k and degree l, in states A and B

respectively, and ki is the degree of node i. Above, and throughout, all expected numbers

are with respect to the standard probability measure P . Assuming that the states of

individuals are independent, (5.11) becomes

∑
i:ki=k

∑
α:σαi=I

dρα
dt

≈
τ
∑

l∈M |Ck,l|
[Sk]
|Ck|

[Il]
|Cl| − γ[Ik]

1−
∏
j〈Sj〉

+
[Ik]

(1−
∏
j〈Sj〉)2

∑
j

γ〈Ij〉
∏
k 6=j
〈Sk〉
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where |Ck| is the number of degree k nodes in the network and |Ck,l| is the number of pairs

between degree k and degree l nodes. This equation is not closed, since the final term and

the denominators depend on node-level quantities. However, from (1.22) the node-level

quantities can be approximated by assuming 〈Sj〉 = [Sk]/|Ck|, where k is the degree of

node j. Therefore ∏
i

〈Si〉 ≈
∏
l∈M

(
[Sl]

|Cl|

)|Cl|
,

and

γ〈Ij〉
∏
i 6=j
〈Si〉 ≈

[Ik]

|Ck|

(
[Sk]

|Ck|

)|Ck|−1 ∏
l∈M:l 6=k

(
[Sl]

|Cl|

)|Cl|
, (5.12)

where k is the degree of node j. Multiplying Equation (5.12) by the number of degree k

nodes, |Ck|, we obtain the probability of a single degree k node being infected, which we

denote P̃ (Ik = 1). Therefore, we obtain

∑
i:ki=k

∑
α:σαi=I

dρα
dt

≈
τ
∑

l∈M |Ck,l|
[Sk]
|Ck|

[Il]
|Cl| − γ[Ik]

(1−
∏
l(

[Sl]
|Cl|)

|Cl|)
+

[Ik]

(1−
∏
l(

[Sl]
|Cl|)

|Cl|)2

∑
l∈M

γP̃ (Il = 1).

To find a steady-state, we need to find vectors 〈X〉∗ and 〈Y 〉∗ satisfying

0 =
τ
∑

l∈M |Ck,l|
[Xk]∗

|Ck|
[Yl]
∗

|Cl| − γ[Yk]
∗

(1−
∏
l(

[Xl]∗

|Cl| )|Cl|)
+

[Yk]
∗

(1−
∏
l(

[Xl]∗

|Cl| )|Cl|)2

∑
l∈M

γP̃ (Yl = 1)∗

from which we can approximate the expected number of infected degree k individuals in the

QSD by computing [Yk]
∗/(1−

∏
l(

[Xl]
∗

|Cl| )|Cl|). We require [Yk]
∗ ∈ [0, |Ck|], [Xk]

∗ = |Ck|−[Yk]
∗

for all i. Such a solution can be found by defining

˙[Yk] = τ
∑
l∈M
|Ck,l|

[Xk]

|Ck|
[Yl]

|Cl|
− γ[Yk] +

[Yk]
∑
l∈M

γP̃ (Yl = 1)

(1−
∏
l(

[Xl]
|Cl| )

|Cl|)

[Xk] = |Ck| − [Yk]

P̃ (Yk = 1) = |Ck|
[Yk]

|Ck|

(
[Xk]

|Ck|

)|Ck|−1 ∏
l∈M:l 6=k

(
[Xl]

|Cl|

)|Cl|
, (5.13)

and specifying that [Yk(0)] ∈ [0, |Ck|] for all k and calculating the steady-state. Any

solution will be a valid solution, since Equation (5.13) is bounded such that [Yk]
∗ ∈ [0, |Ck|]
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for all k (this can be shown using a method similar to Appendix 5.B.1).

5.4 Pair-based approximations

Assuming statistical independence of individuals yields a system with low computational

complexity, however the assumption is not necessarily realistic. This is because the pathogen

spreads through contact between neighbouring individuals, and hence it is likely that the

state of an individual is dependent on its neighbours. To account for this pairwise correla-

tion, we can instead assume statistical independence of pairs. Doing this closes the system

by describing triple and higher order terms as functions of individual and pair terms.

5.4.1 Node-level equations

Following the logic of the individual-based derivation, we arrive at the following pair-based

model (see Appendix 5.C),

〈Ẏi〉 =
∑
j

Tij〈XiYj〉 − γi〈Yi〉+

〈Yi〉
∑
j
γj〈ỸjX〉

1− 〈σ1〉
,

〈 ˙XiYj〉 =
∑

k∈Nj\i

Tjk
〈XiXj〉〈XjYk〉

〈Xj〉
−
∑

k∈Ni\j

Tik
〈YkXi〉〈XiYj〉
〈Xi〉

−(Tij + γj)〈XiYj〉+ γi〈YiYj〉+

〈XiYj〉
∑
j
γj〈ỸjX〉

1− 〈σ1〉
,

〈Xi〉 = 1− 〈Yi〉,

〈XiXj〉 = 〈Xi〉 − 〈XiYj〉,

〈YiYj〉 = 〈Yi〉 − 〈YiXj〉,

where

〈ỸjX〉 =

∏
x∈Nj
〈YjXx〉

∏
y 6=j

∏
x∈Ny :x<y,x6=j

〈XyXx〉∏
x6=j
〈Xx〉kx−1〈Yj〉kj−1

and
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〈σ1〉 =
∏
y

∏
x∈Ny :x<y

〈XyXx〉
〈Xy〉ny−1

.

To approximate the probability that node i is infected in the QSD, compute limt→∞〈Yi(t)〉/(1−
〈σ1(t)〉).

5.4.2 Population-level equations

The node-level pair-based model can quickly rise in computational cost if the degree of the

network is large. We therefore derive the following population-level pair-based model for

undirected networks, by following a similar approach to the individual-based derivation

(see Appendix 5.D)

[Ẏk] = −γ[Yk] + τ
∑
l∈M

[XkYl] +

[Yk]
∑
l∈M

γP̃ (Yl = 1)

1− 〈σ1〉
,

[ ˙XkYl] = τ(
∑
m∈M

l − 1

l

[XkXl][XlYm]

[Xl]
−
∑
m∈M

k − 1

k

[YmXk][XkYl]

[Xk]
,

−[XkYl]) + γ([YkYl]− [XkYl]) +

[XkYl]
∑
l∈M

γP̃ (Yl = 1)

1− 〈σ1〉

[ ˙YkYl] = τ(
∑
m∈M

k − 1

k

[YmXk][XkYl]

[Xk]
+
∑
m∈M

l − 1

l

[YkXl][XlYm]

[Xl]
),

+τ([XkYl] + [YkXl]− 2γ[YkYl] +

[YkYl]
∑
l∈M

γP̃ (Yl = 1)

1− 〈σ1〉
[Xk] = |Ck| − [Yk],

[XkXl] = |Ck,l| − [YkYl]− [XkYl]− [XlYk],

where

P̃ (Yk = 1) = |Ck|

∏
k 6=kj

∏
l≤k:l 6=kj

(
[XkXl]
|Ck,l|

)|Ck,l|( [YkjXk]

|Ckj,k|

) |Ckj,k|
|Ckj |

(
[XkjXk]

|Ckj,k|

)|Ckj,k|− |Ckj,k||Ckj |

∏
k 6=kj

(
[Xk]
|Ck|

)|Ck|(k−1)
(

[Ykj ]

|Ckj |

)(kj−1)(
[Xkj ]

|Ckj |

)(|Ckj |−1)(kj−1)
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and

〈σ1〉 ≈
∏
k

∏
l≤k


(

[XkXl]
|Ck,l|

)|Ck,l|
(

[Xk]
|Ck|

)|Ck|(k−1)

 .

In these expressions, we use the convention that 00 = 1. The expected number of infected

degree k nodes in the QSD can be approximated by computing limt→∞[Yk(t)]/(1−〈σ1(t)〉).

Special Case: k-regular networks

For a regular network, where all individuals have identical degree, the population-level

model becomes simplified since M = {k}, where k is the degree of the network. This

model becomes

[Ẏk] = −γ[Yk] + τ [XkYk] +
[Yk]γP̃ (Ik → σ0)

1− 〈σ1〉
,

[ ˙XkYk] = τ(
k − 1

k

[XkXk][XkYk]

[Xk]
− k − 1

k

[YkXk][XkYk]

[Xk]
,

−[XkYk]) + γ([YkYk]− [XkYk]) +
[XkYk]γP̃ (Ik → σ0)

1− 〈σ1〉
,

[ ˙YkYk] = τ(
k − 1

k

[YkXk][XkYk]

[Xk]
+
k − 1

k

[YkXk][XkYk]

[Xk]
),

+τ([XkYk] + [YkXk]− 2γ[YkYk] +
[YkYk]γP (Ik → σ0)

1− 〈σ1〉
,

〈σ1〉 =

(
[XkXk]
|Ck,k|

)|Ck,k|
(

[Xk]
|Ck|

)|Ck|(k−1)
,

P̃ (Ik = 1) = |Ck|

(
[YkXk]
|Ck,k|

) |Ck,k|
|Ck|

(
[XkXk]
|Ck,k|

)|Ck,k|− |Ck,k||Ck|(
[Yk]
|Ck|

)(k−1) (
[Xk]
|Ck|

)(|Ck|−1)(k−1)
,

which is efficient to solve numerically. To approximate the expected number of infected

degree k individuals in the QSD, calculate limt→∞[Yk(t)]/(1− 〈σ1(t)〉).
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5.5 Numerical results

In this section, we investigate how the methods developed in this chapter perform when

used to approximate the expected number of infected individuals in the QSD for various

networks and parameter values.

We assume that: the transition rate for any pair of connected individuals is equal

(taking Tij = τ whenever Tij > 0 and zero otherwise), the network is undirected, and

infected individuals recover at the same rate; i.e. γi = γ for all i ∈ V. In the case

of a complete network, the epidemic threshold of the population-level individual-based

model occurs when τ ×k/γ = 1, where k is the degree of the network (i.e. k = N − 1). We

therefore plot the expected number of infected against τ×d̄/γ, where d̄ is the average degree

of the network, to ensure that all networks are tested over a similar range of transmission

strengths. We assume γ = 1 throughout, so that the ratio can be changed by changing τ .

The standard individual-based and pair-based models (Section 1.4.2) have a non-zero

equilibrium solution in the region of parameter space where τ × d̄/γ is large [91, 184].

When the transmission rate is sufficiently large, the models proposed converge to the

standard model, and therefore this endemic equilibrium approximates the expected number

of infected individuals in the QSD. To demonstrate this, the dynamics for these standard

models are compared to the QSD approximation methods. We are particularly interested

in how our methods perform for low values of τ × d̄/γ, at which the standard models will

not capture the QSD.

To calculate the true QSD, we simulate the stochastic model and average over all

simulations that have not gone extinct. Simulations are run until t = 300 in all results

shown, since by this point all cases reached a steady-state. We compare this solution to

the steady-state of the QSD approximation methods and the standard models.

5.5.1 Impact of network structure

To test the methods, consider three networks: the complete network, the square lattice,

and Zachary’s karate club [201]. The complete network represents a well-mixed population,

in which all individuals are connected to each other. The square lattice represents an

extreme structure whereby all individuals occupy the nodes of a square grid, and is a

commonly used network when adding structure to population dynamics. Although there

is a lot of symmetry across the network, the rigorous structure with multiple loops can

prove challenging for moment closure approximation methods. Zachary’s karate club is an
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example of a real world network, formed from interactions between members of a karate

club.

Figure 5.1(a) compares the node-level individual-based model with stochastic simula-

tions. Below the epidemic threshold (where the standard model switches from zero to

an endemic equilibrium), the QSD method captures the behaviour reasonably accurately.

As τ × d̄/γ increases, the approximation diverges, with differing levels of performance on

each of the networks tested. This individual-based method performs best on the complete

network, on which it provides a good approximation to the expected number of infected

for all parameter values. Some level of accuracy is also observed on Zachary’s Karate club.

However, on the square lattice this method does not perform well when above the epidemic

threshold, significantly overestimating the expected number of infected individuals in the

QSD. This is because the structure of the lattice results in significant local correlations

on the network, and therefore assuming statistical independence of individual nodes is

unrealistic.

Using the population-level individual-based model, little accuracy is lost (Figure 5.1(b)).

The same pattern of performance occurs across the three networks, and by overlaying the

results, the population-level model is almost indistinguishable from the node-level model

on the resolution of the graph, showing that the QSD is mainly determined by the degree

distribution.

Since the assumption of individual-level statistical independence is unrealistic, we de-

veloped a node-level pair-based model for the QSD. Figure 5.2(a) shows the accuracy of

this approximation, which is significantly improved over the individual-based models on

all networks. On the complete network and Zachary’s karate club, this approximation is

very accurate, and on the lattice it loses some accuracy but still significantly outperforms

the individual-based approximation. The loss of accuracy on the lattice is expected, since

pair-approximation methods are generally considered to perform weakly on such structures.

Although the pair-based model is computationally feasible, for large networks it can

be slow. Therefore, we derived a population-level pair-based model. Again, little accuracy

is lost for all networks (Figure 5.2(b)), with the result being indistinguishable from the

node-level model.

For each of the methods proposed, a stationary solution is reached for all parameter

values on all networks. These solutions appear to be unique and lower bounded by 1.

Therefore, the proposed methods satisfy the basic properties of the QSD. Sufficiently above

the epidemic threshold, our models and the standard models coincide (Figures 5.1 and 5.2),
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showing that the standard models approximate the expected number of infected individuals

in the QSD in this region. However, as the transmission rate decreases, the steady-states of

the standard models deviate from this, eventually tending to the disease-free equilibrium.

Therefore, the standard models are not a reliable measure of the QSD since they do not

capture this for all parameter values, and the endemic equilibrium in the intermediate

range (between the disease-free equilibrium and coinciding with the QSD model) is hard

to relate to any properties of the underlying stochastic process. The models we propose

are more robust for providing insight into the stochastic epidemic model.
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Figure 5.1: The expected number of infected individuals in the QSD as calculated by the individual-based
model versus stochastic simulation on a 36 node complete network, 36 node square lattice and the 34 node
karate club network, for a range of parameters. The right shows the population-level methods and the
left shows the node-level methods. The solid lines represent the average of 10,000 stochastic simulations
conditioned against extinction, the “+” marks the QSD method and the “×” marks the standard model.
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Figure 5.2: The expected number of infected individuals in the QSD as calculated by the pair-based model
versus stochastic simulation on a 36 node complete network, 36 node square lattice and the 34 node karate
club network, for a range of parameters. The right shows the population-level methods and the left shows
the node-level methods. The solid lines represent the average of 10,000 stochastic simulations conditioned
against extinction, the “+” marks the QSD method and the “×” marks the standard model.

5.5.2 Impact of network size

We now investigate how increasing the size of the population affects the accuracy of the

results, testing a 100 node lattice and 225 node lattice. Here the square lattice is chosen

because this presented itself as the worst case, with other networks expected to perform

better.

Since the population-level models perform similarly to the node-level models at captur-
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ing the expected number of infected, with significantly reduced computational cost, in this

section we only use these models to approximate the dynamics. As the size of the lattice

increases, the accuracy of the approximation does not significantly change (Figure 5.3),

and therefore this method can accurately scale up to large networks.
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Figure 5.3: The expected number of infected individuals in the QSD as calculated by the population-
level models versus stochastic simulation on a 100 node square lattice and 225 node square lattice for a
range of parameter values. The plot shows the individual-based methods and the right shows the pair-
based methods. The solid lines represent the average of 10,000 stochastic simulations conditioned against
extinction, the “+” marks the QSD method and the “×” marks the standard model.

5.5.3 Marginal probabilities

Similar accuracy is observed between the node-level and population-level models, and so we

can argue that the population-level models are superior due to the reduced computational

cost. However, other statistics of the QSD can depend on node-level quantities, which are

only captured by the node-level equations. One such property is the invasion probability.

The invasion probability from a given initial state in Markovian network-based SIS

dynamics can be defined as quasi-invasion [193], which is the probability of that state

being infected in the QSD. Such a statistic shows the strength of each node at spreading the
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Table 5.1: The marginal probability of individual nodes being infected in the QSD. The table shows a
selection of 5 nodes on Zachary’s karate club, for a low transmission rate and high transmission rate.

High Low

Simulation QSD pair-based model Simulation QSD pair-based model

0.5750 0.6142 0.1511 0.1640

0.2315 0.2513 0.0396 0.0421

0.4364 0.4599 0.1039 0.1099

0.3643 0.3874 0.0735 0.0771

0.3799 0.4002 0.0813 0.0868

infection through the network, and is a measure of the likelihood that a certain individual

will cause the pathogen to spread. Table 5.1 shows that the node-level pair-based model

accurately captures the marginal probabilities of each node being infected in the QSD,

and therefore this method accurately approximates the invasion probability from a given

initially infected single node. Population-level methods are not applicable here, illustrating

when the node-level models are advantageous.

5.6 Discussion

Defining metrics to describe the spread of epidemics can allow different systems, whether

this be different contact networks or different pathogens, to easily be compared. In the

standard deterministic SIS model [96, 184, 185, 187], one such metric is the epidemic

threshold, below which the pathogen will go extinct and above which the pathogen will

reach a steady endemic equilibrium solution [96, 184]. More complicated deterministic

models have been developed, such as pair-approximations models [50, 61, 83, 82, 91, 107,

167], in which this threshold behaviour can also be observed [82, 107]. However, no endemic

solution exists in the stochastic model, making it hard to relate the insights gained from

these models to the underlying stochastic process.

Many measures have been discussed and defined that provide insights into the stochastic

dynamics [5, 9, 10, 44, 62, 122], such as the invasion probability [193]. Of particular interest

when trying to find such information is the quasi-stationary distribution, since the disease-

free state gives little insight into the impact the pathogen has had on the population. The

quasi-stationary distribution is the steady-state of the system given that the absorbing
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state has not been reached; i.e. the expected long term behaviour of the system when the

pathogen does not die out. For network-based Markovian SIS dynamics, a unique QSD

will always exist [181]. The QSD is therefore rich in information regarding the impact the

pathogen may have on the population. This is especially relevant in the case when the

transmission rate is high, because here the time to pathogen extinction is likely to be long,

and apparently stable behaviour is observed before extinction.

The QSD can be calculated exactly from the master equation describing this Markov

process; however, this system scales exponentially and quickly becomes unfeasible. The

focus of this chapter was to derive computationally feasible methods to approximate the

expected number of infected individuals in the QSD, providing a deterministic framework

that can be linked directly to the underlying stochastic dynamics.

Where the population is homogeneous, the issue of reconciling the deterministic to

stochastic models has been investigated by looking at the QSD [4]. Extending the SIS

model to structured populations, the most similar work is that of [184], which investigates

the endemic equilibrium solution to the individual-based approximation to the SIS model.

The endemic steady-state solution has also been investigated in pair-based SIS approxi-

mations [91]. These provided a basis for the methods developed here, but we amended

the systems so that the equilibrium solutions directly approximate the expected number

of infected individuals in the QSD. The new methods are important, since although we

have shown that the existing methods approximate this when the transmission rate is high,

as this rate decreases an endemic equilibrium solution is attained that is not close to the

QSD. It is in this intermediate state and the lower state, where the stable solution is the

disease-free equilibrium, that our methods provide a strong advantage over the existing

ones. In both of these cases, our techniques captured the dynamics much more accurately,

as was shown in all figures.

We introduced various methods in this chapter for approximating the expected number

of infected individuals in the QSD. Our first approach was an individual-based approxi-

mation, based on the assumption that the states of neighbouring nodes are independent.

Although the assumption of individual-level independence is not particularly realistic, on

the complete network this method gave a good approximation to the expected number of

infected individuals in the QSD. However, for more structured networks the approxima-

tion became less accurate. From this node-level individual-based model, we developed a

degree heterogeneous population-level model, again using the assumption of independence

between individuals. Little accuracy was lost when computing the expected number of
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infected individuals compared to the node-level model, and the computational cost was

reduced.

Assuming independence of individuals does not accurately capture correlations between

neighbours, due to infection spreading through contact. Therefore, we developed a node-

level method based on assuming independence at the level of pairs. This model accurately

captures the dynamics of the expected number of infected individuals in the QSD on all

networks tested.

We then derived a degree heterogeneous population-level pair-approximation, in order

to reduce the computational cost. Again, little accuracy is lost in the population-level

model. This suggests that the expected number of infected individuals in the QSD is

mainly determined by the degree distribution of the network. One advantage however of

the node-level models is the insight these can give into the dynamics of individual nodes

in the population. The population-level models lose this information since they group all

individuals with the same degree into one class, whereas the node-level model accurately

captures the marginal probability of each node being infected in the QSD.

These methods facilitate efficient and reliable analysis of how different network struc-

tures can alter the statistics of the QSD. We have shown how different networks can change

the expected number of infected individuals in the QSD. The proposed methods also grant

insight into other statistics. One example is the invasion probability [193], which can be

calculated directly from the node-level models proposed. Being able to quickly calculate

statistics such as these improves understanding of the differences in infection risks that

various population structures can yield, which can have important treatment/prevention

implications. The potential future applications of this work include extending the methods

to other models for population dynamics.

Appendix 5.A Proof of existence of an endemic equilibrium

for the standard pair-based model

Proof. In [96], a theorem is proven regarding the existence of stable endemic solutions for

ordinary differential equation epidemic models. Here we demonstrate that the standard

pair-based SIS model [107] (Equations 1.19 and 1.20 with the closure from Equation 1.21)

satisfies the requirements for this proof, and therefore has a stable endemic equilibrium.
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Consider an ODE of the form

dy

dt
= Ay +N(y). (5.14)

If the following statements hold, then there exists a threshold above which an endemic

equilibrium exists.

1. A compact convex set C on the domain of N is positively invariant, with y = 0 ∈ C

2. lim
y→0
||N(y)||/||y|| = 0

3. There exists r > 0 and a real eigenvector w or AT such that (w · y) ≥ r||y|| ∀y ∈ C

4. (w ·N(y)) ≤ 0 ∀y ∈ C

5. y = 0 is the largest positively invariant set contained in H = {y ∈ C|(w ·N(y)) = 0}

The first step is to write the pair-based model in the form (5.14). The pair-based model is

given by

〈İi〉 = τ
N∑
j

Aij〈SiIj〉 − γ〈Ii〉

〈 ˙SiIj〉 = τ

N∑
k 6=i

Ajk
〈SiSj〉〈SjIk〉
〈Sj〉

− τ
N∑
k 6=j

Aik
〈IkSi〉〈SiIj〉
〈Si〉

− τ〈SiIj〉 − γ〈SiIj〉+ γ〈IiIj〉,

where 〈Si〉 = 1− 〈Ii〉, 〈IiIj〉 = 〈Ij〉 − 〈SiIj〉 and 〈SiSj〉 = 〈Si〉 − 〈SiIj〉.
This can be rewritten as

〈İi〉 = τ

N∑
j

Aij〈SiIj〉 − γ〈Ii〉

〈 ˙SiIj〉 = −(τ + 2γ)〈SiIj〉+ γ〈Ij〉+ τ
N∑
k 6=i

Ajk〈SjIk〉

−τ
N∑
k 6=i

Ajk
〈IiSj〉〈SjIk〉
〈Sj〉

− τ
N∑
k 6=j

Aik
〈IkSi〉〈SiIj〉
〈Si〉

.

Defining yi = 〈Ii〉 for 1 ≤ i ≤ N and yi = 〈S1Ii−N 〉 for N + 1 ≤ i ≤ 2N , yi = 〈S2Ii−2N 〉
for 2N + 1 ≤ i ≤ 3N , and so on, we can write the pair-based model in the form of
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Equation (5.14). Compiling the linear terms into the matrix A, we see that A is only

negative on the diagonal. The remaining non-linear terms define the function N(y), which

only assigns negative values to each input. Now it is required to check if the properties

hold.

Property (1.) holds because the system is invariant on the set C = {0 ≤ 〈Ii〉 ≤ 1; 0 ≤
〈SiIj〉 ≤ 1}. Property (2.) holds because as y → 0 the denominator of all terms, 1− 〈Ii〉,
goes to one, and the numerator is of the form yiyj , which goes to zero faster than yi and

yj . Property (3.) holds because A is irreducible since all the equations are coupled. Since

A is only negative on the diagonal, by the Perron-Frobenius theorem, AT must have an

eigenvector w such that wi > 0 for all i. Property (4.) holds because the function N(y) is

negative, so (w ·N(y)) ≤ 0, since wi > 0 for all i. We now need to test property (5.).

Property (5.) If y ∈ H then (w ·N(y)) = 0. This implies that

wiτ
∑
k 6=i

Ajk〈IiSj〉〈SjIk〉
1− 〈Ij〉

= 0

and

wiτ
∑
k 6=j

Aik〈IkSi〉〈SiIj〉
1− 〈Ii〉

= 0,

for all pairs (i, j). If we assume that y ∈ H and y 6= 0, then yh 6= 0 for some h. If we

assume that yh = 〈SiIj〉 6= 0, then we must have 〈SiIk〉 = 0, for all k ∈ Ni. Also, we

require 〈SjIk〉 = 0 for some k or 〈IiSj〉 = 0. Therefore, 〈SiIj〉 = 0 for some (i, j). We now

need to investigate whether such a state can be invariant.

Define S = {i : yi = 0} and S′ = {i : yi 6= 0}, both of which are non-empty by the

above argument. Since A is irreducible, there must exist a pair k ∈ S and h ∈ S′ such that

dyk/dt depends on yh.

First assume that yh = 〈SiIj〉 and yk = 〈Ii〉. We have

dyk
dt

= τ
∑
j 6=i

Aij〈SiIj〉

If this state is invariant, then dy/dt = 0, which implies that dyk/dt = 0 for all k. This can

only be the case if 〈SkIj〉 = 0 for all j. However, we have assumed that 〈SiIj〉 6= 0, so this

is not the case and dyk/dt 6= 0.
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Now assume yk = 〈SjIi〉, which gives

dyk
dt

= γ〈Ii〉+ τ
N∑
m6=j

Aim〈SiIm〉 − τ
N∑
m6=j

Aim
〈IjSi〉〈SiIm〉
〈Si〉

.

Since 〈IjSi〉/〈Si〉 ≤ 1, the sum of the last two terms cannot be negative. Therefore we

have 〈Ii〉 = 0. However, as has been shown by assuming 〈Ii〉 = 0, this case is not possible.

Therefore, dyk/dt 6= 0. Therefore, if 〈SiIj〉 6= 0 for some pair (i, j) and y ∈ H, then this

state cannot be invariant.

Now assume that yh = 〈Ii〉 ∈ S′ for some i, and consider yk = 〈SjIi〉 ∈ S. Since

〈SxIy〉 = 0 for all (x, y), we have

dyk
dt

= γ〈Ii〉.

Since 〈Ii〉 ∈ S′, dyk/dt 6= 0. Therefore, there are no invariant sets in H such that y 6= 0,

and y = 0 is the largest positively invariant set in H.

Appendix 5.B Node-level individual-based QSD model

5.B.1 Proof that the individual-based node-level QSD model is invariant

on [0, 1]N .

Proof. To prove that the model is invariant we use the method from [96]. Along the

boundaries to the set we are interested in, we either have 〈Yi〉 = 0 and 〈Xi〉 = 1 or 〈Yi〉 = 1

and 〈Xi〉 = 0. To show the system is invariant, we need to show that along these boundaries

the trajectories do not point away from this set.

First consider 〈Yi〉 = 0. At this boundary, we have

〈Ẏi〉 =
∑
j

Tij〈Yj〉.

If 〈Yi〉 ∈ [0, 1], this cannot be negative, and therefore at 〈Yi〉 = 0 the trajectory in the i

direction cannot leave the set [0, 1]N . Now consider 〈Yi〉 = 1. We have

〈Ẏi〉 = −γi + γi
∏
k 6=i
〈Xk〉.
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The product in this equation is in [0, 1] if 〈Xk〉 ∈ [0, 1] for all k. Therefore, this equation

can never be positive, so along this boundary the trajectory cannot leave the set [0, 1].

Therefore, this model is invariant on [0, 1]N .

5.B.2 Proof of a non-zero solution for the complete network

Proof. On the complete network, if we start with a fully infected population the probability

that each node is infected at a given time will be equal for all nodes, and therefore we can

denote 〈Ii〉 = a for all i ∈ V. Therefore, we can write the rate of change in the node

probabilities as

ȧ = −γa+ τ(N − 1)(1− a) + a
γNa(1− a)N−1

1− (1− a)N
.

In the steady-state ȧ = 0. Clearly a = 0 is a solution to this equation. If we rule out a = 0

then we obtain

(1− a)(N − 1)

(
τ

γ
+

N

N − 1

a(1− a)N−2

1− (1− a)N

)
= 1.

To find solutions we are interested in solutions to f(a) = 0 for a ∈ [0, 1], where

f(a) = (1− a)(N − 1)

(
τ

γ
+

N

N − 1

a(1− a)N−2

1− (1− a)N

)
− 1.

To see if a solution exists within this interval we check the signs at the end points.

At a = 1

f(1) = −1 < 0

the function is negative.

At a = 0

f(0) = (N − 1)
τ

γ
− 1 + lim

a→0
N
a(1− a)N−1

1− (1− a)N
,

lim
a→0

N
a(1− a)N−1

1− (1− a)N
= lim

a→0
N

(1− a)N−1 + (N − 1)(1− a)N−2

N(1− a)N−1
= 1

=⇒ f(0) = (N − 1)
τ

γ
> 0 if

τ

γ
> 0.

Therefore as long as the transmission rate τ is greater than zero there exists a solution to

f(a) = 0 in the open interval (0, 1), since f(a) is non-singular on (0, 1).
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5.B.3 Proof that the node-level individual-based model is lower bounded

by 1

Proof. Consider the node-level individual-based model; i.e.

〈Ẏi〉 = −γi〈Yi〉+
∑
j

Tij〈Xi〉〈Yj〉+
〈Yi〉

1−
∏
k

〈Xk〉
∑
j

γj〈Yj〉
∏
k 6=j
〈Xk〉. (5.15)

To approximate the QSD we calculate 〈Y ∗i 〉/(1−
∏
k

〈X∗k〉), where 〈Y ∗〉 and 〈X∗〉 are steady-

state solutions to (5.15). To understand the behaviour of this quantity, take its derivative

with respect to time,

d

dt

 〈Yi〉
1−

∏
j
〈Xj〉

 =

− γi〈Y c
i 〉+

∑
j

Tij〈Xi〉〈Y c
j 〉+ 〈Y c

i 〉
∑
j

γj〈Y c
j 〉
∏
k 6=j
〈Xk〉

+ 〈Y c
i 〉
∑
j

∏
k 6=j
〈Xk〉

γj〈Y c
j 〉 −

∑
k

Tjk〈Xj〉〈Y c
k 〉 − 〈Y c

j 〉
∑
k

γk〈Y c
k 〉
∏
m6=k
〈Xm〉

 , (5.16)

where 〈Y c
i 〉 = 〈Yi〉/(1−

∏
k

〈Xk〉). Since the marginal probability that node i is infected in

the QSD is given by 〈Yi〉/(1−
∏
j
〈Xj〉) in the equilibrium, the expected number of infected

individuals in the QSD is approximated by summing this over i in the equilibrium. If we

assume Equation (5.16) is in equilibrium for all i, which is the case if 〈X〉 and 〈Y 〉 are in

equilibrium, summing over i gives

∑
i

γi〈Y c
i 〉+

∑
i

〈Y c
i 〉
∑
j

∏
k 6=j
〈Xk〉

∑
k

Tjk〈Xj〉〈Y c
k 〉+ 〈Y c

j 〉
∑
k

γk〈Y c
k 〉
∏
m 6=k
〈Xm〉


=
∑
i

∑
j

Tij〈Xi〉〈Y c
j 〉+

∑
i

〈Y c
i 〉
∑
j

γj〈Y c
j 〉
∏
k 6=j
〈Xk〉+ 〈Y c

i 〉
∑
j

∏
k 6=j
〈Xk〉

 γj〈Y c
j 〉.

(5.17)

For the complete network, the steady-state 〈Yi〉 only goes to zero as the transmission rate

goes to zero, which is also true for all networks tested. As 〈Yi〉 goes to zero, 〈Xi〉 goes to
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one. Therefore, to test the lower bound on the expected number of infected predicted by

this model, set 〈Yi〉 = 0 and 〈Xi〉 = 1. This gives

∑
i

γi〈Y c
i 〉+

∑
i

〈Y c
i 〉
∑
j

[∑
k

Tjk〈Y c
k 〉+ 〈Y c

j 〉
∑
k

γk〈Y c
k 〉

]
=
∑
i

∑
j

Tij〈Y c
j 〉+

∑
i

〈Y c
i 〉
∑
j

γj〈Y c
j 〉+ 〈Y c

i 〉
∑
j

γj〈Y c
j 〉. (5.18)

Using the notation A =
∑
i
γi〈Y c

i 〉, B =
∑
j

∑
k

Tjk〈Y c
k 〉, and x =

∑
i
〈Y c
i 〉, we obtain

A+Bx+Ax2 = B + 2Ax,

which, for A 6= 0, has solutions

x =
2A−B ±B

2A
.

The two solutions are x = 1 and x = (A − B)/A. If we assume that 〈Yi〉 is only equal

to zero fo all i if Tij goes to zero for all pairs (i, j), as we have proven for the complete

network, then B = 0, so we end up with a single solution x = 1. If A = 0, then x = 1 or

B = 0. If A = 0 and B = 0, then any value of x is permitted. However, numerically we

observe that A 6= 0, so we do not consider this case.

Therefore, as the solution to the node-level individual-based model approaches zero for

all individuals, the approximation to the expected number of infected individuals in the

QSD is lower bounded by 1, which is consistent with the true QSD.



172 Christopher E. Overton

Appendix 5.C Node-level pair-based model derivation

If we do not assume independence at the level of individuals, we need to find equations

describing pair probabilities in the conditional distribution. We have

d

dt
(ρ(Σi(t) = I)) =

∑
α:σαi=I

dρα
dt

=

∑
j Tij〈SiIj〉 − γi〈Ii〉

1− P1
+

〈Ii〉
(1− P1)2

∑
j

γj〈IjS〉,

d

dt
(ρ(Σi(t) = S,Σj = I)) =

∑
α:σαi=S,
σαj=I

dρα
dt

=

∑
k∈Nj\i Tjk〈SiSjIk〉

1− P1
−
∑

k∈Ni\j Tik〈IkSiIj〉
1− P1

−(Tij + γj)〈SiIj〉
1− P1

+
γi〈IiIj〉
1− P1

+
〈SiIj〉

(1− P1)2

∑
j

γj〈IjS〉,

(5.19)

where 〈Ai〉 is shorthand for the marginal probability P (Σi(t) = A) with A ∈ {S, I}, 〈AiBj〉
is shorthand for P (Σi(t) = A,Σj(t) = B) with A,B ∈ {S, I}, 〈AiBjCk〉 is shorthand for

P (Σi(t) = A,Σj(t) = B,Σk(t) = C) with A,B,C ∈ {S, I}, and 〈IjS〉 is shorthand for

P (Σj = I,Σk = S for all k 6= j). We can simplify this system by assuming statistical

independence at the level of pairs.

As we have described in Section 1.4.2, we approximate the triples in terms of pairs and

individuals by assuming

〈AiBjCk〉 ≈
〈AiBj〉〈BjCk〉

〈Bj〉
.

Under this assumption, Equation (5.19) becomes

d

dt
(ρ(Σi(t) = I)) =

∑
j Tij〈SiIj〉 − γi〈Ii〉

1− P1
+

〈Ii〉
(1− P1)2

∑
j

γj〈IjS〉,

d

dt
(ρ(Σi(t) = S,Σj = I)) =

∑
k∈Nj\i Tjk

〈SiSj〉〈SjIk〉
〈Sj〉

1− P1
−
∑

k∈Ni\j Tik
〈IkSi〉〈SiIj〉
〈Si〉

1− P1

−(Tij + γj)〈SiIj〉
1− P1

+
γi〈IiIj〉
1− P1

+
〈SiIj〉

(1− P1)2

∑
j

γj〈IjS〉.

Note that 〈Si〉 = 1 − 〈Ii〉, 〈IiIj〉 = 〈Ij〉 − 〈SiIj〉 and 〈SiSj〉 = 〈Si〉 − 〈SiIj〉. Both 〈IjS〉
and the ground state probability, P1, are of full system size, and therefore, following [50],
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a natural pair approximation for these is

〈IjS〉 ≈ 〈ĨjS〉 =

∏
x∈Nj
〈IjSx〉

∏
y 6=j

∏
x∈Ny :x<y,x6=j

〈SySx〉∏
x 6=j
〈Sx〉kx−1〈Yj〉kj−1

and

P1 ≈ 〈σ1〉 =
∏
y

∏
x∈Ny :x<y

〈SySx〉
〈Sy〉ny−1

,

where Nj is the set of individuals that can infect or be infected by j; i.e. i ∈ Nj if Tij > 0

or Tji > 0.

In the QSD, both the pair-level and individual-level conditional probabilities are in a

steady-state, so both equations in Equation (5.19) are equal to zero. Therefore, to find the

approximation to the QSD under the pair-level independence assumption, we need to find

vectors 〈X∗〉, 〈Y ∗〉, and matrices 〈XX∗〉,〈XY ∗〉, and 〈Y Y ∗〉 satisfying,

0 =

∑
j Tij〈XiYj〉∗ − γi〈Yi〉∗

1− 〈σ1〉
+

〈Yi〉∗

(1− 〈σ1〉)2

∑
j

γj〈ỸjX〉∗,

0 =

∑
k∈Nj\i Tjk

〈XiXj〉∗〈XjYk〉∗
〈Xj〉∗

1− 〈σ1〉
−
∑

k∈Ni\j Tik
〈YkXi〉∗〈XiYj〉∗

〈Xi〉∗

1− 〈σ1〉

−(Tij + γj)〈XiYj〉∗

1− 〈σ1〉
+
γi〈YiYj〉∗

1− 〈σ1〉
+
〈XiYj〉∗

(1− 〈σ1〉)2

∑
j

γj〈ỸjX〉∗,

which, once solved, can be used to find the probability that i is infected in the QSD by

computing 〈Yi〉∗/(1−〈σ1〉∗). However, we require solutions 〈Yi〉∗ and 〈XiYj〉∗ ∈ [0, 1] which

satisfy 〈Xi〉∗ = 1− 〈Yi〉∗ for all i and 〈XiXj〉 = 〈Xi〉 − 〈XiYj〉, and 〈YiYj〉 = 〈Yj〉 − 〈XiYj〉
for all i, j in order to be valid solutions to our original problem.

By calculating the equilibrium of the system,

〈Ẏi〉 =
∑
j

Tij〈XiYj〉 − γi〈Yi〉+

〈Yi〉
∑
j
γj〈ỸjX〉

1− 〈σ1〉
,

〈 ˙XiYj〉 =
∑

k∈Nj\i

Tjk
〈XiXj〉〈XjYk〉

〈Xj〉
−
∑

k∈Ni\j

Tik
〈YkXi〉〈XiYj〉
〈Xi〉
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−(Tij + γj)〈XiYj〉+ γi〈YiYj〉+

〈XiYj〉
∑
j
γj〈ỸjX〉

1− 〈σ1〉
,

〈Xi〉 = 1− 〈Yi〉,

〈XiXj〉 = 〈Xi〉 − 〈XiYj〉,

〈YiYj〉 = 〈Yi〉 − 〈YiXj〉,

where

〈ỸjX〉 =

∏
x∈Nj
〈YjXx〉

∏
y 6=j

∏
x∈Ny :x<y,x6=j

〈XyXx〉∏
x6=j
〈Xx〉kx−1〈Yj〉kj−1

and

〈σ1〉 =
∏
y

∏
x∈Ny :x<y

〈XyXx〉
〈Xy〉ny−1

.

we can approximate the probability that i is infected in the QSD by computing limt→∞〈Yi(t)〉∗/(1−
〈σ0(t)〉∗).

Appendix 5.D Population-level pair-based mode derivation

To obtain a population-level pair-based model, we sum over nodes with the same degree

(and pairs of nodes with the same pair of degrees); i.e.

∑
i:ki=k

∑
α:σαi=I

dρα
dt

=
τ
∑

l∈M[SkIl]− γ[Ik]

1− P1
+

[Ik]

(1− P1)2

∑
j

γ〈IjS〉,

∑
i,j:ki=k,
kj=l

∑
α:σαi=S,
σαj=I

dρα
dt

=
τ
∑

m∈M[SkSlIm]− τ
∑

m∈M[ImSkIl]− τ [SkIl] + γ[IkIl]− γ[SkIl]

1− P1

+
[SkIl]

(1− P1)2

∑
j

γ〈IjS〉,

where [AkBlCh] is the expected number of triples between degree k, degree l and degree h

individuals in states A, B and C respectively.
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As described in Section 1.4.2, we can express the triple terms as

[AlSkIm] ≈ k − 1

k

[AlSk][SkIm]

[Sk]
. (5.20)

We can set equations (5.20) to zero and use the approximation (5.20) to find equations

describing the QSD.

A solution to the resulting system can be found by finding an equilibrium of

[Ẏk] = −γ[Yk] + τ
∑
l∈M

[XkYl] +

[Yk]
∑
l∈M

γP̃ (Yl = 1)

1− 〈σ1〉

[ ˙XkYl] = τ(
∑
m∈M

l − 1

l

[XkXl][XlYm]

[Xl]
−
∑
m∈M

k − 1

k

[YmXk][XkYl]

[Xk]

−[XkYl]) + γ([YkYl]− [XkYl]) +

[XkYl]
∑
l∈M

γP̃ (Yl = 1)

1− 〈σ1〉

[ ˙YkYl] = τ(
∑
m∈M

k − 1

k

[YmXk][XkYl]

[Xk]
+
∑
m∈M

l − 1

l

[YkXl][XlYm]

[Xl]
)

+τ([XkYl] + [YkXl]− 2γ[YkYl] +

[YkYl]
∑
l∈M

γP̃ (Yl = 1)

1− 〈σ1〉
[Xk] = |Ck| − [Yk]

[XkXl] = |Ck,l| − [YkYl]− [XkYl]− [XlYk], (5.21)

where P̃ (Yl = 1) = |Cl|〈YiX〉 for some i with ki = l. Here

〈YiX〉 =

∏
x,y 6=i

Gxy〈XxXy〉
∏
x
Gix〈YiXx〉∏

x 6=i
〈Xx〉kx−1〈Yi〉ki−1

,

which requires node-level terms. We can approximate this by population-level quantities

using

〈Si〉 ≈
[Ski ]

|Cki |
, (5.22)
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and

〈SiSj〉 ≈
[SkiSkj ]

|Cki,kj |
, (5.23)

based on the discussion in Section 1.4.2. This gives

〈YjX〉 ≈

∏
k 6=kj

∏
l≤k:l 6=kj

(
[XkXl]
|Ck,l|

)|Ck,l|( [YkjXk]

|Ckj,k|

) |Ckj,k|
|Ckj |

(
[XkjXk]

|Ckj,k|

)|Ckj,k|− |Ckj,k||Ckj |

∏
k 6=kj

(
[Xk]
|Ck|

)|Ck|(k−1)
(

[Ykj ]

|Ckj |

)(kj−1)(
[Xkj ]

|Ckj |

)(|Ckj |−1)(kj−1)
. (5.24)

To approximate the ground state recall that in the previous section we have shown that a

natural approximation to the ground state probability under the assumption of pair-level

independence is

〈σ1〉 ≈
∏
i

∏
j<i

Gij〈XiXj〉
〈Xi〉ni−1

.

Using Equations (5.22) and (5.23) we can approximate this in terms of population level

quantities, which yields

〈σ1〉 ≈
∏
k

∏
l≤k


(

[XkXl]
|Ck,l|

)|Ck,l|
(

[Xk]
|Ck|

)|Ck|(k−1)

 . (5.25)

By substituting equations (5.25) and (5.24) into Equation (5.21) we obtain a closed system

of equations.
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Conclusion

Evolution is the process through which species change and adapt [34, 51, 98, 104, 110,

176, 182]. Traditional evolutionary models focussed on well-mixed populations, where

all individuals interact with each other. However, real populations are often structured,

since individuals only interact with a subset of the population. This structure can be

represented by a network (or graph), which illustrates how the individuals in the population

interact and compete with each other. Such population structure has been found to have

significant outcomes on the evolutionary process [102]. Modelling evolution on a network

in such a way, which is known as evolutionary graph theory, has been widely studied

theoretically [6, 70, 106, 140]. For example, results have shown that population structure

changes the time to fixation [68, 69] and the probability of mutants fixating [60], and affects

the dynamics of evolutionary games [129]. However, despite the widespread theoretical

interest, the biological applications of this framework have been limited, potentially due to

unrealistic assumptions underpinning the model, such as birth and death being coupled.

In this thesis, we have been motivated by adding further biological realism to this

process. In Chapter 2, we built upon the framework of Champagnat [22] to develop a bio-

logically motivated framework for evolution on networks. Through this, we have revealed

the underlying assumptions behind existing structured models, such as evolutionary graph

theory. By applying different limits to the dynamics, we have shown in what circum-

stances these assumptions are realistic. Through constructing this model, we also derive

epidemic models, such as SIS. This provides further understanding into pathogen evolu-

tion, which is important for tackling antimicrobial resistance, HIV and other healthcare

problems characterised by evolving pathogens.

177
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Aside from the improved biological realism, the proposed framework also enables the

analysis of clonal interference in network-structured populations. Clonal interference is

where new mutations hinder the chance of existing mutants fixating in a population [53].

In the evolutionary graph theory framework, mutants have an infinite time to fixate since

the mutation rate is assumed to be negligible. However, network structure can signifi-

cantly amplify the time to fixation relative to a well-mixed population [177]. Therefore,

this assumption of no mutations before fixation is potentially unrealistic. By adding mu-

tation, we have shown that if the mutation rate is sufficiently high, structures that would

amplify selection under evolutionary graph theory can hinder selection due to this clonal

interference.

Using this novel framework, we have investigated certain properties of interest, mainly

focusing on the insights this can give into evolutionary graph theory. However, the frame-

work provides a whole range of potential research areas that we have yet to explore. A

future direction which will be particularly interesting is investigating how this framework

can be applied to real populations, and what insights it can give into how these evolve

under different selective pressures.

Another aspect present in biological populations that is often omitted from evolutionary

models is the presence of environmental variation. This variation results in the conditions

experienced by individuals changing across time. In well-mixed populations, this has led

to the investigation of evolutionary bet-hedging [14, 100, 160, 162, 173, 174, 186], where

evolution selects for species that have reduced mean fitness but are sufficiently less sensitive

to these variations. In Chapter 3, we investigated evolutionary bet-hedging in network-

structured populations.

There are two types of variation considered; between-generation and within-generation.

Between-generational variation acts on all individuals of a given type identically at a given

time, and has been found to be important to the evolutionary process. Within-generational

variation acts on individuals of a given species independently at any given time. In well-

mixed populations, such variation has been found to not play a part on the evolutionary

process. Using the framework of evolutionary graph theory, we have shown that pro-

vided the population has sufficient structure governing how individuals compete, within-

generational variation can play a large part on evolution. This is supported by work using

metapopulations [97, 170, 171, 199], and provides theoretical insight into many empirical

observations that have identified species that evolved to counter such variation. A limi-

tation of this current work is that we have only investigated network-structure using the
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evolutionary graph theory framework. Potential future extensions may involve investigat-

ing how bet-hedging strategies would evolve under the novel dynamics we proposed in

Chapter 2.

The improved realism obtained through adding ecological dynamics and environmental

variation comes at the cost of increased computational effort. The analyses performed

therefore relies mostly on stochastic simulations, though we have obtained some analytical

results where possible. These analytical results provide insight into the scenarios con-

sidered, but do not allow systematic analysis of different network structures, since they

can only be applied to a restrictive subset of networks. Such analysis is also challenging

through stochastic simulations, since these provide little theoretical insight into the un-

derlying dynamics and can be very time consuming for large population sizes. Therefore,

approximation methods can be powerful, since they can significantly reduce the computa-

tional time and provide theoretical insight into the dynamics.

A common approach for approximating network-structured dynamics is moment-closure

approximation, first used in statistical physics and more recently applied to epidemic mod-

elling. In Chapter 4, we applied such moment-closure methods to the standard evolu-

tionary graph theory dynamics. The application of these methods immediately ran into

challenges, because despite the similarity to network-based epidemic models, evolutionary

graph theory has extra correlations and dependencies that complicated the methods. By

amending the methods to account for these difficulties, we constructed a novel approxima-

tion framework that can study evolutionary dynamics for arbitrary networks and update

rules. We demonstrated the performance of these models on different population structures

to illustrate when they perform well and when they do not.

Although these moment-closure methods are commonly applied to epidemic models,

these methods exhibit endemic equilibrium solutions which are not present in the underly-

ing stochastic models. This can make it challenging to link theoretical results from these

models back to the stochastic process. To address this, in Chapter 5 we developed novel

moment-closure methods to approximate the quasi-stationary distribution of the stochas-

tic SIS epidemic model. The quasi-stationary distribution describes the behaviour of the

epidemic if the pathogen does not go extinct. This is biologically relevant, since in many

epidemics, particularly those with evolution and competition between pathogens, we do

not observe extinction on a relevant timescale. The novel moment-closure methods we

developed capture the QSD accurately on all networks considered.

Currently, this work has focused on the QSD for SIS dynamics. A future direction will
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be to extend these methods to capture other epidemic dynamics, such as SIR and SEIR,

as well as the transient behaviour of the conditional distribution. Using the work we have

conducted on moment-closure in evolutionary graph theory, along with other similar works

such as the pair-approximation models and neighbourhood approximation models in [59],

it may be possible to extend these QSD methods to evolutionary dynamics. This would

facilitate the analysis of evolutionary systems that have not gone to fixation, which could

be important as often population structure can significantly amplify the time to fixation

in evolutionary games, so we might expect to observe prolonged coexistence.

We have considered these moment-closure methods in the standard evolutionary graph

theory dynamics and SIS epidemic dynamics as an illustration of their potential. We find

that these methods significantly reduce the computational time and investigate in what

scenarios they are most reliable. This provides a framework upon which approximations to

the more realistic evolutionary dynamics developed in Chapters 2 and 3 can be developed.

Future work therefore entails extending these methods to capture these more complicated

dynamics.
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