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Abstract

We present the first static and dynamic external memory data structures for variants
of 2-d orthogonal range skyline reporting with worst-case logarithmic query and update
I/O-complexity. The results are obtained by using persistent data structures and by
extending the attrition priorities queues of Sundar [IPL 1989] to also support real-time
concatenation, a result of independent interest. We show that the problem is as hard as
standard 2-d orthogonal range reporting in the indexability model by a lower bound on
the I/O-complexity of 2-d orthogonal anti-dominance skyline reporting queries.
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1. Introduction

We study orthogonal range skyline reporting in the I/O model [2] of computation in
external memory. The skyline or maximal points of a planar pointset is the subset of
points that are not dominated by any other point in the set, i.e. no other point has both
coordinates larger than any maximal point. Naturally, the skyline forms an orthogonal
staircase of the maximal points that appear in decreasing y-order, when considered in
increasing x-order. See Figure 1a for an example. An orthogonal range skyline reporting
query reports the skyline of the subset of points that are contained in a given 4-sided
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a. Skyline. b. Range skyline.

c. 3-sided range skyline. d. Anti-dominance skyline.

Figure 1: Variants of 2-d orthogonal range skyline reporting.

rectangle. See Figure 1b for an example. Standard 2-d orthogonal range reporting queries
[3, 4, 5, 6, 7] (where all points in the range are reported, not only the skyline) are harder
than the special case of 2-d orthogonal 3-sided range reporting queries (where the query
rectangle is unbounded in one side), regardless of which side is unbounded. However for
skyline reporting, due to the orientation of the “dominance relation”, we only consider
as an easier special case 2-d orthogonal 3-sided range skyline reporting queries for 3-sided
rectangles with their top side unbounded (Figure 1c), since we will show that all other
cases of 3-sided rectangles, as well as the 4-sided case, essentially reduce to the harder
2-d orthogonal anti-dominance skyline reporting queries, where the query rectangle is
unbounded in both the left and bottom sides (Figure 1d).

1.1. Previous Results

Internal memory. In the word-RAM model, Kalavagattu et al. [8] present static 2-d
orthogonal range skyline reporting data structures that support queries in O (log n+ k)
time, where n is the number of points and k is the size of the reported skyline, using
superlinear O (n log n) space. For points in rank-space, i.e. on an [O (n)]

2
grid, the data

structures of Das et al. [9] support queries in O
(

logn
log logn + k

)
time, using superlinear

O
(
n logn

log logn

)
space. Range skyline queries have been studied in higher dimensions [10].

Brodal and Tsakalidis [11] present optimal dynamic 2-d orthogonal 3-sided range

skyline reporting data structures that support queries in O
(

logn
log logn + k

)
time and up-

dates in O
(

logn
log logn

)
time, using linear space, concluding a long series of improvements

[12, 13, 14, 15, 16] over the initial polylogarithmic worst-case bounds of Overmars and
van Leeuwen [17].

2



External memory. In the I/O model with block size B [2], the optimal pointer machine
skyline algorithm [18] has been externalized [19] and I/O-optimal data structures for 2-d
orthogonal planar range skyline counting queries (that report the skyline size) have been
presented [20]. However, despite the abudance of work on skyline reporting in various
I/O-efficient settings, no static [21] or dynamic [22, 23, 24, 25] data structures exist for
orthogonal range skyline reporting with guaranteed worst-case I/O-efficiency, even for
planar pointsets. The main focus in literature has been on experimental analyses of
average case or adversarially restricted sequences of operations that appear commonly
in practice.

1.2. Our Contributions

Dynamic orthogonal range skyline reporting. In Section 2 we present the first I/O-
efficient dynamic data structures for 2-d orthogonal 3-sided range skyline reporting that
support query and update operations in logarithmic worst-case I/Os, using linear space
(Theorem 2.1).

Catenable attrition priority queues. Our dynamic data structures rely heavily on an
I/O-optimal generalization of the attrition priority queues of Sundar [26] that also sup-
ports real-time concatenation in constant worst-case time. Specifically, in Subsection
2.1 we present catenable attrition priority queues that operate on a set of totally or-
dered elements and support real-time operations DeleteMin (remove and report the
minimum element stored) and CatenateAndAttrite (catenate two attrition priority
queues Q1, Q1 and attrite Q1, i.e. remove its stored elements smaller than the minimum
element in Q1). We also prove that the operations are actually supported in subconstant
amortized O

(
1
B

)
I/Os by a detailed amortized analysis (Theorem 2.3).

In more detail, Sundar [26] presents three worst-case-efficient implementations for
operations DeleteMin and InsertAndAttrite that use a constant amount of linked
lists and additional pointers. In fact, in the third implementation, this amount is a
user-defined parameter kQ. We observe that the third implementation can be modified
to further support operation CatenateAndAttrite and we present the detailed im-
plementation in Subsection 2.1, isolating the case where concatenation is actually taking
place (see Figure 3). In the application to 3-sided range skyline reporting, we have that
kQ = o (B), i.e. all additional pointers fit in a block, and hence the attrition priority
queue is loaded in main memory without incurring any extra asymptotic cost.

Static orthogonal range skyline reporting. In Section 3 we present I/O-optimal static data
structures for 2-d orthogonal 3-sided range skyline reporting in the indexability model [5],
where a word stores exactly one indivisible input coordinate (Theorem 3.2), as well as
for divisible input coordinates (Theorem 3.5 for points in rank-space and Corollary 3.5.1
for the general case). In Subsection 3.2 we prove a query I/O-complexity lower bound
of any static linear-space data structure for 2-d orthogonal range skyline reporting in
the indexability model [4] (Theorem 3.7) and provide a matching data structure that is
also dynamic (Corollary 3.7.1). This essentially shows that 2-d orthogonal range skyline
reporting is as hard as standard 2-d orthogonal range reporting [3, 4, 6].
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2. Dynamic Skyline

In this section we prove the following theorem.

Theorem 2.1. Given n points in the plane and for any constant ε ∈ [0, 1], there ex-
ist data structures that support orthogonal 3-sided range skyline reporting queries in
O
(
log2Bε

n
B + k

B1−ε

)
I/Os, where k is the size of the reported skyline, and updates in

O
(
log2Bε

n
B

)
amortized I/Os, using O

(
n
B

)
blocks, and preprocessing I/Os on an x-sorted

input pointset.

First we present some necessary preliminaries. Indeed, the following lemma is used in
the proofs of both our main Theorems 2.1 and 3.5, respectively, presented in Subsection
2.2 and in Section 3.

Lemma 2.2. Given a y-coordinate y and access to a node of a B-tree indexing the x-
coordinates of a planar pointset, the k skyline points with y-coordinate larger than y in
the node’s subtree are reported in O

(
1 + k

B

)
I/Os.

There are two complementing ways to obtain this lemma in the pointer machine, i.e.
achieve O (1 + k) worst-case reporting time, assuming a binary base tree and ignoring
rebalancing issues. On the one hand, we can store the skyline points explicitly in a list
at every node and simply report them in increasing x-order (and thus also decreasing
y-order) until the first skyline point with y-coordinate smaller than y is encountered.
This is essentially the basic approach adopted by Overmars and van Leeuwen [17], which
nevertheless results in slow O

(
log2 n

)
update time (O (log n) lists need to be updated

in O (log n) time each) and superlinear O (n log n) space. Albeit, the approach is easily
externalizable by using I/O-efficient lists. On the other hand, the structure of Brodal
and Tsakalidis [11] avoid the explicit storage of every node’s skyline by only storing
O (log n) representative skyline points per node and corresponding pointers to the node’s
subtree. Reporting the skyline is done by recursive calls to Lemma 2.2, essentially fol-
lowing pointers within the tree. Unfortunately, this pointer-chasing algorithm makes it
difficult to achieve the desired 1

B -factor I/O-speed-up. Nevertheless, they achieve opti-
mal O (log n) update time and linear space, due to the efficient implementation of the
secondary data structures that maintain the representative points at every node. Specif-
ically, they use partially persistent attrition priority queues (where queries on previous
versions of the structure are supported, as update operations create new versions) that
allow for real-time node updates and avoid redundant copies of skyline points.

We prove Theorem 2.1 in Subsection 2.2 by adopting a hybrid approach to these data
structures. On the one hand, we implement the lists at every node with I/O-efficient
catenable attrition priority queues, which we present first in Subsection 2.1. On the
other hand, we make the queues confluently persistent (where also updates on previous
versions are supported, as well as merging two versions into a new version is supported
by a concatenation update operation) and resolve the technical difficulties to make the
whole structure work I/O-efficiently.

2.1. Catenable Attrition Priority Queues

In this subsection we present I/O-efficient catenable priority queues with attrition
(I/O-CPQAs) that store a set of elements with values from a total order. For the sake of
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Figure 2: An I/O-CPQA. Gray records are critical. Only dirty queues contain records with pointers to
other I/O-CPQAs.

simplicity, we identify an element with its value. An I/O-CPQA Q with smallest stored
element min(Q) supports the following operations:

• FindMin(Q) returns min(Q).

• DeleteMin(Q) returns min(Q) and removes it from Q. The resulting I/O-CPQA
is Q′ = Q\{min(Q)}, and Q is discarded.

• CatenateAndAttrite(Q1, Q2) concatenates I/O-CPQA Q2 to the end of an-
other I/O-CPQA Q1, removes all elements in Q1 that are larger than or equal to
min(Q2) (attrition), and returns the result as a combined I/O-CPQA Q′1 = {e ∈
Q1 | e ≤ min(Q2)} ∪Q2. Q1 and Q2 are discarded.

• InsertAndAttrite(Q, e) inserts element e at the end of I/O-CPQA Q, attrites
all elements in Q with value larger than the value of e, and returns the resulting
I/O-CPQA Q′ = {e′ ∈ Q|e′ ≤ e}. Q is discarded.

Definitions. An I/O-CPQA Q consists of kQ + 2 deques of records, called the clean and
buffer deques C(Q), B(Q) and the dirty deques D1(Q), . . . , DkQ(Q), where kQ ≥ 0. A
record r = (l, p) consists of a buffer l of [b, 4b] elements of strictly increasing value and a
pointer p to an I/O-CPQA. A record is simple when its pointer p is null. The clean deque
and the buffer deque only contain simple records. The definition of I/O-CPQAs implies
an underlying tree structure where pointers are considered as edges and I/O-CPQAs as
subtrees. In particular, since the initial I/O-CPQAs Q1 and Q2 are discarded after their
merge, the merged I/O-CPQA can be seen as a tree, rooted at Q1 with Q2 as a child.

We define the ordering of the elements in a record r to be all elements of its buffer l
followed by all elements in the I/O-CPQA pointed to by pointer p. We define the queue
order of I/O-CPQA Q to be: C(Q), B(Q), D1(Q), . . . , DkQ(Q). It corresponds to an
Euler tour over the tree structure. See Figure 2 for an overview of the structure.

Given a record r = (l, p), the minimum and maximum elements in the buffers of r,
are denoted by min(r) = min(l) and max(r) = max(l), respectively. They appear respec-
tively first and last in the queue order of l, since the buffer of r is sorted by value. Given
a deque q, the first and the last record is denoted by first(q) and last(q), respectively.
Also, rest(q) denotes all records of the deque q excluding the record first(q). Similarly,
front(q) denotes all records of the deque q excluding the record last(q). The size |r| of a
record r is defined to be the number of elements in its buffer. The size |q| of a deque q
is defined to be the number of records it contains. The size |Q| of the I/O-CPQA Q is
defined to be the number of elements that Q contains. For an I/O-CPQA Q we denote
by first(Q) and last(Q), respectively the first and last record out of the records ∪qfirst(q)
and ∪qlast(q) for all deques q = {C(Q), B(Q), D1(Q), . . . , DkQ(Q)} that exist in Q. For
an I/O-CPQA Q, we maintain the following invariants:
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I.1) For every record r = (l, p) where pointer p points to I/O-CPQA Q′, we have

max(l) < min(Q′).

I.2) In all deques of Q where record r1 = (l1, p1) precedes record r2 = (l2, p2), we have

max(l1) < min(l2).

I.3) For deques C(Q), B(Q), D1(Q), we have

max(last(C(Q))) < min(first(B(Q))) < min(first(D1(Q))).

I.4) Element min(first(D1(Q))) is the smallest element in dirty dequesD1(Q), ...,DkQ(Q).

I.5) All records in the deques C(Q) and B(Q) are simple.

I.6) |C(Q)| ≥
∑kQ
i=1 |Di(Q)|+ kQ − 1.

I.7) |first(C(Q))| < b holds, iff |Q| < b.

I.8) |last(DkQ(Q))| < b and |r| ∈ [b, 5b] hold, iff record last(DkQ(Q)) is simple.

From Invariants I.2, I.3 and I.4, we have that min(Q) = min(first(C(Q))). We say that
an operation improves or aggravates the inequality of Invariant I.6 by a parameter c for

I/O-CPQAQ, when the operation increases or decreases ∆(Q) = |C(Q)|−
∑kQ
i=1 |Di(Q)|−

kQ + 1 by c, respectively.

Operations. We present the algorithms implementing the operations supported by the
I/O-CPQA Q. Most of the operations call the auxiliary operation Bias(Q), which we
present last. Bias improves the inequality of Invariant I.6 for Q by at least 1.

FindMin(Q) returns the value min(first(C(Q))).
DeleteMin(Q) removes element e= min(first(C(Q))) from record (l, p)=first(C(Q)).

After the removal, if |l| < b and |Q| ≥ b, we do the following. If b ≤ |first(rest(C(Q)))| ≤
2b, then we merge first(C(Q)) with first(rest(C(Q))) into one record which is the new
first record. Else if 2b < |first(rest(C(Q)))| ≤ 3b then we take b elements out of
first(rest(C(Q))) and put them into first(C(Q)). Else we have that 3b<|first(rest(C(Q)))|,
and as a result we take 2b elements out of first(rest(C(Q))) and put them into first(C(Q)).
If inequality of I.6 for Q is aggravated by 1 we call Bias(Q) once. We return element e.

CatenateAndAttrite(Q1, Q2) concatenates Q2 to the end of Q1 and removes the
elements from Q1 with value larger than min(Q2). To do so, it creates a new I/O-CPQA
Q′1 by modifying Q1 and Q2, and by calling Bias(Q′1) and Bias(Q2).

In particular, if |Q1| < b, then Q1 is only one record (l1, ·), and so we prepend it into
the first record (l2, ·) = first(Q2) of Q2. In particular, let l′1 be the non-attrited elements
of l1. If |l′1| + |l2| ≤ 4b, then we prepend l′1 into l2. Else, we take 2b − |l′1| elements out
of l2, and make them along with l′1 the new first record of Q2.
Else if |Q2| < b, then Q2 only consists of one record. We have two cases, depending
on how much of Q1 is attrited by Q2. Let r1 be the second last record for Q1 and let
r2 = last(Q1) be the last record. If e attrites all of r1, then we just pick the appropriate
case among (1–4) below. Else if e attrites partially r1, but not all of it, then we delete r2
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Figure 3: Merging two I/O-CPQAs occurs only when the left I/O-CPQA Q1 has B(Q1) = ∅ and kQ1
= 1.

and merge r1 and Q2 into the new last record of Q1, which cannot be larger than 5b.
Otherwise if e attrites partially r2, but not all of it, then we simply append the single
record of Q2 into r2. It will be the new last record of Q1 and it cannot be larger than 5b.

We have now dealt with the case where |Q1| ≥ b. So in the following, we assume that Q1

is large. For the remaining cases, let e = min(Q2).

1) If e ≤ min(first(C(Q1))), we discard I/O-CPQA Q1 and set Q′1 = Q2.

2) Else if e ≤ max(last(C(Q1))), we remove simple record (l, ·) = first(C(Q2)) from
C(Q2), set C(Q′1) = ∅, B(Q′1) = C(Q1) and D1(Q′1) = (l, p), where p points to Q2,
if it exists. This aggravates the inequality of I.6 for Q2 by at most 1, and gives
∆(Q′1) = −1. Thus, we call Bias(Q2) once and Bias(Q′1) once.

3) Else if e ≤ min(first(B(Q1))) or e ≤ min(first(D1(Q1))) holds, we remove the simple
record (l, ·) = first(C(Q2)) from C(Q2), set D1(Q′1) = (l, p), and make p point to Q2,
if it exists. If e ≤ min(first(B(Q1))), we set B(Q′1) = ∅. This aggravates the inequality
of I.6 for Q2 by at most 1, and aggravates the inequality of I.6 for Q1 by at most 1.
Thus, we call Bias(Q2) once and Bias(Q′1) once.

4) Else, let (l1, ·) = last(DkQ1
). We remove (l2, ·) = first(C(Q2)) from C(Q2). If |l1| < b,

then we remove the record (l1, ·) from DkQ1
. Let l′1 be the non-attrited elements

under attrition by e = min(l2). If |l′1|+ |l2| ≤ 4b, then we prepend l′1 into l2 of record
r2 = (l2, p2), where p2 points to the rest of Q2. Otherwise. we make a new simple
record r1 with l′1 and 2b elements taken out of r2 = (l2, p2). Finally, we put the
resulting one or two records r1 and r2 into a new deque DkQ1

+1(Q1). This aggravates
the inequality of I.6 for Q2 by at most 1, and the inequality of I.6 for Q1 by at most 2.
Thus, we call Bias(Q2) once and Bias(Q′1) twice.

InsertAndAttrite(Q, e) inserts an element e into I/O-CPQA Q and attrites the
elements in Q with value larger than e. This is a special case of operation Catenate-
AndAttrite(Q1,Q2), where Q1 = Q and Q2 is an I/O-CPQA that only contains one
record with the single element e.

Bias(Q) improves the inequality of Invariant I.6 for Q by at least 1.

1) |B(Q)| > 0: We remove the first record first(B(Q)) = (l1, ·) from B(Q) and let
(l2, p2) = first(D1(Q)). Let l′1 be the non-attrited elements of l1 by element e= min(l2).

1) 0 ≤ |l′1| < b: If |l2| ≤ 2b, then we just prepend l′1 onto l2. Else, we take b elements
out of l2 and append them to l′1.
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2) b ≤ |l′1| < 2b: If |l2| ≤ 2b, and if furthermore |l′1|+ |l2| ≤ 3b holds, then we merge l′1
and l2. Else |l′1|+ |l2| > 3b holds, so we take 2b elements out of l′1 and l2 and put
them into l′1, leaving the rest in l2.

Else |l2| > 2b holds, so we take b elements out of l2 and put them into l′1.

If we did not prepend l′1 onto l2, we insert l′1 along with any elements taken out of l2
at the end of C(Q) instead. If |l′1| < |l1|, we set B(Q) = ∅. Else, we did prepend l′1
onto l2, and then we just recursively call Bias. Since |B(Q)| = 0 we will not end up
in this case again. In all cases the inequality of I.6 for Q is improved by 1.

2) |B(Q)| = 0: we have two cases depending on the number of dirty queues, namely
cases kQ > 1 and kQ = 1.

1) kQ > 1: Let e = min(first(DkQ(Q))). If e ≤ min(last(DkQ−1(Q))) holds, we
remove the record last(DkQ−1(Q)) from DkQ−1(Q). This improves the inequality
of I.6 for Q by 1.

If min(last(DkQ−1(Q))) < e ≤ max(last(DkQ−1(Q))) holds, on the other hand,
we remove record r1 = (l1, p1) = last(DkQ−1(Q)) from DkQ−1(Q) and let r2 =
(l2, p2) = first(DkQ(Q)). We delete any elements in l1 that are attrited by e, and
let l′1 denote the set of non-attrited elements.

1) 0 ≤ |l′1| < b: If |l2| ≤ 2b, then we just prepend l′1 onto l2. Otherwise, we take b
elements out of l2 and append them to l′1.

2) If b ≤ |l′1| < 2b: If |l2| ≤ 2b and |l′1|+ |l2| ≤ 3b, then we merge l′1 and l2. Else,
|l′1|+ |l2| > 3b holds, so we take 2b elements out of l′1 and l2 and put them into
l′1, leaving the rest in l2.
Else |l2| > 2b, so we take b elements out of l2 and put them into l′1.

If r1 still exists, we insert it in the front of DkQ(Q). Finally, we concatenate
DkQ−1(Q) and DkQ(Q) into one deque. This improves the inequality of I.6 for Q
by at least 1.

Else max(last(DkQ−1(Q))) < e holds, and we just concatenate the dequesDkQ−1(Q)
and DkQ(Q), which improves the inequality of I.6 for Q by 1.

2) kQ = 1: In this case Q contains only deques C(Q) and D1(Q). We remove
the record r = (l, p) = first(D1(Q)) and insert l into a new record at the end
of C(Q). This improves the inequality of I.6 for Q by at least 1. If r is not
simple, let the pointer p of r point to I/O-CPQA Q′. We restore I.5 for Q by
merging I/O-CPQAs Q and Q′ into one I/O-CPQA. See Figure 3. In particular,
let e = min(first(D1(Q))).

If e ≤ min(Q′), we discard Q′. The inequality of I.6 for Q remains unaffected.

Else, if min(first(C(Q′))) < e ≤ max(last(C(Q′)), we set B(Q) = C(Q′) and
discard the rest of Q′. The inequality of I.6 for Q remains unaffected.

Else if max(last(C(Q′)) < e ≤ min(first(D1(Q′))), we concatenate the deque C(Q′)
at the end of C(Q). If moreover min(first(B(Q′))) < e holds, we set B(Q) = B(Q′).
Finally, we discard the rest of Q′. This improves the inequality of I.6 for Q by
|C(Q′)|.
Else min(first(D1(Q′))) < e holds. We concatenate the deque C(Q′) at the end of
C(Q), we set B(Q) = B(Q′), we set D1(Q′), . . . , DkQ′ (Q

′) as the first kQ′ dirty
8



queues of Q and we set D1(Q) as the last dirty queue of Q. This improves the
inequality of I.6 for Q by ∆(Q′) ≥ 0, since Q′ satisfied Invariant I.6 before the
operation.

If r = first(Q) and |l| ≤ 2b, then we run Bias recursively to ensure that we get at
least two records in C(Q). Let r′ = (l′, p′) = first(Q) be the first record of Q after
the recursive call. If |l|+ |l′| > 3b, then we take the 2b first elements out and make
them the new first record of C(Q). Else we merge l into l′, so that r is removed
and r′ is now first(Q).

Theorem 2.3. I/O-CPQAs support operations FindMin, DeleteMin, CatenateAn-
dAttrite and InsertAndAttrite in O (1) I/Os, using O (n−m) words after n calls
to CatenateAndAttrite and InsertAndAttrite and m calls to DeleteMin.

For any b ∈ [1, B], a set of ` CPQAs support the operations in O
(
1
b

)
amortized I/Os,

using O
(
n−m
b

)
blocks, provided a constant number of blocks are loaded in main memory

of size M ≥ `b.

Proof. The correctness follows by closely noticing that we maintain Invariants I.1–I.8, and
from those we have that DeleteMin(Q) and FindMin(Q) always returns the minimum
element of Q.

The constant worst-case I/O-bound is trivial as every operation only accesses O (1)
records. Although Bias is recursive, we notice that in the case where |B(Q)| > 0, Bias
only calls itself after making |B(Q)| = 0, so it will not end up in this case again. Similarly,
if |B(Q)| = 0 and kQ > 1 there might also be a recursive call to Bias. However, before
the call at least b elements have been taken out of Q, and thus the following recursive
call to Bias will ensure at least b more are taken out and the recursion stops. So the
recursion, will have depth at most 3.

To argue about the O
(
1
b

)
amortized I/O-bounds, we define the following potential

functions for large and small I/O-CPQAs. In particular, for large I/O-CPQAs Q the
potential Φ(Q) is defined as

Φ(Q) = ΦF (|first(Q)|) + |middle(Q)|+ ΦL(|last(Q)|),

where

ΦF (x) =

 3− x
b , b ≤ x < 2b

1, 2b ≤ x < 3b
2x
b − 5, 3b ≤ x ≤ 4b

and ΦL(x) =

{
0, 0 ≤ x < 4b

3x
b − 12, 4b ≤ x ≤ 5b

For small I/O-CPQAs Q, the potential Φ(Q) is defined as

Φ(Q) =
3|Q|
b

The total potential ΦT is defined as

ΦT =
∑
Q

Φ(Q) +
∑

Q,b≤|Q|

1,

where the first sum is the total potential of all I/O-CPQAs Q and the second sum counts
the number of large I/O-CPQAs Q.
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Operation DeleteMin. I/Os occur, only if |first(C(Q))| = b − 1. In this case
r = first(Q) has a potential of Φ(|r|) ≥ 2, and since we increase the number of elements
in r by b to 2b elements, the potential of r will then only be Φ(|r|) = 1. Thus, the total
potential decreases by at least 1, which also pays for any I/Os including those incurred
if Bias(Q) is invoked.

Operation CatenateAndAttrite. When |Q1| < b, if we simply prepend l′1 into l2,
then the potential ΦS(|l1|) pays for the increase in potential of ΦF (|first(C(Q2))|). Else,
we take 2b − |l′1| elements out of l2, size 2b. Thus, ΦF (2b) = 1 and the potential drops
by 1, which is enough to pay for the I/Os used to flush the old first record of C(Q2)
to disk. When |Q2| < b, if e attrites all of r1, then we release at least 1 in potential,
so all costs in any of the cases (1–4) are paid for. If e attrites partially r1, then the
new record cannot contain more than 5b elements, and thus any increase in potential is
paid for by the potential of Q2. Thus, the I/O cost is covered by the decrease of 1 in
potential, caused by r1. If e attrites partially r2, any increase in potential is paid for by
the potential of Q2. In all the other cases (1–4) both Q1 and Q2 are large, hence when
we concatenate them we decrease the potential by at least 1, as the number of large
I/O-CPQA’s decrease by one, which is enough to pay for any I/O’s and I/O’s charged
by the Bias operations.

Operation InsertAndAttrite. Since creating a new I/O-CPQA with only one ele-
ment and calling CatenateAndAttrite only costsO

(
1
b

)
I/Os amortized, the operation

InsertAndAttrite also costs O
(
1
b

)
I/Os amortized.

Operation Bias. Since all I/Os incurred by Bias(Q) are already paid for by the
operation that called Bias(Q), we only need to argue that the potential of Q does not
increase due to the changes that Bias(Q) makes to Q. When |B(Q)| > 0, if l1 = first(Q),
then after calling Bias we ensure that 2b ≤ |first(Q)| ≤ 3b, so that the potential of Q
does not increase. When |B(Q)| = 0 and kQ > 1, if not all of l1 is attrited then we
ensure that its record r1 has size between 2b and 3b. Thus, if r1 = first(Q) holds, we will
not have increased the potential of Q. In the cases where all or none of l1 is attrited,
the potential of Q can only be decreased by at least 0. Otherwise, when kQ = 1, since
first(Q) is either untouched or left with 2b to 3b elements, in which case its potential is 1,
and since all other changes decrease the potential by at least 0, we have that Bias does
not increase the potential of Q.

Concatenating many I/O-CPQAs. We present the algorithm that executes a possibly
unlimited sequence of consecutive CatenateAndAttrite operations on I/O-CPQAs
Q1, Q2, . . . , Q` to obtain a single I/O-CPQA in O (1) worst case I/Os, given that op-
eration DeleteMin is not included in the sequence. To obtain the result we ensure
that operations Bias is never called by imposing two extra assumptions on the I/O-

CPQAs. Define the state of I/O-CPQA Q to be ∆(Q) = |C(Q)| −
∑kQ
i=1 |Di(Q)| −

kQ + 1, and the critical records of Q to be first(C(Q)), first(rest(C(Q))), last(C(Q)),
first(B(Q)), first(D1(Q)), last(DkQ(Q)) and last(front(DkQ(Q))), if it exists. Otherwise
last(DkQ−1(Q)) is critical.

Lemma 2.4. The I/O-CPQAs Qi for i ∈ [1, `] can be concatenated into a single I/O-
CPQA by calling only CatenateAndAttrite operations without any access to external
memory, provided that:
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1. Every input I/O-CPQA Qi is in state at least +2, unless it contains only one
record, in which case its state is at least +1.

2. The critical records of all input I/O-CPQAs Qi already reside in main memory.

Proof. To avoid any I/Os during the sequence of CatenateAndAttrites, we ensure
that Bias is not called, and that no more than the critical records need to be already
loaded into memory.

To avoid calling Bias we prove by induction the invariant that the temporary I/O-
CPQAs Qi...`, i ∈ [1, `] constructed during the sequence are in state at least +1. Let
the invariant hold for Qi+1...` and let Qi...` be constructed by calling the operation
CatenateAndAttrite(Qi,Qi+1...`). If Qi contains at most two records, which both
reside in deque C(Qi), we only need to access record first(C(Qi+1...`)) and the at most
two records of Qi. The invariant holds for Qi...`, since it holds inductively for Qi+1...` and
the new records were added at C(Qi+1...`). As a result, the inequality of I.6 forQi+1...` can
only be improved. If Qi+1...` consists of only one record, then either one of the following
cases apply or we follow the steps described in operation CatenateAndAttrite. In
the second case, there is no aggravation of inequality 6 and only critical records are used.

In the following, we can safely assume that Qi has at least three records and its state
is at least +2. We parse the cases of the CatenateAndAttrite algorithm assumming
that e = min(Qi+1...`).

Case 1 The invariant holds trivially since Qi is discarded and no change happens to
Qi...` = Qi+1...`. Bias is not called.

Cases 2,3 The algorithm checks whether the first two records of C(Qi) are attrited
by e. If this is the case, we continue as denoted at the start of this proof. Otherwise,
case 2 of CatenateAndAttrite is applied as is. Qi+1...` is in state 0 after the
concatenation and Qi...` is in state +1. Thus the invariant holds, and Bias is not
called. Note that all changes take place at the critical records of Qi and Qi+1...`.

Case 4 The algorithm works exactly as in case 4 of CatenateAndAttrite, with the
following exception. At the end, Qi...` will be in state 0, since we added the deque
DkQi+1...`

+1(Qi+1...`) with a new record and the inequality of I.6 is aggrevated by 2.

To restore the invariant we apply case 2(1) of Bias. This step requires access to
records last(DkQi...`−1(Qi...`)) and first(DkQi...`

(Qi...`)). These records are both
critical, since the former corresponds to last(DkQi+1...`

(Qi+1...`)) and the latter to

first(C(Qi+1...`)). In addition, Bias(Qi+1...`) needs not be called, since by the
invariant, Qi+1...` was in state +1 before the removal of first(C(Qi+1...`)). In this
way, we improve the inequality for Qi...` by 1 and the invariant holds.

This concludes the proof.

2.2. 3-sided Range Skyline Reporting

In this subsection we prove Theorem 2.1.
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Data structure. The data structure consists of B-tree with leaf capacity B and internal
fanout 2Bε that indexes the x-cordinates of the points, for some constant ε ∈ [0, 1].
At every node, we store the points in its subtree in a confluently persistent I/O-CPQA
with buffer size b := B1−ε. Although there is no general technique to obtain efficient
confluently persistent data structures, fortunately there does exist an efficient confluently
persistent variant of the basic building block of I/O-CPQAs, namely real-time confluently
persistent catenable double-ended queues [27].

Preprocessing algorithm. After constructing the base tree, we augment it with secondary
confluently persistent I/O-CPQAs in a bottom-up manner, as following. At every leaf,
we construct a confluently persistent I/O-CPQA by calling InsertAndAttrite on its
points (x, y) considered from left to right as elements inserted at “time” x with value −y.
This reflects the “dominance relation” between two points into an “attrition operation”
between their corresponding elements, preventing non-skyline points to be returned by
DeleteMin during query operations. Also, we call Bias enough times for the state of
the constructed I/O-CPQA to satisfy Lemma 2.4. In a second pass over the leaves, we
gather the critical records of every O (2Bε) consecutive I/O-CPQAs into a representative
block and continue recursively up the tree, with the difference that for internal nodes
we call (from left to right) CatenateAndAttrite on the I/O-CPQAs of its children
nodes. At the end of the construction, we obtain implicitly the representation of a single
confluently persistent I/O-CPQA, accessable by the version at the root node. Every
internal node stores explicitly only a representative block for some version of the I/O-
CPQA and all versions form a connected directed acyclic version graph over the base
tree with edges directed from child to parent node.

Since every leaf contains O (B) elements, the base tree has O
(
n
B

)
leaves and thus also

O
(
n
B

)
internal nodes. Every internal node has Θ (Bε) children, each associated with an

I/O-CPQA with O (1) critical records of size O
(
B1−ε). Thus the representative blocks

stored in every internal node take O (1) blocks and in total O
(
n
B

)
blocks and also I/Os

to construct, since Lemma 2.4 ensures Bias incurs no extra I/Os. A leaf I/O-CPQA is
constructed in O (1) I/Os and thus we need in total O

(
n
B

)
preprocessing I/Os.

Update algorithm. To insert or delete a point, we first search for the leaf with the point’s
x-predecessor. At every node on the root-to-leaf search path, we remove its I/O-CPQA
by discarding its representative blocks. Specifically, the operations that created the I/O-
CPQA are execute in reverse [11]. We rebalance the tree and reconstruct the I/O-CPQAs
along the search path in a bottom-up manner, as described above.

The total update I/Os are O
(
log2Bε

n
B

)
, since we spend O (1) I/Os to reconstruct

every I/O-CPQA (Lemma 2.4) and to rebalance the path’s nodes.

Query algorithm. To report the skyline points of P that reside within a given top-open
query range [xl, xr]× [yb,∞), we first traverse top-down the two search paths πl and πr
from the root of the base tree to the leaves `l and `r that contain the xl-successor and
xr-predecessor points. Let node u be on the path πl ∩ πr, and let c(u) be the children
nodes of u whose subtrees are fully contained within [xl, xr]. For every u, we load its
representative block into memory in order to access the critical records of the I/O-CPQAs
associated with c(u) and to CatenateAndAttrite them into a temporary I/O-CPQA,
as implied by Lemma 2.4. We consider the temporary I/O-CPQAs of nodes u and the
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p1

p2

p3

Figure 4: Reduction to nesting and monotonic orthogonal line segment intersection.

I/O-CPQAs of the leaves `l and `r from left to right, and we CatenateAndAttrite
them into a single auxiliary I/O-CPQA. To report the skyline points within the query
range, we call DeleteMin at the auxiliary I/O-CPQA, until a point with y-coordinate
smaller than yb is encountered. This implements Lemma 2.2, since only the leaves `l
and `r may contain o (B) points with x-coordinate outside [xl, xr].

There are O
(
log2Bε

n
B

)
nodes on πl ∩ πr and we spend O (1) I/Os to access the

representative block of each node and to construct the auxiliary I/O-CPQAs. Reporting
the k output points costs O

(
k

B1−ε + 1
)

worst-case I/Os by Lemma 2.2 and since the
I/O-CPQAs at the leaves `l and `r take only O (1) extra I/Os to process. Thus the
query takes O

(
log2Bε

n
B + k

B1−ε

)
I/Os in total.

3. Static Skyline

In this section we present I/O-optimal static data structures for 2-d orthogonal 3-
and 4-sided range skyline reporting for both divisible input coordinates, as well as for
indivisible coordinates (indexability model [4]), where we also prove a tight lower bound.

3.1. 3-sided Range Skyline Reporting

Indexability model. We reduce the problem to a special case of orthogonal segment in-
tersection reporting on n horizontal segments by replacing every input point (x, y) with
a horizontal line segment [x, x′) × y, where x′ > x is the x-coordinate of the leftmost
input point that dominates (x, y), if it exists, and +∞ otherwise. Given a 3-sided query
rectangle Q := [xl, xr] × [yb,+∞), we report the horizontal segments that intersect the
vertical query segment Q′ := xr× [yb, y

′], where y′ is the largest y-coordinate of the input
points in Q. An example is shown in Figure 4.

Correctness follows from the observation that, on the one hand, any skyline point
(x, y) ∈ Q, when know that y ≤ y′ and also that its segment’s right endpoint (x′, y) /∈ Q,
and thus x′ > xr. Hence the corresponding segment intersects Q′. On the other hand,
for any input point (x, y) that corresponds to a segment intersecting Q′, we know that
x ≤ xr < x′ and yb ≤ y ≤ y′. Thus, to show that (x, y) ∈ Q, it suffices to prove that
xl ≥ x. Let (x′′, y′) ∈ Q be the input point with the largest y-coordinate among the
points in Q. Indeed, if y ≤ y′ holds, then also x ≥ x′′ holds (otherwise (x′′, y′) would

13



dominate (x, y), which would in turn violate the definition of (x′, y), since we have that
x′′ ≤ xr < x′), and we are done, since x′′ ≥ xl. Finally, no input point in Q dominates
(x, y), because xr < x′ implies that the leftmost point dominating (x, y) lies outside Q.

Lemma 3.1. The generated set of horizontal segments is:

• Nesting: Any two segments have either disjoint x-intervals, or one x-interval
contains the other.

• Monotonic: Ordering the segments that intersect any vertical line by increasing
y-coordinates, also orders them in increasing length of their x-intervals.

Proof. Nesting: Let p1 and p2 be the input points corresponding to the two segments,
and without loss of generality let x1 < x2. If y1 < y2, p1 is dominated by p2 and thus
its x-interval ends before x2, i.e., the two x-intervals disjoint. Otherwise y1 ≥ y2, and
let p′1 be the right endpoint of the segment for p1. If x′1 < x2, then the two x-intervals
are again disjoint. Otherwise x′1 ≥ x2, and thus p′1 also dominates p2, i.e., the x-interval
of p1 contains that of p2.

Monotonic: The left endpoints of the segments intersecting a given vertical line x,
constitute the skyline of the input points that are contained in the 1-side query range
(−∞, x] × (−∞,∞). Therefore, enumerating these segments in ascending y-order, also
enumerates the x-coordinates of their left endpoints in decreasing order. The nesting
property implies that the corresponding x-intervals appear in non-decreasing length.

Theorem 3.2. Given n points in the plane, there exist data structures that support
orthogonal 3-sided range skyline reporting queries in O

(
logB n+ k

B

)
I/Os, where k is

the size of the reported skyline, using O
(
n
B

)
blocks, and preprocessing I/Os on an x-

sorted input pointset.

Proof. To report the skyline of the points in a given 3-sided query range Q, first we find
the largest y-coordinate y′ in Q by a range-max query [xl, xr] on a B-tree storing the
input x-coordinates, in O (logB n) I/Os. To report the segments intersecting the vertical
query segment Q′. we execute a 1-d range query [yb, y

′] on the xr-th version of a partially
peristent B-tree [28] that stores the horizontal segments, in O (logB n) I/Os, and report
the k intersecting horizontal segments by increasing y-order in O

(
1 + k

B

)
extra I/Os.

Two obstacles prevent us from achieving O
(
n
B

)
blocks and preprocessing I/Os on

an x-sorted input pointset: generating the set of segments and constructing the par-
tially persistent B-tree. To generate the set, we sweep a vertical line x from −∞ to ∞
maintaining an auxiliary I/O-efficient stack where the encountered points are pushed in
decreasing y-order. If the encountered point at “time” x has larger y-coordinate than
that of point (x′, y′) at the top of the stack, then it is its leftmost dominating point,
so we pop the top point and generate the horizontal segment [x′, x] × y′. The nesting
and monotonic properties of the generated segment-set ensure that only the bottommost
segments intersecting the sweep line are being updated, and thus also only the leftmost
leaves of the partially persistent B-tree. To achieve linear I/O-complexity, it suffices to
keep these leaves loaded in main memory and adopt a bottom-up rebalancing scheme for
partially persistent B-trees [28] by standard modifications.
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Divisible input. We present I/O-optimal data structures for input points in [U ]
2

(for
integer U ≥ n) and in rank-space (where U = O (n)) with divisible coordinates. We
show that packing multiple points into a single word allows for query operations with
real-time searching algorithms, by reducing the case of few points to real-time vertical

ray dragging queries on (B logU)
O(1)

planar points (report the first point hit by moving
a given vertical query ray x× [y,+∞) to the left).

Lemma 3.3. Given n ≤ (B logU)
O(1)

divisible points in [U ]
2
, there exist data structures

that support real-time vertical ray dragging queries, using O
(
1 + n

B

)
blocks.

Proof. We store the x-coordinates of the points in a B-tree with leaf capacity and internal
fanout B. For an internal node v with children nodes v1, . . . , vB , we denote by Ymax(v),
the largest point in its subtree. We define for an internal node v, Y ∗max (v) = {Ymax (vi) |
1 ≤ i ≤ B}, and for a leaf v Y ∗max(v) to be the set of all points stored in it. To answer
a ray-dragging query with ray x× [x, U ] [β, U ], we descend down the path from the root
to the leaf containing the predecessor of x, until we reach the lowest node v on the path
(if it exists), where Y ∗max (v) contains a point p hit by the ray (when it moves to the
left). Let p = Ymax (vi) for some child vi of v. Point p is indeed the answer to the query,
unless there exists another point in the subtree of vi that lies to the left of p and has
y-coordinate higher than y. To find out, we reset v to vi and process Y ∗max (v) recursively,
essentially descending a v-to-leaf path.

Let h denote the height of the B-tree. The query algorithm takes in total O (h) =
O (logB n) I/Os, since for every accessed node v, we can load Y ∗max (v) into main memory
in O (1) I/Os. Note that if B ≥

√
logU , then O (logB n) = O (logB B logU) = O (1) I/Os,

thus it suffices to assume henceforth that B <
√

logU . We set parameter b := B log2 U <

log3/2 U and consider the case first of a few points, namely where n ≤
√
b < log3/4 U .

We map the input points (x, y) to an n × n grid, replacing their coordinates with their
respective ranks, i.e., the number of points whose x-coordinates are no greater than x
(respectively, for y). Every mapped point is associated with an id, namely a unique
integer in [1, n]. We store the id’s in an array of O

(
n
B

)
blocks in order to convert the

id’s to the original coordinates in O (1) I/Os. Finally, we store the x- and y-coordinates
of the points in two fusion trees [29, 30] in order to support predecessor searches in
O (logb n) = O (1) I/Os, using O

(
n
B

)
blocks. A ray dragging query with ray x× [y,+∞)

can now be answered in O (1) I/Os, by a ray dragging query with the mapped ray
x′ × [y′,+∞) on the grid, where x′, y′ are the x- and y-ranks of x and y, respectively,
which are retrieved by querying the fusion trees first. The benefit of this approach is
that we can store the mapped pointset in a single word, since we need only 3 log2 n bits
to represent the ranks and id of every mapped point, and thus use at most 3n log n =

O
(

log3/4 U · log logU
)

= o (logU) bits in total.

For the remaining case, where n = bO(1), we modify the described B-tree by setting
the internal fanout to b and using the described grid-structure to store Y ∗max (v) for every
internal node v, using O

(
b
B

)
blocks per internal node. Hence, a ray dragging query takes

O (1) I/Os, since the height of the tree becomes h = O (logB n) = O (1), and the O
(
n
bB

)
internal nodes use O

(
b
B ·

n
bB

)
= O

(
n
B

)
blocks in total.

Lemma 3.4. Given n ≤ (B logU)
O(1)

divisible points in [U ]
2
, there exist data struc-

tures that support orthogonal 3-sided range skyline reporting queries in O
(
1 + k

B

)
I/Os,
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where k is the size of the reported skyline, using O
(
1 + n

B

)
blocks.

Proof. Given a 3-sided range [xl, xr]× [yb, U ], let (x, y) be the first point hit by the ray
xr × [yb, U ] when it moves to the left. Unless the range contains no points, this is the
lowest skyline point in the range. We store the points in a structure of Theorem 3.2.
Recall that it supports orthogonal segment intersection queries with the vertical query
line segment xr × [yb, y

′], given that we know the largest y-coordinate y′ of the points in
the range. To support queries in O

(
1 + k

B

)
I/Os, we prove the next two observations:

(i) The output contains exactly the horizontal line segments intersecting another ver-
tical segment x× [y, y′].

(ii) The output can be reported without knowning y′, given access to the leaf contain-
ing y in the version of the partially persistent B-tree at position x.

(i) The horizontal line segment corresponding to (x, y) is the lowest among the output
segments, therefore all output segments intersect the query segment xr × [yb, y

′], if and
only they intersect segment xr× [y, y′], and thus also segment xr× [y, y′], because the set
of segments is nesting and monotonic. (ii) The segments intersecting the ray x×[y, U ] can
be reported in increasing y-coordinate, by following sibling pointers from the accessed
leaf. The nesting and monotonicity properties ensure that the segments are also reported
in decreasing x-coordinate of their left endpoints, which allows us to stop reporting as
soon as we exceed the query coordinate xl. The query takes O

(
1 + k

B

)
I/Os, since we

report Ω (1 +B) segments per accessed leaf.

Theorem 3.5. Given n divisible points in rank-space, there exist data structures that
support orthogonal 3-sided range skyline reporting queries in O

(
1 + k

B

)
I/Os, where k is

the size of the reported skyline, using O
(
n
B

)
blocks.

Proof. Consider the [U ]
2

grid and let both λ := B log2 U and U
λ be integers. We divide

the x-dimension into U
λ x-intervals (slabs), assign each input point to the unique slab

that contains it (some slabs may be empty) and build a complete binary search tree on
the slabs. At every internal node u, we store high (u), i.e., the B largest skyline points
among the points in its subtree. Moreover, if the B-th stored skyline point exists and is
contained in slab z, we also store at u, the set MAX (u), i.e, the (x-sorted) skyline points
among the points in high (v), for all right sibling nodes v (if they exist) of the nodes
on the u-to-z path, essentially implementing Lemma 2.2. At every slab z, we store the
points it contains in a few-points structure of Lemma 3.4, and moreover for every proper
ancestor node u of z, we also store the sets rmax (z, u) and lmax (z, u), defined as MAX
for the right and left sibling nodes of the u-to-z path, respectively.

Let h = O (logU) be the height of the tree. For each of the O
(
U
λ

)
internal nodes u,

MAX (u) uses O (h) blocks, for a total of O
(
h · Uλ

)
= O

(
U
B

)
= O

(
n
B

)
blocks, since we

work on rank-space, where U = O (n). The few-point structures at O
(
U
λ

)
slabs use

O
(
U
λ + n

B

)
= O

(
n
B

)
blocks in total. Finally, all sets rmax and lmax use O

(
h2 · Uλ

)
=

O
(
n
B

)
blocks in total.

To report the skyline of the points in a given 3-sided range [xl, xr] × [yb, U ], where
xl, xr, yb ∈ [U ], first we find the slabs zl, zr containing xl, xr, respectively, by dividing the
x-coordinates with λ in O (1) I/Os. Let u be the lowest common ancestor of zl and zr
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in the tree, also found in O (1) I/Os since the tree in complete. Unless the zl, zr are not
identical or consecutive (in which case we simply use Lemma 3.4), the query algorithm
proceeds in the following sequence:

1. Query the few-points structure at zr with [1, xr]× [yb, U ], and let y′ be the largest
reported y-coordinate.

2. Report the points in rmax (zl, u) and lmax (zr, u) with y-coordinate higher than y′.
Let vi denote the i-th right or left sibling node, respectively to the u-to-zl and
u-to-zr path, with all B skyline points reported. Report the points in MAX (vi)
with y-coordinate larger than the largest y-coordinate in vi+1.

3. Query the few-points structure at zl with [xl, U ] × [yb, y
′], where y′ is the largest

reported y-coordinate.

Lemmata 2.2 and 3.4 imply real-time reporting.

Predecessor search on coordinates from a static universe U ≥ n incur a slow-down to
our query algorithm [31].

Corollary 3.5.1. Given n divisible points in [U ]
2
, there exist data structures that support

orthogonal 3-sided range skyline reporting queries in O
(
log logB U + k

B

)
I/Os, where k

is the size of the reported skyline, using O
(
n
B

)
blocks.

3.2. 4-Sided Range Skyline Reporting

In this subsection we prove a tight query I/O-complexity lower bound for any linear-
space data structure in the indexability model [4] that supports 2-d orthogonal anti-
dominance range skyline reporting queries that report the skyline of the points dominated
by a given query point (x, y). This is the simplest special case of the general planar 4-
sided ranges that requires superlinear space to support queries in polylogarithmic I/Os.

Lemma 3.6. For any integers ω, λ ≥ 1, there exists a set of ωλ points and a set of
λωλ−1 anti-dominance ranges in the plane, such that:

(i) every range contains ω skyline points,

(ii) 2 differenet ranges contain at most one common skyline point.

Proof. In the context of Chazelle and Liu [3, 6], this queryset is (2, ω)-favorable for the

input pointset. To construct the pointset, for every integer i ∈ [1, ω], denote by i
(ω)
j its

j-th digit in base ω, and define the point:((
i
(ω)
0

)
. . .
(
i
(ω)
λ−1

)
,
(
ω − i(ω)λ−1 − 1

)
. . .
(
ω − i(ω)0 − 1

))
with x-coordinate integer i written with λ digits in base ω and y-coordinate the integer
obtained after reversing the digits’ order and taking their complement in base ω. To
construct the queryset, we define a trie of depth λ, where leaves correspond to the input
points’ x-coordinates and the edge of an internal node at depth d ∈ [0, λ− 1] to its parent

has y-label ω− i(ω)d −1. For every internal node at depth d, we define the anti-dominance
17



Figure 5: The constructed pointset (dots) and queryset (crosses) for ω = 4 and λ = 2 and the corre-
sponding trie. The points are aligned to a Fibonacci lattice on the plane with reversed x and y directions,
where the query points represent dominance ranges.

query range
(
−∞, i(ω)ω

)
×
(
−∞, i(ω)1

)
that contains every ωλ−d−1-th y-highest point in

the node’s subtree. See Figure 5 for an example.
(i) Indeed, every range contains exactly ω points that are actually skyline points,

since they differ among each other only at the ωλ−d−1-th digit and are thus arranged
in both increasing x- and decreasing y-coordinate. (ii) For any two query ranges, their
corresponding nodes in the trie have either disjoint subtrees or the one is a proper ancestor
of the other. In the former case, the ranges contain no common points, since every point
is encoded only once in the trie. In the latter case, they contain at most one common
point, since the only digit that changes to define the points in one range is fixed for some
point in the other range.

Theorem 3.7. Any static anti-dominance range skyline reporting data structure in the
indexability model that uses at most c nB blocks, for some constant c ≥ 1, supports the

queries in Ω
((

n
B

)1/25c
+ k

B

)
I/Os, where k is the size of the reported skyline.

Proof. The indexability theorem [4, Theorem 1] defines access overhead A for any data
structure on an (ω, λ)-input of Lemma 3.6 that reports ω points in O

(
A ω
B

)
I/Os, and

claims that if ω ≥ B
2 and A ≤

√
B
4 , the structure uses at least λωλ

12B blocks. There-

fore, a structure with query I/O-complexity O
((

n
B

)1/25c
+ k

B

)
, reports ω points on a

(B, 12c+ 1.1)-input in at most:

α

((
ωλ

B

)1/25c

+
ω

B

)
= α

(
B

12c+0.1
25c + 1

)
≤ α

(
B

121
25 + 1

)
I/Os,

for a constant α > 0. Thus, for large enough B, we get A ≤ α
(
B

121
25 + 1

)
<
√
B
4 and

hence need at least λωλ

12B =
(
c+ 1.1

12

)
n
B > c nB blocks.
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Matching data structure. We obtain a data structure matching the bounds in Theo-
rem 3.7 by implementing the structure of Theorem 3.2 with a B-tree with internal fanout(

n
B log1−ε n

B

)ε
, for some constant ε > 0, and thus of constant height. The structure also

supports updates, when using a weight-balanced B-tree.

Corollary 3.7.1. Given n points in the plane and for any constant ε ∈ [0, 1], there
exist data structures that support orthogonal 4-sided range skyline reporting queries in
O
((

n
B

)ε
+ k

B

)
I/Os, where k is the size of the reported skyline, and updates in O

(
log n

B

)
amortized I/Os, using O

(
n
B

)
blocks.

4. Conclusion

We have presented the first worst-case I/O-efficient data structures for skyline range
reporting in 2-d. It would be interesting to prove the I/O-optimality of our dynamic 2-d
structure in the dynamic indexability model [7]. Recently, significantly sublogarithmic
update time was achieved for standard dynamic 2-d orthogonal range reporting in the
word-RAM [32]. Our results suggest that similar improvements are possible for dynamic
2-d orthogonal range skyline reporting. Polylogarithmic worst-case bounds for dynamic
3-d orthogonal range skyline reporting are still unknown even in internal memory.
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