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Abstract: This paper uses a new microdata set of B2B firm-level transactions in 

Belgium to construct a measure of ICT investment at the firm level, which we 

combine with the income statement of firms to analyze the impact of ICT on 

productivity. We find that a firm investing an additional euro in ICT increases 

value added by 1 euro and 35 cents on average. This marginal product of ICT 

investment increases with firm size and varies across sectors. While we find 

substantial returns of ICT at the firm level, such returns are much lower at the 

aggregate level. This is due to underinvestment in ICT (ICT capital deepening is 

low) and misallocation of ICT investments. 
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1. Introduction 

The financial crisis of 2008 triggered a collapse in productivity growth, which has not caught up with its 

long run trend since then. This seems at odds with the increased spread of information technology, artificial 

intelligence, and automation of the last couple of decades. This productivity puzzle has been widespread in 

OECD countries and more recently also in emerging economies (Syverson, 2017). It seems that the Solow 

(1987) paradox, which refers to the disconnect between observed productivity statistics and the emergence 

of information technology, is more relevant than ever. 

This paper investigates heterogeneity in the returns on ICT across firms, industries, and time and analyzes 

how granular (firm-level) channels affect the aggregate productivity numbers. We decompose aggregate 

GDP growth into various micro channels to understand where the relatively low aggregate returns on ICT 

emerge from, which is illustrated in Figure 1. In particular, GDP in a country can increase by using more 

production factors, such as labor or capital. We distinguish between ICT and non-ICT capital investments 

and investigate their return. Figure 1 also shows that GDP growth can occur due to productivity growth, 

which means that a country produces more goods with the same amount of labor and capital and hence it 

is producing more efficiently. Such productivity growth can also happen when resources are allocated to its 

most productive use, this is what we call the reallocation effect. In this case, ICT capital contributes to 

aggregate productivity growth when it is invested in firms that benefit most from ICT. 

FIGURE 1: DECOMPOSING GDP GROWTH 
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We use a new and comprehensive microdata set of B2B firm-level transactions in Belgium to construct a 

measure of ICT investments at the firm level, which we trace between 2002 and 2013. Our measure of ICT 

includes all domestic purchases and imports from ICT suppliers, which is an improvement to earlier 

research, mainly based on survey data of mostly large firms. Hence these tend to miss a large fraction of 

investments and firm heterogeneity (Brynjolfsson and Yang, 1996; Dedrick, Gurbaxani and Kraemer, 

2003). Furthermore, most of the literature identifies ICT as broad investments in office and computing 

equipment and therefore does not capture precisely the extent of technological change, which may also be 

induced by software and communications technology, especially in the last two decades. 

We combine this newly constructed panel data on ICT investments with financial and operational 

information from the income statements of firms, which allows us to estimate the impact of ICT on firm 

level productivity. To this end, we use a control function approach to estimate the output elasticity and 

marginal product of ICT capital. This approach deals with biases in estimating production functions related 

to  the simultaneity of input and output decisions, measurement errors, and omitted variables (Brynjolfsson 

and Hitt, 1995; Hempell, 2002; Cardona, Kretschmer and Strobel, 2013).  Another advantage of our data is 

that it covers all incorporated firms in the Belgian economy. Earlier work did not have access to such 

comprehensive data, which makes it harder to draw inferences about the impact of ICT on aggregate 

productivity growth (Hitt and Brynjolfsson, 2000). We also exploit the cross section and time dimension of 

our panel data set and show the return on ICT across industries and time. The wide coverage of our data 

set enables us to contribute to the scarce evidence on differences in returns on ICT depending on the size 

of the firm (Bloom, Draca, Kretschmer, Sadun, and Van Reenen, 2010; Tambe and Hitt, 2012). By 

exploiting information about the identity of the ICT supplier, we are able to split ICT purchases into IT 

goods, IT services, communication goods, and communication services. We relate heterogeneity in the 

composition of ICT capital to reconcile the heterogeneity in returns on ICT across industries and the firm 

size distribution. 

We confirm earlier findings that ICT capital effectively contributes to output and more importantly that 

there exist excess returns on ICT since ICT investment costs are lower than their gross returns. This effect 

is not only confined to the ICT producing industries, but also to the ICT using industries. We find that 
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large firms benefit more from ICT than small firms. This finding is not caused by differences in the 

composition of ICT capital and it is robust to adding firm fixed effects, controlling for labor quality, 

decentralization, and management practices. To see whether these findings can be reconciled with the 

limited impact of ICT at the aggregate level, we compute aggregate productivity growth from our micro-

level data set and use the decomposition introduced by Petrin and Levinsohn (2012), as summarized in 

Figure 1. Our results indicate that part of the observed productivity puzzle can be explained by two causes: 

(i) low ICT investments, especially by large firms, and (ii) misallocation of ICT investments. We find these 

effects to be particularly apparent after the Great Recession. 

The rest of the paper is organized as follows. The next section summarizes the relevant literature. Section 

3 discusses the various data sets used to construct ICT capital. Section 4 explains the econometric model 

and the control function approach that we use to estimate productivity, taking into account that ICT 

investment is an endogenous choice by the firm. Section 5 discusses the results and section 6 concludes. 
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2. Literature Review 

Early research by Roach (1987) and Solow (1987) concluded that ICT appeared everywhere, but in the 

productivity statistics. This so called ‘productivity paradox’ was resolved in various firm level studies, 

amongst others by Brynjolfsson (1993), Lichtenberg (1995), Brynjolfsson and Hitt (1996), Aral, 

Brynjolfsson and Wu (2006), Mithas, Tafti, Bardhan and Goh (2012) and Aral, Brynjolfsson and Van 

Alstyne (2012). Review papers on the literature by Brynjolfsson and Hitt (2000), Melville, Kraemer and 

Gurbaxani (2004), Cardona, Kretschmer and Strobel (2013) and Biagi (2013) conclude that ICT has a 

positive effect on productivity, albeit with large heterogeneity in estimated returns on ICT across studies. 

Several factors explain the large heterogeneity in estimated returns on ICT. The research design of studies 

explains about 35% of the variation in empirical estimates of ICT elasticities (Stiroh, 2005). In particular, 

Sabherwal and Jeyaraj (2015) found that the return on ICT is estimated higher when primary data sources 

are used and sample sizes are larger. Kohli and Devaraj (2003) suggest to focus on gathering large panel 

data sets from primary sources and using productivity-based dependent variables to assess the payoff from 

ICT. The introduction of such a framework to evaluate the return on ICT is an important contribution of 

this paper. 

Another challenge in ICT studies is related to measurement. Firms are typically not required to report ICT 

investments separately from other capital investments. Furthermore, ICT investments often require large 

complementary investments in the reorganization of work practices or the development of new business 

processes and worker skills. Brynjolfsson and Yang (1997) find that up to nine-tenths of the costs of 

computer capital are embodied in intangible assets. Bharadwaj (2000), Black and Lynch (2001), Breshnahan, 

Brynjolfsson and Hitt (2002) and Aral and Weill (2007) show that alignment between ICT investments and 

complementary workplace organization practices are important to realize profit and productivity gains from 

ICT. It is thus important to capture the complete extent of the ICT investment, which is typically not 

confined to hardware expenditures. To this end, this paper proposes a comprehensive ICT investment 

measure that captures both ICT goods and ICT services. 



6 

Due to the unavailability of ICT investment data in financial statements of firms, researchers are often 

restricted to survey data of selected samples of large firms.5 This results in a selection bias in many firm 

level studies and a lack of insights on heterogeneity in returns on ICT across countries, industries and the 

firm size distribution (Tam, 1998). Van Reenen, Bloom, Draca, Kretschmer and Sadun (2010) find no 

evidence of a size premium in returns on ICT while Tambe and Hitt (2012) find that large firms benefit 

more from ICT. Note however that “small” firms in these samples are still relatively large. For example, a 

small firm in  Tambe and Hitt (2012) is a non-Fortune 500 firm with an average value added of over $500 

million. In our data we cover the full range of the size distribution, including micro firms. 

While adequate data for estimating productivity is available in the financial statements of firms, there are 

various endogeneity issues that need to be accounted for to obtain unbiased estimates of ICT elasticities, 

see Stiroh (2005), Van Biesebroeck (2007) and Van Beveren (2012). State of the art techniques to do so 

require relatively large panel data sets. This is probably why such methods are not frequently used in ICT 

studies. The only studies that do so are Van Reenen et al. (2010) and Bloom, Sadun and Van Reenen (2012), 

who rely on the Olley and Pakes (1996) estimation procedure to obtain unbiased production function 

coefficients. This paper introduces more novel semiparametric estimation techniques by Ackerberg, Caves 

and Frazer (2015) and Collard-Wexler and De Loecker (2016) in the ICT literature.    

Studies on the macroeconomic impact of ICT typically rely on industry level data and strong assumptions 

such as constant returns to scale and competitive markets (Oliner and Sichel, 2000, Jorgenson, 2001, Stiroh, 

2002, Jorgenson, Ho and Stiroh, 2008, van Ark, O’Mahony and Timmer, 2008). However, just like there is 

substantial heterogeneity within industries in firm size and productivity, there is firm heterogeneity in 

returns on ICT. Industry average returns on ICT hide this heterogeneity while the aggregate impact of ICT 

also depends on which firms are investing in ICT. This could explain why most studies find large returns 

on ICT at the micro level, but lower productivity gains at the macro level, especially in Europe (Van Ark, 

2014). We compute aggregate growth and subsequently decompose it in its different micro level 

foundations using the Petrin and Levinsohn (2012) decomposition. 

                                                 
5 E.g. the Computerworld magazine survey (Fortune 500 firms), InformationWeek magazine survey (top 500 IT 
intensive firms in the U.S.), Computer Intelligence Technology Database survey (Fortune 1000 firms) or the Harte-
Hanks survey (sample of firms with more than 100 employees in Europe and U.S.). 
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3. Data 

We combine different confidential micro data sets which were provided by the National Bank of Belgium. 

The first one covers a subset of B2B transactions data described in Dhyne, Magerman and Rubinova (2015). 

This data set is constructed from the yearly customer listing in the tax declarations of firms. In this customer 

listing, firms have to report the sales invoices per customer. We use the customer listing of all firms that 

are active in ICT producing and selling industries to calculate how much each of their customers has spent 

on ICT per year for the period 2002-2013. This approach is similar to Hitt, Wu and Zhou (2002), who 

retrieve a measure for IT investments from the customer listing of a large SAP supplier in the United States. 

Our data set is more comprehensive since it covers all ICT suppliers. We define ICT producers based on 

their four digit primary NACE sector code as shown in table 1.6 We differentiate between IT goods, IT 

services, communication goods and communication services within these purchases.7 For example, if a firm 

makes a purchase from a supplier that has its primary activity in sector 2620 – Manufacture of computers and 

peripheral equipment - we classify this purchase as an investment in IT goods. 

TABLE 1: ICT PRODUCING INDUSTRIES 

ICT type NACE Rev 2 code Description 

IT goods 

2620 Manufacture of computers and peripheral equipment 

4651 Wholesale of computers, computer peripheral equipment and software 

4741 Retail sale of computers, peripheral units and software in specialized stores 

5829 Other software publishing 

IT services 

6200 Computer programming, consultancy and related activities 

6201 Computer programming activities 

6202 Computer consultancy activities 

6203 Computer facilities management activities 

6209 Other information technology and computer service activities 

6311 Data processing, hosting and related activities 

6312 Web portals 

Communication 
goods 

2630 Manufacture of communication equipment 

4652 Wholesale of electronic and telecommunications equipment and parts 

4742 Retail sale of telecommunications equipment in specialized stores 

Communication 
services 

6110 Wired telecommunications activities 

6120 Wireless telecommunications activities 

6130 Satellite telecommunications activities 

6190 Other telecommunications activities 

                                                 
6 Earlier studies used more aggregate - mostly two-digit, sometimes three-digit - definitions of ICT producing 
industries and thus contain more noise. For example, Houseman et al. (2015) and Acemoglu et al. (2014) use data 
from the NAICS 334 industry, which also includes manufacturing of audio and video equipment, navigational 
measuring, electro-medical and control instruments and magnetic and optical media. 
7 We have no information on whether the purchase is tangible or intangible. Also, a breakdown which shows how 
much of the ICT purchase are investments, how much are unutilized or how much are utilized intermediate inputs, is 
unfortunately not available. Appendix C2 discusses this further and appendix C3 includes robustness checks on this 
potential issue. 
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While the inter-firms transaction data set provides information on domestic ICT investments for all Belgian 

firms, it is possible in a small and open economy such as Belgium that firms import ICT. Therefore, we 

add import data at the product-firm level to capture ICT purchases from abroad. This data set is collected 

from the customs office for imports from outside the EU and the Intrastat trade survey for imports from 

within the EU. We merge this data set based on the detailed HS 8 digit codes. Altogether, this results in an 

ICT investment data set that is representative for the entire Belgian population of incorporated firms for 

the period 2002-2013. Figure 2 shows that in most sectors IT goods account for the largest share of ICT 

purchases, followed by IT services, communication services and communication goods. 

FIGURE 2: COMPOSITION OF ICT INVESTMENTS BY SECTOR 

  
Notes: Own calculations based on ICT purchases data. Industry average investment shares 
of firm average ICT purchases.  
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The fourth data set consists of the annual company accounts with detailed financial and operational 

information, which we use  to estimate productivity at the firm level. This data also reports information on 

the education level of employees in the firm. All incorporated firms in Belgium are required to submit 

company accounts to the National Bank of Belgium. We have data for the whole private sector, excluding 

the financial sector for which the company accounts are not available under the same format as non-

financial firms. 

The final data set that we use is the annual FDI survey organized by the National Bank of Belgium, which 

serves as an input for the national accounts. It is a comprehensive survey of all inward and outward foreign 

direct investments in Belgium. Appendix C1 provides more information on how we merge all data sets 

together and construct the estimation sample. 

Table 2 provides summary statistics of the main firm level variables that we use in our analysis. The average 

firm employs 10 full time equivalents in our sample, while the median firm employs 2 full time workers. 

Average value added is equal to 859 thousand EUR, implying labor productivity in the average firm to be 

around 86 thousand EUR.8 The average non-ICT and ICT capital stock are equal to 792 thousand EUR 

and 75 thousand EUR respectively. This means that an employee in the average firm has around 7.5 

thousand EUR ICT capital to work with. The standard deviation is high, which indicates there are large 

differences at the firm level in the ICT capital stock. So the aggregate picture hides a lot of firm level 

heterogeneity. 

TABLE 2: SUMMARY STATISTICS (IN 2010 EUROS) 

 mean median standard deviation 

Value Added (X1000 €)  859 136 12,768 

Non-ICT Capital (X1000 €) 792 95 22,044 

ICT capital (X1000 €) 75 5 2,212 

Employment 10.4 2 135 

Non-ICT Investment (X1000 €) 145 17 3,506 

ICT investment (X1000 €) 24 1.7 553 

Notes: Summaries at the firm level, after taking averages over time per firm. 

 

                                                 
8 All monetary values in the paper are expressed in 2010 EUR. 
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4. Empirical framework 

In order to estimate the return on ICT, we rely on a Cobb-Douglas production function. Tambe & Hitt 

(2012) adapt the standard production function by distinguishing between IT labor and non-IT labor. We 

take a similar approach and distinguish between ICT capital and non-ICT capital. By considering ICT 

capital as a separate input in the production function next to non-ICT capital, we follow Brynjolfsson & 

Hitt (1996, 2003), Dewan & Kraemer (2000), Commander, Harrison & Menezes-Filho (2011) and Bloom 

et al. (2012). The log-linearized Cobb-Douglas production function looks as follows9: 

 𝑦𝑖𝑡 = 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝐼𝐶𝑇𝑘𝑖𝑡
𝐼𝐶𝑇 + 𝛽𝑁𝐼𝐶𝑇𝑘𝑖𝑡

𝑁𝐼𝐶𝑇 + 𝜔𝑖𝑡 + 𝜖𝑖𝑡 (1) 

In which the 𝑖 and 𝑡 subscripts refer to firm and year and small  letters denote logs. 𝑦𝑖𝑡 refers to value added 

in firm 𝑖 at time 𝑡. 𝑙𝑖𝑡, 𝑘𝑖𝑡
𝐼𝐶𝑇 and 𝑘𝑖𝑡

𝑁𝐼𝐶𝑇 refer respectively to labor, the ICT capital stock and the non-ICT 

capital stock, and 𝜔𝑖𝑡 is the firm’s Total Factor Productivity (TFP) in firm 𝑖 at time 𝑡. Econometricians do 

not observe a firm’s TFP, which gives rise to a simultaneity bias (Marschak & Andrews, 1944), i.e. firms 

typically adjust their capital and labor inputs in function of their productivity resulting in biased output 

elasticities. When high productive firms invest more in ICT, the output elasticity 𝛽𝐼𝐶𝑇 would typically be 

overestimated with an OLS estimation of equation (1). 

To account for such endogeneity the literature puts forward several parametric and non-parametric 

approaches (Van Biesebroeck, 2007 and Van Beveren, 2012). In practice, the most often used solutions are 

firm fixed effects, first differences and semiparametric estimation. Estimating equation (1) with firm fixed 

effects or in first differences results in unbiased estimates of the output elasticities if firm level productivity 

is constant over time. However, these methods do not control for firm specific productivity shocks and 

can lead to a substantial downward bias in the coefficient estimates of variables that display substantial 

serial correlation (Griliches and Hausman, 1986). For this reason, the use of semiparametric estimators is 

typically preferred when sample sizes are sufficiently large. Semiparametric estimation of production 

                                                 
9 Dewan and Min (1997) showed that the Cobb-Douglas production function is a good approximation of the actual 
underlying production function in the ICT and productivity context. They found that the Translog and CES-translog 
production functions yield virtually identical estimates for the ICT capital output elasticity and that the elasticities of 
substitution between ICT and non-ICT inputs are estimated to be very close to unity, consistent with the Cobb-
Douglas model. Also Kundisch, Mittal and Nault (2014) provide theoretical and empirical justification for the use of 
Cobb-Douglas production functions to measure the returns of information technology. 
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functions was introduced by Olley and Pakes (1996) and further extended by Levinsohn and Petrin (2003) 

and Ackerberg, Caves and Frazer (2015). The idea is that firms signal their productivity, which is known to 

the firm but unknown to the econometrician, through other decisions like investments and material 

purchases. This allows to proxy for unobserved productivity with a control function. Including this control 

function then allows to obtain unbiased production function coefficients. In appendix B1 we discuss in 

more detail the approach we follow, in particular, the GMM control function approach of Ackerberg, Caves 

and Frazer (2015) and a novel GMM estimator recently introduced by Collard-Wexler and De Loecker 

(2016) that also controls for measurement error in the capital stock. In appendix D1 we add robustness 

checks to allow for endogenous productivity growth, alternative data generating processes and 

mismeasurement in the capital stocks. 

Using the output elasticities, we compute the marginal product of ICT capital as in Brynjolfsson and Hitt 

(1996) and Tambe and Hitt (2012), which is equal to the output elasticity of ICT capital multiplied by the 

ratio of output to ICT capital. 

 
𝑀𝑃𝐾𝐼𝐶𝑇 =

𝜕𝑌

𝜕𝐾𝐼𝐶𝑇
=

𝜕𝑌

𝜕𝐾𝐼𝐶𝑇

𝐾𝐼𝐶𝑇

𝑌

𝑌

𝐾𝐼𝐶𝑇
= 𝛽𝐼𝐶𝑇

𝑌

𝐾𝐼𝐶𝑇
=

𝛽𝐼𝐶𝑇

𝐾𝐼𝐶𝑇

𝑌

 (2) 

We calculate the ICT capital input share for each observation and take the mean of the resulting distribution 

after winsorizing at the 1% level to avoid biases from outliers. 
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5. Results 

5.1 Baseline results 

Table 3 reports production function estimates for the private sector as a whole. All specifications control 

for industry and year fixed effects. The first column shows OLS results, the second and third column report 

results including firm fixed effects and first differences estimates respectively. Columns 5 – 6 report the 

results of two GMM estimators: the Ackerberg, Caves and Frazer control function estimator (ACF) and 

the Collard-Wexler and De Loecker approach (CWDL).10 For table 3, we limit the estimation sample to the 

firms that we have sufficient information on to use in each estimator. 

TABLE 3: RESULTS PRIVATE SECTOR (NACE 1-82) 

Value Added  
Prod. Function 

OLS 
Firm Fixed 

Effects 
First 

differences 
ACF CWDL 

Labor 
0.6739*** 

(0.0015) 
0.5013*** 

(0.0021) 
0.3376*** 

(0.0022) 
0.6226*** 

(0.0038) 
0.4573**** 

(0.0058) 

Non-ICT Capital 
0.1846*** 

(0.0013) 
0.1170*** 

(0.0015) 
0.0902*** 

(0.0016) 
0.2111*** 

(0.0055) 
0.4467*** 

(0.0286) 

ICT Capital 
0.1079*** 

(0.0009) 
0.0695*** 

(0.0010) 
0.0599*** 

(0.0011) 
0.1151*** 

(0.0032) 
0.1387*** 

(0.0313) 

# observations 1,044,353 1,044,353 870,626 867,867 826,685 
# firms 137,504 137,504 137,504 137,504 137,504 
Ind. & Year FE YES / / YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. The estimation sample is identical in number of 

firms. The number of observations is lower due to missing lags/instruments for some observations in one/multiple years for a 

firm in the First differences, ACF and CWDL estimator. 

Similar to  Brynjolfsson and Hitt (1995), we observe that the magnitude of the ICT capital output elasticity 

drops roughly 50% when adding firm fixed effects or estimating first differences. Cross sectional firm 

heterogeneity is thus important in explaining the return on ICT capital. This is consistent with the idea that 

differences in ICT capital also reflect other unobserved persistent firm characteristics like innovativeness, 

management practices and workplace organization (Bresnahan, Brynjolfsson and Hitt, 2002). Another 

explanation is provided by Griliches and Hausman (1986) who note that when a variable is highly serially 

correlated over time, fixed effects regressions can introduce a substantial downward bias in the coefficient 

estimates. The GMM estimators in columns 5-6 are expected to control for these biases. The ACF estimator 

controls for the potential endogeneity of inputs, most relevant for a variable input like labor. As expected 

the coefficient on labor drops. The ICT capital coefficient is comparable to the OLS one. Note that it is 

difficult to determine a priori the bias in the OLS estimate for the ICT capital coefficient. First, there can 

                                                 
10 We also experimented with the system GMM approach (Blundell and Bond, 1999). The point estimates for this 
estimator are similar to the OLS and control function estimates. 
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be an endogeneity bias if ICT is correlated with unobserved productivity, but second, the estimate is also 

affected by biases in other variables’ coefficients that spill over to the ICT capital coefficient. As expected, 

correcting for measurement error in the capital stocks with the CWDL estimator in column 6 increases the 

capital coefficients.11 For the remainder of this paper, we proceed with the ACF estimator as this is the 

workhorse model in the productivity literature. The ICT capital output elasticity is estimated around 0.11, 

so increasing the ICT capital stock with 1% increases value added on average with 0.11%.12 This is higher 

than in earlier work, see table A-1 in appendix A for a comparison with earlier studies. 

While output elasticities have the advantage of being independent of the units in which outputs and inputs 

are measured, they cannot be easily compared with studies on other samples that have different average 

levels of ICT investments or other factor input shares. Therefore, we follow Tambe and Hitt (2012) and 

Brynjolfsson et al. (1996) and compute the marginal product of the inputs. The ICT capital input share 𝐾
𝐼𝐶𝑇

𝑉𝐴
 

is on average 8.53% of value added, comparable to Brynjolfsson et al. (1995) who found an input share of 

9.35% for IT capital and IT labor together. Based on the estimated output elasticities of ICT capital, the 

marginal product of ICT capital is 1.35, or 𝑀𝑃𝐾𝐼𝐶𝑇 = 𝛽𝐼𝐶𝑇 (𝐾𝐼𝐶𝑇

𝑌
)

−1

= 0.1151

0.0853
= 1.35. Thus, investing an 

additional euro in ICT capital increases value added on average by one euro and 35 cents. For non-ICT 

capital and labor, the input shares are respectively 1.17 and 0.63, so the marginal product of non-ICT capital 

is 0.18 EUR (𝑀𝑃𝐾𝑁𝐼𝐶𝑇 = 0.2111

1.1659
= 0.18 EUR) and the marginal product of labor is 0.99 EUR (𝑀𝑃L = 0.6226

0.6291
=

0.99 EUR).13 Our estimates are higher than those of Brynjolfsson et al. (1996), who found the marginal 

product of IT capital to be 0.81 for a sample of 1,121 large US firms. The marginal product tells us how 

much the last dollar of ICT capital contributes to value added. Infra-marginal investments generally have a 

higher rate of return, so our results indicate that the average return on investing in ICT capital is even higher 

than 1.35 EUR. However, the net rate of return of ICT capital also depends on the user costs that are 

                                                 
11 The ICT capital coefficient estimate of the CWDL approach is significantly higher than the estimate of the ACF 

approach (𝑧 = 4; 𝑝 < 0.05). 
12 Or a 10% increase in ICT capital multiplies value added with 𝑒0.1151∗ln(1.1) ≈ 1.011. So a 10% increase in ICT capital 
increases value added by 1.1% 
13 This is the marginal product of labor, which is based on the wage bill input share and represents the increase in 

value added from spending an additional euro on labor. 𝑀𝑃L can also be calculated as the increase in value added 

from adding a full time equivalent worker. The input share is then 0.00002 and 𝑀𝑃𝐿 = 0.6226

0.00002
≈ 31,000. So hiring an 

additional full time equivalent worker for a year increases value added on average by 31,000 EUR. 
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associated with maintaining ICT capital and the associated large adjustment costs that have to be covered 

when investing in ICT (Stiroh, 2005).14 According to EU KLEMS data ICT capital depreciates at a rate of 

31.5% per year. Non-ICT capital depreciation rates are lower and estimated between 5% and 15% per year. 

As a result, the net rate of return on ICT capital is about 1.35 − 0.315 ≈ 1.04 while the net rate of return 

of non-ICT capital is about 0.18 − 0.10 ≈ 0.08. Table 4 shows that our results are robust to various 

alternative modeling approaches. 

TABLE 4: ROBUSTNESS CHECKS 

Robustness 
check 

Potential concern Robustness analysis Results 

R. 1 
Entry and exit dynamics could affect the 
ICT output elasticity 

Estimate the production function on a 
balanced sample. 

✓ 

R. 2 
Productivity could evolve endogenously 
with ICT investments 

Include ICT investments in the law of 
motion of productivity. 

✓ 

R. 3 
Timing assumptions on the moment ICT 
investments become productive 

Use current/lagged instruments for ICT 
capital. 

✓ 

R. 4 
ICT capital stock can be constructed in 
various ways 

Estimate initial capital stocks from 
aggregated ICT intensity measures. 

✓ 

R. 5 
Sensitivities in ICT investments could spill 
over to non-ICT investments  

ICT capital with PIM, non-ICT capital as 
residual book value of tangible fixed 
assets / as total book value of tangible 
fixed assets. 

✓ 

R. 6 
High ICT purchases compared to total 
investments 

Drop observations for which ICT 
purchases are larger than total 
investments. 

✓ 

R. 7 
ICT capital depreciation rate could be too 
conservative 

Assume no depreciation for ICT capital. ✓ 

Notes: The results of these robustness checks are included in appendix D.  

Altogether, our results indicate excess returns on ICT capital. While part of this return on ICT is required 

to cover adjustment costs and unmeasured complementary assets, an increase in ICT capital would result 

in increased output and growth in (measured) multifactor productivity. This finding is of course not new, 

see Biagi (2013) for an overview of the literature on ICT and productivity. Yet, it is valuable to assess the 

return on ICT outside the United States with recent, more detailed data and robust estimators. More 

importantly, these baseline results hide a lot of heterogeneity as shown in figure A-1 in appendix A. In the 

remainder of the paper, we disentangle the return on ICT across industries, firm size and time. We also 

show how aggregate output and productivity growth is affected by ICT using a decomposition exercise. 

 

                                                 
14 The marginal product of an input is interpreted as its gross rate of return, whereas the net rate of return is defined 
as the difference between the marginal product and the depreciation rate, as in Hall, Mairesse and Mohnen (2009). 
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5.2 Industry Heterogeneity 

As pointed out by Tambe and Hitt (2012), limited availability of data in earlier work did not allow to engage 

in sectoral comparisons. Our data contains information on firm-level ICT investments for the entire non-

financial private sector. Table 5 shows split sample results for manufacturing and services sectors as a first 

step in disentangling this heterogeneity. 

TABLE 5: RESULTS MANUFACTURING (NACE 10-33) AND SERVICES (NACE 45-82) 

Value Added Production Function Manufacturing Services 

Labor 0.6509*** 
(0.0124) 

0.6153*** 
(0.0046) 

Non-ICT Capital 0.2249*** 
(0.0148) 

0.1995*** 
(0.0071) 

ICT Capital 0.1212*** 
(0.0071) 

0.1204*** 
(0.0046) 

# observations 122,415 570,484 
# firms 18,451 112,263 
Industry & Year FE YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. Results obtained from the ACF estimator. Tables 
A-3 and A-4 in appendix A show results for alternative estimators. 

As in Kudyba and Diwan (2002), we find that the output elasticity of ICT capital in the manufacturing and 

services sector are very similar. However, the manufacturing industries have lower ICT intensity than the 

services industries, as measured by the ratio of ICT capital to value added. As a result, the marginal product 

of ICT capital is higher for manufacturing industries, in particular, 1.58 in the manufacturing sector 

compared to 1.17 in the services sector. The marginal products of non-ICT capital and labor are respectively 

0.21 and 0.94 for the manufacturing sector and 0.16 and 1.00 for the services sector.15 There are two 

possible explanations for such a high marginal product of ICT capital in the manufacturing industry: either 

user costs and adjustment costs from increasing ICT capital are large such that firms refrain from investing 

in ICT capital, or there is a market failure that results in manufacturing firms underinvesting in ICT capital. 

To gain a deeper understanding in industry heterogeneity, we estimate our production function at a more 

disaggregated level. Table 6 and table A-6 in appendix A provide further details on differences in the output 

elasticity and the marginal product of ICT capital across industries. 

                                                 
15 For manufacturing, 𝑀𝑃𝐾𝐼𝐶𝑇 = 0.1212

0.0769
= 1.58; 𝑀𝑃𝐾𝑁𝐼𝐶𝑇 = 0.2249

1.0749
= 0.21; 𝑀𝑃𝐿 = 0.6509

0.6908
= 0.94 and for services 

𝑀𝑃𝐾𝐼𝐶𝑇 = 0.1204

0.1029
= 1.17; 𝑀𝑃𝐾𝑁𝐼𝐶𝑇 = 0.1995

1.2185
= 0.16; 𝑀𝑃𝐿 = 0.6153

0.6175
= 1.00. When computing 𝑀𝑃𝐿  based on the 

number of full time equivalents, 𝑀𝑃𝐿 = 0.6509

0.00002
= 32,690 for manufacturing, and 𝑀𝑃𝐿 = 0.6153

0.00002
= 30,645 for 

services. 
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TABLE 6: RESULTS PER INDUSTRY16 

Industry (NACE codes) # firms Labor 
Non-
ICT 

Capital 

ICT 
Capital 

ICT input 
share 

Marginal 
Product 

ICT 

Agriculture, Forestry and Fishing (1-3) 2,230 0.43 0.41 0.06 0.03 1.89 

High Tech Manuf. (21; 26; 30) 2,509 0.73 0.16 0.15 0.09 1.65 

Other Manuf. (10-33 except High Tech) 15,942 0.64 0.24 0.11 0.07 1.52 

Utilities (35-39) 823 0.55 0.31 0.09 0.04 2.43 

Construction (41-43) 30,751 0.64 0.24 0.09 0.04 2.38 

Wholesale and Retail (45-47) 51,914 0.60 0.19 0.15 0.10 1.45 

Transportation and Storage (49-53) 8,386 0.65 0.23 0.07 0.04 1.85 

Accommodation and food serv. (53-56) 18,025 0.60 0.25 0.06 0.05 1.16 

Information and Communication (58-63) 1,389 0.64 0.15 0.19 0.21 0.93 

Financial and Insurance (64-66) 2,217 0.68 0.18 0.12 0.14 0.86 

Real Estate (68) 3,602 0.50 0.34 0.12 0.14 0.83 

Prof., Scientific & Tech. activities (69-75) 18,147 0.63 0.15 0.13 0.17 0.77 

Admin. and Support activities (77-82) 8,583 0.64 0.23 0.12 0.13 0.96 

Notes: Results obtained from the ACF estimator. The production functions include industry and year fixed effects. Standard errors 
are clustered at the firm level. All output elasticities are significant at the 1% level, except for utilities industries where results are 

significant at the 10% level. The number of observations for mining and quarrying firms is low, therefore these are omitted. 

In the manufacturing sector, spending an additional euro on ICT has a larger gross return in high tech 

industries. The difference between high tech and other manufacturing is primarily driven by a higher output 

elasticity of ICT capital in high tech industries, while the ICT input shares do not differ much between high 

tech manufacturing and other manufacturing. Table A-6 in appendix A estimates the return on ICT at the 

more disaggregated two-digit level. Within manufacturing, the gross return on ICT is lowest in the printing 

industry and highest in manufacturing of metal. Outside manufacturing, we find that the marginal product 

of ICT capital is high for utilities and construction industries and in general low in services industries due 

to relatively high ICT input shares. For the services industries, the output elasticity of ICT capital is highest 

for the Information and Communication industries. This is consistent with Bosworth and Triplett (2007), 

who show that productivity growth from IT capital within the services sector was highest for these 

industries. Yet, the ICT input share is also highest in the information and communication industries, 

resulting in a marginal product of ICT that is relatively low. 

Abstracting from potential discrepancies in adjustment costs across industries, creating productivity growth 

through investments in ICT is hardest in industries that have a relatively low marginal product of ICT 

                                                 
16 Table A-5 in appendix A shows the results when ICT capital is constructed solely from ICT goods. ICT services 
can be developed in-house. Such ICT capital is unobserved in our data and could confound industry comparisons. 
We find that excluding ICT services typically decreases the ICT input share more than the output elasticity, as a result 
the marginal product of ICT increases. The ranking of table 6 remains largely unchanged, except for some industries 
in which ICT services are an important part of the ICT capital stock, like the financial and insurance industries. 
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capital. Our results suggest that it is easier for manufacturing firms to increase productivity by investing in 

ICT compared to services industries. Table 6 shows that this is primarily due to relatively high ICT capital 

stocks compared to the added value of firms in services industries. 

To improve our understanding in the heterogeneity in gross marginal returns on ICT across industries, we 

further exploit our B2B data. As detailed in table 1, we can classify the type of ICT investments based on 

the primary industry code of the ICT seller. In table 7, we regress the marginal product of ICT capital on 

the share of IT goods, IT services, communication goods and communication services. 

TABLE 7: EXPLAINING INDUSTRY HETEROGENEITY 

 𝑀𝑃𝐼𝐶𝑇  𝑀𝑃𝐼𝐶𝑇  𝑀𝑃𝐼𝐶𝑇  𝑀𝑃𝐼𝐶𝑇  

Share of IT goods 0.0101* 
(0.0059) 

   

Share of IT services  
-0.0146** 
(0.0058) 

  

Share of Communication goods   
-0.0022 
(0.0065) 

 

Share of Communication services    
0.0094 

(0.0085) 

# observations 816 816 816 816 

Industry & Year FE YES YES YES YES 

Notes: *** is significant at 1% level. ** is significant at 5% level. * is significant at 10% level. Standard errors are clustered at the 
two-digit level. We have 68 two-digit industry codes for 12 years, resulting in 816 observations. The dependent variable is the log 
linearized marginal product of ICT capital, obtained from the two-digit output elasticities in table A-6 and the cost share of ICT 
averaged by two-digit and year. The independent variables are the ICT type investment shares as defined in table 1 and figure 2, 
rescaled between 0 and 100, also averaged by two-digit and year. 

Wilson (2009) shows that the marginal product of communication goods is lower than the marginal product 

of hardware and software. Controlling for industry and year fixed effects, our results indicate that higher 

investments in communication goods and services have no statistically significant effect on the marginal 

product of ICT capital, which is not surprising given the small share of communication goods and services 

investments in total ICT investments as shown in figure 1. We find that the marginal product of ICT capital 

is higher (lower) in industries where firms allocate more of their ICT investments to IT goods (services). 

With regard to realizing productivity growth through ICT investments, this implies that investing in IT 

goods is more beneficial than investing in IT services. 
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5.3 Firm size heterogeneity 

Most of the literature has focused on large firms, often using survey data, but it is unclear whether these 

earlier findings can be generalized to the population of small firms, which represent the bulk of the 

economy. Tambe and Hitt (2012) indicate this to be a major shortcoming of the literature. To the best of 

our knowledge, only Tambe and Hitt (2012), Hyatt and Nguyen (2010) and Bloom, Draca, Kretschmer and 

Sadun (2010) investigated whether returns on ICT are related to firm size. While Tambe and Hitt (2012) 

found that large firms benefit more from ICT, Hyatt and Nguyen (2010) found the opposite and Bloom et 

al. (2010) did not find differences in returns on ICT between small and large firms. The average number of 

employees in the study of Tambe and Hitt (2012) is more than 10,000 employees, while in Hyatt and 

Nguyen (2010) and Bloom et al. (2010) this is respectively 237 and 400 employees. Figure A-2 of appendix 

A shows that our data set covers the firm size distribution more exhaustively. Mean and median 

employment in our data set is 10.4 and 2 employees, but our sample also contains very large firms with 

more than 10,000 employees. This allows to more adequately test whether a size premium exists in returns 

on ICT. We divide the population of firms into seven bins according to firm size and re-estimate the 

production function to retrieve a size bin specific output elasticity and marginal product of ICT in table 8.17 

TABLE 8: RESULTS PER SIZE BIN 

Firm size # firms 𝛽𝑙 𝛽𝑁𝐼𝐶𝑇  𝛽𝐼𝐶𝑇 ICT input share 
Marginal 

Product ICT 

≤ 5 employees 124,301 0.4333 0.2292 0.0952 0.0894 1.2991 

6-10 employees 17,959 0.7659 0.1556 0.0705 0.0812 1.0436 

10-25 employees 13,156 0.8085 0.1230 0.0877 0.0796 1.3078 

26-50 employees 5,246 0.8500 0.1068 0.1051 0.0791 1.5702 

50-100 employees 2,098 0.8167 0.0841 0.1152 0.0798 1.6943 

100-250 employees 1,226 0.8437 0.1012 0.1725 0.0817 2.4453 

> 250 employees 680 0.7403 0.1321 0.1959 0.0833 2.6783 

Notes: The results in this table are from an ACF estimator. The production functions include industry and year fixed effects. Standard 
errors are clustered at the firm level and all output elasticities are significant at the 1% level, except in the size bin of >250 employees 

where the ICT capital coefficient is significant at the 18% level due to a small number of observations in this size category. 

In section 5.1, we found an average ICT input share of 0.0853 and a marginal product of ICT capital equal 

to 1.35 for the entire private sector. Table 8 shows that there is heterogeneity in firm size underlying these 

results. While there is no clear correlation between firm size and the labor and non-ICT capital coefficients, 

there is a positive correlation between the output elasticity of  ICT capital and firm size. Because the ICT 

                                                 
17 In appendix E we move beyond split sample analyses and fully recognize firm heterogeneity by identifying firm 
specific output elasticities with a random coefficients production function. This approach also shows a positive 
relationship between firm size and the output elasticity of ICT capital. 
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input share is relatively constant across the firm size distribution, the marginal product of ICT capital 

increases with firm size. In line with the findings of Tambe and Hitt (2012), we find that large firms benefit 

more from ICT. This upward trend in the marginal product of ICT capital also appears at more 

disaggregated levels of the firm size distribution, see figure A-3 in appendix A. 

It is possible that the ICT capital coefficient is picking up omitted complementary intangibles. For example, 

management practices are positively related to ICT intensity (Bloom et al., 2012; 2014). As large firms are 

typically better managed (Bloom and Van Reenen, 2007), differences in returns across the firm size 

distribution could partly represent unmeasured management quality. If this is not controlled for, the 

estimated return on ICT capital could be biased upwards. Although we use state of the art techniques to 

control for unobserved productivity in estimating the output elasticity of ICT capital, these only control for 

management insofar comprised in firm productivity. Under the assumption that management quality is 

fixed over time, a fixed effects model allows to validate the robustness of our results.18 Table 9 shows the 

output elasticities of ICT capital for each firm size bin, with firms who have less than 5 employees as a 

reference category, with and without firm fixed effects. 

TABLE 9: RESULTS FOR DIFFERENT SIZE BINS WITH FIXED EFFECTS 

VA production function (1) (2) (3) (4) 

ICT capital 0.1095*** 
(0.0009) 

0.0940*** 
(0.0010) 

0.0722*** 
(0.0010) 

0.0691*** 
(0.0011) 

ICT capital * ≤ 5 employees  /  / 

ICT capital * 6-10 employees  -0.0061*** 
(0.0018) 

 
-0.0075*** 

(0.0014) 

ICT capital * 10-25 employees  0.0045*** 
(0.0021) 

 
-0.0068*** 

(0.0018) 

ICT capital * 26-50 employees  0.0109*** 
(0.0031) 

 
-0.0075*** 

(0.0026) 

ICT capital * 50-100 employees  0.0254*** 
(0.0048) 

 
0.0046 
(0.0042) 

ICT capital * 100-250 employees  0.0495*** 
(0.0074) 

 
0.0109* 
(0.0062) 

ICT capital * > 250 employees  0.0747*** 
(0.0112) 

 
0.0266*** 

(0.0096) 

# observations 1,083,534 1,083,534 1,083,534 1,083,5345 

# firms 164,666 164,666 164,666 164,666 

Firm fixed effects NO NO YES YES 

Notes: Standard errors are clustered at the firm level. *** is significant at 1% level. * is significant at 10% level. Model (1) and (3) 
are the standard OLS production function with and without firm fixed effects. Models (2) and (4) are the same as Bloom et al. 

(2010) use to infer whether there is a size premium in returns on ICT capital: 𝑦𝑖𝑡 = 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝐼𝑇𝑘𝑖𝑡
𝐼𝐶𝑇 + 𝛽𝑁𝐼𝑇𝑘𝑖𝑡

𝑁𝐼𝐶𝑇 + 𝛽𝑆𝑗
𝑠𝑖𝑡

𝑗
+

𝛽𝐼𝑇
𝑆𝑗

(𝑘𝑖𝑡
𝐼𝐶𝑇 ∗ 𝑠𝑖𝑡

𝑗
) + 𝑍𝑖𝑡 + 𝜖𝑖𝑡with 𝑠𝑖𝑡

𝑗
 size bin dummies and 𝑍𝑖𝑡 the vector of year and industry controls. We show only 𝛽𝐼𝐶𝑇 and 𝛽𝐼𝐶𝑇

𝑆𝑗
, 

which measure the effect of ICT capital for firms with less than 5 employees and the additional effect according to the firm’s size. 

                                                 
18 The firm fixed effects estimator identifies whether there is a difference between the size bins in how within firm 
variation in ICT capital is related to within firm variation in output. It controls for any time fixed unobserved 
heterogeneity, which one can argue management to be, but also for returns on the part of the ICT stock that is 
persistent over time. Therefore, the firm fixed effects estimator is likely to underestimate the return on ICT capital. 
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Without accounting for firm fixed effects, the return on ICT capital is significantly higher for each size bin 

compared to the size bin just below. After accounting for firm fixed effects, we only find a significantly 

higher output elasticity of ICT capital for firms with more than 100 employees. This result implies that 

increasing ICT capital increases output more in the subgroup of firms with more than 100 employees than 

in smaller firms. The result that firms with less than 100 employees only have a higher output elasticity 

without accounting for firm fixed effects suggests that our ICT capital coefficient could indeed reflect 

unmeasured complementary assets to a certain extent. Table 10 further investigates whether the firm size 

premium in the return on ICT can be attributed to management, decentralization or skilled labor. 

TABLE 10: LARGE FIRMS BENEFIT MORE FROM ICT 

VA production function (1) (2) (3) (4) (5) 

Labor 0.3922*** 
(0.0051) 

0.5411*** 
(0.1180) 

0.5392*** 
(0.1191) 

0.3924*** 
(0.0051) 

0.3457*** 
(0.0084) 

Non-ICT capital 0.1198*** 
(0.0015) 

0.1059*** 
(0.0340) 

0.1083*** 
(0.0339) 

0.1198*** 
(0.0015) 

0.1415*** 
(0.0023) 

ICT capital 0.0584*** 
(0.0012) 

-0.0039 
(0.0478) 

-0.0033 
(0.0487) 

0.0584*** 
(0.0012) 

0.0806*** 
(0.0019) 

ICT capital * size 0.0126*** 
(0.0006) 

0.0223** 
(0.0094) 

0.0226*** 
(0.0010) 

0.0126*** 
(0.0006) 

0.0110*** 
(0.0010) 

General Management  
0.0741 
(0.0646) 

   

People management   
0.0424 
(0.0526) 

  

Decentralization    
0.0946*** 

(0.0157) 
 

Skilled labor     
0.0228*** 

(0.0042) 

# observations 1,083,534 1,699 1,699 1,083,534 602,482 

# firms 164,666 163 163 164,666 137,548 

Firm fixed effects YES NO NO YES YES 

Notes: Standard errors are clustered at the firm level. *** is significant at 1% level. ** is significant at 5% level. * is significant at 
10% level. The World Management Survey is a cross section so firm fixed effects cannot be included in that estimation. The number 
of observations in the regression with skilled labor is lower as we only observe this information for a subset of firms since 2008. 

Bloom, Sadun and Van Reenen (2012) find that U.S. firms have a higher output elasticity on ICT capital 

than European firms and that this difference in the return on ICT becomes statistically insignificant after 

controlling for people management. To test whether better people management in large firms explains the 

output elasticity premium of ICT capital in large firms, we exploit data on management practices that we 

collected following the format of the World Management Survey in 163 Belgian manufacturing firms.19 

                                                 
19 The World Management Survey is a worldwide initiative to measure management that has been run in over 20,000 
firms across 35 countries. The survey consists of 18 questions on talent management, target setting, operations 
management and lean manufacturing. The average score across the 18 questions is used to measure ‘management’. 
People management practices relate to promotions, rewards, hiring and firing. For more information about the World 
Management Survey, we refer to Bloom and Van Reenen (2007). 
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Estimating a production function including the people management score does not change the finding that 

large firms benefit more from ICT. Neither does our findings change when adding the overall management 

score. The firm size premium on ICT does not appear to be reflecting differences in management practices. 

Acemoglu, Aghion, Lelarge, Van Reenen and Zilibotti (2007) show that decentralized firms are more 

productive and that this effect is stronger in ICT intensive industries. To test whether decentralization plays 

a role in explaining the productivity returns of ICT capital, we estimate a production function that includes 

a dummy indicating whether a firm has inward or outward foreign direct investments (FDI).20 The 

coefficient on the interaction between firm size and ICT capital is not affected by including the FDI 

dummy, indicating that large firms do not benefit more from ICT due to higher decentralization. 

Bresnahan, Brynjolfsson and Hitt (2002) discuss the process through which ICT affects labor demand 

towards more skilled labor. Goos, Mannings and Salomons (2014) also show that there is a shift towards 

skilled jobs due to the surge in ICT investments. To investigate whether skilled labor is at the origins of the 

ICT output elasticity premium in large firms, we exploit information on the education level of employees. 

We add the share of highly educated employees to the model as a proxy for skilled labor and find that the 

interaction coefficient between employment and ICT capital remains unaffected. The same conclusion 

holds when we add wages, measured by the ratio of the wage bill to the number of employees, to proxy for 

labor quality as in Broersma, McGuckin and Timmer (2003). Differences in the degree of skilled labor are 

also not the reason why large firms benefit more from ICT. 

Bloom, Garicano, Sadun and Van Reenen (2014) show that information technology and communication 

technology serve different uses. Communication technology investments result in a reduction of employee 

autonomy, because decisions can be passed to the center of the firm. Information technology investments 

have the opposite effect, facilitating employee decision making. We exploit our B2B data to infer how 

centralized decision making takes place in firms by investigating the differences in the investment shares of 

                                                 
20 Acemoglu et al. (2007) measure decentralization as having foreign profit centers, which is closely related to our 
measure of decentralization. FDI participation is an indirect proxy for decentralization, and is also correlated to other 
unobservables. It is thus reassuring to see that the results hold after adding this control variable to the model. 
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ICT types across the firm size distribution. Figure 3 disentangles ICT investments, which are the basis of 

the ICT capital stocks, for the different size groups. 

FIGURE 3: COMPOSITION ICT INVESTMENTS BY FIRM SIZE 

 
Notes: Average industry shares after averaging the investment shares at the firm level. 

The share of IT goods and communication services in ICT investments, and hence in ICT capital, decreases 

with firm size, while the share of IT services and communication goods increase with firm size. This pattern 

indicates opposing forces with regard to the level of decision making in the firm: IT goods investments 

push the level of decision making down, investments in communication goods are likely to push the level 

of decision making up. While there is no clear relationship between the level of decision making and the 

size premium in returns of ICT capital, figure 3 does show a clear decrease in the share of IT goods and an 

increase in IT services with firm size. 

It is important to note that large firms are also more likely to provide IT and communication services in-

house instead of buying them externally. Since in house ICT developments are not accounted for in our 

ICT investment data, we could possibly underestimate the ICT input share in large firms, leading to an 

upward bias in the marginal product estimate in large firms. There are two reasons why this phenomenon 

is unlikely to affect our results. First, figure 3 shows that the share of IT services increases instead of 

decreases with firm size. Second, this argument does not hold for the provision of ICT goods as these are 

unlikely to be produced in-house. When measuring excess returns using only ICT goods to construct the 

capital stock we get a similar picture as before, cf. figures A-4 and A-5 in appendix A. 
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5.4 Heterogeneity over time 

We investigated the heterogeneity in returns on ICT in the cross section of our unique panel data set by 

looking at variation in the return on ICT across industries and across the firm size distribution. In the 

remainder of the paper, we exploit the time dimension of our data by looking at the evolution in the 

marginal product of ICT capital and by investigating how ICT capital contributes to aggregate output and 

productivity growth in section 5.5. Similar to earlier analyses, we show in table 11 a split sample estimation 

by year. 

TABLE 11: RESULTS BY YEAR 

Year # firms 𝛽𝑙 𝛽𝑁𝐼𝐶𝑇  𝛽𝐼𝐶𝑇 ICT input share 
Marginal 

Product ICT 

2003 77,277 0.6519 0.1962 0.1049 0.0667 1.5731 

2004 80,055 0.6338 0.1958 0.1544 0.0716 2.1557 

2005 86,205 0.6285 0.2107 0.1218 0.0771 1.5785 

2006 90,977 0.6180 0.2147 0.1160 0.0797 1.4545 

2007 94,577 0.6250 0.2013 0.1281 0.0818 1.5667 

2008 95,029 0.6086 0.2239 0.1131 0.0862 1.3123 

2009 96,160 0.6082 0.2187 0.1052 0.0917 1.1471 

2010 96,963 0.6040 0.2286 0.1080 0.0939 1.1495 

2011 99,547 0.6132 0.2172 0.1051 0.0961 1.0938 

2012 97,425 0.6225 0.2131 0.0977 0.1016 0.9622 

2013 95,116 0.6294 0.2122 0.0893 0.1060 0.8426 

Notes: The results in this table are from the ACF estimator. Since the ACF estimator needs the first lag as instruments in the 
estimation, we lose the year 2002. The production functions includes industry fixed effects. Standard errors are clustered at the firm 
level and all output elasticities are significant at the 1% level. 

There is no clear trend in the labor and non-ICT capital elasticities over time, but there is a clear downward 

trend in the output elasticity of ICT capital while the ICT input share increases over time. As a result, the 

marginal product of ICT capital decreases over time. While spending an additional euro on ICT had a gross 

return of 1.58 EUR in 2005, this almost halved by 2013 to 0.85 EUR.21 A potential explanation for the 

downward trend is that it takes some time before ICT innovations spread out to other firms. Once they 

do, the premium of ICT investments drops over time.22 In figure 4, we investigate the heterogeneity in 

returns on ICT over time further and exploit our B2B data to show the composition of ICT investments 

over time. 

                                                 
21 We test in appendix D.5 whether our results on heterogeneity in returns on ICT across industries and firm size are 
related to the evolution over time in returns on ICT and find all earlier results to be robust. 
22 We thank an anonymous referee for this explanation. 
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FIGURE 4: COMPOSITION ICT INVESTMENTS BY YEAR 

 
Notes: The average share of each ICT type in total ICT investments across firms by 
year. 

Over time, the output elasticity of ICT capital declines simultaneously with an increase in the share of ICT 

investments attributed to IT services of about 15 percentage points and a decrease in the share attributed 

to communication services of 15 percentage points. The share of ICT investments attributed to IT goods 

and communication goods remain relatively stable around 50% and 3% of total ICT investments. The 

finding that the return on ICT decreases when the share of IT services increases is consistent with our 

findings in section 5.2. To validate whether the increase in importance of IT services can offer an 

explanation for the downward trend in the output elasticity of ICT capital, table A-7 in appendix A 

replicates the results of table 11 when constructing ICT capital with IT goods and communication goods 

only. If the change in the composition of ICT investments is the reason for the decline in the marginal 

product of ICT over time, one would expect the downward trend in the marginal product of ICT to 

disappear. However, we find this not to be the case and conclude that compositional changes are unlikely 

to be the reason behind the trend. Providing a full and detailed explanation of this trend would be interesting 

but lies outside the scope of the current paper and we leave this for future research.  
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5.5 ICT and (aggregate) productivity growth 

Early work in the literature on returns on ICT capital was spurred by the famous quote of Robert Solow 

(1987) “You can see the computer age everywhere but in the productivity statistics”. This quote received a lot of attention 

because productivity growth indeed started to decline right at the moment computer investments took off. 

Houseman et al. (2015) showed that it is crucial to distinguish between ICT producing and ICT using 

industries. They found that productivity growth rates in the U.S. between 1997 and 2007 fall by almost half 

when computer producing industries are excluded. Also Acemoglu et al. (2014) found that ICT producing 

industries drive the positive impact of ICT investments on labor productivity. They conclude that the 

statement of ICT to improve productivity in all industries may be exaggerated. 

To gauge the impact from ICT capital on aggregate GDP and aggregate productivity over the last decade, 

we use the Petrin and Levinsohn (2012, henceforth PL) decomposition and extend it by including ICT 

capital and non-ICT capital separately as production inputs. The intuition of the decomposition is shown 

in figure 1 and appendix B2 provides more details on the model. This decomposition allows us to shed 

light on the contribution of ICT capital deepening to aggregate value added growth, which learns whether 

firms did or did not invest (enough) in ICT capital. Furthermore, this decomposition contains a reallocation 

component for each production input. In a profit maximizing world, one would expect firms to reallocate 

resources towards its most profitable use. The reallocation components show the contribution to aggregate 

productivity growth from this mechanism. More specifically, it measures the contribution to productivity 

growth from reallocation of resources from low marginal value activities to high marginal value activities 

(relative to costs).23 The ICT capital reallocation component learns whether firms who should (not) invest 

in ICT, namely those with (low) high returns on ICT capital, did (not) invest. 

Tables 12 and 13 show the results of the PL decomposition in two steps. Table 12 decomposes economy 

wide value added growth in labor deepening, non-ICT capital deepening, ICT capital deepening and 

productivity growth. Table 13 further decomposes aggregate productivity growth into (i) within firm 

                                                 
23 In a neoclassical setting without frictions, the value of the marginal product is equal to the marginal cost, leaving no 
room for improvements in aggregate productivity through reallocation of resources. In this scenario, the elasticity of 
output with respect to an input is equal to the share of expenditures for that input in total revenue. However, in a 
world of imperfect competition, markups, taxes and adjustment costs drive a wedge between marginal products, which 
leads to a possible role for reallocation of resources in increasing aggregate productivity growth (Basu and Fernald, 
2002). 
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technical efficiency growth, which shows whether firms become more productive on average, (ii) 

productivity growth through reallocation of resources from low to high marginal value activities and (iii) a 

residual fixed cost component. Productivity growth from reallocation is further split in productivity growth 

from labor reallocation, non-ICT capital reallocation and ICT capital reallocation. 

TABLE 12: PL DECOMPOSITION I 

In percentages 
Aggregate 

Output growth 

Contribution 
from labor 
deepening 

Contribution 
from non-ICT 

capital deepening 

Contribution 
from ICT capital 

deepening 

Contribution 
from productivity 

Growth 
2003 3.45% 0.38% 0.95% 0.20% 1.91% 

2004 4.62% 0.61% 0.46% 0.36% 3.19% 

2005 1.04% 0.60% 0.19% 0.36% -0.11% 

2006 4.56% 1.05% 0.33% 0.54% 2.64% 

2007 4.48% 1.48% 0.57% 0.21% 2.22% 

2008 1.12% 0.71% 0.81% 0.17% -0.57% 

2009 -3.85% -1.73% -0.13% 0.13% -2.12% 

2010 3.30% -0.12% -0.29% 0.13% 3.58% 

2011 3.29% 1.10% 0.25% 0.15% 1.79% 

2012 0.46% 0.26% -0.11% 0.14% 0.17% 

2013 0.25% -0.26% -0.31% 0.11% 0.72% 

Avg. 2.07% 0.37% 0.25% 0.23% 1.22% 

St. Dev. 2.57% 0.87% 0.43% 0.13% 1.75% 

Notes: The decomposition is based on a balanced subsample of 42,228 firms for which value added and the production inputs are 
positive and available for all years. Table A-12 in appendix A shows a comparison with other OECD countries. 

On average, aggregate value added increased by 2.07% per year. It is apparent that this growth is largely 

driven by total factor productivity growth. The contribution of ICT capital deepening to aggregate value 

added growth is 0.23% on average. Especially during and after the great recession, there is a relatively low 

contribution to aggregate value added growth from ICT capital deepening. This finding suggests that firms 

reduced their ICT investment intensity over time. To obtain additional insights in the results on ICT capital 

deepening from the PL decomposition, figure 5 shows the evolution of the ratio of ICT investments per 

employee and the share of ICT investments in revenues. 



27 

FIGURE 5: ICT CAPITAL DEEPENING 

 
Notes: Employment weighted average of the ratio of real ICT investments to the 
number of full time equivalents and deflated revenues by year. The same sample is 
used as in the decomposition. 

Average ICT investments per employee increased from about 1,700 EUR per employee in 2003 to 2,600 

EUR per employee in 2006 and remained relatively constant afterwards. The same trend occurs when 

measuring ICT investment intensity as the ratio of ICT investments to revenues. The share of ICT 

investments in revenues almost doubled from 0.6% in 2003 to 1% in 2006 but stalled afterwards. This 

explains why the contribution of ICT capital deepening to output growth declines after the great recession. 

The result that ICT investment growth is lower after the Great Recession indicates that firms became 

cautious in their investment decisions. The low investment intensity is believed to be one of the reasons 

for the productivity puzzle of the last decade. Section 5.4 shows a decrease over time in the marginal 

product of ICT, so it is possible that firms found it less opportune to invest in ICT after the Great 

Recession. Yet, the marginal product of ICT is still high in the most recent years of the sample, so one 

would expect firms to invest in ICT, especially large firms and firms in industries with excess returns on 

ICT. 

To reconcile the heterogeneity in returns on ICT across industries and the firm size distribution with 

aggregate productivity and output growth, we look at the evolution of the reallocation component in table 

13. 
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TABLE 13: PL DECOMPOSITION II 

In percentages 
Aggregate 

productivity 
growth 

Within firm 
productivity 

growth 

Productivity growth through reallocation 

Fixed cost 
Labor 

Non-ICT 
capital 

ICT capital 

2003 1.91% -3.03% 0.39% 0.72% 4.05% -0.22% 

2004 3.19% 0.02% 0.13% 0.88% 2.37% -0.20% 

2005 -0.11% -2.78% 0.36% 0.61% 1.77% -0.07% 

2006 2.64% 0.98% 0.29% 0.31% 1.21% -0.15% 

2007 2.22% 0.94% 0.18% 0.31% 0.84% -0.04% 

2008 -0.57% -1.81% 0.28% 0.08% 0.64% 0.25% 

2009 -2.12% -2.49% 0.22% -0.24% 0.21% 0.18% 

2010 3.58% 3.47% 0.08% -0.16% 0.35% -0.15% 

2011 1.79% 0.98% 0.23% 0.02% 0.45% 0.11% 

2012 0.17% -0.75% 0.37% -0.18% 0.32% 0.39% 

2013 0.72% 0.19% 0.31% -0.13% 0.18% 0.17% 

Avg. 1.22% -0.39% 0.26% 0.20% 1.13% 0.02% 

St. Dev. 1.75% 2.00% 0.10% 0.39% 1.20% 0.21% 

Notes: The decomposition is based on a balanced subsample of 42,228 firms for which value added and the production inputs are 
positive and available for all years. 

Consistent with earlier research on the Belgian economy, we find that the largest share of productivity 

growth is driven by reallocation of resources (Van den bosch and Vanormelingen, 2017). We find that ICT 

capital reallocation, i.e. increases in ICT capital in firms that have high benefits compared to costs from 

increasing ICT capital, contributes on average 1.13% to aggregate productivity growth. As in our results on 

ICT capital deepening, we find that this average is entirely driven by the pre-recession period. After the 

great recession, the contribution of ICT capital reallocation, as well as non-ICT capital reallocation, dropped 

substantially. These result indicate that in the post-recession period  there was only a modest impact from 

ICT capital reallocation to aggregate productivity growth, or in other words, our results suggest that firms 

with excess returns on ICT capital invested too little in ICT. The residual fixed cost term is relatively small 

in comparison to total reallocation, which indicates that reallocation of resources from low-value to high-

value activities does a good job in explaining total reallocation. 

Figure 6 shows the ICT investment intensity across the percentiles of the output elasticity – input cost share 

distribution. The graph indicates whether firms that have a large ‘gap’ between returns and costs from 

investing in (non) ICT capital, and hence are in the upper percentiles of the ‘gap’ distribution, accordingly 

invest in (non) ICT capital. 
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FIGURE 6: ICT CAPITAL DEEPENING AND CAPITAL REALLOCATION 

 
Notes: The graph shows for each percentile of the distribution of the employment weighted 
gap between the output elasticity and the input cost share of (non) IT investments the 
value added weighted median next period (non) ICT investment intensity, expressed as the 
ratio of real (non) ICT investments per employee. The same sample is used as in the 

decomposition. 

Figure 6 shows the ICT investment intensity in function of the opportunities associated with ICT 

investments. On the left are those firms for which the benefits from ICT investments are low, and on the 

right are the firms for which benefits from ICT investments are high. The figure shows a heavy left tail of 

observations for which the ICT investment intensity is relatively high while the investment opportunity 

‘gap’ for ICT is low. The firms in this left tail are relatively small and ICT capital intensive with ICT capital 

being on average 30% of the total capital stock while this is only 10% in the other firms. Apart from the 

left tail, ICT investment intensity is relatively flat across the distribution. The same trend holds for non-

ICT investments, where the left tail of the distribution is even heavier. This result is striking since one 

would expect that firms with large opportunities invest more. So there is a small group of firms that is ICT 

intensive and persistently invests in ICT while additional returns are rather low, while the majority of firms 

does not invest enough based on the difference between benefits and costs from ICT investments. 

There could be external and/or internal frictions that make firms forego investments in new ICT, which 

could explain the observed suboptimal allocation of ICT investments. New ICT often disrupts current 

working practices so employees might be resistant towards adopting ICT, while actual usage is crucial for 

obtaining productivity effects (Devaraj and Kohli, 2003). Also, it is not obvious to align the adoption of 
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new ICT systems with appropriate organizational commitment towards these new ICT systems (Steelman, 

Havakhor, Sabherwal and Sabherwal, 2019). These frictions might be especially relevant in large firms, 

compared to smaller firms where changing working routines is easier to implement. This could explain why 

the firms in the left tail of figure 6 are smaller in size than those on the right. Whatever the reason, the 

observed misallocation of ICT investments, together with our findings on low ICT capital deepening, can 

reconcile the paradox of identifying relatively high returns on ICT capital at the micro level, while they are 

not present or small at the aggregate macroeconomic level. 

Tables A-8 – A-11 in appendix A present the results of the PL decomposition for the subset of 

manufacturing and services industries separately. In line with our expectations for the Belgian economy, 

which is characterized by a decline in manufacturing and shift to services, we find that labor deepening is 

the most important determinant for aggregate output growth in services while having a negative impact on 

output growth in manufacturing. On the other hand, productivity growth is by far the most important 

factor for value added growth in the manufacturing sector, while it is not that important in the services 

sector. The contribution from ICT capital deepening is relatively low, in services as well as manufacturing 

industries, and in both sectors the post-recession slowdown in the contribution of ICT and non-ICT capital 

deepening clearly stands out. So despite excess returns on ICT investments – especially in manufacturing 

industries as shown in section 5.2 – there was a slowdown in ICT investment after the Great Recession 

that coincided with a general slowdown in productivity growth. Taking a closer look at the determinants of 

aggregate productivity growth in manufacturing and services industries, we find that reallocation of 

resources explains about 60% of productivity growth in the manufacturing sector while it explains all of 

productivity growth in the services sector. Similar to the general downward trend over time in ICT capital 

deepening, we find a downward trend in the contribution of (non) ICT capital reallocation to aggregate 

productivity over time in both manufacturing and services industries.  

Our findings of a low contribution from ICT capital deepening to aggregate output and a high 

concentration of ICT investments in a small group of firms is furthermore consistent with the empirical 

findings of declining business dynamism. Bijnens and Konings (2018) show that the decline in Belgian 

dynamism is highest for the most ICT intensive industries. 
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6. Conclusion 

ICT has been transforming our society drastically over past couple of decades. However, due to lack of 

comprehensive firm level data on ICT investments, there has only been limited evidence on differences in 

the return on ICT across industries and across the firm size distribution. Moreover, there exists a disconnect 

in the ICT literature between microeconomic studies, which document substantial positive returns on ICT, 

and macroeconomic studies, which show a limited return of ICT on aggregate productivity growth, 

especially in Europe (Van Ark, 2014). 

This paper uses a hitherto unexploited firm level panel data set on B2B ICT purchases from 2002-2013, 

which we combine with the income statements of firms to provide new evidence on the impact of ICT on 

productivity. The data set on B2B ICT purchases is administratively collected from tax declarations, hence 

all firm sizes and industries are represented in the data. The recorded ICT expenditures cover both tangible 

and intangible ICT purchases. This is a more comprehensive measure of ICT capital than in earlier studies, 

which often relied on the number of computers per worker and hence exclude the intangible component 

of ICT capital, e.g. Bloom et al. (2010). This paper contributes to the ICT literature by investigating who 

benefits most from ICT and by decomposing the relation between ICT and productivity at the firm and 

the aggregate level. 

We find  an output elasticity of ICT capital of 0.10, which implies that a 10% increase in ICT capital 

increases value added with 1.1%. This is higher than in earlier studies, where the output elasticity of ICT 

capital was estimated around 0.05-0.06 (Cardona et al., 2013). The gap between the output elasticity of ICT 

capital and its input share is substantial, and higher than for other production factors. Investing an 

additional euro in ICT increases value added on average with 1.35 EUR. The marginal product for ICT 

capital is higher than for other production inputs, a finding that is consistent with earlier studies.  

The novelty in our study, apart from how we construct the ICT capital stock, is that we can uncover the 

heterogeneity in returns on ICT across industries, firm sizes and time and that we show how the 

composition of ICT investments relates to this heterogeneity. We show that both at the industry and firm 

level, there are differences in the output elasticity and marginal product of ICT capital. We find that the 

marginal product of ICT capital is higher in manufacturing industries than in services industries. Next, we 
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show there exists a size premium in returns on ICT capital. This finding is robust to various estimation 

methods and other factors that might affect productivity growth such as labor quality, decentralization and 

management practices. Furthermore, we revisit the Solow paradox. Our results indicate that this paradox 

can be explained by two causes: (i) low ICT investments and (ii) misallocation of ICT investments. We find 

this effect to be particularly apparent after the Great Recession, which suggests that underinvestment in 

ICT is at least one of the reasons for the slowdown in productivity growth in the last decade. 
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Appendix A: Additional tables and figures 

A 1. Tables 

TABLE A- 1: LITERATURE OVERVIEW OF STUDIES IN WHICH ELASTICITY OF I(C)T CAPITAL IS ESTIMATED 

Authors Elasticity Unit 
Data 

Region 
# Obs. 
per year Start End 

Our paper +-0.11 Firm 2002 2013 Belgium 90.000 

Van Reenen et al. (2010) 0.023 Firm 1998 2008 Europe 1900 

Black and Lynch (2001) 0.05 Firm 1987 1993 U.S. 638 

Black and Lynch (2004) 0.296 Firm 1993 1996 U.S. 284 

Bresnahan et al. (2002) 0.035 Firm 1987 1994 U.S. 300 

Brynjolfsson and Hitt (1995) 0.052 Firm 1988 1992 U.S. n.a. 

Brynjolfsson (1996) 0.044 Firm 1987 1991 U.S. 702 

Brynjolfsson and Hitt (2003) 0.058 Firm 1987 1994 U.S. 1324 

Dewan and Min (1997) 0.09 Firm 1988 1992 U.S. 773 

Gilchrist et al. (2001) 0.021 Firm 1986 1993 U.S. 580 

Brynjolfsson and Hitt (1996b) 0.048 Firm 1988 1992 U.S. 370 

Lichtenberg (1995) 0.098 Firm 1988 1991 U.S. 1315 

Tambe and Hitt (2012) 0.041 Firm 1987 2006 U.S. 1800 

Bertschek and Kaiser (2004) 0.152 Firm 2000 2000 Europe 212 

Bloom et al. (2010) 0.015 Firm 1995 2003 Europe 4809 

Hempell et al. (2004) 0.041 Firm 1996 1998 Europe 972 

Hempell (2005a) 0.06 Firm 1994 1999 Europe 1177 

Mahr and Kretschmer (2010) 0.13 Firm 2000 2008 Europe 182 

Hempell (2005b) 0.049 Firm 1994 1999 Europe 1222 

Loveman (1994) -0.06 Firm 1978 1984 Worldwide 60 

Basant et al. (2006) 0.115 Firm 2003 2003 Asia 266 

McGuckin and Stiroh (2002) 0.17 Industry 1980 1996 U.S. 10 

Stiroh (2002a) -0.071 Industry 1973 1999 U.S. 18 

Acharya and Basu (2010) 0.031 Industry 1973 2004 Worldwide 384 

O’Mahony and Vecchi (2005) 0.066 Industry 1976 2000 Worldwide 55 

Venturini (2009) 0.138 Country 1980 2004 Europe 15 

Dewan and Kraemer (2000) -0.013 Country 1985 1993 Worldwide 36 

Koutroumpis (2009) 0.012 Country 2002 2007 Worldwide 22 

Madden and Savage (2000) 0.162 Country 1975 1990 Worldwide 43 

Röller and Waverman (2001) 0.045 Country 1970 1990 Worldwide 21 

Sridhar (2007) 0.15 Country 1990 2001 Worldwide 63 

Source: Adapted from table 5 in Cardona et al. (2013). 
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TABLE A- 2: RAW CORRELATIONS 

Raw correlations Added value Labor Non-ICT capital ICT capital 

Added value 1    

Labor 0.86 1   

Non-ICT capital 0.61 0.50 1  

ICT capital 0.60 0.53 0.38 1 

Notes: Raw correlations between dependent and independent variables. All variables are in logs. 
 
TABLE A- 3: RESULTS MANUFACTURING (NACE 10-33) 

VA Prod. Function OLS Firm Fixed Effects First differences ACF CWDL 

Labor 
0.7176*** 

(0.0040) 
0.5892*** 

(0.0065) 
0.3923*** 

(0.0076) 
0.6514*** 

(0.0130) 
0.4987**** 

(0.0170) 

Non-ICT Capital 
0.1873*** 

(0.0034) 
0.1081*** 

(0.0040) 
0.0769*** 

(0.0044) 
0.2231*** 

(0.0158) 
0.2728*** 

(0.0696) 

ICT Capital 
0.1031*** 

(0.0024) 
0.0640*** 

(0.0026) 
0.0522*** 

(0.0028) 
0.1215*** 

(0.0072) 
0.2937*** 

(0.0866) 

# observations 141,898 141,898 122,032 121,754 113,619 
# firms 16,416 16,416 16,416 16,416 16,416 
Ind. & Year FE YES / / YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. The estimation sample is identical in number of 

firms. The number of observations is lower due to missing lags/instruments for some observations in one/multiple years for a 

firm in the First differences, ACF and CWDL estimators. 

 
TABLE A- 4: RESULTS SERVICES (NACE 50-82) 

VA Prod Function OLS Firm Fixed Effects First differences ACF CWDL 

Labor 
0.6681*** 

(0.0019) 
0.4810*** 

(0.0026) 
0.3199*** 

(0.0028) 
0.6154** 
(0.0047) 

0.4470**** 
(0.0070) 

Non-ICT Capital 
0.1740*** 

(0.0016) 
0.1077*** 

(0.0018) 
0.0780*** 

(0.0018) 
0.1977*** 

(0.0071) 
0.4396*** 

(0.0324) 

ICT Capital 
0.1103*** 

(0.0012) 
0.0728*** 

(0.0013) 
0.0632*** 

(0.0014) 
0.1202*** 

(0.0046) 
0.1460*** 

(0.0344) 

# observations 686,422 686,422 567,614 565,751 542,770 
# firms 92,566 92,566 92,566 92,566 92,566 
Ind. & Year FE YES / / YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. The estimation sample is identical in number of 

firms. The number of observations is lower due to missing lags/instruments for some observations in one/multiple years for a 

firm in the First differences, ACF and CWDL estimators. 

 

TABLE A- 5: RESULTS PER INDUSTRY - EXCLUDING ICT SERVICES 

Industry (NACE codes) # firms Labor 
Non-
ICT 

Capital 

ICT 
Capital 

ICT input 
share 

Marginal 
Product 

ICT 

Agriculture, Forestry and Fishing (1-3) 1,940 0.43 0.42 0.05 0.02 2.88 

High Tech Manuf. (21; 26; 30) 2,474 0.73 0.18 0.14 0.05 2.76 

Other Manuf. (10-33 except High Tech) 15,050 0.65 0.26 0.09 0.05 1.72 

Utilities (35-39) 777 0.55 0.33 0.08 0.02 4.11 

Construction (41-43) 27,567 0.64 0.26 0.08 0.02 3.15 

Wholesale and Retail (45-47) 47,527 0.63 0.22 0.09 0.06 1.59 

Transportation and Storage (49-53) 7,397 0.65 0.25 0.06 0.02 3.52 

Accommodation and food serv. (53-56) 14,566 0.61 0.26 0.04 0.03 1.44 

Information and Communication (58-63) 1,384 0.66 0.22 0.11 0.11 0.95 

Financial and Insurance (64-66) 2,054 0.70 0.20 0.09 0.06 1.47 

Real Estate (68) 3,275 0.50 0.37 0.09 0.08 1.10 

Prof., Scientific & Tech. activities (69-75) 17,584 0.65 0.18 0.10 0.09 1.07 

Admin. and Support activities (77-82) 7,928 0.65 0.25 0.09 0.07 1.26 

Notes: Results obtained from the ACF estimator. All regressions include industry and year fixed effects. Standard errors are clustered 
at the firm level. All estimates are significant at the 1% level. The number of observations for mining and quarrying firms is low, 
therefore these are omitted from the table. 
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TABLE A- 6: RESULTS AT THE 2-DIGIT LEVEL 

Industry # firms 𝛽𝑙 𝛽𝑁𝐼𝐶𝑇  𝛽𝐼𝐶𝑇 
IT input 

share 

Marginal 
Product 

ICT 

10 Manuf. Food products 3433 0.62 0.31 0.10 0.04 2.60 

11 Manuf. Beverages 163 0.72 0.27 0.08 0.04 1.98 

13 Manuf. Textiles 844 0.57 0.28 0.12 0.07 1.75 

14 Manuf. Wearing Apparel 435 0.63 0.23 0.14 0.08 1.86 

15 Manuf. Leather 60 0.65 0.23 0.14 0.08 1.80 

16 Manuf. Wood Products 756 0.64 0.27 0.09 0.05 1.86 

17 Manuf. Paper Products 270 0.79 0.16 0.07 0.09 0.79 

18 Manuf. Printing 1797 0.64 0.19 0.14 0.30 0.45 

20 Manuf. Chemical Products 529 0.67 0.24 0.17 0.08 2.15 

21 Manuf. Pharmaceutical Products 93 0.65 0.18 0.18 0.07 2.58 

22 Manuf. Rubber and Plastic 667 0.70 0.20 0.10 0.06 1.86 

23 Manuf. Other Mineral Products 1116 0.64 0.28 0.09 0.03 2.70 

24 Manuf. Basic Metals 188 0.68 0.21 0.15 0.05 2.89 

25 Manuf. Metal Products 3896 0.65 0.22 0.10 0.05 2.06 

28 Manuf. Machinery and Equipment 1039 0.75 0.11 0.13 0.07 1.95 

29 Manuf. Motor Vehicles 200 0.70 0.18 0.10 0.06 1.60 

30 Manuf. Other Transport Equipment 88 0.87 0.08 0.10 0.09 1.14 

31 Manuf. Furniture 990 0.69 0.23 0.09 0.05 1.70 

32 Other Manuf. 755 0.62 0.24 0.14 0.07 1.93 

33 Repair Machinery and Equipment 529 0.63 0.19 0.13 0.06 2.15 

41 Construction of Buildings 6782 0.63 0.27 0.10 0.03 3.48 

42 Civil Engineering 1078 0.63 0.29 0.08 0.03 3.03 

43 Specialized Construction 22891 0.64 0.23 0.09 0.04 2.05 

45 Wholesale, Retail Motor Vehicles 8262 0.64 0.20 0.14 0.10 1.39 

46 Wholesale, excl. Motor Vehicles 19504 0.64 0.16 0.16 0.11 1.48 

47 Retail, excluding Motor Vehicles 24148 0.54 0.22 0.12 0.10 1.31 

49 Land Transport 5937 0.63 0.28 0.06 0.03 2.15 

50 Water Transport 149 0.62 0.30 0.09 0.04 2.56 

52 Support for Transportation 1692 0.65 0.16 0.12 0.08 1.60 

53 Postal and Courier Activities 562 0.69 0.12 0.11 0.07 1.66 

55 Accomodation 1602 0.50 0.30 0.14 0.07 2.17 

56 Food and Beverage Services 16423 0.61 0.24 0.06 0.05 1.05 

58 Publishing 527 0.76 0.11 0.15 0.21 0.71 

59 Film and Music Publishing 748 0.56 0.20 0.20 0.21 0.94 

64 Financial Services 1506 0.67 0.19 0.10 0.13 0.76 

66 Auxiliary Financial and Insurance 701 0.70 0.16 0.16 0.16 0.99 

68 Real Estate 3602 0.50 0.34 0.12 0.14 0.83 

69 Legal and Accounting Services 4847 0.59 0.15 0.13 0.14 0.91 

70 Act. of Head Offices & Consulting 5308 0.65 0.16 0.09 0.19 0.49 

71 Architect, Engineering, Tech. Serv. 4376 0.64 0.15 0.15 0.15 0.99 

72 Research and Development 152 0.72 0.16 0.19 0.10 1.95 

73 Advertising and Market Research 2246 0.68 0.14 0.14 0.26 0.56 

74 Other Prof., Scient. & Tech. Serv. 947 0.60 0.17 0.16 0.22 0.70 

75 Veterinary 271 0.34 0.32 0.10 0.08 1.31 

77 Renting and Leasing 1373 0.45 0.43 0.14 0.09 1.58 

78 Employment Activities 569 0.77 0.08 0.12 0.16 0.74 

79 Travel and Tour Operators 879 0.70 0.10 0.16 0.22 0.73 

80 Security and Investigation 197 0.74 0.14 0.11 0.08 1.28 

81 Services to Buildings 3504 0.66 0.25 0.08 0.04 2.29 

82 Office Administrative Services 2061 0.62 0.17 0.12 0.30 0.39 

Notes: For NACE 1-3, 5-9, 12, 19, 26-27, 35-39, 51, 60, 63 and 65 there are not enough observations to estimate a separate 
production function with the ACF estimator. For these industries, the aggregate output elasticities of table 6 are used. 
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TABLE A- 7: HETEROGENEITY OVER TIME IN RETURN ON  IT GOODS AND COMMUNICATION GOODS CAPITAL 

Year # firms 𝛽𝑙 𝛽𝑁𝐼𝐶𝑇  𝛽𝐼𝐶𝑇 ICT input share 
Marginal 

Product ICT 

2003 67,874 0.6809 0.2090 0.0796 0.0432 1.8427 

2004 70,154 0.6534 0.2182 0.1127 0.0466 2.4203 

2005 76,332 0.6437 0.2308 0.0879 0.0485 1.8145 

2006 81,488 0.6407 0.2341 0.0840 0.0489 1.7195 

2007 85,785 0.6357 0.2362 0.0867 0.0483 1.7942 

2008 86,898 0.6269 0.2497 0.0792 0.0501 1.5816 

2009 88,496 0.6186 0.2455 0.0755 0.0519 1.4541 

2010 89,810 0.6078 0.2651 0.0780 0.0516 1.5113 

2011 92,766 0.6243 0.2491 0.0738 0.0523 1.4111 

2012 91,237 0.6249 0.2408 0.0704 0.0531 1.3270 

2013 89,689 0.6348 0.2524 0.0577 0.0519 1.1118 

Notes: The results in this table are from the ACF estimator. Since the ACF estimator needs the first lag as instruments in the 
estimation, we lose the year 2002. The production functions includes industry fixed effects. Standard errors are clustered at the firm 
level and all output elasticities are significant at the 1% level. 

TABLE A- 8: PL DECOMPOSITION I - MANUFACTURING INDUSTRIES 

In percentages 
Aggregate output 

growth 

Contribution 
from labor 
deepening 

Contribution 
from Non-ICT 

capital deepening 

Contribution 
from ICT capital 

deepening 

Contribution 
from productivity 

growth 

2003 2.89% -0.67% 0.75% 0.11% 2.70% 

2004 5.77% -0.24% 0.47% 0.23% 5.32% 

2005 -0.62% -0.43% 0.35% 0.33% -0.87% 

2006 4.95% 0.40% 0.17% 0.29% 4.08% 

2007 5.57% 0.58% 0.56% 0.08% 4.34% 

2008 0.63% 0.38% 0.77% 0.04% -0.56% 

2009 -7.28% -2.36% -0.13% -0.08% -4.71% 

2010 4.29% -1.46% -0.41% -0.04% 6.19% 

2011 4.37% 0.43% 0.07% 0.06% 3.81% 

2012 2.31% -0.10% -0.03% 0.08% 2.36% 

2013 1.96% -0.44% -0.20% 0.03% 2.56% 

Avg. 2.26% -0.35% 0.22% 0.10% 2.29% 

St. Dev. 3.76% 0.89% 0.40% 0.13% 3.19% 

Notes: The decomposition is based on a balanced subsample of 7,035 services firms for which value added and the production 
inputs are positive and available for all years. 

TABLE A- 9: PL DECOMPOSITION II - MANUFACTURING INDUSTRIES 

In percentages 
Aggregate 

productivity 
growth 

Within firm 
productivity 

growth 

Productivity growth through reallocation 

Fixed cost 
Labor 

Non-ICT 
capital 

ICT capital 

2003 2.70% -1.49% 0.56% 0.76% 3.30% -0.43% 

2004 5.32% 2.47% 0.01% 0.96% 2.11% -0.23% 

2005 -0.87% -3.41% 0.24% 0.35% 1.78% 0.18% 

2006 4.08% 2.39% 0.55% 0.10% 1.19% -0.14% 

2007 4.34% 3.38% 0.33% 0.19% 0.48% -0.04% 

2008 -0.56% -1.24% 0.21% 0.09% 0.39% -0.00% 

2009 -4.71% -4.43% 0.01% -0.33% -0.22% 0.25% 

2010 6.19% 6.52% 0.21% -0.30% -0.08% -0.16% 

2011 3.81% 2.91% 0.33% 0.17% 0.25% 0.14% 

2012 2.36% 1.34% 0.57% -0.31% 0.29% 0.46% 

2013 2.56% 2.12% 0.33% -0.11% -0.06% 0.28% 

Avg. 2.29% 0.96% 0.30% 0.14% 0.86% 0.03% 

St. Dev. 3.19% 3.25% 0.20% 0.42% 1.11% 0.26% 

Notes: The decomposition is based on a balanced subsample of 7,035 services firms for which value added and the production 
inputs are positive and available for all years. 
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TABLE A- 10: PL DECOMPOSITION I - SERVICES INDUSTRIES 

In percentages 
Aggregate output 

growth 

Contribution 
from labor 
deepening 

Contribution 
from Non-ICT 

capital deepening 

Contribution 
from ICT capital 

deepening 

Contribution 
from productivity 

Growth 

2003 4.38% 1.15% 1.68% 0.44% 1.10% 

2004 3.21% 1.17% 0.80% 0.60% 0.64% 

2005 2.05% 1.26% 0.21% 0.40% 0.18% 

2006 4.19% 1.31% 0.56% 0.60% 1.71% 

2007 4.94% 2.12% 0.63% 0.33% 1.86% 

2008 1.53% 1.20% 0.86% 0.32% -0.85% 

2009 -2.93% -1.41% -0.28% 0.32% -1.57% 

2010 3.07% 0.50% -0.54% 0.27% 2.85% 

2011 2.22% 1.49% 0.13% 0.24% 0.36% 

2012 -1.60% 0.41% -0.16% 0.20% -2.06% 

2013 -1.18% -0.52% -0.35% 0.15% -0.45% 

Avg. 1.81% 0.79% 0.32% 0.35% 0.34% 

St. Dev. 2.63% 1.00% 0.66% 0.15% 1.50% 

Notes: The decomposition is based on a balanced subsample of 26,589 services firms for which value added and the production 

inputs are positive and available for all years. 

TABLE A- 11: PL DECOMPOSITION II - SERVICES INDUSTRIES 

In percentages 
Aggregate 

productivity 
growth 

Within firm 
productivity 

growth 

Productivity growth through reallocation 

Fixed cost 
Labor 

Non-ICT 
capital 

ICT capital 

2003 1.10% -4.09% 0.34% 0.10% 4.98% -0.23% 

2004 0.64% -2.76% 0.32% 0.43% 2.68% -0.04% 

2005 0.18% -2.50% 0.55% 0.59% 1.84% -0.30% 

2006 1.71% 0.11% 0.17% 0.24% 1.35% -0.16% 

2007 1.86% 0.53% 0.09% 0.13% 1.07% 0.04% 

2008 -0.85% -2.49% 0.33% -0.08% 0.85% 0.54% 

2009 -1.57% -2.38% 0.45% -0.21% 0.47% 0.11% 

2010 2.85% 2.50% -0.03% -0.05% 0.63% -0.19% 

2011 0.36% -0.36% 0.10% -0.02% 0.56% 0.08% 

2012 -2.06% -2.99% 0.32% -0.13% 0.35% 0.39% 

2013 -0.45% -0.93% 0.41% -0.28% 0.33% 0.03% 

Avg. 0.34% -1.40% 0.28% 0.06% 1.37% 0.03% 

St. Dev. 1.50% 1.94% 0.17% 0.27% 1.39% 0.26% 

Notes: The decomposition is based on a balanced subsample of 26,589 services firms for which value added and the production 
inputs are positive and available for all years. 
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TABLE A- 12: OECD GROWTH ACCOUNTING 1995-2014 

  GDP growth 
Labor 

deepening 
ICT capital 
deepening 

Non-ICT 
capital 

deepening 

Multifactor 
productivity 

growth 

Italy 0.43 0.12 0.21 0.34 -0.24 
Japan 0.78 -0.47 0.34 0.28 0.63 
Portugal 1.08 -0.09 0.32 0.70 0.18 
Denmark 1.23 0.29 0.39 0.42 0.13 
Germany 1.26 0.02 0.25 0.22 0.78 
France 1.54 0.22 0.28 0.39 0.65 
Belgium 1.75 0.57 0.37 0.43 0.37 
Austria 1.78 0.32 0.33 0.45 0.69 
Netherlands 1.83 0.57 0.36 0.44 0.48 
Switzerland 1.90 0.50 0.45 0.48 0.47 
Spain 1.97 1.05 0.25 0.84 -0.14 
United Kingdom 2.08 0.59 0.28 0.38 0.84 
Finland 2.11 0.46 0.21 0.30 1.17 
Sweden 2.30 0.44 0.50 0.43 0.94 
United States 2.35 0.46 0.44 0.42 1.03 
Canada 2.50 0.97 0.35 0.50 0.69 
New Zealand 2.56 1.28 0.57 0.53 0.17 
Australia 3.20 1.07 0.47 0.84 0.81 
Korea 4.26 -0.03 0.29 1.21 2.79 
Ireland 4.44 1.15 0.28 1.01 2.03 

Notes: OECD Compendium of Productivity Indicators 2016. 

Our results from the PL decomposition on average GDP growth is close to that reported by the OECD. 

The OECD finds that 33% (~0.57/1.75) of GDP growth is due to labor deepening, 21% (~0.37/1.75) due 

to ICT capital deepening, 25% (~0.43/1.75) due to non-ICT capital deepening and another 21% 

(~0.37/1.75) due to multifactor productivity growth. We find for the period 2002-2013 an average GDP 

growth of 2.07% per year. Labor deepening explains on average 18% (~0.37/2.07) of GDP growth while 

non-ICT capital and ICT capital explain respectively 12% (~0.25/2.07) and 11% (~0.23/2.07) of GDP 

growth. Consistent with the OECD, we find that labor deepening has a larger impact on GDP growth than 

capital deepening. While the OECD reports a relatively small impact of multifactor productivity growth on 

GDP, we find that productivity growth is on average responsible for the largest share of GDP growth with 

59% (~1.22/2.07). Our findings are closer to those of Van Beveren and Vanormelingen (2014). Easterly 

and Ross (2001) also show that in advanced economies productivity growth explains about 50% of GDP 

growth. It is possible that our results deviate because the OECD averages also contain the years 1995-2003, 

which we have no information on. As our results also  indicate that capital deepening decreased over time 

in the Belgian economy, this could explain the differences between our findings and those of the OECD.  
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A 2. Figures 

FIGURE A- 1: SCATTER PLOT VALUE ADDED AND ICT CAPITAL 

 
 

Figure A-1 shows the positive relationship between value added and ICT capital after removing variation 

in value added from non-ICT capital, labor and industry- and time-fixed effects for the entire private sector. 

The graph shows a positive association between ICT capital and added value, with a slope coefficient 

around 0.109. It is also apparent that there is a lot of heterogeneity underlying this effect. Disentangling 

this heterogeneity is the focus of this paper. 

FIGURE A- 2: FIRM SIZE DISTRIBUTION OF THE SAMPLE 

 
Notes: Histogram of average firm size, measured in full time equivalents, for all firms that 
are included in the estimations. Employment figures from the social balance sheets only 

include those who are in the personnel register of the firm. 
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FIGURE A- 3: MARGINAL PRODUCT OF ICT CAPITAL ACROSS FIRM SIZE DISTRIBUTION 

 
Table 8 shows that the marginal product of ICT capital increases with firm size based on a split sample 

analysis. However, these results might still obfuscate heterogeneity in the relationship between the marginal 

product of ICT capital and firm size within a size bin. Therefore, figure A-3 shows the relationship between 

the marginal product of ICT capital and firm size at a more disaggregate level. The graph shows the marginal 

product of ICT capital per percentile of the firm size distribution. Not surprisingly, the positive relationship 

between firm size and the return on ICT investments appears again. 
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FIGURE A- 4: RETURN ON ICT CAPITAL AND FIRM SIZE - ICT GOODS AND SERVICES 

 

 
FIGURE A- 5: RETURN ON ICT CAPITAL AND FIRM SIZE - ICT GOODS 
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FIGURE A- 6: EVOLUTION ICT CAPITAL 

 
Notes: This graph shows the evolution of total real ICT capital in our data set 
and the evolution of real ICT capital in EU Klems. 
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Appendix B: Estimation methods 

B 1. Semiparametric production function estimation 

This appendix provides more details on the GMM control function estimators that we use to overcome the 

simultaneity bias in production function estimation. Semiparametric estimation of production functions 

was introduced by Olley & Pakes (1996, henceforth OP). The idea is to control in the estimation of 

production functions for the unobserved productivity residual with other variables through which firms 

signal their productivity. The OP model relies on the firm’s investment demand to control for the 

unobserved productivity. Levinsohn & Petrin (2003, henceforth LP) rely on the demand for material inputs 

instead of investment demand to proxy for unobserved productivity because investments are lumpy and 

often equal to zero. Ackerberg, Caves and Frazer (2015, henceforth ACF) extended the LP estimator to 

guarantee unbiased identification of the production function coefficients. Collard-Wexler and De Loecker 

(2016, henceforth CWDL) propose a similar estimation approach that relies on the firm’s materials demand 

to proxy for unobserved productivity that is also robust to measurement error in capital. We detail the ACF 

estimator for our augmented production function, which is currently the workhorse model in the literature. 

We also introduce the novel estimator introduced by CWDL. We start from the augmented Cobb Douglas 

production function: 

 𝑦𝑖𝑡 = 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝐼𝐶𝑇𝑘𝑖𝑡
𝐼𝐶𝑇 + 𝛽𝑁𝐼𝐶𝑇𝑘𝑖𝑡

𝑁𝐼𝐶𝑇 + 𝜔𝑖𝑡 + 𝜖𝑖𝑡 (1) 

The ACF estimation is based on the assumption that material expenditures are monotonically increasing in 

productivity, conditional on the other state variables. We can then substitute 𝜔𝑖𝑡 in equation (1) with the 

inverse of a non-parametric function of materials and the state variables, 𝜔𝑖𝑡 = 𝑓−1(𝑘𝑖𝑡
𝐼𝑇 , 𝑘𝑖𝑡

𝑁𝐼𝑇 , 𝑙𝑖𝑡 ,𝑚𝑖𝑡). 

In a first step, we estimate the following equation: 

 𝑦𝑖𝑡 = 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝐼𝑇𝑘𝑖𝑡
𝐼𝑇 + 𝛽𝑁𝐼𝑇𝑘𝑖𝑡

𝑁𝐼𝑇 + 𝑓−1(𝑘𝑖𝑡
𝐼𝑇 , 𝑘𝑖𝑡

𝑁𝐼𝑇, 𝑙𝑖𝑡 , 𝑚𝑖𝑡) + 𝜖𝑖𝑡

= 𝜙̃𝑡(𝑙𝑖𝑡 , 𝑘𝑖𝑡
𝐼𝑇 , 𝑘𝑖𝑡

𝑁𝐼𝑇 ,𝑚𝑖𝑡) + 𝜖𝑖𝑡  
(2) 

In which 𝑚𝑖𝑡 refers to material expenditures of firm 𝑖 in year 𝑡. From this first step, we can only retrieve 

an estimate for value added, purified from 𝜖𝑖𝑡, the true orthogonal residual that represents e.g. measurement 

error or machine breakdowns. In a second step we identify the input coefficients. Therefore, we introduce 

the second assumption that productivity evolves according to an exogenous first order Markov process (we 
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relax this assumption in table A-15 of appendix D). Productivity is then a function of its lagged value and 

an unexpected shock: 

 𝜔𝑖𝑡 = 𝑔(𝜔𝑖𝑡−1) + 𝜉𝑖𝑡  (3) 

The parameters of the production function are identified from using the following moment conditions on 

this unexpected shock in productivity: 

 

𝐸 [(𝜉𝑖𝑡)(
𝑙𝑖𝑡
𝑘𝑖𝑡

𝐼𝑇

𝑘𝑖𝑡
𝑁𝐼𝑇

)] = 0 (4) 

Practically, we can compute from each candidate vector of input coefficients an estimate for 𝜔𝑖𝑡 which we 

non-parametrically regress on 𝜔𝑖𝑡−1 to obtain an estimate for 𝜉𝑖𝑡. We then construct the sample analogue 

of (4) and estimate the input coefficients by minimizing this sample analogue. 

The moment conditions are the result of assumptions on the timing of the input decisions. First, as is 

common in the literature, we assume that it takes one year to order and install capital goods. Consequently, 

investments entering the capital stock in period 𝑡 were decided based on the information available in year 

𝑡 − 1 and are by definition unrelated to the unexpected productivity shocks in 𝑡. Second, we make a similar 

assumption for labor, namely that it takes one period to hire new workers. This is a more strict assumption 

than is common in the literature, but can be justified by the large extent of hiring and firing costs in Belgium 

(see as well Konings and Vanormelingen, 2015) and can lead to more precise estimates (Ackerberg et al., 

2015). We also estimated the production function while allowing ICT investments to be dependent on 

contemporaneous shocks in productivity as these are likely to be more flexible than non-ICT capital 

investments. To this end, we replace 𝑘𝑖𝑡
𝐼𝐶𝑇 by its lagged value in the moment conditions (see table A-14 in 

appendix D1). 

In a recent paper, CWDL argue that capital stocks are particularly sensitive to measurement error. First, 

when constructing the capital stock using the PIM method, we assumed a common depreciation rate for 

all firms while this probably varies across firms and vintages of the capital stock. Second, since we do not 

observe the initial capital stock, we approximated it using a measure for the ICT capital intensity of the firm 

and the book value of all tangible fixed assets (see appendix C3). This procedure could introduce as well 
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measurement error in the capital stock. CWDL propose a novel estimator that deals with this measurement 

error while controlling for unobserved productivity in the production function.  To preserve the linear 

structure of the estimation equation, they suggest to write productivity as an AR(1) process. The counterpart 

of equation (2) with the CWDL extension is then: 

 𝑦𝑖𝑡 = 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝐼𝑇𝑘𝑖𝑡
𝐼𝑇 + 𝛽𝑁𝐼𝑇𝑘𝑖𝑡

𝑁𝐼𝑇 + 𝜃𝐼𝑇𝑘𝑖𝑡−1
𝐼𝑇 + 𝜃𝑁𝐼𝑇𝑘𝑖𝑡−1

𝑁𝐼𝑇 + 𝜃𝑙𝑙𝑖𝑡−1 + 𝜃𝑚𝑚𝑖𝑡−1 + 𝜉𝑖𝑡 + 𝜖𝑖𝑡 (5) 

In which 𝑚𝑖𝑡−1 refers to lagged material demand and the 𝜃 parameters combine the productivity 

persistence and production parameters. CWDL suggest to instrument the capital stock variables with lagged 

investments.24 The idea is that the investment variables contain less measurement error than the stock 

variables. As explained in appendix C1, we have detailed information on ICT and non-ICT investment 

flows. The following moment conditions are used for identification: 

 

𝐸

[
 
 
 
 
 
 
 

(𝜉𝑖𝑡 + 𝜖𝑖𝑡)

(

 
 
 
 
 

𝑙𝑖𝑡
𝑖𝑖𝑡−1
𝐼𝑇

𝑖𝑖𝑡−1
𝑁𝐼𝑇

𝑖𝑖𝑡−2
𝐼𝑇

𝑖𝑖𝑡−2
𝑁𝐼𝑇

𝑙𝑖𝑡−1

𝑚𝑖𝑡−1)

 
 
 
 
 

]
 
 
 
 
 
 
 

= 0 (6) 

With 𝑖𝑖𝑡
𝐼𝑇 and 𝑖𝑖𝑡

𝑁𝐼𝑇the investments in ICT capital and non-ICT capital.25 In our main specification, we model 

ICT capital as a stock variable. The premise is that ICT capital is part of the production isoquant, i.e. ICT 

capital can be substituted with other production inputs. While this is the standard approach in the literature, 

it could be argued that ICT investments induce a shift of the production function, i.e. enable to produce 

more output with the same set of inputs, for example because of new technology embedded in ICT. We 

enrich our model to allow for this data generating process as in Doraszelski and Jaumandreu (2013) and 

De Loecker (2013) in table A-15 of appendix D1. 

 

                                                 
24 Galuščák and Lízal (2011) propose a similar approach to account for measurement error in capital. Instead of 
investments, they instrument the capital stock with depreciation, employment and intermediate inputs. 
25 Note that this procedure corrects for measurement error due to imprecisely observing the depreciation rate and the 
initial capital stock but not for possible measurement errors in the investment variables themselves.  
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B 2. Petrin and Levinsohn Decomposition 

This appendix gives more details on the Petrin and Levinsohn (2012, PL henceforth) decomposition used 

in the paper. In contrast to other decomposition methods (cf. among many others Baily et al. 1992, Foster 

et al. 2001, and  Melitz and Polanec, 2015) who define aggregate productivity as the share weighted sum of 

firm level productivity, PL start of from the definition of aggregate productivity growth that is also used in 

aggregate statistics, namely aggregate productivity growth is the difference between the change in aggregate 

final demand and the change in total expenditures on primary inputs: 

 𝐴𝑃𝐺 ≡ ∑ 𝑃𝑖𝑑𝑌𝑖
𝑖

− ∑ ∑ 𝑊𝑖𝑘𝑑𝑋𝑖𝑘
𝑘𝑖𝑖

 (1) 

Where 𝑌𝑖 and 𝑃𝑖 are respectively output of firm 𝑖 used for final demand and its price. Likewise, 𝑋𝑖𝑘 and 𝑊𝑖𝑘 

represent the quantity and price of primary input 𝑘 used by firm 𝑖. In our application, the primary inputs 

are labor, non-ICT capital and ICT capital. Rewriting equation (1) in growth rates and using the fact that 

aggregate final demand is equal to aggregate value added: 

 𝐴𝑃𝐺𝐺  ≡ ∑ 𝑠𝑖𝑑 ln𝑉𝐴𝑖
𝑖

− ∑ ∑ 𝑐𝑖𝑘𝑑 ln𝑋𝑖𝑘
𝑘𝑖𝑖

 (2) 

with 𝐴𝑃𝐺𝐺  aggregate productivity growth rate,  𝑠𝑖 = 𝑉𝐴𝑖 ∑ 𝑉𝐴𝑖𝑖⁄ , the share of value added of firm 𝑖 in 

aggregate value added and 𝑐𝑖𝑘 = 𝑊𝑖𝑘 ∑ 𝑉𝐴𝑖𝑖⁄  the share of cost of input 𝑘 in aggregate value added. Similar 

to other papers that look at the micro-level origins of aggregate productivity growth, PL decompose 

aggregate productivity growth in a technical efficiency term (TE) and reallocation term (RE): 

 𝑇𝐸 ≡ ∑ 𝑃𝑖𝑑𝜔𝑖
𝑖

 

𝑅𝐸 ≡ ∑ ∑ (𝑃𝑖

𝜕𝑄𝑖

𝜕𝑋𝑖𝑘
− 𝑊𝑖𝑘)𝑑𝑋𝑖𝑘

𝑘𝑖
+ ∑ ∑ (𝑃𝑖

𝜕𝑄𝑖

𝜕𝑀𝑖𝑗
− 𝑃𝑗)𝑑𝑀𝑖𝑗

𝑗𝑖
 

(3) 

With 𝜔𝑖 the total factor productivity of the firm, the technical efficiency term in equation (3) is the same as 

in other decompositions. Aggregate productivity increases when individual firms become more productive. 

The reallocation looks somewhat different. Aggregate productivity increases if a unit of input is reallocated 

from a low-value activity to a high value activity. For example, if a laborer moves from firm 𝑖 to firm 𝑠 and 

its wage is the same in both firms, the value of output increases by 𝑃𝑠
𝜕𝑄𝑠

𝜕𝐿𝑠
− 𝑃𝑖

𝜕𝑄𝑖

𝜕𝐿𝑖
 while aggregate input use 

remains constant, leading to an increase in aggregate productivity. Likewise, 𝑃𝑗 and 𝑀𝑗 represent the price 

and quantity of intermediate input 𝑗 and aggregate productivity goes up if intermediates are reallocated from 

low to high value uses. The advantage of defining the reallocation term in this way, is that productivity 
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improvements through reallocation are now directly linked to productivity growth defined at the aggregate 

level (Petrin and Levinsohn, 2012). 

Taking discrete time growth rates using Tornquist-Divisia approximations renders the decomposition used 

in the text. First, the growth rate of aggregate value added can be written as ∑ 𝑠̅𝑖𝑡Δ𝑙𝑛𝑉𝐴𝑖𝑡𝑖 =

 ∑ ∑ 𝑐𝑖̅𝑘𝑡Δ𝑙𝑛𝑋𝑖𝑘𝑡 + 𝐴𝑃𝐺𝐺𝑡𝑘𝑖  showing the contribution of deepening of inputs and aggregate productivity 

growth in value added growth. Here, a bar over variable denotes the average over two subsequent time 

periods. For example, 𝑠̅𝑖𝑡 is the average value added share of firm 𝑖 from year 𝑡 − 1 to year 𝑡. The growth 

rate of aggregate productivity can on its turn be written as 𝐴𝑃𝐺𝐺𝑡 = 𝑇𝐸 + 𝑅𝐸 + 𝐹 where: 

 𝑇𝐸 ≡ ∑ 𝑠̅𝑖𝑡Δln𝜔𝑖𝑡
𝑖

 

𝑅𝐸 ≡ ∑ 𝑠̅𝑖𝑡 ∑ (𝛽𝑖𝑘 − 𝛼̅𝑖𝑘𝑡)Δ ln𝑋𝑖𝑘𝑡
𝑘𝑖

+ ∑ 𝑠̅𝑖𝑡 ∑ (𝛽𝑖𝑗 − 𝛼̅𝑖𝑗𝑡)Δ ln𝑀𝑖𝑗𝑡
𝑗𝑖

 
(4) 

and 𝐹 is an unobserved fixed cost term. Here 𝛽𝑖𝑘 is the output elasticity of input 𝑘 in the value added 

production function and 𝛼̅𝑖𝑘𝑡 is the cost share of primary input 𝑘 in value added, averaged over the years 

𝑡 − 1 to 𝑡. We estimate value added production functions at the NACE 2 digit level using the ACF estimator 

and obtain the output elasticities and compute firm-level productivity as  𝜔𝑖 = ln𝑉𝐴𝑖 − 𝛽𝐿ln𝐿𝑖 −

𝛽𝑁𝐼𝐶𝑇ln𝐾𝑖
𝑁𝐼𝐶𝑇 − 𝛽𝐼𝐶𝑇ln𝐾𝑖

𝐼𝐶𝑇. See table A.6 for the two-digit output elasticities. Industries not included in this 

table have too few observations to estimate a separate production function, for these industries we use the 

more aggregate technology parameters reported in table 6. Because we estimate value added production 

functions, we do not know the output elasticities of the intermediate inputs and we abstract from their 

reallocation terms. Given our main interest is to estimate the contribution of ICT capital to aggregate 

productivity, we do not consider this as a serious shortcoming. The reader should however bear in mind 

that part of the within plant productivity growth could be in fact due to the reallocation of intermediate 

products, because we compute productivity using a value added production function (cf. Petrin et al., 2011). 

The advantage of this decomposition method is that aggregate productivity growth is defined in a way that 

is directly linked to aggregate growth in value added. Consequently, one can determine how economic 

growth depends on both deepening of inputs as well as on productivity growth, where the latter is than 

decomposed in its micro level origins. Since the PL decomposition is a mathematical identity and not an 

estimation, there are no confidence intervals available. This is standard in productivity decompositions, 

other examples are Baily et al. (1992), Foster et al. (2001) and  Melitz and Polanec (2015). 
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Appendix C: Data 

C 1. Sample construction 

This appendix provides additional information on how the final data set is constructed. We start from the 

annual company accounts data of Belgian firms, to which we merge the other data sets based on the firm’s 

unique VAT-number. Our panel covers the years 2002-2013 and initially counts 529,035 firms. We focus 

on the private sector and drop the ICT producing and ICT retail industries in table 1. For firms active in 

ICT producing industries, ICT purchases are mostly intermediate inputs instead of investments. For firms 

active in wholesale and retail of ICT goods and services, ICT goods are typically purchased for reselling. 

Therefore, we cannot use information on ICT purchases by these firms to measure ICT investment and 

ICT capital. This reduces the sample to 448,609 firms. Furthermore, we only retain firms for which we have 

information in their annual accounts on their industry code, value added, employment and capital, since 

these are needed for the estimation of production functions. This reduces the sample to 226,369 firms. To 

construct capital stocks, we need information from the VAT declarations and strictly positive investments 

in ICT and/or non-ICT capital in at least one year. For 11,159 firms we observe no VAT declarations, 

which is due to some activities being exempted from filing taxes.26 From the remaining 215,210 firms, there 

are 25,855 firms that never invest in ICT and for which it is not possible to derive strictly positive capital 

stocks, which we require for theoretical consistency in a Cobb Douglas production function. In the 

estimation, we cannot use firms for which we do not observe all inputs in at least one year and since we 

estimate a log-linear Cobb Douglas production function, we also cannot include negative values. This 

reduces the sample with 11,412 firms. Finally, we exclude 13,277 firms for which material and/or labor 

expenditures are larger than total turnover. This results in a final sample of 164,666 firms that represent 

about 1.26 million employees, 108 billion in added value and 503 billion in turnover, which is a significant 

part of the Belgian private sector. This is the sample that we use in sections 5.1 – 5.4. The sample that is 

reported in the estimation results can be lower depending on the data requirements of the estimation 

method that is used. For example, the first differences and ACF estimator need at least one lag, while the 

CWDL estimator needs two lags. 

                                                 
26 Article 44 of the VAT tax code describes in detail which activities are exempted. This are mainly activities in the 
socio-cultural sector, the financial and real estate sector. 
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C 2. Additional information VAT and B2B data 

This appendix provides more information on the VAT data and B2B customer listings that we use to 

measure ICT investments and non-ICT investments. Each firm that is VAT liable has to periodically declare 

to the federal public service of finance the amount of investment goods it bought.27 This is a direct measure 

for the total investments of a firm. The novelty in this paper comes from combining this information with 

information from the customer listings of firms, which VAT liable firms have to declare yearly to the federal 

public service of finance. In this listing, firms have to report the VAT number and associated revenues it 

obtained from each of its customers. Indirectly, this also learns how much each customers buys. We exploit 

this information to obtain ICT purchases for each customer. More specifically, we use the customer listings 

of firms that are active in NACE codes of ICT goods and ICT services industries as detailed in table 1. 

From their customer listings, we deduce how much ICT goods and ICT services each of its customers 

bought. For each customer, we sum its ICT purchases across all ICT producing firms. This is our firm level 

measure for Belgian ICT investments. We add to this the IT purchases from abroad, which we retrieve 

from the customs for imports coming outside the EU and the Intrastat trade survey for imports to Belgium 

coming from within the EU, to obtain the ICT investments of the firm. By deducting ICT investments 

from the total investments of the firm, we obtain the non-ICT investments of the firm. 

Figure A-7 and A-8 show ICT intensity per 2 digit industry in the manufacturing and services sectors, 

approximated by the ratio of real ICT capital to total revenue. We aggregated the average firm level real 

ICT capital, real non-ICT capital and real sales up to the level of the 2-digit NACE sectors they belong to 

and took the ratio of the aggregate real ICT capital stock to aggregate real sales. The industries that are 

expected to have high ICT intensities show up where expected, which indicates that our measure of ICT 

investments adequately measures ICT in the firm.  

                                                 
27 The customer listing serves taxation purposes, hence this listing only needs to contain entities that are also subject 
to the VAT system. This is the case for quasi all firms with limited liability, except some activities in the socio-cultural, 
financial and real estate sector that are exempted from taxes. See article 44 of the VAT tax code for more details on 
which activities are exempted. Natural persons are also excluded. Information on self-employed are not considered in 
this paper. 
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FIGURE A- 7: ICT INTENSITY IN MANUFACTURING INDUSTRIES 

 

FIGURE A- 8: ICT INTENSITY IN SERVICES INDUSTRIES 
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C 3. Construction capital stocks 

We construct real ICT capital and real non-ICT capital stocks using the Perpetual Inventory Method (PIM). 

This method allows us to optimally exploit our unique data on ICT purchases and total investments. The 

formula of the PIM is the following: 

 𝐾̃𝑖𝑡
(𝑁)𝐼𝐶𝑇 = 𝐾̃𝑖𝑡−1

(𝑁)𝐼𝐶𝑇 ∗ (1 − 𝛿(𝑁)𝐼𝐶𝑇) + 𝐼𝑖𝑡
(𝑁)𝐼𝐶𝑇 (1) 

In which 𝐾𝑖𝑡
(𝑁)𝐼𝐶𝑇 refers to the real (non) ICT capital stock of firm 𝑖 in year 𝑡, 𝛿(𝑁)𝐼𝐶𝑇 refers to the 

depreciation rate for (non) ICT capital and 𝐼𝑖𝑡
(𝑁)𝐼𝐶𝑇 refers to real (non) ICT investments. We rely on data of 

the EU KLEMS initiative to turn the nominal values from our data set into real values.28 The EU KLEMS 

data provide gross fixed capital formation deflators at the 2 two-digit level for the entire period of our 

sample. For non-ICT investments, we use the average of the gross fixed capital formation deflator from 

The Netherlands, France and Luxembourg. For ICT investments, we use the average of the ‘computing 

equipment’, ‘computer software and databases’ and  deflators based on the average of these deflators from 

The Netherlands, France and Luxembourg. We take the average of these ‘computing equipment’ and 

‘computer software and databases’ deflators as our ICT deflator. The EU KLEMS data also contain 

information on depreciation rates for both ICT and non-ICT capital. The yearly depreciation rate for ICT 

capital is fixed to 31.5 percent, consistent with ICT capital depreciation rates in other research. For non-

ICT capital we assume a fixed depreciation rate of 15 percent.29 The results are robust to deviations from 

these depreciation rates. 

The first step in applying the PIM is calculating the initial ICT and non-ICT capital stocks. This is necessary 

because ICT capital is part of total tangible fixed assets but not reported separately in annual accounts.30 

The literature does not provide a straightforward solution to obtain initial capital stocks. In this appendix, 

we describe the approach used to obtain the results from the main body of the paper. In tables A16 - A20 

of appendix D, we show that our results are robust to alternative ways of obtaining the (initial) capital 

stocks. To obtain the initial stocks, we predicted the firm’s ICT capital intensity and use this to split initial 

                                                 
28 More specifically, we rely on the capital input files from The Netherlands, France and Luxembourg of the September 
2017 release. There is no capital input file for Belgium so we assume that the average of prices for ICT in The 
Netherlands, France and Luxembourg are close to those of Belgium. 
29 Production function estimates are similar using lower depreciation rates for non-ICT capital in the range of 8-10%. 
30 We refer to the European System of Accounts for further information. 
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nominal total tangible fixed assets into initial nominal non-ICT capital and initial nominal ICT capital. We 

use our unique data on ICT purchases and investments to predict this ICT capital intensity. First, we obtain 

nominal ICT and non-ICT investments from: 

 𝐼𝑖𝑡
𝐼𝐶𝑇 = 𝐼𝐶𝑇 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑠𝑖𝑡 (see Table 1 for the purchases that are classified as ICT) 

𝐼𝑖𝑡
𝑁𝐼𝐶𝑇 = 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑡 − 𝐼𝑖𝑡

𝐼𝐶𝑇 
(2) 

We use the aforementioned gross fixed capital formation and ICT deflator to turn these nominal 

investments into real values. Next, we take the average of the real investment flows from the first 3 years 

the firm is in the sample. We do this because firms do not invest in ICT every year and to avoid errors in 

the initial capital stocks from outlier investments. We limit ourselves to the first 3 years because (i) longer 

periods could be less informative about the initial ICT capital stock (ii) firms can change their business 

model over time, i.e. becoming more or less ICT focused (iii) this is consistent with the finding that it takes 

some years before intangible stocks reach steady state in most industries (Knott et al., 2003). 

We use the average real (non) ICT investment of the first 3 years to simulate the real (non) ICT capital 

stock under the assumption that this investment is representative for the stock. Following Hall and Mairesse 

(1995) and Hempell (2002) in earlier work on using the PIM to construct R&D and ICT capital stocks: 

 
𝐾̃𝑖1

(𝑁)𝐼𝐶𝑇 = 𝐼𝑖0
(𝑁)𝐼𝐶𝑇 + (1 − 𝛿(𝑁)𝐼𝐶𝑇)𝐼𝑖−1

(𝑁)𝐼𝐶𝑇 + (1 − 𝛿(𝑁)𝐼𝐶𝑇)
2
𝐼𝑖−2
(𝑁)𝐼𝐶𝑇 + ⋯ =

𝐼𝑖1
(𝑁)𝐼𝐶𝑇

𝑔𝑖𝑡
(𝑁)𝐼𝐶𝑇

+ 𝛿(𝑁)𝐼𝐶𝑇
 (3) 

With 𝐼𝑖1
(𝑁)𝐼𝐶𝑇the real (non) ICT investment of the firm in the first year, 𝑔𝑖𝑡

(𝑁)𝐼𝐶𝑇the 2-digit 5-year average 

growth rate of ICT capital before the firm enters the sample, which we obtained from EU KLEMS, and 

𝛿(𝑁)𝐼𝐶𝑇 the (non) ICT capital depreciation rate. Under the assumption that the average real (non) ICT 

investment of the first 3 years is representative for the investment strategy, we can then predict ICT capital 

intensity as follows: 

 
𝐼𝐶𝑇 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖 = 𝐾̃𝑖1

𝐼𝐶𝑇/[𝐾̃𝑖1
𝐼𝐶𝑇 + 𝐾̃𝑖1

𝑁𝐼𝐶𝑇] =
𝐼𝑖1
𝐼𝐶𝑇

𝑔𝑖𝑡
𝐼𝐶𝑇 + 𝛿𝐼𝐶𝑇

/ [
𝐼𝑖1
𝐼𝐶𝑇

𝑔𝑖𝑡
𝐼𝐶𝑇 + 𝛿𝐼𝐶𝑇

+
𝐼𝑖1
𝑁𝐼𝐶𝑇

𝑔𝑖𝑡
𝑁𝐼𝐶𝑇 + 𝛿𝑁𝐼𝐶𝑇

] (4) 

This firm-level ICT capital intensity measure is by construction between 0 and 1. We use this ratio to split 

initial nominal total tangible fixed assets into initial nominal non-ICT capital and initial nominal ICT capital: 

 𝐾𝑖0
𝐼𝐶𝑇 = 𝐼𝐶𝑇 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖 ∗ 𝑇𝐹𝐴𝑖0 

𝐾𝑖0
𝑁𝐼𝐶𝑇 = 𝑇𝐹𝐴𝑖0 − 𝐾𝑖0

𝐼𝐶𝑇 
(5) 
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The aforementioned ICT deflator and gross fixed capital formation deflators are then used to turn these 

nominal initial stocks into real initial stocks. After obtaining the initial capital stocks from equation (5) and 

investments from equation (2) and deflating them with the deflators we constructed from EU KLEMS, 

equation (1) learns how to obtain real (non) ICT capital stocks at the firm level. 

There are observations for which reported ICT purchases are larger than reported total investments. For 

such observations, we set non-ICT investments equal to zero. Given the novelty of our data, we investigated 

how this could potentially affect our analysis to guarantee that our estimates are not biased. Reporting 

higher ICT purchases than investments can occur for several reasons: 

1) Firms make mistakes in filling in the VAT declarations. We checked the accounting regulations with 

accountants and auditors. They ensured that each purchase of ICT equipment should be registered as 

an investment. Nevertheless, they admit that firms sometimes make mistakes against this rule. Such 

mistakes could be seen as idiosyncratic errors and are not problematic for our analyses. 

2) Firms make mistakes on purpose in filling in the VAT declarations. Although ICT equipment should be 

registered as an investment by law, reporting ICT purchases as intermediate inputs when profits are 

high could be interesting. This way, profits are lower and taxes are minimized. If this mechanism would 

be at play, ICT investments and hence the ICT capital stock would be underestimated for firms with 

high value added. This would result in an underestimation of the correlation between value added and 

ICT capital and hence a downward bias of the output elasticity of ICT capital. The output elasticity 

on ICT capital would then be a lower bound estimate of the true output elasticity. 

3) ICT purchases are ICT consumables, like cartridges and printing paper, rather than ICT equipment. Such 

expenditures are reported as material costs instead of investments. The legal guideline on small ICT 

consumables that cost less than 1000euro, is to report these as material inputs. However, each purchase 

from an ICT producer larger than 250euro is included in our ICT purchases variable. Since not all ICT 

purchases are ICT investments, our ICT investments measure is probably overestimated. As a rough 

robustness check, we assumed 25% of ICT purchases to be ICT consumables rather than ICT 

equipment, this did not affect our estimates. 

4) ICT purchases are made in firms that are not active in the selected ICT goods and ICT services industries. When firms 

purchase ICT equipment from suppliers that are not active in the NACE codes which we selected as 
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ICT equipment producers, e.g. if firms buy ICT equipment in supermarkets, this is not accounted for 

in our ICT investment measure. This would imply that our ICT investment measure is underestimated. 

The potential bias this would induce in our results works in the opposite direction as the potential 

concern raised about ICT purchases being consumables instead of investments. However, we believe 

that, in practice, the amount of ICT purchases that are either ICT consumables or made in firms that 

are not active in the selected NACE codes is rather small and therefore not problematic. 

5) ICT expenditures are effectively intermediate inputs instead of ICT investments. Some industries can have a 

production process in which ICT purchases serve as inputs. This could for example explain why ICT 

purchases are higher than investments for 70% of observations in NACE 2680 (Manufacture of 

magnetic and optical media). Leaving out a set of industries, based on the ratio of observations for 

which ICT purchases exceed investments, does not alter our findings. We also tried to exploit the time 

dimension in our data to investigate whether ICT purchases end up in materials rather than in 

investments. More specifically, we estimated the following model: 

∆𝑚𝑖𝑡 = 𝛽0 + 𝛽1∆𝑖𝑛𝑣𝑖𝑡
𝑁𝐼𝐶𝑇 + 𝛽2∆𝑠𝑎𝑙𝑒𝑠𝑖𝑡 + 𝛽3𝑘𝑖𝑡 + 𝛽4𝑙𝑖𝑡 + 𝛽5−510∆𝑝𝑢𝑟𝑐ℎ𝑖𝑡

𝐼𝐶𝑇 ∗ 𝐼𝑛𝑑4𝑑𝑖𝑔𝑖𝑡 + 𝜀𝑖𝑡 

This model allows to investigate for which four digit industries changes in ICT expenditures are 

correlated with changes in material expenditures. The model includes changes in gross output and 

changes in non-ICT investments to control for increases in material expenditures from increasing 

demand or non-ICT investments. Labor and capital are included to control for firm size. The purpose 

of this model is not to causally infer which industries have a production process in which ICT products 

are used as intermediate input. However, this simple model can help to check whether there is 

systematically more correlation between ICT expenditures and material expenditures in some 

industries. The results indicate that changes in material expenditures are mostly explained by changes 

in gross output. The coefficient of ICT purchases growth is neither higher nor more often significant 

for those industries in which there is a high percentage of observations that report higher ICT 

purchases than investments. These results support our assumption that ICT expenditures are not 

systematically reported as material input.  

As final robustness check for the aforementioned potential issues, we did our analyses again after dropping 

all observations for which ICT purchases were larger than reported investments. 
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TABLE A- 13: REDUCED SAMPLE (NACE 1-82) 

Value Added 
Production Function 

OLS ACF 

All observations Reduced sample All observations Reduced sample 

Labor 
0.6739*** 

(0.0015) 
0.6337*** 
(0.0015) 

0.6226*** 
(0.0038) 

0.5872*** 
(0.0049) 

Non-ICT Capital 
0.1846*** 

(0.0013) 
0.2627*** 
(0.0015) 

0.2111*** 
(0.0055) 

0.3154*** 
(0.0101) 

ICT Capital 
0.1079*** 

(0.0009) 
0.0765*** 
(0.0010) 

0.1151*** 
(0.0032) 

0.0712*** 
(0.0011) 

# obs 1,044,353 779,118 867,867 549,815 
Industry & Year FE YES YES YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. 

Dropping observations for which ICT expenditures are larger than reported investments increases the non-

ICT capital coefficient and lowers the ICT capital coefficient. This is hardly surprising since the highly ICT 

intensive firms are not included anymore and the production function reflects the importance of ICT capital 

in the production process. 
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Appendix D: Robustness checks 

All empirical research comes with assumptions and choices on the most appropriate model. The results in 

the main body are based on timing assumptions that are standard in the literature. This section shows results 

for alternative data generating processes and different timing assumptions on the capital stocks. 

D 1. Alternative Data Generating Processes 

In the paper, the same data generating process as in Olley and Pakes (1996) is assumed: firms choose how 

much ICT investments they make in year t and these investments become part of the productive capital 

stock in year t+1. This way, there is no simultaneity between current productivity and ICT capital, i.e. ICT 

capital is chosen before current productivity was observed by the firm, and since current productivity is 

controlled for by the control function approach, the identification of the ICT capital coefficient is unbiased. 

D 1.1 ICT investments become productive immediately 

Identification problems arise when ICT investments become productive immediately. In the main body of 

the paper, we follow the standard assumption of the productivity literature that it takes one period to install 

capital. Investments 𝐼𝑡 that are observed in the law of motion for capital, 𝐾𝑡 = 𝐾𝑡−1 ∗ (1 − 𝛿) + 𝐼𝑡, are 

decided upon in 𝑡 − 1 but only installed and paid in year 𝑡. Under the alternative data generating process 

that ICT investments become productive in the same year as they are ordered, 𝐼𝑡 is decided upon, installed 

and paid in year 𝑡. This conveys an identification problem since the decision on 𝐼𝑡 is now correlated with 

𝜉𝑖𝑡 in equation (3), i.e. the decision on how much ICT capital to employ in the production process in year 

𝑡 is correlated with the productivity shock the firm observes in year 𝑡. This discussion is similar to the 

arguments that Bond and Söderbom (2005) and ACF (2015) raise about the choice of labor. To solve for 

this potential simultaneity bias, the same way forward as with the labor variable can be applied, i.e. 

instrument ICT capital with its lagged value. Table A-14 shows the results from this modeling approach 

with the ACF estimator. 
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TABLE A- 14: ICT INVESTMENTS BECOME PRODUCTIVE IMMEDIATELY 

Value Added Production Function 
ACF 
(1) 

ACF 
(2) 

Labor 
0.6226*** 

(0.0038) 
0.8013*** 
(0.0361) 

Non-ICT Capital 
0.2111*** 

(0.0055) 
0.1445*** 
(0.0103) 

ICT Capital 
0.1151*** 

(0.0032) 
0.1013*** 
(0.0261) 

# observations 867,867 874,771 
Industry & Year FE YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. 

Model (1) is the baseline model, in model (2) we instrument ICT capital with its lagged value. The results 

show that the ICT capital coefficient does increase significantly. Hence, the results in the paper serve as a 

lower bound for the scenario in which ICT investments become productive in the same period as they were 

purchased. 
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D 1.2 Learning from ICT investments 

In the main body of the paper, we neglect the potential impact of ICT investments on the evolution of 

productivity. Equation (3) explicitly states 𝜔𝑖𝑡 = 𝑔(𝜔𝑖𝑡−1) + 𝜉𝑖𝑡 , so productivity is modeled as if it evolves 

according to an exogenous process. However, when firms invest in ICT in year 𝑡, this may affect the firm’s 

expectations about productivity in year 𝑡 + 1. Cassiman and Vanormelingen (2013), Doraszelski and 

Jaumandreu (2013) and De Loecker (2013) show the importance of controlling for learning from 

innovation, R&D and export when estimating production functions. We extend our model in a similar way 

as these authors to allow the firm’s expectations on future performance (productivity) to be affected by 

current IT investments. We do this by modifying the second stage of the ACF estimation procedure such 

that the evolution of productivity explicitly includes ICT investments: 𝜔𝑖𝑡 = 𝑔(𝜔𝑖𝑡−1) + Inv𝑡−1
ICT + 𝜉𝑖𝑡 . 

Table A-15 shows the results from modeling ICT investments in the law of motion in three different ways. 

TABLE A- 15: LEARNING FROM ICT INVESTMENTS 

Value Added Production 
Function 

ACF 
(1) 

ACF 
(2) 

ACF 
(3) 

ACF 
(4) 

Labor 
0.6226*** 

(0.0038) 
0.6225*** 
(0.0038) 

0.6224*** 
(0.0038) 

0.6182*** 
(0.0034) 

Non-ICT Capital 
0.2111*** 

(0.0055) 
0.2126*** 
(0.0058) 

0.2152*** 
(0.0063) 

0.2140*** 
(0.0059) 

ICT Capital 
0.1151*** 

(0.0032) 
0.1155*** 
(0.0037) 

0.1131*** 
(0.0029) 

0.0987*** 
(0.0049) 

# observations 867,867 874,771 874,771 874,771 
Industry & Year FE YES YES YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. The number of observations for the ACF 
estimator is lower because it requires the first lag of the inputs. 

Model (1) is the baseline model without allowing for learning from ICT investments. Model (2) includes a 

dummy in the law of motion that indicates whether or not a firm invested in ICT in year 𝑡 − 1. Model (3) 

includes ICT investment intensity of year 𝑡 − 1 in the law of motion and model (4) includes lagged ICT 

investments directly in the law of motion. Under learning from past ICT investments, we expect the ICT 

capital coefficient to be biased upwards since too much variation in output (controlling for the other 

production inputs) would be attributed to variation in ICT capital when the learning mechanism is not 

modeled. We find that the ICT capital coefficient hardly changes in specifications (2), (3) and (4) which 

allow for learning from past ICT investments experience. 
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D.2 Alternative ways to construct ICT capital 

D 2.1 Only IT goods and IT services in ICT capital 

In the data section we include all types of ICT in the ICT capital stock. Table A-16 shows the results when 

we only take IT goods and IT services, thus ignoring communications goods and services. 

TABLE A- 16: RESULTS IT CAPITAL 

Value Added Production 
Function 

OLS ACF 

ICT IT ICT IT 

Labor 
0.6739*** 

(0.0015) 
0.6726*** 
(0.0014) 

0.6226*** 
(0.0038) 

0.6254*** 
(0.0038) 

Non-ICT Capital 
0.1846*** 

(0.0013) 
0.1878*** 
(0.0013) 

0.2111*** 
(0.0055) 

0.2133*** 
(0.0062) 

ICT Capital 
0.1079*** 

(0.0009) 
0.1054*** 
(0.0009) 

0.1151*** 
(0.0032) 

0.1074*** 
(0.0029) 

# observations 1,044,353 1,043,759 867,867 843,503 
Industry & Year FE YES YES YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. The number of observations for the ACF 
estimator is lower because it requires the first lag of the inputs. 

The output elasticity of IT capital is very close to the output elasticity of ICT capital, this is not surprising 

since IT capital contributes the largest share to total ICT capital as shown in figure 1 of the paper. 

D 2.2 Calculating initial capital stocks from more aggregated ICT intensity measures 

Instead of using firm level ICT intensity measures, this robustness check shows the results when the initial 

ICT capital stock is derived from more aggregated ICT intensity measures. More specifically, we derive the 

initial capital stock from aggregate investment ratios at the two- and four-digit level instead of at the firm 

level. 

TABLE A- 17: INITIAL CAPITAL STOCKS FROM AGGREGATED ICT INTENSITY 

Value Added 
Production Function 

OLS ACF 

(1) (2) (3) (1) (2) (3) 

Labor 0.6739*** 
(0.0015) 

0.6873*** 
(0.0014) 

0.6858*** 
(0.0014) 

0.6226*** 
(0.0038) 

0.6162*** 
(0.0041) 

0.6201*** 
(0.0039) 

Non-ICT Capital 0.1846*** 
(0.0013) 

0.1807*** 
(0.0013) 

0.1791*** 
(0.0013) 

0.2111*** 
(0.0055) 

0.2320*** 
(0.0063) 

0.2277*** 
(0.0062) 

ICT Capital 0.1079*** 
(0.0009) 

0.1022*** 
(0.0010) 

0.1043*** 
(0.0009) 

0.1151*** 
(0.0032) 

0.1083*** 
(0.0028) 

0.1076*** 
(0.0027) 

# observations 1,044,353 1,163,271 1,163,169 867,867 944,457 944,374 
Industry & Year FE YES YES YES YES YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. Model (1) is the baseline model from the paper. 

Models (2) uses 2 digit ICT intensity and (3) uses 4 digit ICT intensity to obtain the initial ICT capital stock. 

This robustness check shows that our results are robust to reducing cross sectional heterogeneity by 

calculating the initial capital stocks from more aggregate ICT intensity measures. 
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D 2.3 ICT capital calculated from ICT intensity instead of the PIM approach 

The results in the main body of the paper and in other robustness checks applies the PIM method to obtain 

either ICT capital, non-ICT capital or both. The PIM approach is standard in the productivity literature. 

However, as discussed in appendix C3, there is some noise on the ICT investments variable. We argued in 

appendix C3 that there is no pattern in this noise. Yet, any noise in the investment variables could be 

exacerbated by the PIM approach. Therefore, the following robustness check does not make use of the 

PIM method. Instead, ICT capital is obtained by multiplying a firm’s average ICT intensity with its total 

tangible fixed assets.31 Non-ICT capital is obtained by subtracting ICT capital from total tangible fixed 

assets, as in Brynjolfsson and Hitt (1996) and Dedrick, Kraemer and Shih (2013). 

TABLE A- 18: ICT CAPITAL CALCULATED FROM ICT INTENSITY 

Value Added  
Production Function 

OLS ACF 

(1) (2) (1) (2) 

Labor 0.6739*** 
(0.0015) 

0.7080*** 
(0.0014) 

0.6226*** 
(0.0038) 

0.6708*** 
(0.0023) 

Non-ICT Capital 0.1846*** 
(0.0013) 

0.1461*** 
(0.0012) 

0.2111*** 
(0.0055) 

0.1213*** 
(0.0035) 

ICT Capital 0.1079*** 
(0.0009) 

0.0638*** 
(0.0010) 

0.1151*** 
(0.0032) 

0.0555*** 
(0.0013) 

# observations 1,044,353 939,822 867,867 750,303 
Industry & Year FE YES YES YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. Model (1) is the baseline model from the paper. 
Model (2) is the alternative specification of the robustness check. 

Both the ICT and non-ICT capital coefficients are lower in model (2), which is unsurprising given that this 

approach ignores the time series variation in the capital stocks originating from investments. Therefore we 

interpret these coefficient estimates as an absolute lower bound.  

                                                 
31 The average ICT intensity of a firm over the entire sample period is used since contemporaneous ICT intensity 
could still be subject to outliers in ICT investments. 
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D 2.4 Only ICT capital with PIM approach  

In the paper, both ICT capital and non-ICT capital are obtained from using the PIM. In doing so, non-ICT 

investments are obtained by subtracting ICT purchases from total investments. As detailed in appendix C3, 

there could be mismeasurement in ICT purchases. If this would be the case, then this mismeasurement 

affects both the ICT and non-ICT capital stocks through errors in the investment flows. Therefore, this 

robustness check relies on data from the annual accounts for the non-ICT capital stock. The ICT capital 

stock is calculated with the PIM, and non-ICT capital as the residual of the book value of total tangible 

fixed assets, as in robustness check D.2.3. 

TABLE A- 19: ICT CAPITAL WITH PIM & NON-ICT CAPITAL AS RESIDUAL OF TANGIBLE FIXED ASSETS BOOK VALUE 

Value Added  
Production Function 

OLS ACF 

(1) (2) (1) (2) 

Labor 
0.6739*** 

(0.0015) 
0.6802*** 
(0.0013) 

0.6226*** 
(0.0038) 

0.6551*** 
(0.0032) 

Non-ICT Capital 
0.1846*** 

(0.0013) 
0.1668*** 
(0.0009) 

0.2111*** 
(0.0055) 

0.1267*** 
(0.0031) 

ICT Capital 
0.1079*** 

(0.0009) 
0.0941*** 
(0.0009) 

0.1151*** 
(0.0032) 

0.1111*** 
(0.0033) 

# observations 1,044,353 1,037,128 867,867 809,110 
Industry & Year FE YES YES YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. Model (1) is the baseline model from the paper. 

Model (2) is the alternative specification of the robustness check. 

The estimates, and hence qualitative findings derived in the paper, from the ICT capital coefficients are 

robust. The non-ICT capital coefficients are now lower, which can be explained by modeling it as a residual 

from tangible fixed assets, so not taking into account variation from non-ICT investments. 
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D 2.5 ICT capital stock on PIM and non-ICT capital stock based on book value  

In all specifications, the non-ICT capital stock is basically a residual. This is so because non-ICT capital is 

(i) obtained from the PIM based on non-ICT investments that are calculated by subtracting ICT purchases 

from total investments or (ii) obtained from subtracting the ICT capital stock from the book value of 

tangible fixed assets. This implies that any mismeasurement in ICT investment or misspecification in the 

construction of the ICT capital stock shows up in the non-ICT capital stock as well. Therefore, this 

robustness check shows the results for calculating the ICT capital stock with the PIM method while using 

the reported book value of total tangible fixed assets as non-ICT capital stock. 

TABLE A- 20: ICT CAPITAL WITH PIM & NON-ICT CAPITAL AS TOTAL TANGIBLE FIXED ASSETS BOOK VALUE 

Value Added  
Production Function 

OLS ACF 

(1) (2) (1) (2) 

Labor 
0.6739*** 

(0.0015) 
0.6803*** 
(0.0014) 

0.6226*** 
(0.0038) 

0.6450*** 
(0.0032) 

Non-ICT Capital 
0.1846*** 

(0.0013) 
0.1766*** 
(0.0010) 

0.2111*** 
(0.0055) 

0.1108*** 
(0.0040) 

ICT Capital 
0.1079*** 

(0.0009) 
0.0865*** 
(0.0009) 

0.1151*** 
(0.0032) 

0.0974*** 
(0.0036) 

# observations 1,044,353 1,072,618 867,867 864,489 
Industry & Year FE YES YES YES YES 

Notes: *** is significant at 1% level. ** is significant at 5% level. Standard errors are clustered at the firm level. Model (1) is the 
baseline model from the paper. Model (2) is the alternative specification of the robustness check. 

Since the non-ICT capital stock now also contains ICT capital, both the coefficients for non-ICT capital 

and ICT capital should be lower. This is exactly what this robustness check shows. 
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D 2.6 Non depreciating ICT capital 

An argument often made when estimating the returns on ICT capital is that ICT investments only 

contribute to output with a lagged effect. A survey on managers suggested it takes up to five years before 

ICT investments pay off (Brynjolfsson, 1993). Another study of Brynjolfsson, Malone, Gurbaxani and 

Kambil (1994) found that it took two to three years before organizational impacts of ICT are observed. In 

our main specification, we apply an annual geometric depreciation rate of 31.5%. Although it is common 

in the literature to do so, this approach may induce a discrepancy between capital productivity and capital 

wealth (Harper, 1982).32 In this study, we are interested the productive ICT capital rather than the market 

value of ICT capital. Under lagged returns on ICT capital, the true current productive ICT capital stock is 

underestimated in the way we model it, which then would potentially result in a biased estimate of the IT 

output elasticity. For robustness, we show the estimates for non-depreciating ICT capital, which is the most 

extreme solution to cope with the argument that the productive ICT capital stock does not depreciate as 

fast as its market value. 

TABLE A- 21: NON DEPRECIATING ICT CAPITAL 

Value Added  
Production Function 

OLS ACF 

(1) (2) (1) (2) 

Labor 
0.6739*** 

(0.0015) 
0.6861*** 
(0.0014) 

0.6226*** 
(0.0038) 

0.6010*** 
(0.0051) 

Non-ICT Capital 
0.1846*** 

(0.0013) 
0.1613*** 
(0.0012) 

0.2111*** 
(0.0055) 

0.1850*** 
(0.0049) 

ICT Capital 
0.1079*** 

(0.0009) 
0.1138*** 
(0.0009) 

0.1151*** 
(0.0032) 

0.1783*** 
(0.0064) 

# observations 1,044,353 1,050,768 867,867 848,847 
Industry & Year FE YES YES YES YES 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. Model (1) is the baseline model from the paper. 
Model (2) is the alternative specification of the robustness check. 

Since ICT capital is now assumed not to depreciate over time, the importance of ICT capital in the 

production process is now likely to be overestimated, which is what the results suggest. Whereas we 

interpret the results in robustness check D.2.3 as an absolute lower bound, we interpret these results as an 

absolute upper bound of the returns on ICT capital. 

                                                 
32 The assumption of geometric depreciation avoids the distinction between productive capital and capital wealth. 
Productive capital reflects the efficiency of capital, which is in theory the marginal rate of technical substitution 
between old capital and new capital. Capital wealth reflects the market value of capital, which is obtained by 
depreciating the capital stock to account for changes in the real prices of the assets. Assuming that the efficiency of 
ICT capital declines geometrically over time by the ICT capital depreciation rate is not consistent with the finding of 
lagged returns on ICT capital. 
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D 3. Robustness on entry and exit 

Tables A-22 – A24 show the results on industry heterogeneity, firm size heterogeneity and heterogeneity 

over time in the return on ICT capital for the fully balanced sample. This robustness check excludes firms 

that do not report for all years or have at least one missing observation over the full time span. 

TABLE A- 22: INDUSTRY HETEROGENEITY – ROBUSTNESS ENTRY AND EXIT 

Industry (NACE codes) # firms Labor 
Non-
ICT 

Capital 

ICT 
Capital 

ICT input 
share 

Marginal 
Product 

ICT 

Agriculture, Forestry and Fishing (1-3) 391 0.4510 0.3980 0.0641 0.0241 2.6545 

High Tech Manuf. (21; 26; 30) 832 0.8020 0.1378 0.1300 0.0767 1.6966 

Other Manuf. (10-33 except High Tech) 4,922 0.6776 0.2255 0.1119 0.0624 1.7938 

Utilities (35-39) 196 0.5153 0.3663 0.0908 0.0323 2.8068 

Construction (41-43) 6,311 0.7054 0.2120 0.0818 0.0295 2.7740 

Wholesale and Retail (45-47) 10,656 0.6470 0.1722 0.1412 0.0747 1.8898 

Transportation and Storage (49-53) 2,017 0.6643 0.2189 0.0666 0.0286 2.3244 

Accommodation and food serv. (53-56) 2,553 0.6151 0.2451 0.0741 0.0337 2.2009 

Information and Communication (58-63) 183 0.7465 0.1175 0.1490 0.1433 1.0397 

Financial and Insurance (64-66) 217 0.8498 0.1215 0.0877 0.1244 0.7056 

Real Estate (68) 283 0.6016 0.2666 0.1137 0.1204 0.9447 

Prof., Scientific & Tech. activities (69-75) 2,397 0.7248 0.1375 0.1150 0.1438 0.7998 

Admin. and Support activities (77-82) 1,384 0.6628 0.2512 0.1234 0.0962 1.2820 

Notes: Results obtained from the ACF estimator. The production functions include industry and year fixed effects. Standard errors 
are clustered at the firm level. The mining and quarrying industry is omitted because of a low number of observations. 

TABLE A- 23: FIRM SIZE HETEROGENEITY – ROBUSTNESS ENTRY AND EXIT 

Firm size # firms 𝛽𝑙 𝛽𝑁𝐼𝐶𝑇  𝛽𝐼𝐶𝑇 ICT input share 
Marginal 

Product ICT 

≤ 5 employees 17,571 0.4585 0.2225 0.0857 0.0673 1.6008 

6-10 employees 6,003 0.7529 0.1697 0.0762 0.0608 1.5559 

10-25 employees 5,075 0.7830 0.1319 0.0907 0.0590 1.8778 

26-50 employees 2,141 0.8068 0.1216 0.1085 0.0586 2.2493 

50-100 employees 833 0.8287 0.0780 0.1100 0.0600 2.2200 

100-250 employees 490 0.8108 0.1177 0.2081 0.0626 3.9691 

> 250 employees 284 0.6641 0.1338 0.2110 0.0640 3.8538 

Notes: The results in this table are from an ACF estimator. The production functions include industry and year fixed effects. Standard 
errors are clustered at the firm level. 

TABLE A- 24: HETEROGENEITY OVER TIME – ROBUSTNESS ENTRY AND EXIT 

Year # firms 𝛽𝑙 𝛽𝑁𝐼𝐶𝑇  𝛽𝐼𝐶𝑇 ICT input share 
Marginal 

Product ICT 

2003 32397 0.7212 0.1722 0.0855 0.0489 1.7499 

2004 32397 0.6814 0.1744 0.1454 0.0527 2.7617 

2005 32397 0.6705 0.1984 0.1153 0.0563 2.0496 

2006 32397 0.6806 0.1819 0.1111 0.0570 1.9498 

2007 32397 0.6707 0.1950 0.1162 0.0584 1.9894 

2008 32397 0.6679 0.2040 0.0930 0.0630 1.4773 

2009 32397 0.6513 0.2050 0.0893 0.0677 1.3189 

2010 32397 0.6764 0.2068 0.1024 0.0702 1.4588 

2011 32397 0.6504 0.2163 0.0994 0.0734 1.3534 

2012 32397 0.6573 0.2084 0.0822 0.0793 1.0368 

2013 32397 0.6632 0.2254 0.0795 0.0864 0.9195 

Notes: The results in this table are from the ACF estimator. The production functions include industry fixed effects. Standard errors 
are clustered at the firm level. 
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D 4. Robustness to recession periods 

Table A-25 shows the results for a split sample estimation in which we omitted the years 2008-2009 (Great 

Recession) and 2011-2012 (Euro-crisis).  

TABLE A- 25: FIRM SIZE HETEROGENEITY – ROBUSTNESS RECESSION PERIODS 

Firm size # firms 𝛽𝑙 𝛽𝑁𝐼𝐶𝑇  𝛽𝐼𝐶𝑇 ICT input share 
Marginal 

Product ICT 

≤ 5 employees 117,549 0.4470 0.2183 0.1001 0.0844 1.4488 

6-10 employees 18,095 0.7658 0.1531 0.0805 0.0766 1.2682 

10-25 employees 13,175 0.8073 0.1287 0.0978 0.0752 1.5497 

26-50 employees 5,276 0.8288 0.1195 0.1286 0.0748 2.0413 

50-100 employees 2,100 0.7643 0.1213 0.1369 0.0752 2.1423 

100-250 employees 1,218 0.7714 0.1136 0.1807 0.0779 2.6954 

> 250 employees 679 0.6803 0.1649 0.2378 0.0792 3.4239 

Notes: The results in this table are from an ACF estimator. The production functions include industry and year fixed effects. Standard 

errors are clustered at the firm level. 

D.5 Robustness to decline in ICT investments over time 

The results show a slowdown in ICT capital deepening from 2008 onwards (figure 5). Tables A-26 and A-

27 show that the findings on industry heterogeneity and firm size heterogeneity also go through for the 

period 2009-2013. 

TABLE A-26: RESULTS PER INDUSTRY – RESTRICTED SAMPLE AFTER 2008 

Industry (NACE codes) # firms Labor 
Non-
ICT 

Capital 

ICT 
Capital 

ICT input 
share 

Marginal 
Product 

ICT 

Agriculture, Forestry and Fishing (1-3) 1,571 0.44 0.42 0.05 0.03 1.87 

High Tech Manuf. (21; 26; 30) 1,761 0.74 0.14 0.14 0.10 1.40 

Other Manuf. (10-33 except High Tech) 11,315 0.63 0.27 0.09 0.08 1.14 

Utilities (35-39) 568 0.58 0.30 0.07 0.05 1.66 

Construction (41-43) 21,938 0.62 0.25 0.09 0.05 1.92 

Wholesale and Retail (45-47) 35,174 0.60 0.20 0.12 0.12 1.05 

Transportation and Storage (49-53) 5,657 0.65 0.22 0.06 0.04 1.42 

Accommodation and food serv. (53-56) 11,811 0.62 0.26 0.05 0.06 0.86 

Information and Communication (58-63) 749 0.61 0.14 0.19 0.27 0.70 

Financial and Insurance (64-66) 1,260 0.72 0.14 0.08 0.17 0.49 

Real Estate (68) 2,062 0.49 0.32 0.09 0.16 0.58 

Prof., Scientific & Tech. activities (69-75) 11,199 0.63 0.15 0.11 0.19 0.57 

Admin. and Support activities (77-82) 5,494 0.65 0.22 0.11 0.16 0.68 

Notes: Results obtained from the ACF estimator. The production functions include industry and year fixed effects. Standard errors 
are clustered at the firm level. The number of observations for mining and quarrying firms is low, therefore these are omitted from 
the table. 

The results for 2009-2013 show that all marginal products are lower than when using the full sample. This 

is consistent with the decline in the marginal product of ICT over time that is documented in the paper in 

section 5.4. More importantly, the finding on the ranking between the industries remains robust. It is still 

the case that manufacturing industries have a higher marginal product of ICT than services industries, with 

high tech industries having a larger marginal product of ICT than other manufacturing industries. Outside 
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of manufacturing industries, we still find that utilities and construction have the highest marginal product 

and that services industries have a lower marginal product of ICT due to relatively high ICT input shares. 

For the robustness check across firm size bins with the subset of data for 2009-2013, we merge the size 

bins at a more aggregate level for identification because we lose 1 out of the remaining 5 years of data as 

the ACF estimator needs lagged variables, and a large share of the variation across firms is accounted for 

by the industry and year fixed effects since the number of large firms within a two-digit code is relatively 

small. 

TABLE A-27: RESULTS PER SIZE BIN – RESTRICTED SAMPLE AFTER 2008 

Firm size # firms 𝛽𝑙 𝛽𝑁𝐼𝐶𝑇  𝛽𝐼𝐶𝑇 ICT input share 
Marginal 

Product ICT 

≤ 5 employees 92,510 0.4313 0.2433 0.0865 0.1021 1.0350 

6-10 employees 16,488 0.7603 0.1480 0.0630 0.0935 0.8122 

10-25 employees 12,270 0.8230 0.1029 0.0755 0.0913 0.9879 

26-100 employees 6,689 0.8841 0.0702 0.0929 0.0915 1.2070 

> 100 employees 1,769 0.7994 0.0624 0.1543 0.0936 1.9280 

Notes: The results in this table are from an ACF estimator. The production functions include industry and year fixed effects. Standard 
errors are clustered at the firm level and all output elasticities are significant at the 5% level, except in the size bin of more than 100 

employees the non-ICT capital coefficient is insignificant and the ICT capital coefficient is significant at the 19% level. 

As in the results on split sample analysis across industries for the period 2009-2013, we find the marginal 

product of ICT to be lower than in the paper for all size bins, which is in line with the results in section 

5.4. Consistent with the findings in the paper, the ICT capital output elasticity increases with firm size while 

the ICT input share remains constant across the firm size distribution, resulting in a positive correlation 

between firm size and the marginal product of ICT capital. 
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Appendix E: Extensions 

E 1. ICT and TFP dispersion 

Our results show that the productivity returns to ICT capital are positive and substantial for the average 

firm and we have shown that firm size matters for those returns. Another important question is whether 

ICT can explain TFP differences across firms. Syverson (2004) showed that, even within narrowly defined 

sectors, productivity dispersion is large, while Dunne, Foster, Haltiwanger and Troske (2004) found that 

computer investments are related to productivity dispersion across firms. We analyze to what extent this is 

also the case in our data. To get a sense on how much of the variation in productivity ICT explains, we 

investigate how much of the 90-10 TFP spread can be accounted for by ICT investments per worker. Figure 

A-9 shows how ICT investments evolve across the productivity distribution. 

FIGURE A- 9: ICT AND TFP DISPERSION 

 

We compare the explained spread in productivity from ICT investments with the spread in productivity 

explained by human capital. We focus on these two determinants because they are prominent drivers of 

productivity dispersion amongst firms, see Syverson (2011). As we compared returns on ICT capital in 

Belgium mostly with returns on ICT capital in the United States throughout the paper, we continue to do 

so in this part of our analysis. To this end, we apply the same analysis as Bloom, Brynjolffson, Foster, 

Jarmin, Patnaik, Saporta-Eksten and Van Reenen (2017) and show their results next to ours.33 

                                                 
33 Importantly, to be able to compare our findings with Bloom et al. (2017) we follow their methodology and include 
only labor and capital (as reported in the annual accounts) as inputs when computing TFP.  
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TABLE A- 26: DRIVERS OF TFP DISPERSION 

Dependent variable is 
demeaned TFP 

Belgium United States 

(1) (2) (3) (1) (2) (3) 

IT investments per worker 
0.0684*** 

(0.0010) 
 

0.0655*** 
(0.0010) 

0.015*** 
(0.003) 

 
0.008*** 

(0.002) 
Skills (share highly 
educated) 

 
0.1566*** 

(0.0059) 
0.0914*** 

(0.0060) 
 

0.527*** 
(0.060) 

0.126** 
(0.057) 

Share of 90-10 explained 0.1813 0.0324 0.1925 0.0752 0.111 - 

# firms 123,689 123,689 123,689 17,843 17,843 17,843 

Notes: *** is significant at 1% level. Standard errors are clustered at the firm level. TFP is computed as in Bloom et al. (2017). The 
Belgian regressions are OLS regressions with as dependent NACE 4 industry demeaned TFP. IT investments per worker are equal 
to log(ICT purchases/FTE employment) and skills is equal to the ratio of highly educated employees to total employees. The US 
regressions are OLS regressions with as dependent NAICS 6 industry demeaned TFP. IT investments are investments in computers 
per employee and skills are measured by the share of employees with a college degree. The ‘share of 90-10 explained’ is obtained 
by multiplying the regression coefficient of the variable of interest with the 90-10 distribution spread of this variable and dividing 
this by the 90-10 spread of the dependent (TFP). Specification (3) of the United States cannot be directly compared to its 
counterpart of Belgium since the United States analysis also includes management and R&D as drivers of TFP, which we have no 
data on. 

ICT investments per worker explain about 18% of the dispersion in productivity amongst firms in Belgium 

and only 8% in the U.S. Human capital explains about 3% in productivity dispersion amongst firms, while 

it explains around 11% of TFP dispersion in the U.S. Together, IT and human capital explain about 19 

percent of productivity dispersion in the Belgian economy. 

An important difference is that the average firm size in the study of Bloom et al. (2017) is 167 employees, 

while in our sample this is only 14 employees. When we drop firms with less than 50 employees from our 

sample, the coefficient on ICT investments per worker from model (3) decreases to 0.0489 (𝑡 = 10.87, 𝑝 <

0.01) while the coefficient on the skills variable increases from 0.1566 to 0.4063 (𝑡 = 14.25, 𝑝 < 0.01). The 

share of the 90-10 spread in TFP explained by ICT investments per employee remains similar at 0.1504 

while the share of 90-10 spread in TFP explained by human capital increases from 0.0324 to 0.2233. Thus, 

human capital particularly explains TFP dispersion in large firms, while ICT investments per employee 

explain TFP dispersion in both small and large firms. Altogether, ICT investments per employee and human 

capital explain about 19 percent of TFP dispersion in the full sample and 27% of the 90-10 spread in TFP 

in the subsample of firms with more than 50 employees. Given that 50% of firm-level TFP is measurement 

error (Collard-Wexler, 2011; Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry, 2012), these findings 

suggest that IT and human capital actually explain up to 50% of total productivity dispersion in the Belgian 

economy. 
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E 2. Random Coefficients production function 

We split our sample in bins to investigate the heterogeneity in the return on ICT capital for small and large 

firms. Although dividing the sample into bins of different firm sizes is intuitively appealing, from an 

econometric perspective this can be argued to be a rather arbitrary approach. Therefore, we augment our 

analyses with a random coefficients model in which we estimate firm specific output elasticities (Swamy, 

1970). The random coefficient model fully recognizes firm heterogeneity and exploits the panel structure 

to obtain a firm specific output elasticity for the production inputs on top of an output elasticity that 

represents an average effect for the entire sample. Alcácer et al. (2013) illustrate the potential of random 

coefficient models in strategic management research and Kasahara, Schrimpf and Suzuki (2017) show how 

random coefficient production functions can prove to be usefulness in the industrial organization literature 

by allowing for production functions that are heterogeneous across firms beyond Hicks-neutral technology. 

We follow Knott (2008) in how to specify the random coefficient model: 

𝑦𝑖𝑡 = (𝛽0 + 𝛽0,𝑖) + (𝛽𝑙 + 𝛽𝑙,𝑖)𝑙𝑖𝑡 + (𝛽𝐼𝐶𝑇 + 𝛽𝐼𝐶𝑇,𝑖)𝑘𝑖𝑡
𝐼𝐶𝑇 + (𝛽𝑁𝐼𝐶𝑇 + 𝛽𝑁𝐼𝐶𝑇,𝑖)𝑘𝑖𝑡

𝑁𝐼𝐶𝑇 + 𝜖𝑖𝑡  

In which the coefficients with index i refer to the firm specific output elasticities and the coefficients 

without index i to the average output elasticity.34 

TABLE A- 27: RANDOM COEFFICIENTS PRODUCTION FUNCTION (NACE 1-82) 

Value Added 
Production Function 

Fixed coefficient 
Firm specific coefficient 

P10 P90 Std. Dev. 

Labor 
0.5889*** 

(0.0019) 
-0.1625 0.1504 0.1379 

Non-ICT Capital 
0.1024*** 

(0.0011) 
0.0000 0.0000 0.0000 

ICT Capital 
0.0407*** 

(0.0008) 
-0.0061 0.0053 0.0052 

# obs. 388,764    

# firms 32,397    

Notes: *** is significant at 1% level. The estimation includes industry and year fixed effects. We limit the sample to a fully balanced 

panel to facilitate the identification and comparison of firm-specific parameters. 

Although the focus of this paper is on ICT capital, it is worth noting that there is large firm level 

heterogeneity on the labor coefficient. In figures A-10 and A-11 we show the relationship between the ICT 

capital output elasticities and firm size. Figure A-10 shows that the average firm level ICT capital elasticity 

increases with firm size. The box plot in figure A-11 shows that the median firm level ICT elasticity 

increases while its variance decreases when moving along the firm size distribution. 

                                                 
34 As in OLS, there are potential endogeneity issues in this specification. Kasahara et al. (2017) propose a possible way 

forward by extending the Gandhi, Navarro, Rivers (2013) framework. This is beyond the scope of this paper. 
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FIGURE A- 10: AVERAGE FIRM SPECIFIC ICT CAPITAL PER FIRM SIZE BIN 

 

FIGURE A- 11: BOXPLOTS FIRM SPECIFIC ICT CAPITAL COEFFICIENTS PER FIRM SIZE BIN 

 

 

  

-.
0

0
2

0

.0
0

2
.0

0
4

F
ir

m
 s

p
e

ci
fic

 I
C

T
 c

a
p
it
a
l 
c
o
e

ff
ic

ie
n

t

<5 6-10 11-25 26-50 51-100 101-250 >250

Random Coefficients estimation - Mean per size group

Deviation from fixed ICT capital coefficient & Firm size

-.
0

1
5

-.
0

1
-.

0
0
5

0

.0
0

5
.0

1

F
ir

m
 s

p
e

ci
fic

 I
C

T
 c

a
p
it
a
l 
c
o
e

ff
ic

ie
n

t

<5 6-10 11-25 26-50 51-100 101-250 >250

Random Coefficients estimation - Mean per size group

Deviation from fixed ICT capital coefficient & Firm size



75 

References 

Ackerberg, D. A., Caves, K., and Frazer, G. (2015). “Identification Properties of Recent Production 

Function Estimators”, Econometrica, 83(6), pp. 2411-2451. 

Alcácer, J., Chung, W., Hawk, A., and Pacheco-de-Almeida, G. (2013) “Applying Random Coefficient 

Models to Strategy Research: Testing for Firm Heterogeneity, Predicting Firm-Specific Coefficients, and 

Estimating Strategy Trade-Offs”, Harvard Business School Working Paper 14-022. 

Baily, M. N., Hulten, C., Campbell, D., Bresnahan, T. and Caves, R. E. (1992). “Productivity Dynamics in 

Manufacturing Plants” Brookings Papers on Economic Activity. Microeconomics, 1992, pp. 187-267. 

Bloom, N., Brynjolfsson, E., Foster, L., Jarmin, R., Patnaik, M., Saporta-Eksten, I., and Van Reenen, J. 

(2014). “IT and Management in America”, CEP Discussion Paper 1258. 

Bloom, N., Brynjolfsson, E., Foster, L., Jarmin, R.S., Patnaik, M., Saporta-Eksten, I., and Van Reenen, J. 

(2017) “What Drives Differences in Management?”, NBER Working Paper 23300 

Bloom, N., Floetotto, M., Jaimovich, N., Saporta-Eksten, I. and Terry, S.J. (2012) “Really Uncertain 

Business Cycles” NBER working paper 18245.. 

Bond, S., and Söderbom, M. (2005). “Adjustment Costs and the Identification of Cobb Douglas Production 

Functions”, IFS working paper. 

Brynjolfsson, E. (1993), “The productivity paradox of information technology”, Communications of the ACM 

36(12), pp. 67-77. 

Brynjolfsson, E., and Hitt, L. M. (1996). “Paradox Lost? Firm-Level Evidence on the Returns to 

Information Systems Spending”, Management Science, 42(4), 541-558. 

Brynjolfsson, E., Malone, T.W., Gurbaxani, V., and Kambil, A. (1994) “Does Information Technology 

Lead to Smaller Firms?”, Management Science, 40(12), pp. 1628-1644.  

Cardona, M., Kretschmer, T., and Strobel, T. (2013). “ICT and Productivity: Conclusions from the 

Empirical Literature”, Information Economics and Policy, 25 (4), pp. 109-125. 

Cassiman, B., and Vanormelingen, S. (2013). “Profiting from Innovation: Firm Level Evidence on 

Markups”, CEPR Discussion Paper 9703. 

Collard-Wexler, A. (2011), “Productivity Dispersion and Plant Selection in the Ready-Mix Concrete 

Industry, mimeo.Collard-Wexler, A., and De Loecker, J. (2016). “Production Function Estimation with 

Measurement Error in Inputs”, NBER Working Paper, 22437. 

Dedrick, J., Kraemer, K.L. and Shih, E. (2013). “Information Technology and Productivity in Developed 

and Developing Countries”, Journal of Management Information Systems, 30(1): pp. 97-122.De Loecker, J. (2013) 

“Detecting Learning by Exporting”, American Economic Journal: Microeconomics, 5(3), pp. 1-21. 

Doraszelski, U., and Jaumandreu, J. (2013). “R&D and Productivity: Estimating Endogenous Productivity”, 

The Review of Economic Studies, 80(4), pp. 1338-1383. 

Dunne, T., Foster, L., Haltiwanger, J., and Troske, K.R. (2004). “Wage and Productivity Dispersion in 

United States Manufacturing: The Role of Computer Investment”, Journal of Labor Economics, 22(2), pp. 397-

429. 

Easterly, W. and Ross, L. (2001). “It’s not factor accumulation: Stylized facts and growth models” The World 

Bank Economic Review, 15(2), pp. 177-219. 



76 

Foster, L., Haltiwanger, J. and Krizan, C. J. (2001). “Aggregate productivity growth: Lessons from 

microeconomic evidence” D. Edward, M. Harper, & C. Hulten (Eds.), New Developments in Productivity Analysis 

Chicago: University of Chicago Press, pp. 303-363. 

Galuščák, K., and Lízal, L. (2011). “The Impact of Capital Measurement Error Correction on Firm-Level 

Production Function Estimation”, Working paper series 9 Czech National Bank. 

Gandhi, A., Navarro, S., and Rivers, D. (2013). “On the Identification of Production Functions: How 

Heterogeneous is Productivity?”, working paper Western University. 

Hall, B. H., and Mairesse, J. (1995) “Exploring the Relationship between R&D and Productivity in French 

Manufacturing Firms”, Journal of Econometrics, 65, pp: 263-293. 

Harper, M. J. (1982) “The Measurement of Productive Capital Stock, Capital Wealth, and Capital 

Services”, BLS working paper, 128 

Hempell, T. (2002) “What’s Spurious, What’s Real? Measuring the Productivity Impacts of ICT at the Firm-

Level”, ZEW Discussion PaperKasahara, H., Schrimpf, P., and Suzuki, M. (2017). “Identification and 

Estimation of Production Function with Unobservedd Heterogeneity”, working paper. 

Knott, A.M., Bryce, D. J., and Posen, H. E. (2003). “On the Strategic Accumulation of Intangible Assets”, 

Organization Science, 14(2), pp. 192-207. 

Knott, A.M. (2008). “R&D Returns Causality: Absorptive Capacity or Organizational IQ”, Management 

Science, 54(12), pp. 2054-2067. 

Konings, J.,  and Vanormelingen, S. (2015). “The Impact of Training on Productivity and Wages: Firm-

Level Evidence.”, The Review of Economics and Statistics, 97(2), pp. 485-497. 

Levinsohn, J., and Petrin, A. (2003). “Estimating Production Functions Using Inputs to Control for 

Unobservables”, The Review of Economic Studies, 70(2), pp. 317-341.Melitz, M. J. and Polanec, S. (2015). 

“Dynamic Olley-Pakes productivity decomposition with entry and exit” The RAND Journal of 

Economics, 46(2), pp. 362-375. 

Olley, G. S., and Pakes, A. (1996). “The Dynamics of Productivity in the Telecommunications Equipment 

Industry”, Econometrica, 64(6), pp. 1263-1297. 

Petrin, A., and Levinsohn, J. (2012). “Measuring Aggregate Productivity Growth Using Plant-Level Data”, 

RAND Journal of Economics, 43(4), pp. 705-725. 

Petrin 1.,  T. K. White, J. P. Reiter (2011) The impact of plant-level resource reallocations and technical 

progress on U.S. macroeconomic growth. Review of Economic Dynamics, Volume 14 (1).  

Syverson, C. (2004). “Product Substitutability and Productivity Dispersion”, The Review of Economics and 

Statistics, 86(2), pp. 534-550. 

Syverson, C. (2011). “What Determines Productivity?”, Journal of Economic Literature, 49 (2), pp. 326-365. 

Swamy, P.A.V.B. (1970). “Efficient Inference in a Random Coefficient Regression Model”, Econometrica, 

38(2), pp. 311-323. 

Van Beveren, I., and Vanormelingen, S. (2014). “Human Capital, Firm Capabilities and Productivity 

Growth”, NBB working paper no 257. 

 


	1.  Introduction
	2. Literature Review
	3. Data
	4. Empirical framework
	5. Results
	5.1 Baseline results
	5.2 Industry Heterogeneity
	5.3 Firm size heterogeneity
	5.4 Heterogeneity over time
	5.5 ICT and (aggregate) productivity growth

	6. Conclusion
	References
	Appendix A: Additional tables and figures
	A 1. Tables
	A 2. Figures

	Appendix B: Estimation methods
	B 1. Semiparametric production function estimation
	B 2. Petrin and Levinsohn Decomposition

	Appendix C: Data
	C 1. Sample construction
	C 2. Additional information VAT and B2B data
	C 3. Construction capital stocks

	Appendix D: Robustness checks
	D 1. Alternative Data Generating Processes
	D 1.1 ICT investments become productive immediately
	D 1.2 Learning from ICT investments

	D.2 Alternative ways to construct ICT capital
	D 2.1 Only IT goods and IT services in ICT capital
	D 2.2 Calculating initial capital stocks from more aggregated ICT intensity measures
	D 2.3 ICT capital calculated from ICT intensity instead of the PIM approach
	D 2.4 Only ICT capital with PIM approach
	D 2.5 ICT capital stock on PIM and non-ICT capital stock based on book value
	D 2.6 Non depreciating ICT capital

	D 3. Robustness on entry and exit
	D 4. Robustness to recession periods
	D.5 Robustness to decline in ICT investments over time

	Appendix E: Extensions
	E 1. ICT and TFP dispersion
	E 2. Random Coefficients production function

	References

