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Abstract: The efficient estimation of the failure probability function of rare failure events is a challenging task in the 

structural safety analysis when the input variables are characterized by imprecise probability models due to 

insufficient information on these variables. The recently developed non-intrusive imprecise stochastic simulation 

(NISS) provides a general, yet competitive, framework for dealing with this type of problems, and it has been shown 

that many classical stochastic simulation techniques, with suitable adequations, can be injected into this framework 

for tackling different types of problems in uncertainty quantification. This work aims at investigating the rare failure 

event analysis based on the global version of NISS and line sampling. A new method, called global imprecise line 

sampling (GILS), is firstly proposed, to efficiently estimate failure probability function with the same computational 

cost as classical line sampling. By joint sampling from both the aleatory and epistemic spaces, the GILS provides 

elegant estimators for the functional components of the failure probability. Then, to further reduce the computational 

cost, and improve its suitability for nonlinear problems, an imprecise active learning line sampling procedure is 

established by combining GILS with Gaussian process regression (GPR) with the target of adaptively exploring the 

aleatory and epistemic spaces within the framework of line sampling. Two analytical examples and two engineering 

applications demonstrate the efficiency and accuracy of the proposed method. 

Keywords: Uncertainty quantification; Imprecise probability; Line sampling; Sensitivity analysis; Active learning; 

Gaussian process regression. 

1. Introduction 

Estimating failure probability is one of the most important tasks in structural engineering with the consideration 

of the intrinsic randomness present in structural parameters, initial/boundary conditions, and environmental 

excitations. Although it has been widely studied for many decades, it is continually receiving great attention, 

especially when the available information on those random input parameters is imperfect, and thus there exist both 

aleatory uncertainty (intrinsic randomness) and epistemic uncertainty (caused by lack of information). These two 

sources of uncertainties have totally different effects on the reliability of structural systems. The aleatory uncertainty 

results in random failure, thus leading to the intrinsic probability of failure, of the structural systems, while the 

existence of epistemic uncertainty prevents us from learning the true value of this probability. It has been widely 
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realized that, without properly distinguishing and modeling these two types of uncertainties, the failure probability 

can be underestimated or overestimated to a significant extent [1].  

With only aleatory uncertainty being present, precise probability models (random variables, random fields, and 

stochastic processes) are mostly utilized, and the resultant failure probability is a deterministic value. Since the 70s 

of last century, the problem of estimating this deterministic probability of failure has been widely investigated, and 

plenty of methods such as approximate analytical methods (e.g., first-order and second reliability methods [2], 

moment methods [3], etc.), probability conservation based methods (e.g., probability density evolution method [4]), 

stochastic simulation methods (e.g., importance sampling [5], subset simulation [6], line sampling [7] and directional 

sampling [8]) and surrogate model methods (e.g., support vector machine [9], neural network [10], radial basis function 

and Kriging model [11]), have been developed for tackling different types of challenges such as problems with high-

dimensional inputs, highly nonlinear performance function, extremely small failure probability, etc. Specifically, the 

active learning algorithms combining the Kriging (also called Gaussian Process Regression, GPR) model and the 

stochastic simulation techniques have received increased attention (see e.g., Refs. [12]-[15]), and have been shown to 

be especially effective for dealing with large structural systems due to their perfect balance of accuracy and 

efficiency. Overall, estimating the deterministic failure probability has been comprehensively addressed, although 

pursuing algorithms with even higher efficiency is still a subject of active research.  

With both aleatory and epistemic uncertainties being present, the precise probability models are no longer 

sufficient for modeling the input parameters due to their incapability of distinguishing these two types of 

uncertainties. The imprecise probability models, such as the probability-box (p-box) model [16], the evidence theory 

(or called Dempster-Shafer theory) [17][18], and the fuzzy probability model [19], as natural extensions of the precise 

probability models, have been regarded as the most appealing model frameworks for addressing the mixed 

uncertainties [20], since they can provide reasonable (solid or soft) bounds for bounding the true probability 

distribution, and for properly modeling the aleatory and epistemic uncertainties separately under hierarchical model 

frameworks. Thus, propagating these imprecise probability models through computer simulators of structures, and 

estimating the resultant non-deterministic failure probability, have become the new challenge to be solved for 

structural reliability analysis. 

Traditional algorithms for addressing this challenge involve a double-loop numerical process, and three 

different stochastic simulation strategies have been developed. The first strategy involves estimating the 

deterministic failure probability in the inner loop, given fixed probability distribution of inputs, and calculating the 

bounds of the failure probability in the outer-loop, by performing numerical optimization [21]. The second strategy is 

based on performing sampling in the outer-loop to create a set of interval samples for the input parameters, and then 

in the inner loop, estimating the bounds of the model response subjected to each interval sample of inputs, by using, 

e.g. interval finite element analysis or numerical optimization, and in this way, estimate the bounds of failure 

probability based on the resultant interval samples of model response[22][23]. Both of the above two strategies can be 

computationally intractable for large structures due to the tremendous number of response function calls required. 

The third strategy then aims to reduce the computational cost by reusing the response function calls in each inner-

loop iteration, and typical methods include advanced line sampling [24] and the extended Monte Carlo simulation 

(EMCS)[25]. The EMCS method requires only one stochastic simulation, thus its theoretical computational cost is the 
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same as that for estimating the deterministic failure probability; however, the variation of the EMCS estimators can 

be quite large for problems with high-dimensional epistemic parameters. For overcoming this disadvantage, a 

general methodology framework, named as Non-intrusive Imprecise Stochastic Simulation (NISS), has been 

established by combining EMCS, high-dimensional model representation (HDMR) decomposition and sensitivity 

analysis[26][27], where the local NISS methods are established based on the cut-HDMR decomposition [28], and the 

global NISS methods are developed based on the  Random Sampling- (RS-) HDMR decomposition [29]. In our 

previous work, two strategies have been developed for injecting the classical line sampling to the local NISS 

framework for efficiently estimating the imprecise failure probability with only one line sampling simulation, and 

shown to be effective for rare failure events[30]. Alternatively, the surrogate model methods have also been 

introduced for efficiently propagating the mixed uncertainties or for estimating the imprecise (or interval) failure 

probability[31]-[33].  

The contributions of this paper are twofold. First, to further refine the NISS framework for rare event analysis, 

the failure probability function is reformulated by injecting probability density function (PDF) weight into the 

integral of classic line sampling, which is actually a combination of a (n-1)-dimensional integral orthogonal to the 

important direction and a one-dimensional integral along each line that is parallel to the aforementioned important 

direction. Then, the failure probability function is formulated as a series of one-dimensional failure probability 

functions, and the computational cost is shown to be the same as classical line sampling. Since this method can 

globally investigate the whole space of imprecise distribution parameters, we denote it as global imprecise line 

sampling (GILS). As this scheme involves implementing the simulation in the joint space of both aleatory variables 

and epistemic distribution parameters, its convergence rate can be slightly slower than classical line sampling. Then, 

for further reduction of the computational cost, an active learning algorithm based on GPR model is proposed and 

injected into the GILS method, which can actively construct a computationally less expensive GPR model to 

approximate the true failure surface of the performance function, such that the intersection points for all lines can be 

accurately calculated.  

The rest of this paper is organized as follows. Section 2 provides a brief review of the global NISS, followed by 

the detailed development of the GILS method in section 3. In section 4, the imprecise active learning ling sampling is 

combined with GILS to further reduce the computational cost. Section 5 introduces two numerical examples and two 

engineering problems for demonstrating the effectiveness of the proposed methods. Section 6 concludes the paper.  

2. Non-intrusive imprecise stochastic simulation 

Let  denote the performance function of a structure or an engineering system, where 

 denotes the n-dimensional random input variables with joint PDF , where 

denotes the vector of all the distribution parameters associated with . In the framework of 

precise probability models, the PDF of  is precisely known and the distribution parameters are constant. In this 

paper, the distribution parameters are assumed to be imprecisely known due to the lack of information on . For 
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simplification, the uncertainty of  is considered to be characterized by intervals, i.e., , so the input 

variables are modeled by a parameterized p-box.  

This paper focuses on the reliability analysis of models with imprecise probability, thus the failure domain is 

defined as , and the corresponding indicator function is formulated by  if , and 

 if . Since the distribution parameters  of input variables are uncertain, the failure probability 

becomes a function of , denoted as failure probability function  with the formulation expressed by 

                     . (1) 

The HDMR decomposition of the failure probability function represents   as the sum of functional 

components of increasing order, i.e. 

          (2) 

, where  denotes a constant term,  is a function of the distribution parameter ,  is a function 

of the distribution parameters  and , etc. The formulations of component functions are based on the way of how 

the contributions of  are apportioned to the components. If the cut-HDMR method is utilized, the failure 

probability function is expanded at a fixed point , which is the basis of the local NISS method that has been 

investigated in Ref. [30]. However, the implementation of the local method demands to determine an expansion point 

 within the support domain, and generally, the estimation accuracy will decrease for values of the distribution 

parameters which are far from . To improve the global performance and avoid determining a fixed value that acts 

as an expansion point, this paper focuses on global NISS by using random sampling (RS)-HDMR method [29], and 

the functional components in Eq.(2) are defined as  

             (3) 

, where  denotes the set of all distribution parameters except for  while  denotes the set of all distribution 

parameters except for  and , and where ,  and  indicate the instrumental PDF w.r.t. , 

 and  within the support domain , respectively. Generally, the instrumental PDF can be assumed to be of 

uniform type within . One note that, by introducing this instrumental probability distribution, we don’t mean 

that the distribution parameter  are random variables in nature. Instead, the auxiliary distribution is introduced for 

defining the HDMR decomposition of the failure probability function, and for making it possible to estimate these 

HDMR components in the joint space of  and . This is the vital difference between global NISS and local NISS. 

One can also use other types of auxiliary distribution, and theoretically, this will not affect the behavior of the failure 
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probability function, but will affect the behavior of its HDMR components as well as the estimation performance. 

For improving the estimation accuracy around the bounds of , the support of the instrumental distribution can be 

relaxed as , where , and   can be set as . 

According to the NISS framework, only one set of samples is needed for estimating all the component functions 

in Eq.(3). According to Ref. [26], by generating a set of joint samples  from the joint PDF 

, the unbiased estimators for the constant, first-order and second-order component 

functions are formulated as 

                             (4) 

, where  and  are regarded as weight coefficients defined as 

                 (5) 

The variances of the above estimators of component functions can be easily derived referring to the basic Monte 

Carlo algorithm. From the cases studied in the available literature [28][29], commonly, an HDMR decomposition with 

second-order truncation can lead to a satisfactory approximation of the original model, hence the estimator of failure 

probability function  can be expressed by: 

                    . (6) 

However, the above method will be less efficient especially for rare failure events, and one needs to investigate 

more advanced stochastic simulation techniques to improve the performance of global NISS for solving those 

problems.  In the next section, the line sampling method is injected into global NISS so as to provide a more efficient 

scheme to estimate failure probability considering imprecise probabilities. 

3. Global imprecise line sampling  

The classical line sampling method for reliability analysis is well-known for its high efficiency for problems 

involving a linear or moderately nonlinear performance function [34]. It is an advanced stochastic simulation 

technique that operates by formulating the original reliability problem into a series of one-dimensional reliability 

problems solved along randomly sampled lines. This motivates us to combine it with the global NISS to efficiently 

estimate the failure probability function of rare failure events by only one set of samples. The proposed method is 

called global imprecise line sampling (GILS). 
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First, a general derivation of failure probability function  is proposed. Similar to Ref. [27], let  denote 

an independent random replicate of  , and its joint PDF is denoted as . Then the failure probability function 

can be represented by the following formulation 

. (7) 

Line sampling is implemented in standard normal space. Let  denote standard normal 

variables corresponding to , and the transformation relationship of them are expressed as  and 

, which are actually affected by the value of . Then   can be rewritten as 

                 (8) 

, where  is the PDF of the standard normal distribution in n dimensions. According to the classical line 

sampling [7],  can be orthogonally decomposed as , where  indicates a vector that belongs to an 

-dimensional hyperplane,  indicates a one-dimensional standard normal variable, and  denotes the 

normalized important direction in standard normal space. In this paper, we assume that the important direction is 

fixed and can be chosen considering any value of  within its distribution range; details about its selection are 

discussed in Section 4.3. Hence,  can be further derived as 

  (9) 

, where  denotes the PDF weight function.  

Generating  samples from both  and  simultaneously, which are denoted by 

, the Monte Carlo estimator of Eq.(9) is expressed as 

 . (10) 

Then the estimation of failure probability function reduces to the estimation of the  one-dimensional 

integrals within the failure domain. Taking the s-th sample for instance, Figure 1 shows the sketch of estimating the 

one-dimensional integral associated with the corresponding line. In this figure, the two-dimensional standard normal 

space is shown in the horizontal plane where the axis  rotates to , and the vertical axis represents the 

value of the performance function, denoted as g-function in the remaining part of this work. Note that, the 

transformation formulation  associated with the evaluation of the g-function is dependent on the value of 

sample , as indicated in the vertical axis of the Figure. From the Figure, it is noted that the line associated with 

the one-dimensional integral of Eq. (10) passes through the sample  and is parallel to the important direction . 

Furthermore, the integration of the function  is carried out exclusively over the portion of the 
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line that lies within the failure domain F. Assuming a monotonic behavior of the performance function along the line, 

it becomes clear that such integration is carried out between  and infinity, where  denotes the Euclidean 

distance between the sample and the intersection of the line with the limit state function (that is, ). The 

distance  can be determined by means of the following procedure [34]:  select three points along the s-th sample 

line using an appropriate criterion (see, e.g. Ref. [34] ) and evaluate the corresponding values of the performance 

function, as suggested in Figure 1. Then a curve can be drawn by using a second-order polynomial interpolation 

method for approximating the performance function, and the intersection point between the sample line and failure 

surface is actually the point of this curve where .  

 
Figure 1 Sketch for estimating the one-dimensional integral corresponding to the s-th sample line 

Based on the samples of   as well as the estimated value of , the probability estimator becomes 

           (11) 

, where  denotes the integral of the PDF weight times the standard normal distribution along the 

corresponding line, which is indeed a function of . The variance of the above estimator is  

                        . (12) 

There may exist two potential disadvantages of using the above estimators: one is that the estimation error 

(variance) introduced by the PDF weight  will conspicuously increase when the dimension of distribution 

parameters increases [35]; the other one is that it’s not easy to identify the individual effect of each parameter on the 

estimation of . Hence, we follow the idea of global NISS reviewed in section 2, and the RS-HDMR is applied 

here for both improving the estimation accuracy and implementing sensitivity analysis of distribution parameters.  

The constant, first-order, and second-order components of RS-HDMR decomposition are derived separately 

based on the definitions in Eq. (3). For ease of presentation, the derivation details are shown in Appendix A, only 

the estimators and the corresponding variances of these estimators are listed here. The component estimators are 
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                          (13) 

, where  indicates the CDF of the standard normal distribution,  and  denote functions of  

and , respectively, which are defined as the integrals of their corresponding PDF weight. The detailed 

formulations are also shown in Appendix A. Accordingly, the variances of these estimators are  

 .        (14) 

Note that the estimators in Eqs. (13) and (14) share the same set of  samples with those used in Eqs. (11) and 

(12). For the commonly used normal distribution type, closed-form expressions of ,  and  

in the estimators of failure probability function can be analytically derived, thus no estimation error will be 

introduced for the calculation of those (line) integrals. The analytical derivations of normal distribution case are 

provided in Appendix B. For lognormal distribution, the analytical derivation process is almost the same as that of 

the normal case except that the distribution parameters correspond to the lognormal case. 

The above component functions allow us to investigate the functional behavior between the parameters and the 

failure probability, and also to estimate sensitivity indices without the necessity to call the g-function. The sensitivity 

index of uncertain distribution parameters associated with component function  is defined as 

.                                                          (15) 

Since the component functions are derived based on the RS-HDMR method, the interpretation of the above 

definition is consistent with the widely used Sobol’s variance-based sensitivity indices, hence  inherits the 

well-known properties of Sobol’s method. Thus, a large value of  indicates a more influential effect of the 

uncertainties in  on the uncertainty of failure probability.  

To sum up, in the computational procedure of the above GILS method, a sample set with size  is firstly 

generated, denoted by . For each sample line, the intersection point between this line and 

the true failure surface is searched by any efficient numerical method for determining the roots of an equation. Note 

that the sample  is used when the value of  is transformed back to the original space of  . If the nonlinearity of 

the performance function along this line is moderate, then the three-point-second-order polynomial interpolation 

method described above can provide a satisfactory estimation of the value  at the intersection point; otherwise, 
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four or more points of g-function evaluations are needed for each line analyzed. The flowchart of estimating failure 

probability function by GILS is shown in Figure 2, together with the advanced active learning based method to be 

developed in the next section. 

One notes that the above GILS method is recommended for problems with approximately linear and/or 

moderately nonlinear g-functions. For highly non-linear problems, the required number of g-function calls for 

estimating the intersection point accurately for each line can be significant, and also an increasing number of lines 

are required for promising the small variation of the GILS estimators. The above two factors jointly result in the high 

computational cost for highly nonlinear problems. In the next section, an improvement by using the active learning 

GPR model is introduced for overcoming the above two obstacles.  

4. Improvement of GILS by active learning 

The proposed GILS method can be applied with only one set of samples, which can greatly relieve the 

computational burden for estimating the failure probability function. However, it can still be computationally too 

expensive for complex structures with time-consuming computer simulators. In such a context, surrogate models 

have been extensively investigated in recent years. Among them, the active learning GPR methodology has received 

increased attention for estimating failure probability and it has been proved to be an efficient way for structural 

reliability analysis in the standard probabilistic safety analysis framework. Here, we develop a scheme for injecting 

the active learning GPR (AGPR) model into the GILS method, and the developed technique is denoted as GILS-

AGPR. Before the development of this method, it is helpful to briefly review the classical GPR model. 

4.1 Gaussian process regression (GPR) 

Consider that a GPR model  serves as the surrogate for the functional relationship between  and . A 

Gaussian process is fully specified by its mean function  and covariance function (also known as 

kernel function), and the GPR model (denoted as ) can be regarded as a Gaussian process with mean function  

and covariance function , i.e.,  

                                               .                                              (16) 

The mean function  can be assumed to be zero, constant, linear or other higher-order polynomial 

functions, which reflects the analysts’ prior knowledge on the g-function, and  represents the covariance 

between two realizations  and . The formulations of the mean and covariance functions reflect our prior 

knowledge of the true performance function. As explained in Ref.[36], any positive definite function can be used as 

the covariance function, and understanding the properties of particular covariance functions is an important research 

goal. In this paper, we use the squared exponential kernel function with different scale parameters in each dimension 
[36].   

The next step is to derive the posterior GPR model by updating the prior in the light of the training data set. It is 

assumed that there is a training sample set , where  is a  matrix with  samples of  contained in 

each of its rows,  is a column-wise vector with  training samples of   in which the -th component 
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corresponds to the -th sample site in . Then the hyper-parameters in the above mean function and 

covariance function  can be estimated based on the maximum likelihood method. After these hyper-

parameters are evaluated, the posterior GPR model  can be utilized for prediction at any new realization . 

Since the posterior is also a Gaussian process,  predicted at a new realization  can be regarded as a Gaussian 

variable whose expectation and prediction variance are expressed as 

  (17) 
and  

  (18) 
, where  is a column-wise vector, the -th component of which is the covariance between  and the -th 

row-wise training sample in ,  is a  matrix with the -th component being the covariance between 

the -th and -th training samples in , and  is a column-wise vector with the -th component being the 

value of mean function located at the -th training sample.  

We can see that the expectation  is composed of two terms: the first term reflects prior information of 

 and the second term contains the information learned from training data. And the variance   equals to the 

prior variance minus a combination of covariance matrix between the new realization and all training samples, 

indicating that larger training data size will lead to a reduction of . In fact, this variance measures the 

prediction accuracy of the posterior GPR model at the location of , and this property is of major benefit for 

establishing the active learning algorithm in the next subsection. 

4.2 GILS-AGPR algorithm 

Recently, we developed an active learning line sampling algorithm for standard probabilistic reliability analysis 
[37], which is extremely efficient for problems with rare failure events, and the proposed GILS-AGPR algorithm can 

be regarded as an extension of this method from the probabilistic framework into imprecise probability. The basic 

idea is to actively construct a computationally less expensive GPR model to approximate the true failure surface of 

performance function by learning from both the space of input variables and the distribution parameter space. After 

the GPR model is properly trained, all the intersection distances  between the candidate sample lines and the 

failure surface are accurately estimated at the same time. Consequently, the failure probability function, as well as its 

HDMR component functions, can be directly estimated based on those distances provided by the GPR model without 

calling the performance functions. 

To make the relationship between the proposed GILS and GILS-AGPR procedures more clear, a flowchart of 

both the proposed methods is given in Figure 2. For GILS-AGPR, the most important element is the learning 

function, which serves as an engine of the algorithm to adaptively select training points. In this contribution, we use 

the learning function originally devised in our previous work [37], which is formulated as: 

                       (19) 
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, where  indicates the normal PDF with the mean and variance being the posterior mean  

and posterior variance  of the GPR model, and  indicates a pre-specified error tolerance determining the 

accuracy of estimating the interaction point for each line. Once the intersection point for one line is specified, e.g., as 

, based on the trained GPR model , then  measures the probability that the real value  is 

covered by the small interval . Obviously, , and high values of  indicate high accuracy 

in estimating the intersection point for this line. The above property of the learning function makes it possible to 

accurately estimate the intersection points for all lines used in the GILS algorithm with a small number of training 

samples, and thus g-function calls, even for highly nonlinear problems. For an in-depth interpretation of the learning 

function from the perspective of geometry and the specification of the error tolerance , one can refer to our 

previous work [37]. 

The steps of the GILS-AGPR algorithm shown in Figure 2 are explained as follows in detail.  

Step 1: Initialize the total number of candidate sample lines , the number of initial lines  for training the 

initial GPR model, the threshold , the error tolerance , the initial training sample set . Let . 

Compute the important direction  using any appropriate procedure [34]. 

Step 2: Generate  candidate samples . For each sample, generate a candidate line 

that is parallel to the important direction . Then randomly select  initial lines from the   candidate lines. 

Step 3: For each initial line, estimate the value of   at the intersection point by solving the equation 

. Note that the estimation of the -th line is based on the sample pair  , 

which means the sample  is only used for the -th line. A second-order polynomial interpolation constructed 

considering three evaluation points (that is,  is specified with three constant value , , ) is utilized for solving 

this equation. In turn, such a procedure involves three g-function evaluations for each line. Add 

 into  and  into , where .  

Step 4: Evaluate the g-function value for each intersection point found in the previous step, add 

 into  and  into . So far, the training data set includes  

samples from Step 3,  samples at the intersection point evaluated at this step, as well as  g-function 

evaluations for determining the important direction as described in Step 1. Thus, the size of the training data set is 

. 

Step 5: Train or update the GPR model  with the training sample set .  

Step 6: For all the  candidate sample lines (including  initial lines), search for the intersection point 

between those lines and the failure surface specified by the GPR model so that 

 is satisfied. Because of the smoothness of the GPR model for the line search, any 

advanced numerical rooting method can be used to reach an accurate calculation of .   
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Step 7: Predict the posterior variance  at the  intersection points; note that the 

posterior means at these points are all equal to zero. Compute the value of the learning function  for each 

intersection point to judge the accuracy of the intersection point estimated by the GPR model. High values of  

(close to 1) indicate a more accurate estimation of that intersection point. 

Step 8: Find the minimum value , if , then add this intersection point 

corresponding to  into training sample set , evaluate the corresponding g-function value and add it into , let 

, go to back to Step 5. Otherwise, go to Step 9.  

Step 9: Estimate the constant component of failure probability function  with the estimator in Eq. (13) as 

well as its variance in Eq. (14), compute the coefficient of variation (COV) with . If the COV is 

larger than 0.05, add more candidate lines with , where commonly,  is 

recommended. Then go back to Step 6. If the COV is smaller than 0.05, a converged estimation of  has been 

achieved, finish the iteration procedure. 

Till now, the GPR model  has been properly trained to approximate the true failure surface by exploring 

the candidate samples of both input and distribution parameters. In the following task of estimating the failure 

probability function, the proposed GILS-AGPR algorithm shares the same estimators with GILS method as proposed 

in section 3, in which no more g-function evaluations are involved. The values of ,  and  

 for all the sample lines are extracted, then the failure probability function and the component 

failure probability functions are calculated employing the estimators in Eq. (13). In the meantime, their 

corresponding variances are computed using the estimators in Eq. (14) to judge their quality. 
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Figure 2 Flowchart of the proposed GILS and GILS-AGPR algorithm. 

4.3 Discussions of GILS-AGPR algorithm 

This subsection provides some discussions on the details of implementing the GILS-AGPR algorithm for better 

use of it in practical applications. 

 The important direction 

In this paper, the important direction  in the standard normal space is constant, and it is determined by fixing 

imprecise distribution parameters  at a pre-specified point so that the traditional methods for searching an 

important direction can be directly used. Generally,  can be fixed at any point within the interval of , and it 
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is found that the generated importance direction may vary slightly while the different fixed point is utilized, and no 

thumb rule is available for selecting the optimal fixed point which produces the best important direction. Fortunately, 

as revealed by our previous work [37], compared with the classical line sampling utilized in GILS, the performance of 

the active learning line sampling is less sensitive to the important direction. Even when the specified important 

direction is not the optimal one, the active learning line sampling, and thus also the GILS-AGPR algorithm will 

adaptively produce more lines to promise the estimation accuracy, without a huge increment of g-functions, since the 

intersection points can be efficiently and accurately learned by the adaptive GPR model. In all the test examples of 

this paper, the important direction is generated by fixing  at the middle point of its support.  

For a linear or moderately nonlinear performance function, the important direction can be determined by many 

mature techniques. One straightforward way is to firstly search for the design point (or the most probable point, MPP) 

using the strategy of Advanced Second Moment (ASM) method [38] or the Hasofer-Lindt-Rackwitz-Fiessler (HLRF) 

algorithm [39][40] and then the important direction points from the origin to that design point. Another less 

computationally expensive way is to use the negative gradient of the performance function at the original point in the 

standard normal space as the important direction. For highly nonlinear problems, only the first scheme is 

recommended since the second scheme may result in a large error. In this paper, the ASM method is utilized for the 

case studies. 

 Training the GPR model 

As mentioned in subsection 4.1, the formulations of mean function  and covariance function  

need to be specified before training. Usually zero or constant mean function is applicable for linear or moderately 

nonlinear performance function, and linear or quadratic polynomial mean function is applicable for highly nonlinear 

cases. Note that, if the nonlinearity is high, the number of initial lines  should be larger accordingly. In this paper, 

the squared exponential kernel [36] is used as the covariance function, and the Matlab function  “fitrgp” in the Matlab 

Statistic and Machine Learning Toolbox is utilized for training the GPR model. 

 The role of GPR model in estimating failure probability function 

The active learning GPR model plays a role to update the simulation process for efficiently figuring out the site 

of  with the maximum contribution that improves the accuracy of failure probability estimation. The well-trained 

model itself provides a good approximation for the intersection points of each candidate line with the true failure 

surface, but cannot guarantee the approximate accuracy to the g-function across the full support of . Hence, the 

candidate samples  used in the GILS-AGPR procedure should be definitely the same set of samples used to 

estimate the component failure probability functions. 

 Improvements of GILS-AGPR compared to GILS  

For GILS, one needs to take several (at least three) g-function calls for estimating the interaction point for each 

line, and for highly nonlinear problems, the required number of interpolation points, and thus the g-function calls, 

will increase largely to ensure the estimation accuracy. However, the GILS-AGPR algorithm can accurately estimate 

the intersection points by calling the GPR model which has been properly trained for predicting the intersection 

points, thus the total number of g-function calls for estimating the intersection points for all lines is much smaller 

than that of the GILS method. This benefit comes from the active learning scheme and the spatial correlation 



15 
 

information revealed by the GPR model. The GPR model for accurately approximating the failure surface also 

benefits from the high efficiency of the one-dimensional search of the line sampling scheme. Besides, increasing the 

initial number of lines  of GILS-AGPR will not directly increase the number of g-function evaluations, as one can 

set a much larger sample size  than the sample size  in the GILS procedure, so as to produce a high estimation 

accuracy for highly nonlinear problems without considerably increasing the computational cost. For highly nonlinear 

problems, the accurate estimation of the important direction may require more g-function calls. However, these g-

function calls can be reused for training the initial GPR model, thus will not be wasted. While the important direction 

is estimated with poor quality, the GILS-AGPR algorithm will adaptively increase the number of lines for promising 

the estimation accuracy without significantly increasing the required number of g-function calls. The above features 

of GILS-AGPR make it extremely efficient for even highly nonlinear problems.  

 Comments on estimation errors 

The error sources for estimating the failure probability function include (i) the statistical error due to the limited 

number of lines, which can be controlled with enough lines for training, (ii) the truncation error caused by HDMR 

truncation, which can be measured by sensitivity indices, and (iii) the numerical error for estimating the intersection 

surface, controlled by carefully selecting the threshold  and the error tolerance . With all these three types of 

errors being properly addressed, the method is believed to be of wide applicability.  

5. Case studies 

5.1 Analytical example 

Consider a simple analytical example where the failure surface associated with the performance function is a 

parabola, 

  (20) 

, where , . The constant  controls the failure probability level and  controls the 

degree of nonlinearity of the performance function (which in turn also affects the failure probability). Let  

and  such that the performance function is moderately nonlinear, and the failure probability is rather small. 

The failure probability function can be analytically calculated with the expression below 

 . (21) 

The imprecise distribution parameters are defined as , , , 

. 

According to the analytical formulation of the performance function, the important direction is assumed to be 

fixed at . The proposed GILS and GILS-AGPR procedures are both implemented with this important 

direction, and the results are compared with the analytical solutions for illustrating the effectiveness of these two 

methods.  For implementing the GILS-AGPR method, the number of initial lines used for training the initial GPR 

model is set to be , the total number of candidate sample lines is set to be 3,000. 
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The training process of the GPR model constructed within the GILS-AGPR procedure is schematically shown 

in Figure 3. It can be seen that the GPR failure surface matches well with the true failure surface, and the 17 training 

samples are also plotted. Figure 4 shows the plots of the first-order component functions estimated by the proposed 

GILS and GILS-AGPR procedures, as well as the analytical results with the help of Eq. (21). For the GILS 

procedure,  lines are used to reach a converged estimation, and the total number of g-function evaluations 

is 600. It is shown that all the first-order plots with the two proposed methods have good consistency with the 

analytical results, and in the second row of this figure, the small standard deviations (SDs, estimated by Eq. (14)) 

also indicate good precision. Moreover, compared with the GILS method, the estimations of the GILS-AGPR 

method is more accurate since its plots are much closer to the analytical plots, and the corresponding SDs are much 

smaller. This is because the number of sample lines  is much larger than that involved in the GILS method, 

although the total number of g-function evaluations of GILS-AGPR is only 17. It indicates that the GILS-AGPR 

method can overcome the deficiency of a slow convergence speed of the proposed estimators of , and 

provides an accurate estimation with much less computational cost. Additionally, the SDs of GILS-AGPR remain at 

a low value within the whole uncertain region, demonstrating a better global performance. 

The first- and second-order sensitivity indices of the uncertain distribution parameters as well as the constant 

component  are listed in Table 1, with the SDs shown in the superscripts. Higher-order sensitivity indices are all 

close to zero and are omitted here. Note that all the sensitivity results related to either GILS or GILS-AGPR 

procedure don’t require additional g-function evaluations since the component functions can be regarded as 

explicitly known. It shows that the results of the two proposed methods are in good agreement with the analytical 

results, illustrating the effectiveness of the proposed methods for sensitivity analysis. The GILS-AGPR method 

shows a relatively better performance than the GILS method, which is consistent with the conclusion drawn from the 

plots in Figure 4. It is interesting that all the indices relating to  or  are close to zero, which means the 

distribution parameters associated with  are non-influential for estimating failure probability. On the other hand, 

the first-order index of  is almost twice the value of , so  is the most influential distribution parameter on the 

uncertainty of failure probability. The second-order index of  is close to 0.39, showing a strong interaction 

effect between  and  in the failure probability function.  

Based on the estimated influential component functions, the lower and upper bounds of the failure probability is 

calculated, and the results are compared in the fourth row of Table 1. As can be seen, both methods compute the 

upper bounds with satisfactory accuracy when compared to the analytical result, but the lower bound is not correctly 

computed by both methods due to the extremely small value, i.e., 4.99e-12. This indicates that the developed 

methods are not suitable for estimating the lower bound when the span of the failure probability covers several 

orders of magnitude. In this example, the exact value of the lower bound is 4.99e-12, however, the SDs of the 

estimate lower bounds by the two methods are both much higher than this value, indicating the estimates are not 

accurate. Fortunately, in real-world engineering applications, the upper bound is of most concern as it provides a 

conservative measure of structural safety, which is of great significance.  
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Figure 3 Training details of GPR model in GILS-AGPR procedure for the analytical example. 

 
Figure 4 Plots of the first-order component failure probability functions and their corresponding SDs in the 

analytical example. 

 

1 2 3 4 5 6
x

1

-4

-3

-2

-1

0

1

2

3

4

x
2

True Failure Surface

GPR Failure Surface

Training Samples

-0.4 -0.2 0 0.2 0.4

1

-5

0

5

10

15

20

Pf
i(

i)

10 -5

GILS GILS-AGPR Analytical solution

0.6 0.8 1

1

-1

0

1

2
10 -4

-0.5 0 0.5

1

0

0.5

1

1.5

2

SD
s 

of
 P

f
i(

i)

10 -5

0.6 0.8 1

1

0

0.5

1

1.5

2
10 -5

-0.5 0 0.5

2

-6

-4

-2

0

2
10 -6

0.8 0.9 1

2

-4

-2

0

2

4
10 -6

-0.5 0 0.5

2

0

1

2

3

4
10 -6

0.8 0.9 1

2

0

0.2

0.4

0.6

0.8

1

1.2
10 -6



18 
 

Table 1 First- and second-order sensitivity indices for the analytical example. Standard deviations of estimates are 

shown as superscripts in parenthesis. 

Methods GILS GILS-AGPR Analytical results 
Number of g-function calls 600 17 / 

 5.19e-5(8.3e-6) 4.34e-5(2.0e-6) 4.39e-5 
Lower bound of  -3.11e-6(8.3e-6) 3.17e-6(4.0e-6) 4.99e-12 

Upper bound of   9.24e-4(2.1e-5) 9.37e-4(9.5e-6) 9.88e-4 

 

 0.2658(0.0067) 0.2131(0.0014) 0.2066 
 0.0003(0.0005) 0.0001(0.0000) 0.0001 
 0.3665(0.0068) 0.3971(0.0009) 0.3928 
 0.0003(0.0001) 0.0002(0.0000) 0.0001 

 

 0.0003(0.0005) 0.0001(0.0000) 0.0001 

 0.0005(0.0000) 0.0005(0.0000) 0.0005 

 0.3651(0.0071) 0.3883(0.0005) 0.3901 

 0.0004(0.0001) 0.0003(0.0000) 0.0003 

 0.0009(0.0005) 0.0003(0.0000) 0.0003 

 0.0000(0.0000) 0.0000(0.0000) 0.0000 

5.2 Parallel system 

Considering a highly nonlinear parallel system (as proposed in Ref. [41]) to investigate the performance of the 

proposed methods, and the performance function is defined as 

  (22) 

, where  and  are two independent normal variables following   and , 

respectively. The two imprecise distribution parameters  and  both range within the intervals . 

The design point is featured as  when considering given value . 

The important direction is , which is set according to the given design point. The 

two-dimensional failure surface, the design point as well as all the training samples generated in GILS-AGPR 

procedure are shown in Figure 5, and the training sample size is . We can see that most of the training 

samples are located close to the true failure surface, hence the failure surface constructed by GPR model comes out 

as a good approximation of the true failure surface by a small set of training samples.  

Figure 6 shows the plots of the first-order components  and  estimated by GILS and GILS-

AGPR procedures, and estimations of double-loop crude Monte Carlo estimations (denoted as DL) are also plotted in 

the same figure. For GILS-AGPR method, set the size of sample lines as  in order to get estimations with 

small SDs, although its total number of g-function evaluations is 51. In GILS procedure,  sample lines 
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are used so as to produce comparable results with GILS-AGPR. Because of the high nonlinearity of the parallel 

system, advanced optimization methods, specifically, the Matlab function “fsolve” is adopted to search an accurate 

intersection point along each line, so the number of g-function evaluations is 7954. In the first row of Figure 6, it is 

shown that the plots have a good consistency with the DL method, indicating the effectiveness and high efficiency of 

the proposed methods in estimating first-order component functions. In the second row, the small SDs indicate the 

small derivations of the estimations. Moreover, both  and  have a monotonic increasing relationship with failure 

probability. Table 2 lists the first- and second-order sensitivity indices of  and , which are regarded as the by-

product of proposed methods. We can see that indices estimated by both GILS and GILS-AGPR methods match well 

with the DL method with small SDs. Since the first-order index of  is more than twice of the first-order index of 

,  shows an obviously influential effect on the uncertainty of failure probability. Based on the estimated 

influential component functions, the bounds of the failure probability are computed by the two methods, and the 

results are compared in Table 2. As can be seen, the upper bounds are accurately estimated by both methods are 

accurate, while for the lower bound, the SDs are even larger than the mean estimates although the mean estimates are 

both close to the reference solution.  

 
Figure 5 Training details of GILS-AGPR procedure for the parallel system 
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Figure 6 Plots of the first-order component failure probability functions and their corresponding SDs for the 

parallel system. 

Table 2 Results of first- and second-order sensitivity indices for the parallel system. Standard deviations of estimates 

are shown as superscripts in parenthesis. 

Methods GILS GILS-AGPR DL 
Function evaluations 7954 51 / 

 3.82e-4 (1.7e-5) 3.94e-4(1.1e-5) 3.78e-4 

Lower bound of  1.59e-5(3.0e-5) 1.70e-5(1.9e-5) 1.61e-5 

Upper bound of   2.57e-3(4.9e-5) 2.54e-3(3.2e-5) 2.44e-3 

 
 0.2537(0.0011) 0.2660(0.0004) 0.2637 
 0.5879(0.0016) 0.5731(0.0006) 0.5832 

  0.1584(0.0008) 0.1609(0.0003) 0.1531 

5.3  A simplified riveting model 

In the aircraft industry, riveting is the most common approach to assemble sheet metal parts such as the wing 

covering, so the quality of rivets in the riveting process is quite important for the safety of the whole aircraft structure. 

Since the true riveting process is complex, a simplified headless rivet model [42] is introduced here for illustrating the 

proposed method. Here the riveting process is simply divided into three states, as shown in Figure 7. In the initial 
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state, the rivet is without any deformation and the diameter is denoted as . Then the rivet is punched to the 

intermediate state in which the clearance between the rivet and the hole is zero. At last, the rivet heads are further 

punched to the final state and the rivet heads are formed. In this process, the maximum squeeze stress  of the 

rivet head in the y-direction is one of the most significant factors affecting the quality of rivets, and the rivet will 

crack when  exceeds the allowable squeeze strength. 

For establishing the mathematical formulation between the squeeze stress and the geometric parameters, 

assumptions of some ideal conditions during the riveting process are required, namely: a. The hole diameter keeps 

unchanged; b. The whole rivet volume stays the same; c. The rivet head in the final state has a cylindrical shape; d. 

The material of the rivet is isotropic. Based on the power hardening theory, the maximum squeeze stress in the y-

direction can be expressed as  , where  is the strength coefficient,  is the strain hardening 

exponent of the rivet material, and  is the true strain in the y-direction of the rivet head. In the simplified model,  

is composed of two parts, i.e., , and  is caused by punching from the initial state to 

intermediate state,  is caused by punching from intermediate state to the final state. Based on those 

above-mentioned assumptions, one can obtain the performance function associated with the maximum squeeze stress 

of the riveting process: 

 .               (23) 

In this paper, the material of the rivet is 2017-T4, its strain hardening exponent is , and the 

allowable squeeze strength is MPa. The height of the rivet head is assumed to be constant, i.e., 

mm. The other five input variables are all supposed to follow (truncated) normal distribution , where all  

are set to be uncertain parameters, as listed in Table 3. 

 
Figure 7 Simplified riveting process. 

Table 3 Probabilistic description of five random input variables in the simplified riveting model. 

Variables Description Distribution   

 (mm) The rivet diameter in initial state. (truncated) Normal 4.45 [0.07,0.09] 

 (mm) The rivet height in initial state. (truncated) Normal 18 [0.3,0.36] 

 (mm) The rivet diameter in intermediate state. (truncated) Normal 5.2 [0.21,0.26] 
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 (mm) The thickness of the two sheets. (truncated) Normal 5 [0.32,0.4] 

 (MPa) The strength coefficient. (truncated) Normal 547.5 [8.8,11] 
 

The important direction is determined considering that the imprecise parameters are fixed at their midpoint 

values of the intervals. ASM method [36] method is used to search the MPP with a total number of 18 g-function 

evaluations, and the important direction is specified as  in 

the standard normal space. Then GILS and GILS-AGPR procedures are applied on the riveting model. For the GILS 

method, the size of the sample lines is ; for the GILS-AGPR method, the training sample size is  

for establishing the GPR model of the performance function, and the number of sample lines is . The 

first-order component failure probability functions as well as the SDs are plotted in Figure 8, and DL Monte Carlo 

method is also utilized to provide comparative results. It is shown that all the plots are consistent with the 

comparative plots; GILS-AGPR shows a better performance than GILS especially when the values of parameters are 

far from the midpoint values. As we know, the midpoint values are chosen to determine the important direction; 

there may be slower convergence speed for the estimators in those regions far away from those midpoint values, as 

the important direction becomes less representative in those regions. Nonetheless, in such a situation GILS-AGPR 

can still provide estimates with high precision, as the number of lines involved in the analysis procedure  can be 

large, without affecting the overall numerical analysis cost. The latter assertion can be verified by verifying the small 

SDs of GILS-AGPR in the second row of plots in Figure 8. 

The results of the bounds of the failure probability are reported in Table 4, and it is shown that both methods 

produce accurate estimates for the upper bound. For the lower bound, the coefficients of variation of the estimates 

can be latrger due to the small value of mean estimate, but comparably, the accuracy is also acceptable.  Table 4 also 

provides the first- and second-order sensitivity indices of the distribution parameters, and those second-order indices 

close to zero are omitted here. We can see that all the indices match well with each other among the three methods, 

indicating converged and accurate estimations of the first- and second-order component functions. Compared with 

the GILS method, the results of GILS-AGPR also show better consistency with the DL method. According to the 

values of indices,  is the most influential parameter and all the remaining first-order and second-order indices are 

quite small, hence the imprecision of these remaining parameters has little effect on the uncertainty of failure 

probability. 
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Figure 8 Plots of the first-order component failure probability functions and their corresponding SDs for the 

simplified riveting model 

Table 4 Results of first- and second-order sensitivity indices for the simplified riveting model. Standard deviations of 

estimates are shown as superscripts in parenthesis. 

Methods GILS GILS-AGPR DL 
Function evaluations 18+3×400 18+45 / 

 5.08e-4(1.8e-5) 4.92e-4(1.3e-5) 4.89e-4 

Upper bound of  9.92e-5(2.8e-5) 9.58e-5(1.4e-5) 9.33e-5 

Upper bound of   1.35e-3(4.3e-5) 1.32e-3(2.2e-5) 1.32e-3 

 

 0.0004(0.0003) 0.0004(0.0001) 0.0012 
 0.0006(0.0001) 0.0011(0.0000) 0.0021 
 0.0106(0.0002) 0.0156(0.0001) 0.0154 

 0.0054(0.0003) 0.0062(0.0001) 0.0086 

 0.9794(0.0043) 0.9727(0.0012) 0.9684 

 

 0.0001(0.0002) 0.0001(0.0000) 0.0001 

 0.0002(0.0001) 0.0001(0.0000) 0.0003 

 0.0020(0.0001) 0.0027(0.0001) 0.0026 

 0.0012(0.0002) 0.0011(0.0000) 0.0007 

5.4 Confined seepage model  

Consider a confined seepage model (taken from Ref. [43]). The elevation of the dam is shown in Figure 9. The 

dam rests over soil which is composed of two permeable layers and one impermeable layer. The water height in the 
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upstream of the dam is denoted by  (m) following the uniform distribution . Over segment AB, the 

hydraulic head  with respect to the impermeable layer is . The water flows through two permeable 

soil layers towards the downstream over the segment CD. Assume that no water flows on any of the boundaries 

excepted the segments AB and CD. The first permeable layer is silty sand, while the second one is composed of silty 

gravel. The permeability of the two layers are modeled as anisotropic and characterized by lognormal random 

variables, the means and COVs of the horizontal and vertical permeability of the two soil layers are listed in Table 5, 

and the mean values are modeled as imprecise distribution parameters. 

 
Figure 9  The elevation of the dam. 

Table 5 Description of input parameters for confined seepage model. 

Input variables Description Distribution type Mean COV 
 (10-7m/s) Horizontal permeability of sand soil layer lognormal [4.5,5.5] 100% 

 (10-7m/s) Vertical permeability of sand soil layer lognormal [1.8,2.2] 100% 

 (10-6m/s) Horizontal permeability of gravel soil layer lognormal [4.5,5.5] 100% 

 (10-6m/s) Vertical permeability of gravel soil layer lognormal [1.8,2.2] 100% 

We assume that all the COVs of permeability equal to 100%, indicating a high degree of dispersion in 

characterizing the permeability. The seepage  at the downstream side is measured by volume over time (hour) over 

distance (meter) with the unit as , which is calculated by the integral . The failure 

event of interest is defined when seepage  exceeds a prescribed threshold 33. Summarily, the four permeability 

parameters of the permeable layers are modeled as imprecise random variables, while water height  is modeled as 

a precise uniform random variable, and limit state function is . The seepage flow  is calculated by 

solving the associated Laplace partial differential equation with the help of a finite element model comprising more 

than 1500 quadratic triangular elements. 

Firstly, we calculate the MPP on the condition that the imprecise parameters are fixed at the midpoint values, so 

the important direction is determined as  with 64 g-function 

calls. Then the two proposed procedures are applied to estimate the failure probability function of the seepage model, 
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and the first-order component functions are plotted in Figure 10. As for the GILS procedure, the two cases when the 

sample size  and are plotted separately. In the GILS-AGPR procedure, 54 training samples are 

involved to establish the GPR model so as to accurately perform one-dimensional reliability analysis along 2000 

candidate sample lines. In Figure 10, the three curves for each component function coincide well except that there is 

a slight difference for the mean value of . This slight difference may be introduced due to the approximation 

error from the established GPR model in the GILS-AGPR procedure. All the first-order components are 

monotonically increasing w.r.t. the imprecise parameters, so the upper and lower bounds of the uncertain intervals 

correspond to the maximum and minimum values of component failure probability.  

Table 6 shows the results of the constant component, the bounds of the failure probability as well as the first- 

and second-order sensitivity indices of the four uncertain mean values. It is seen that for both lower and upper 

bounds, the two proposed methods produce accurate estimate with small variation. This is due to the relatively small 

gap between the lower and upper bounds. Note that in the estimations of GILS, 500 sample lines used in Figure 10 

are chosen and a total of 1500 g-function evaluations are carried out. We can see that the results of both methods 

match well and lead to the same importance ranking of the components. By comparing the values of the indices, one 

can find that the uncertain mean value of  and  are the first and second most influential parameters in 

failure probability function, and all the second-order indices are quite small, indicating that the uncertain mean 

values have a weak interaction effect on the uncertainty of the failure probability. 
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Figure 10 Plots of the first-order component functions and their corresponding SDs for confined seepage model. 

 

Table 6 First- and second-order sensitivity indices of the confined seepage model. Standard deviations of estimates 

are shown as superscripts in parenthesis. 

Methods GILS GILS-AGPR 

Function evaluations 64+1500 64+54 

 8.29e-4(1.7e-5) 8.20e-4(9.3e-6) 

Lower bound of  3.92e-4(2.19e-5) 3.75e-4(9.4e-6) 

Upper bound of   1.59e-3(2.32e-5) 1.48e-3(9.8e-6) 

 

 0.6624(0.0019) 0.6723(0.0005) 

 0.1901(0.0007) 0.1992(0.0002) 

 0.0640(0.0005) 0.0317(0.0001) 

 0.0716(0.0004) 0.0851(0.0001) 

ijS  

 0.0062(0.0001) 0.0066(0.0000) 

 0.0018(0.0000) 0.0009(0.0000) 

 0.0023(0.0000) 0.0028(0.0000) 

 0.0006(0.0000) 0.0003(0.0000) 

 0.0007(0.0000) 0.0009(0.0000) 

 0.0003(0.0000) 0.0001(0.0000) 

6. Conclusions  

This paper develops two algorithms based on line sampling for rare failure event analysis subjected to imprecise 

probabilities. The first one is the GILS algorithm, which allows us to estimate the failure probability function with 

only one set of samples, globally exploring both the space of input variables and imprecise parameters at the same 

time. It is designed to inject PDF weight into the integral of classic line sampling, then the weighted integral 

formulation of the failure probability function is decomposed by the RS-HDMR method, and the constant, first-order 

and second-order estimators of component failure probability functions are analytically and separately derived. 

Additionally, the analytical formulations for the normal and lognormal case are also derived. The second algorithm 

formulated is the GILS-AGPR method, which is developed to further reduce the number of g-function calls and 

improve the accuracy of estimations. The steps of GPR model training and estimation of the component functions, as 

well as the relationship with the first algorithm, have been interpreted in detail. With only one stochastic simulation, 

the two proposed methods produce three important products, i.e., (i) the HDMR component functions for visibly 

learning the relationship between the failure probability and epistemic distribution parameters, (ii) the sensitivity 

indices for quantifying the contribution of the epistemic uncertainty in each input variable to that of the failure 
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probability, and (iii) the upper bound of failure probability which is served as a conservative estimation of the 

structural safety.  

The results of case studies show that the proposed algorithms have good global performance in estimating 

failure probability function for problems with rare events as well as the upper bound of the failure probability, and 

the computational cost is proved to be much lower. It is also concluded that, for the cases where the span of the 

bounds of failure probability covers one or two orders of magnitude, the two proposed methods produce satisfactory 

estimates for the lower bound, however, if it covers several orders (e.g., three or more) of magnitude, the upper 

bound can still be accurately estimated, but the estimates for the lower bound can be of low quality. GILS-AGPR can 

well make up the deficiency of a slow convergence speed of the GILS procedure with a reduced numerical cost. 

From the case studies, we can observe that the convergence speed of the estimators is influenced by two sources: one 

is the spread of the samples of uncertain distribution parameters in the estimators; the other one is that, the important 

direction is determined at a fixed point of imprecise parameters, which may cause that the estimators become less 

efficient in those areas far from this fixed direction. There also exist limitations of the line sampling algorithm. It 

relies on the correct identification of the important direction associated with the failure surface and is mostly 

applicable for problems with moderately nonlinear performance functions. As for models with high-dimensional 

input variables and multiple failure modes, one needs to perform additional investigations by considering other 

advanced approaches. 
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Appendix A  

Derivations of the constant, first-order and second-order component functions in Eqs. (13) and (14) 

a. Constant component  

Replace all the vectors  in the integral formulation of  with (independent and identically distributed 

with ), and transform the original space into standard normal space with the formulation  

based on line sampling procedure, 

                       . (A1) 

Utilizing the same set of samples  and the corresponding value of  at the 

intersection point along each sample line, the constant component can be estimated by 
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                . (A2) 

Additionally, the variance of the above estimator is 

.                                       (A3) 

b. The first-order component function  

The vector  is reconsidered by separating it into two parts,  and , then the integral is derived as 

 . (A4) 

Then  is introduced into the above integral as well as the PDF weight with , 

 . (A5) 

Similarly, transform the original space into standard normal space so that  

 (A6) 

, where  is the PDF weight function. Finally, the Monte Carlo estimator of  obtained 

considering the set of samples , leading to: 

  (A7) 

, where  denotes the integral which can be regarded as a function of .  

 can be further derived as , so the variance of this estimator is  

.                     (A8) 

c. The second-order RS-HDMR component function  



29 
 

The derivation for the second-order component function is quite similar with the one of the first-order 

component. Firstly, the vector  is rewritten as , and the first term (denoted by ) in  

formulation is derived as 

.  (A9) 

Then,  and the PDF weight of  are introduced into the above integral, 

 . (A10) 

The transformation formulation  is also applied on the above integral, and we denote the 

PDF weight as , hence, for the -th sample  the PDF weight becomes 

 . (A11) 

Let  denote the integral w.r.t. , then the estimator of  

 is derived as 

 . (A12) 

 can be further derived as  

   (A13) 

, so the variance of the above estimator is  

     (A14) 

Appendix B  

Analytical derivation of   (in Eq. (11)) as well as  and  (in Eq.(13)) for normal 

distribution case 

Let  be the d-th component of vector . For the case where  follows normal distribution, , 

the transformation of that component associated with the -th sample set to the rotated standard normal space will be 

specified as 

  (B1) 
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, where  and  denote the sample of the distribution parameters while  denotes the d-th component of 

sample . Under the assumption that all components of  follow Gaussian distribution, it can be shown that the 

PDF weight in Eq.(11) is analytically expressed as 

 (B2) 

, where  and . For simplification, four parameters , 

,  and  are introduced with the expressions below, 

  (B3) 

The above four parameters are not only functions of distribution parameters but also vary according to the 

values of the th sample. The four parameters are inserted into Eq.(B2) so as to rewrite the PDF weight as 

  (B4) 

The following steps for deriving the integral of  times  w.r.t.  along the line are the 

same as those in Appendix A of Ref.[30] and thus, the analytical expression of  is derived as 

  (B5) 

Based on the above derivations, the integral functions  and  in the estimators of the first-

order and second-order components can be easily derived accordingly. Their functional form is the same as the one 

shown in eq. (B5), except for the fact that the definition of the parameters , ,  and  is different. The 

corresponding formulations of the parameters , ,  and  for each of the functions  and 

 are listed in Table B1. 

The expressions in Table B1 have been deduced for the case where each component of vector  follows a 

normal distribution. For the case where each component of  follows a lognormal distribution, it can be shown that 

the expressions for ,  and  are identical to those shown in Eq. (B5) and Table B.1, except 

for the fact that one must consider the mean and standard deviation of the logarithm of  [30]. In case the components 

of vector  follow distributions different from normal or lognormal, the associated line integrals must be solved 

considering analytic or numerical schemes, as discussed in Ref. [30].  
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Table B1 Analytical formulations of , ,  and  in integral functions  and  

Integral 

functions 
    

 1 0   

     

 

1 0   
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