Development of Two-Dimensional Non-Hydrostatic Wave Model Based on Central-Upwind Scheme



Wu, Gangfeng, Lin, Ying-Tien, Dong, Ping and Zhang, Kefeng
(2020) Development of Two-Dimensional Non-Hydrostatic Wave Model Based on Central-Upwind Scheme. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 8 (7). p. 505.

Access the full-text of this item by clicking on the Open Access link.

Abstract

In this study, a two-dimensional depth-integrated non-hydrostatic wave model is developed. The model solves the governing equations with hydrostatic and non-hydrostatic pressure separately. The velocities under hydrostatic pressure conditions are firstly obtained and then modified using the biconjugate gradient stabilized method. The hydrostatic front approximation (HFA) method is used to deal with the wave breaking issue, and after the wave breaks, the non-hydrostatic model is transformed into the hydrostatic shallow water model, where the non-hydrostatic pressure and vertical velocity are set to zero. Several analytical solutions and laboratory experiments are used to verify the accuracy and robustness of the developed model. In general, the numerical simulations are in good agreement with the theoretical or experimental results, which indicates that the model is able to simulate large-scale wave motions in practical engineering applications.

Item Type: Article
Uncontrolled Keywords: central-upwind scheme, non-hydrostatic wave model, hydrostatic front approximation, wave break, wave propagation
Depositing User: Symplectic Admin
Date Deposited: 10 Sep 2020 12:16
Last Modified: 17 Mar 2024 09:25
DOI: 10.3390/jmse8070505
Open Access URL: https://doi.org/10.3390/jmse8070505
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3100674