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Abstract

This study explores the e¤ects of in�ation on economic growth in a two-sector
monetary search-and-matching model with productive government expenditure, which
yields novel results on the indeterminacy and multiplicity of equilibria in the search-
and-matching model. Speci�cally, when labor intensity of production in the centralized
market is below a threshold, the economy features a unique balanced growth path along
which in�ation reduces growth. When labor intensity in the centralized market is above
the threshold and the matching probability in the decentralized market is su¢ ciently
high, the economy features two balanced growth paths, in which one path exhibits
high growth whereas the other exhibits low growth. We �nd that in�ation has very
di¤erent e¤ects on growth along these two paths as a result of productive government
expenditure.
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1 Introduction

This study explores the e¤ects of in�ation on economic growth in a monetary search-and-
matching model with equilibrium indeterminacy in the form of sunspot-driven business cy-
cles. We consider a two-sector search-and-matching model from Lagos and Wright (2005)
and follow Aruoba et al. (2011) andWaller (2011) to incorporate endogenous capital accumu-
lation into the model. The novelty of our study is that we allow for productive government
spending as in the seminal study by Barro (1990) in order to generate endogenous growth.
The resulting monetary search-and-matching model with productive government spending
features equilibrium indeterminacy and sunspot-driven business cycles.
Our results can be summarized as follows. When labor intensity of production in the

centralized market is below a threshold value, the economy features a unique and determi-
nate balanced growth equilibrium in which an increase in the money growth rate reduces the
growth rate of output. Given that the threshold value on labor intensity of production in
the model is 0.5, empirical values of labor income share, which approximates labor intensity,
are often above this threshold, implying that the conventional case of a unique and determi-
nate balanced growth equilibrium with a negative growth e¤ect of in�ation may not be the
empirically relevant case.
In the more likely scenario in which labor intensity in the centralized market is above the

threshold of 0.5, the economy may feature two equilibria: a high-growth equilibrium and a
low-growth equilibrium. In this case, in�ation has very di¤erent e¤ects on growth in the two
equilibria as a result of productive government expenditure. When multiple equilibria are
present, the high-growth equilibrium always features a negative e¤ect of in�ation on economic
growth whereas the low-growth equilibrium may feature a negative e¤ect, a positive e¤ect
or a non-monotonic e¤ect of in�ation on growth.
Multiple equilibria arise when the matching probability in the decentralized market is

above a threshold value. When the matching probability is above this threshold but not too
high, the low-growth equilibrium is locally determinate whereas the high-growth equilibrium
is locally indeterminate and subject to sunspot-driven business cycles around it. When the
matching probability in the decentralized market is su¢ ciently high, both equilibria are
locally determinate. In this case, either equilibrium could emerge in the economy.
The intuition behind the di¤erent e¤ects of in�ation on growth can be explained as

follows. A higher in�ation rate increases the cost of consumption in the decentralized market
where consumption requires the use of money as a medium of exchange. Here we interpret
the decentralized market as an informal market, where transactions rely on �at money. Due
to the negative e¤ect of in�ation on the demand for consumption goods in the decentralized
market, individuals have less incentives to accumulate physical capital, which is a factor
input for the production of consumption goods given a positive capital intensity in the
decentralized market. As a result, higher in�ation reduces capital accumulation and causes
a negative e¤ect on economic growth. This negative capital-accumulation e¤ect of in�ation
is also present in previous studies, such as Aruoba et al. (2011), Waller (2011) and Chu et
al. (2014).
However, with the presence of productive government spending, in�ation has an ad-

ditional positive labor-market e¤ect on growth. When in�ation reduces the demand for
consumption in the decentralized market, it also shifts the demand for consumption to the
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centralized market, where money is not needed for transaction purposes. This increase in
consumption causes the individuals to also want to consume more leisure and reduce their
supply of labor in the centralized market. Given that the labor demand curve may become
upward sloping in the presence of productive government spending, the shift in labor supply
in this case leads to a surprising increase in equilibrium labor input, which in turn increases
the levels of output and capital investment in the centralized market. In the low-growth
equilibrium, both this positive labor-market e¤ect and the negative capital-accumulation
e¤ect are present to generate ambiguous e¤ects of in�ation on economic growth.
This study relates to the literature on in�ation and economic growth; see for example,

Wang and Yip (1992), Gomme (1993), Dotsey and Ireland (1996), Ho et al. (2007), Chang
et al. (2007), Chen et al. (2008) and Chu and Cozzi (2014). Some studies, such as Farmer
(1997), Itaya and Mino (2003), Chen and Guo (2008) and Lai and Chin (2010), also explore
the e¤ects of in�ation on equilibrium indeterminacy.1 Studies in this literature model money
demand using the classical approaches, such as cash-in-advance constraints, money in utility
and transaction costs, without considering search and matching. This study provides a novel
attempt to relate this literature to the literature on search-theoretic models of �at money in
order to highlight the implications of random matching on the e¤ects of in�ation on economic
growth and sunspot-driven business cycles.2 Our analysis contributes to this direction by
showing how the emergence of equilibrium indeterminacy in the presence of endogenous
growth driven by productive government spending can be shown in a standard search-and-
matching model and how it is a¤ected by parameters that determine matching frictions.
Speci�cally, we �nd that the degree of labor intensity of production in the centralized market
and the matching probability in the decentralized market are the key determinants of the
dynamic properties of the equilibria, whereas the degree of capital intensity of production in
the decentralized market determines whether in�ation a¤ects economic growth.
This study also relates to the literature on search and matching models of money and

capital; see for example, Shi (1999), Menner (2006), Williamson and Wright (2010), Aruoba
et al. (2011), Bencivenga and Camera (2011) andWaller (2011). Our study di¤ers from these
studies by allowing for endogenous economic growth in the long run. Among the related
literature, Berentsen et al. (2012) and Chiu et al. (2017) deal with an endogenously growing
economy in which economic growth is driven by innovation-based increases in production
productivity. Chu et al. (2014) also consider the e¤ects of in�ation on endogenous economic
growth in a matching model of money and capital. Their model generates endogenous
growth via capital externality and does not exhibit equilibrium indeterminacy due to the

1See Benhabib and Farmer (1994, 1996), Farmer and Guo (1994) and Schmitt-Grohe and Uribe (1997)
for seminal studies on equilibrium indeterminacy. Benhabib and Farmer (1999) and Mino (2017) provide a
survey of this literature. For studies that explore various mechanisms for the emergence of indeterminacy,
see for example Wen (1998, 2001), Goenka and Poulsen (2005), Goenka and Prechac (2006) and Wang and
Wen (2008). For studies that explore �scal policy and indeterminacy, see for example Goenka (1994), Guo
and Harrison (2004, 2008) and Park and Philippopoulos (2004).

2Previous studies, such as Giammarioli (2003), Hashimzade and Ortigueira (2005), Krause and Lubik
(2010) and Dong et al. (2016), also explore equilibrium indeterminacy in matching models of the labor market
and the credit market, but not matching models of �at money. Furthermore, our analysis of this Benhabib-
Farmer-Guo type of indeterminacy (i.e., sunspot-driven business cycles) is di¤erent from the multiplicity of
monetary equilibria (i.e., multiple equilibria on the price level and nominal/real money holdings) in matching
models discussed in Jean et al. (2010).
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absence of productive government expenditure. Our model generates endogenous growth
via productive government expenditure and features a unique equilibrium with the same
comparative static e¤ects of in�ation as in Chu et al. (2014) under one parameter space but
also multiple equilibria with di¤erent comparative static e¤ects of in�ation under another
parameter space that is empirically more relevant. In other words, the analysis in this study
nests the analysis in Chu et al. (2014) as a special case. Furthermore, we generalize the
model to the case of asymmetric degrees of capital intensity in the two markets and �nd
that they have di¤erent implications on equilibrium dynamics and the e¤ects of in�ation.
The rest of the paper is organized as follows. Section 2 presents the model. Section

3 studies dynamics. Section 4 examines the e¤ects of in�ation. Section 5 explores the
relationship between taxation and growth. The �nal section concludes.

2 The model

We consider an economy that consists of a unit continuum of identical and in�nitely-lived
individuals in discrete time. In each period, there are economic activities in two markets:
individuals �rst enter a decentralized market (hereafter DM) and then a centralized market
(hereafter CM). We interpret the DM as an informal market, in which transactions rely
on �at money and it is also easy for vendors to evade taxes, so that the government can
only levy taxes on wage and capital income in the CM, where transactions rely on credit.
Following the literature, we assume that there is no discounting within each period, while
the discount factor is � 2 (0; 1) between any two consecutive periods. The novelty of our
analysis is that we introduce capital externality and productive government spending into
this Lagos-Wright model with capital accumulation.3

2.1 Individuals�optimization in the CM

In the CM, individuals consume a general good or invest it to accumulate physical capital
in order to maximize their lifetime discounted utility.4 Their instantaneous utility function
is represented by5

ut = � lnxt � ht,

where xt is the consumption of the general good, ht is the supply of labor, and the parameters
 > 0 and � > 0 determine respectively the disutility of labor supply and the importance
of consumption in the CM. Let�s denote W (mt; kt) and V (mt; kt) as the period-t value

3If the government spending is non-productive instead (e.g., a waste of resources or utility-enhancing but
separable from consumption and leisure in the utility function), then the aggregate economy behaves as in
the Neoclassical growth model in Waller (2011).

4In this study, we do not consider �nancial frictions on the accumulation of capital. Miao and Wang (2014)
provide an interesting analysis on how �nancial frictions lead to asset bubbles and a¤ect economic growth.
See also Ho (2017) on how �nancial market globalization a¤ects economic growth via capital externality.

5Due to separable utility in xt and ht, we must consider log utility in order to be consistent with the
balanced growth path along which xt grows at a constant rate and ht remains stationary.
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functions for individuals in the CM and the DM, respectively. For the maximization problem
of individuals in the CM, we have

W (mt; kt) = max
xt;ht;mt+1;kt+1

f� lnxt � ht + �V (mt+1; kt+1)g, (1)

subject to a sequence of budget constraints given by

kt+1 +
mt+1

pt
= (1� �h;t)wtht + (1� � k;t) rtkt + (1� �) kt � xt + Tt +

mt

pt
, (2)

where pt is the price of general good xt, wt is the real wage rate, rt is the real rental price of
capital, �h;t; � k;t 2 (0; 1) denote the tax rates of labor income and capital income, respectively,
kt denotes the capital stock owned by an individual, and mt is the nominal money balance
in period t. The parameter � 2 (0; 1) is the depreciation rate of capital. Tt denotes a real
lump-sum transfer from the government.
If we use the budget constraint to substitute ht into equation (1), then standard dynamic

optimization leads to the following �rst-order conditions:

�

xt
=



(1� �h;t)wt
, (3)

�

xt
= �Vk (mt+1; kt+1) , (4)

�

ptxt
= �Vm (mt+1; kt+1) . (5)

Equation (3) represents a horizontal labor supply curve. Furthermore, equations (3) to (5)
imply that all individuals enter the DM in the next period with the same holdings of capital
and money because xt is the same across individuals, due to their quasi-linear preference, as
shown in (3). Finally, the envelope conditions are given by

Wk (mt; kt) =
� [1� � + (1� � k;t) rt]

xt
, (6)

Wm (mt; kt) =
�

ptxt
. (7)

2.2 Individuals�optimization in the DM

In the DM, �rms do not operate, and a special good is produced and traded privately
among individuals. We denote � 2 (0; 0:5) as the probability of an agent becoming a buyer.
Similarly, with probability � an agent becomes a seller, and with probability 1 � 2� he
is a nontrader. Following Lagos and Wright (2005), one buyer meets one seller randomly
and anonymously with a matching technology and buyers pay money in trade. Given this
matching setup, the value of entering the DM is given by

V (mt; kt) = �V b (mt; kt) + �V s (mt; kt) + (1� 2�)W (mt; kt) , (8)

5



where V b (mt; kt) and V s (mt; kt) are the values of being a buyer and a seller, respectively.
To analyze V b(:) and V s(:), we consider the following functional forms for the buyers�

preference and the sellers�production technology. In the DM, each buyer�s utility ln qbt is
increasing and concave in the consumption of the special good. Each seller produces special
good qst by combining her capital kt and e¤ort et subject to the following Cobb-Douglas
production function:

qst = F (kt; Ztet) = Ak�t (Ztet)
1�� , (9)

where A > 0 is a Hicks-neutral productivity parameter. The parameter � 2 (0; 1) determines
capital intensity � and labor intensity 1�� of production in the DM whereas Zt is the level of
labor productivity. As in the seminal study by Barro (1990), labor productivity is determined
by productive government expenditure; i.e., we assume that Zt = Gt.6 Rewriting equation
(9), we can express the utility cost of production in terms of e¤ort as

e

�
qst
Gt
;
kt
Gt

�
= A�1=(1��)

�
qst
Gt

�1=(1��)�
kt
Gt

���=(1��)
. (10)

Buyers purchase special good qbt by spending money d
b
t , whereas sellers earn money d

s
t by

producing special good qst . Given these terms of trade, the values of being a buyer and a
seller are respectively

V b(mt; kt) = ln q
b
t +W (mt � dbt ; kt), (11)

V s(mt; kt) = �e
�
qst
Gt
;
kt
Gt

�
+W (mt + dst ; kt). (12)

Di¤erentiating (11) and (12) and substituting them into (8), we can obtain the following
envelope condition for mt:

Vm(mt; kt) = (1� 2�)Wm(mt; kt) + �

�
1

qbt

@qbt
@mt

+Wm(mt � dbt ; kt)

�
1� @dbt

@mt

��
(13)

+�

�
�e1

�
qst
Gt
;
kt
Gt

�
1

Gt

@qst
@mt

+Wm(mt + dst ; kt)

�
1 +

@dst
@mt

��
,

where Wm(mt; kt) = Wm(mt � dbt ; kt) = Wm(mt + dst ; kt) = �=(ptxt) from (7). Similarly, we
can obtain the following envelope condition for kt:

Vk(mt; kt) = (1� 2�)Wk(mt; kt) + �

�
1

qbt

@qbt
@kt

�Wm(mt � dbt ; kt)
@dbt
@kt

+Wk(mt � dbt ; kt)

�
(14)

+�

�
�e1

�
qst
Gt
;
kt
Gt

�
1

Gt

@qst
@kt

� e2

�
qst
Gt
;
kt
Gt

�
1

Gt
+Wm(mt + dst ; kt)

@dst
@kt

+Wk(mt + dst ; kt)

�
,

where Wk(mt; kt) = Wk(mt � dbt ; kt) = Wk(mt + dst ; kt) = � [(1� � k;t) rt + (1� �)] =xt from
(6).

6It is useful to note that Barro (1990) considers inelastic labor supply whereas we consider elastic labor
supply, which interacts with productive government spending to generate indeterminacy. The constant
returns to scale with respect to kt and Gt as in Barro (1990) is necessary to generate endogenous long-run
growth (but not for equilibrium indeterminacy); therefore, we assume that the exponent on Zt in (9) is 1��,
which in turn corresponds to labor-augmenting technology.
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To solve the marginal value of holding money (13) and capital (14), we consider a com-
petitive equilibrium with price taking as in Aruoba et al. (2011) and Waller (2011).7 Under
price taking, once buyers and sellers are matched, they both act as price takers. Given the
price ept of the special good, buyers choose qbt to maximize

V b(mt; kt) = max
qbt

[ln qbt +W (mt � eptqbt ; kt)] (15)

subject to the budget constraint
dbt = eptqbt � mt. (16)

It can be shown that in the DM, buyers spend all their money, so that the money constraint
implies that8

qbt = mt=ept. (17)

As for sellers�maximization problem in the DM, it is given by

V s(mt; kt) = max
qst

�
�e
�
qst
Gt
;
kt
Gt

�
+W (mt + eptqst ; kt)� . (18)

Sellers�optimal supplies of the special good can be obtained from the following condition:

e1

�
qst
Gt
;
kt
Gt

�
1

Gt
= eptWm(mt + eptqst ; kt), 1

1� �
e

�
qst
Gt
;
kt
Gt

�
= �

eptqst
ptxt

, (19)

where e1 denotes the derivative of e(:) with respect to its �rst argument. The second equality
of (19) makes use of (7) and (10).
Using (17) and (19), we can obtain @qbt=@mt = 1=ept, @dbt=@mt = 1, and @dst=@kt =ept (@qst =@kt), whereas the other partial derivatives, @qbt=@kt, @dbt=@kt, @qst =@mt and @dst=@mt,

in (13) and (14) are zero. Substituting these conditions, qbt = qst = qt and (19) into (13) and
(14), we can derive the following conditions:

Vm(mt; kt) =
(1� �) �

ptxt
+

�eptqt , (20)

Vk(mt; kt) =
� [(1� � k;t) rt + (1� �)]

xt
� �

Gt
e2

�
qt
Gt
;
kt
Gt

�
, (21)

where e2 denotes the derivative of e(:) with respect to its second argument. The intuition
behind these two conditions can be explained as follows. The marginal value of money
holding is the expected gain in utility by either consuming more special good qt in the DM
with probability � or consuming more general good xt in the CM with probability 1 � �.
The marginal value of capital holding is the gain in utility by consuming more general good
xt in the CM with the after-tax net capital income (1� � k;t) rt + 1 � � plus the expected
gain in utility by incurring less production e¤ort as a seller in the DM with probability �.9

7We cannot consider bargaining in this model because the bargaining condition is incompatible with
endogenous growth; see Appendix A in Chu et al. (2014) for a detailed discussion.

8A proof regarding the validity of the binding qbt = mt=~pt can refer to Chu et al. (2014, Appendix B).
9Recall that e2(qt=Gt; kt=Gt) < 0; see equation (10).
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2.3 Firms�optimization in the CM

In the CM, there is a large number of identical �rms. In each period, each �rm produces the
general good using capital Kt and labor Ht. The production function is given by

Yx;t = AK�
t (ZtHt)

1�� , (22)

where the parameter � 2 (0; 1) determines labor intensity 1 � � of production in the CM.
Labor productivity is determined by productive government spending as before; i.e., Zt = Gt.
Taking factor prices and the government�s expenditure as given, the representative �rm
chooses Ht and Kt to maximize its pro�ts. Interior solutions of the �rm�s problem are
characterized by the �rst-order conditions as follows:

rt = �AK��1
t (GtHt)

1�� , (23)

wt = (1� �)AK�
t H

��
t G1��t . (24)

In equilibrium, Kt = kt and Ht = ht.

2.4 Government

In this economy, the government plays the following two roles: it implements �scal and mon-
etary policies. In each period, the government�s public expenditure is �nanced by imposing a
tax on individuals�wage and capital income in the CM. Therefore, the government�s budget
constraint can be expressed as10

Gt = �h;twtht + � k;trtkt = �̂ tYx;t, (25)

where we denote �̂ t � (1� �) �h;t + �� k;t. The government also issues money at an exoge-
nously given rate at �t = (mt+1 � mt)=mt to �nance a lump-sum transfer that has a real
value of Tt = (mt+1�mt)=pt = �tmt=pt. We separate the �scal and monetary components of
the government in order to allow for monetary policy independence. In other words, we do
not consider the case in which the government can use the central bank to �nance its �scal
spending.11

10Our results are also robust to the case of government spending being �nanced by a lump-sum tax
G = T , so long as we assume that government spending G is proportional to output (i.e., G = �Yx) in
order to ensure balanced growth. Furthermore, allowing for government bond does not change the e¤ects
of in�ation on economic growth although the dynamic properties of the model become substantially more
complicated.
11In the case of seigniorage, higher in�ation would increase tax revenue for productive government spend-

ing, and hence, it would have an additional positive e¤ect on economic growth. Therefore, the overall e¤ect
of in�ation on economic growth becomes more complicated.
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2.5 Equilibrium

The equilibrium is de�ned as a sequence of allocations fGt; xt; ht; Yx;t; qt; dt;mt+1; kt+1g1t=0,
a sequence of prices frt; wt; pt; ~ptg1t=0 and a sequence of policies f�t; �h;t; � k;t; Ttg

1
t=0, with the

following conditions satis�ed in each period.

� In the CM, individuals choose fxt; ht;mt+1; kt+1g to maximize (1) subject to (2), taking
frt; wt; ptg and f�t; �h;t; � k;t; Ttg as given;

� In the DM, buyers and sellers choose fqt; dtg to maximize (11) and (12) respectively,
taking f~ptg as given;

� Firms in the CM produce fYx;tg competitively to maximize pro�t taking frt; wtg and
fGtg as given;

� The real aggregate consumption includes consumption in CM and DM such that

ct = (ptxt + �~ptqt) =pt;

� The real aggregate output includes output in CM and DM such that

Yt = (ptYx;t + �~ptqt) =pt;

� The capital stock accumulates through investment from the general good such that

kt+1 = Yx;t � xt �Gt + (1� �) kt;

� The government balances its budget in every period such that Gt = �̂ tYx;t and Tt =
�tmt=pt:

� All markets clear in every period.

3 Equilibrium indeterminacy

In the rest of the paper, we assume stationary monetary and tax policies, i.e., �t = �,
�h;t = �h, and � k;t = � k, which implies �̂ t = �̂ � (1� �) �h + �� k. The stationary money
growth rate has a lower bound, i.e., � � � � 1.12 The dynamical system can be derived
as follows. First, we de�ne two transformed variables �t � mt= (ptxt) and 
t � xt=kt. �t
represents the ratio of real money balance to consumption in the CM, whereas 
t represents
the consumption-capital ratio in CM. Note that �t and 
t are both jump variables and

12It can be shown that this lower bound is equivalent to a zero lower bound on the nominal interest rate.
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they are stationary on a balanced growth path. From equations (5) and (20), we obtain an
autonomous dynamical system for �t, which is given by the following di¤erence equation:

�t+1 =
1 + �

�(1� �)
�t �

�

�(1� �)
� f(�t). (26)

Figure 1 shows that the money-consumption ratio �t jumps immediately to a unique and
saddle-point stable steady-state equilibrium �.

Figure 1: Phase diagram of �t

Manipulating equations (22) and (25) yields Gt = (�̂A)1=�kth
(1��)=�
t , which is increasing

in labor ht. We then use this condition to rearrange (23) and (24) as

rt = �A1=� (�̂ht)
(1��)=� , (23a)

wt = (1� �) �̂ (1��)=�A1=�kth
(1�2�)=�
t . (24a)

It is useful to note that (24a) internalizes productive government spending in the labor
demand curve in the CM, which becomes upward sloping if and only if � < 1=2 (i.e., labor
intensity 1�� > 1=2 in the CM). Combining labor demand in (24a) and labor supply in (3),
we derive that the following equilibrium relationship between labor ht and the consumption-
capital ratio 
t:

ht =

�
�


(1� �h) (1� �) �̂ (1��)=�A1=�

��=(2��1)


�=(1�2�)
t , (27)

which shows a positive relationship between labor ht and the consumption-capital ratio 
t if
and only if � < 1=2 (i.e., labor intensity 1� � > 1=2 in the CM). This positive relationship
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captures the case in which a decrease in labor supply (i.e., an upward shift in the horizontal
labor supply curve) leads to an increase in equilibrium labor input due to an upward-sloping
labor demand curve in the CM.
Combining equations (4), (10), (19), (21), (23a) and (27), we obtain the dynamical

equation of consumption in the CM:
xt+1
xt

= �
�
1� � + � (1� � k)D


�
t+1 + ���t+1
t+1

�
, (28)

where we de�ne two composite parameters fD; �g as follows.

D � �̂ (1��)=�A1=�
�
�


(1� �h) (1� �) �̂ (1��)=�A1=�

�(1��)=(2��1)
> 0,

and � � (1� �) = (1� 2�). For convenience, we plot the value of � against � in Figure 2.

Figure 2: Relationship between � and �

The resource constraint implies the following dynamics of the capital stock kt:

kt+1
kt

= (1� �̂)D
�t � 
t + 1� �, (29)

where we have used (22), (27) and Gt = (�̂A)1=�kth
(1��)=�
t . Combining equations (28) and

(29), we derive the dynamics of 
t � xt=kt as follows.


t+1

t

=
�
�
1� � + � (1� � k)D


�
t+1 + ���t+1
t+1

�
(1� �̂)D
�t � 
t + 1� �

, (30)

From (26) and (30), the steady-state values of �t and 
t, denoted as � and 
, are determined
by

� =
��

� [1 + �� (1� �) �]
, (31)
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(1 + ����)
 = [(1� �̂)� �� (1� � k)]D

� + (1� �) (1� �) . (32)

We �rst substitute (31) into (32) and then plot the left-hand side (LHS) and right-hand side
(RHS) of (32) in Figure 3.13

Figure 3a shows that when � > 1=2 (i.e., � < 0), there is a unique steady-state equilibrium
value of 
. In this case, an increase in � raises the steady-state equilibrium value of 
 given
� > 0 in the DM. Intuitively, higher in�ation increases the cost of consumption in the DM
where money is used as a medium of exchange. Due to this lower demand for consumption
and a positive capital intensity in the DM, there is less incentive to accumulate physical
capital, which is a factor input for production in the DM. Furthermore, the lower demand
for consumption in the DM shifts the demand for consumption to the CM. Both of these
e¤ects lead to an increase in the consumption-capital ratio 
 in the CM.

Figure 3a: Unique equilibrium under � > 1=2

Figure 3b shows that when � < 1=2 (i.e., � > 1) and � is su¢ ciently large, there
are two steady-state equilibrium values of 
 denoted as f
low;
highg. In this case, an
increase in � leads to an increase in 
low but a decrease in 
high. Given the two equilibria,
we have global indeterminacy. The intuition can be understood as follows. Substituting
Gt = (�̂A)

1=�kth
(1��)=�
t into (22) yields Yx;t = �̂ (1��)=�A1=�kth

(1��)=�
t , where (1 � �)=� > 1

if and only if � < 1=2 (i.e., labor intensity 1 � � > 1=2 in the CM). When (1 � �)=� > 1,
the aggregate production function exhibits increasing returns to scale in labor, which in turn
gives rise to an upward-sloping labor demand curve in the CM. Together with a horizontal
labor supply curve from the quasi-linear preference, global indeterminacy arises. Finally,
when � < 1=2 (i.e., � > 1) and � is su¢ ciently small, there is no equilibrium, and we rule
out this parameter space by assumption.

13In Figures 3a and 3b, the RHSs are plotted with the condition (1� �̂)� �� (1� �k) > 0. Appendix A
provides a proof for this condition.
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Figure 3b: Multiple equilibria under � < 1=2 and a large �

Figure 1 implies that �t+1 in (30) jumps to its unique steady-state value � given in (31).
Therefore, the two-dimensional dynamic system degenerates to a one-dimensional dynamic
system for 
t.14 Taking a linear approximation around the steady-state equilibrium value 

and using (32), we derive


t+1 = (1� �)
 + �
t � F (
t), (33)

where � � [(1� �) + (1� �) (1� �̂)D
�] = f� [(1� �) + � (1� �) (1� � k)D

�]g is the char-

acteristic root of the dynamical system. Figure 4 plots the phase diagram of the local
dynamics of 
t under � > 1=2. When � > 1=2 (i.e., � < 0), the characteristic root � is
greater than one. In this case, Figure 4 shows that the unique steady-state equilibrium ex-
hibits saddle-point stability; therefore, 
t always jumps to the unique steady state. However,
empirical values of labor income share suggest that labor intensity 1 � � is usually greater
than 0.5. Therefore, � < 1=2 is the more relevant parameter space, which we examine next.

14Exploring the dynamics of the two-dimensional system would yield the same results; see Appendix B.

13



Figure 4: Phase diagram of 
t under � > 1=2

For the case of � < 1=2 (i.e., � > 1), it would be easier to understand the results if we
�rst plot the relationship between the characteristic root � and the steady-state equilibrium
value 
. Also, it is useful to recall that � 2 (�1; 1) implies a dynamically stable (i.e., locally
indeterminate)15 system and that a system is dynamically unstable (i.e., locally determinate)
if � < �1 or � > 1. Figure 5 shows that the equilibrium 
low is always dynamically
unstable because 
low < 
� which implies � > 1, whereas the equilibrium 
high can be either
dynamically unstable (when 
high > 
�� which implies � < �1 or � > 1) or dynamically
stable (when 
high < 
�� which implies � 2 (�1; 1)).16

15See for example Palivos et al. (2003) for the standard de�nition of local indeterminacy.
16We will show that 
high > 
� and also derive 
� and 
�� in Appendix A.
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Figure 5: Relationship between � and 
 under � < 1=2

Recall from Figure 3b that 
high is increasing in the value of the matching parameter � in
the DM. Then, Figure 6a17 shows that when � < 1=2 and � is not too large,18 the equilibrium

high is locally indeterminate (i.e., dynamically stable) because 
� < 
high < 
�� whereas the
equilibrium
low is always locally determinate (i.e., dynamically unstable) because
low < 
�.
When 
low is unstable and 
high is stable, 
t reaching the unstable equilibrium 
low is a
measure-zero event. In this case, the economy is subject to sunspot �uctuations around the
stable equilibrium 
high.

17In this �gure, we draw the case in which the characteristic root at the steady-state equilibrium 
high is
� 2 (0; 1). One can also draw the case of � 2 (�1; 0).
18Here we assume that � is su¢ ciently large for the presence of equilibria but not excessively large. In the

proof of Proposition 1, we explicitly derive these threshold values; see Appendix A.
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Figure 6a: Phase diagram of 
t under
� < 1=2 and a small �

Figure 6b19 shows that when � < 1=2 and � is su¢ ciently large,20 the two equilibria are
both locally determinate (i.e., dynamically unstable) because 
high > 
�� and 
low < 
�. In
this case, it is possible for 
t to jump to either equilibrium. Therefore, unlike the case with
a small �, we cannot rule out the steady-state equilibrium 
low under a su¢ ciently large �.
We summarize these results in Proposition 1.

Proposition 1 If � > 1=2, then there exists a unique steady-state equilibrium value of 
t,
which exhibits saddle-point stability. If � < 1=2, then there exist two equilibria. One is
locally determinate and the other one is locally indeterminate under a su¢ ciently small �
whereas they are both locally determinate under a su¢ ciently large �.

Proof. See Appendix A.

19In this �gure, we draw the case in which the characteristic root at the steady-state equilibrium 
high is
� < �1. One can also draw the case of � > 1.
20In Appendix C we show in a numerical example that the cuto¤ values of � (i.e., �� and ���) are within

the ranges of our assumption. In particular, the numerical example shows that ��� 2 (0; 0:5), and �� can
be negative. This implies that for many parameter values, there always exist two equilibria under � < 1=2.
The higher equilibrium 
high is locally indeterminate when 0 < � < ��� whereas it is locally determinate
when ��� < � < 0:5.
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Figure 6b: Phase diagram of 
t under � < 1=2 and a large �

4 In�ation and economic growth

In this section, we examine the relationship between in�ation and economic growth. Given
that in our analysis we treat the growth rate of money supply mt as an exogenous policy
parameter �, we �rst need to discuss the relationship between � and the endogenous in�ation
rate �. Along a balanced-growth path, aggregate variables, such as output, consumption,
capital and real money balance, grow at the same long-run growth rate g. In other words,
the growth rate of mt=pt is equal to g, which in turn implies that (1 + g) = (1 + �)=(1 + �)
because the growth rates of mt and pt are respectively � and �. From the approximation
ln(1+X) � X, the relationship (1+�) = (1+�)=(1+g) becomes � = ��g(�), where the long-
run growth rate g(�) is a function of � as we will show below. Taking the derivative yields
@�=@� = 1� g0(�). Therefore, if money growth � has a negative e¤ect on economic growth
g, then it must have a positive e¤ect on in�ation � implying also a negative relationship
between in�ation and economic growth. Even if money growth � has a positive e¤ect on
economic growth g, it would still have a positive e¤ect on in�ation � so long as its e¤ect
on economic growth is not excessively large (i.e., g0(�) < 1). In this case, the positive
relationship between money growth and economic growth implies also a positive relationship
between in�ation and economic growth. Therefore, the relationship between money growth
and economic growth generally carries over to in�ation and economic growth.
Using (29), we obtain the following expression for the long-run growth rate of the econ-

omy:

g � kt+1
kt

� 1 = (1� �̂)D
�t � 
t � �. (34)

In the case of a unique equilibrium (i.e., � > 1=2 and � < 0), we have @g=@
 < 0. Further-
more, Figure 3a shows that @
=@� > 0 given � > 0. Therefore, the overall e¤ect of � on
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g is negative. Intuitively, an increase in in�ation leads to a higher cost of money holding,
which in turn increases the cost of consumption and reduces the level of consumption in
the DM. As a result, there are less incentives to accumulate capital for production in the
DM, and the lower rate of capital accumulation leads to a lower growth rate of the economy.
We summarize this result in Proposition 2. This result is similar to the one in Chu et al.
(2014), except that we have generalized the model to asymmetric degrees of capital intensity
in the CM and the DM and shown that it is the degree of capital intensity � in the DM that
determines whether in�ation a¤ects economic growth.

Proposition 2 If � > 1=2, then there exists a unique balanced growth equilibrium in which
a higher money growth rate � reduces economic growth.

Proof. See Appendix A.

In the more plausible case of � < 1=2, we have multiple equilibria, and it would be more
transparent if we use (28) to express the long-run growth rate of the economy as

g � xt+1
xt

� 1 = � [1� � + � (1� � k)D

� + ���
]� 1, (35)

where � is the steady-state ratio of real money balance to consumption in the CM as shown
in (31). The ratio of real money balance to consumption in the DM is decreasing in the
growth rate of money supply, and this result can be shown as follows:

@�

@�
= � ��

� [(1 + �)� � (1� �)]2
< 0. (36)

Intuitively, a higher money growth rate increases in�ation, which in turn raises the cost of
money holding. Equation (35) also shows that a larger 
 corresponds to a higher growth
rate for a given � because � is positive (recall that � < 1=2 implies � > 1). Therefore, 
high

corresponds to the high-growth equilibrium ghigh whereas 
low corresponds to the low-growth
equilibrium glow.
Figure 3b shows that 
high is decreasing in � given � > 0. Together with the result

that � is also decreasing in �, we �nd that the high-growth equilibrium growth rate ghigh is
decreasing in the money growth rate �. Therefore, the e¤ect of in�ation on growth in the
high-growth equilibrium is the same as in the unique equilibrium. However, the intuition
behind these results is di¤erent. In the case of the high-growth equilibrium, an increase in
in�ation reduces the consumption-capital ratio 
high in the CM, and this counterintuitive
result is due to the presence of global indeterminacy. From (34), we see that 
 has a positive
e¤ect on g via D
� (when � is positive) and a negative e¤ect on g via �
. The overall
relationship between g and 
 in (34) is a U-shaped function21 as we show in Figure 7.22

Because 
high is always on the upward-sloping side of the U-shape, the increase in � leads
to a decrease in both 
high and ghigh. In this case, when in�ation decreases consumption in

21Recall that � > 1 when � < 1=2.
22In Figure 7, the equilibria f
low;
highg are determined by the intersection of g(
) in (34) and g(
) in

(35), where the latter is a monotonically increasing function in 
 when � is positive. We do not draw (35)
in Figure 7 to simplify the diagram.
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the CM, it causes the individuals to also want to consume less leisure and raise their supply
of labor in the CM. Given that the labor demand curve is upward sloping due to productive
government spending, this increase in labor supply (i.e., a downward shift in the horizontal
labor supply curve) leads to a surprising decrease in equilibrium labor input, which in turn
reduces the levels of output and capital investment.

Figure 7: Relationship between g and 
 in
(34) when � > 1

As for 
low, it is increasing in � given � > 0 as shown in Figure 3b. However, glow can be
either increasing or decreasing in �. Recall from (34) that g is a U-shaped function in 
 when
� > 1. Therefore, when 
low is su¢ ciently small, the increase in 
low caused by an increase
in � reduces the growth rate glow. Intuitively, higher in�ation reduces both consumption and
the incentives to accumulate capital for production in the DM. This lower rate of capital
accumulation causes the lower growth rate. This is the negative capital-accumulation e¤ect
of in�ation. In contrast, when 
low is su¢ ciently large, the increase in 
low caused by an
increase in � raises the growth rate glow. Intuitively, when in�ation increases consumption
in the CM, it causes the individuals to also want to consume more leisure and reduce their
supply of labor in the CM. Given that the labor demand curve is upward sloping due to
productive government spending, this decrease in labor supply (i.e., an upward shift in the
horizontal labor supply curve) leads to a surprising increase in equilibrium labor input, which
in turn increases the levels of output and capital investment. This is the novel positive labor-
market e¤ect of in�ation in the presence of productive government spending. Therefore, the
overall e¤ect of � on the low-growth equilibrium growth rate glow is generally a U-shaped
function. However, as we will show in Proposition 3, it is also possible for the labor-market
e¤ect to always dominate the capital-accumulation e¤ect (i.e., when 
low is always on the
upward-sloping side of the U-shape in Figure 7) or for the capital-accumulation e¤ect to
always dominate the labor-market e¤ect (i.e., when 
low is always on the downward-sloping
side of the U-shape). We summarize these results in Proposition 3.
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Proposition 3 If � < 1=2, then a higher money growth rate � has the following e¤ects on
economic growth: the high-growth equilibrium ghigh is decreasing in � whereas the low-growth
equilibrium glow can be an increasing, a decreasing or a U-shaped function in �.

Proof. See Appendix A.

5 Taxation and economic growth

In the original Barro model, the relationship between labor income tax and economic growth
is monotonically positive, which is rather unrealistic. Empirical studies tend to �nd ambigu-
ous relationships between taxation and growth.23 Our extension of the Barro model with
matching frictions and equilibrium indeterminacy indeed predicts ambiguous relationships
between labor income tax and growth.24 The intuition can be explained as follows. On the
one hand, increasing the labor income tax rate generates more tax revenue for productive
government spending, which causes a positive e¤ect on economic growth. On the other
hand, increasing the labor income tax rate a¤ects labor supply. When the model features a
unique and determinate equilibrium, the reduction in labor supply causes a negative e¤ect
on economic growth. When the model features indeterminacy and multiple equilibria, how
the labor income tax rate a¤ects equilibrium labor becomes ambiguous and di¤ers across
equilibria.
To show these results, the rest of this section is devoted to investigate the relationship

between the labor income tax rate �h and economic growth. For simplicity, we set the tax
rate of capital income to zero � k = 0. From (32), the marginal e¤ect of tax rate �h on the
consumption-capital ratio 
 in CM is given by

@


@�h
= �

D
�+1

[�h(1��h)]
�
1��
2��1

�
[�h (�h � �)� (1� ��) (2�h � 1)]| {z }

?

[1� (1� �) �h � ��] (�� 1)D
� � (1� �) (1� �)
. (37)

For convenience, we de�ne a threshold value � �h given by

� �h �
1

2

�
[�+ 2 (1� ��)]�

q
[�+ 2 (1� ��)]2 � 4 (1� ��)

�
.

It is useful to note that � �h 2 (0; 1=2) when � > 1=2 whereas � �h 2 (1=2; 1) when � < 1=2.
As a result, equation (37) shows that if � > 1=2 (i.e., � < 0), then the equilibrium 
 is
an inverted U-shaped function in �h. For the case of � < 1=2 (i.e., � > 1), the equilibrium

low is an U-shaped function in �h whereas the equilibrium 
high is an inverted U-shaped
function in �h.

23See for example Huang and Frentz (2014) for a concise survey that summarizes the contrasting empirical
�ndings in the literature.
24It is useful to note that the relationship between capital income tax and economic growth in our model

can also be positive or negative, which is also the case in the original Barro model.
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Finally, we explore the growth e¤ect of taxation. Di¤erentiating (35) with respect to �h
yields

@g

@�h
=
��D
� (1� 2�h)
[�h (1� �h)]

�
1� �

2�� 1

�
+ �

�
�D�
��1 + ���

	� @

@�h

�
. (38)

Equation (38) shows that an increase in the labor income tax rate �h has ambiguous e¤ects
on economic growth as summarized in the following two propositions.

Proposition 4 If � > 1=2, then an increase in the labor income tax rate has an inverted-U
e¤ect on the equilibrium growth rate.

Proof. See Appendix A.

Proposition 5 If � < 1=2, then an increase in the labor income tax rate has a U-shaped
e¤ect on growth in the low-growth equilibrium whereas it has an inverted-U e¤ect on growth
in the high-growth equilibrium.

Proof. See Appendix A.

6 Conclusion

In this study, we have explored the e¤ects of in�ation in a monetary search-and-matching
model. A novelty of our analysis is productive government expenditure that generates en-
dogenous growth and sunspot-driven indeterminacy in the model. We �nd that when labor
intensity in the CM is below a threshold, the model features a unique equilibrium in which
in�ation has a negative e¤ect on growth so long as capital intensity is positive in the DM.
When labor intensity in the CM is above the threshold which is empirically the more likely
scenario, the model may feature two equilibria, in which the two equilibria display di¤erent
comparative statics of growth with respect to in�ation. Speci�cally, the high-growth equi-
librium features a negative e¤ect of in�ation on growth whereas the low-growth equilibrium
may feature a negative, a positive or a non-monotonic e¤ect of in�ation on growth. Further-
more, under a su¢ ciently high matching probability in the DM, both equilibria are locally
determinate; therefore, either equilibrium may emerge in the economy.
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Appendix A

Proof of Proposition 1. Equation (30) shows that the variable �t jumps to its unique
steady state � given in (31). We substitute � into (30) to obtain the following autonomous
one-dimensional dynamical system for 
t:


t+1

t

=
�
�
1� � + � (1� � k)D


�
t+1 + ���
t+1

�
D
�t � 
t + 1� �

. (A1)

Taking a linear approximation around the steady-state equilibrium 
 yields


t+1 = 
+
(1� �) + (1� �) (1� �̂)D
�

� [(1� �) + � (1� �) (1� � k)D
�]
(
t � 
) , (A2)

where we have used (32). Based on (A2), the characteristic root � of the dynamical system
can be expressed as

� � (1� �) + (1� �) (1� �̂)D
�

� [(1� �) + � (1� �) (1� � k)D
�]
. (A3)

The local stability properties of the steady state are determined by comparing the number
of the stable root with the number of predetermined variables in the dynamical system. In
(A2), there is no predetermined variable because 
t is a jump variable. As a result, the
steady-state equilibrium 
 is locally determinate when the characteristic root is unstable
(i.e., j�j > 1) whereas it is locally indeterminate when the characteristic root is stable (i.e.,
j�j < 1). Given these properties, we have the following results. First, if � > 1=2 (i.e., � < 0),
then the dynamical system exists a unstable root. This result implies that 
t displays
saddle-point stability and equilibrium uniqueness as shown in Figures 3a and 4.
Second, if � < 1=2 (i.e., � > 1), then whether the root is unstable or stable is determined

by the steady-state equilibrium value of 
. The result implies that multiple equilibria may
emerge as shown in Figure 3b. To derive a range for the steady-state equilibrium value of

, we �rst make use of (32) to obtain

@LHS

@

=
@RHS

@

) 
� �

�
(1� �) (1� �)

(1� �̂ � �� (1� � k)) (�� 1)D

�1=�
, (A4)

where 
� is a threshold value under which 
low < 
� and 
high > 
� as shown in Figure 8.
Notice that for any values of �h; � k 2 (0; 1), we have

1� �̂ � �� (1� � k) = 1� (1� �) �h � �� k � �� (1� � k)

= 1� �� � (1� �) �h � � (1� �) � k

> 1� �� � (1� �)� � (1� �) = 0:

This implies 
� > 0.
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Figure 8

A steady-state equilibrium 
 is dynamically stable if � 2 (�1; 1). One can manipulate
(A3) to show that � 2 (�1; 1) is equivalent to


� < 
 < 
��, (A5)

where 
�� � f[(1 + �) (1� �)] = [(1� �̂ + �� (1� � k)) (�� 1)D]g1=�. Therefore, a steady-
state equilibrium 
 is locally indeterminate if 
 2 (
�;
��) whereas it is locally determinate
if 
 < 
� or 
 > 
��. We can now conclude that 
low is locally determinate because

low < 
�. However, 
high can be either locally indeterminate when 
� < 
high < 
�� or it
can be locally determinate when 
high > 
��.
Next, we examine how the matching probability � a¤ects the steady-state equilibrium

values of f�;
g, which in turn a¤ect the dynamical properties of 
t. Di¤erentiating (31)
and (32) with respect to � yields

@�

@�
=

� (1 + �� �)

� [(1 + �)� � (1� �)]2
> 0. (A6)

@


@�
=

��
2

(1� �̂ � �� (1� � k)) (�� 1)D
� � (1� �) (1� �)| {z }
?

�
� + �

@�

@�

�
| {z }

+

. (A7)

Equation (A6) indicates that increasing � has a positive e¤ect on �. Equation (A7) shows
that increasing � has an ambiguous e¤ect on 
. Speci�cally, if and only if 
 > 
�, then 

is increasing in �. The result implies that an increase in � may cause 
high to change from
being locally indeterminate (i.e., 
high < 
��) to being locally determinate (i.e., 
high > 
��).
Finally, it can be shown that when � is su¢ ciently large (small), we must obtain 
high > 
��

(
high < 
��). To prove this statement, we make use of (32) to obtain

(1 + ����) = [1� �̂ � �� (1� � k)]D

��1 +

(1� �) (1� �)



: (A8)
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The right-hand side (RHS) of (A8) is increasing in 
, and this result can be shown as follows:

@RHS

@

=
1


2
f[1� �̂ � �� (1� � k)] (�� 1)D
� � (1� �)(1� �)g| {z }

+

> 0: (A9)

Suppose we have an equilibrium 
high < 
�� under a certain value of �. In this case,
substituting 
�� into the RHS of (A8) yields (1+ ����) < (RHS)
=
��. Given @�=@� > 0,
we know that there exists a larger value of � denoted as ��� such that (1 + ����) =
(RHS)
=
�� at � = ���, where

��� � 1

2��2

�
��(�� 1) + 2

q
[��(�� 1)]2 + 4���2(�� 1) [1 + �� �]

�
> 0; (A10)

� � [1� �̂ � �� (1� � k)]D(

��)��1 +

(1� �)(1� �)


��
> 1: (A11)

By analogous inference, we substitute 
� into (A8) to derive

�� � 1

2��2

�
��(	� 1) + 2

q
[��(	� 1)]2 + 4���2(	� 1) [1 + �� �]

�
; (A12)

	 � [1� �̂ � �� (1� � k)]D(

�)��1 +

(1� �)(1� �)


�
: (A13)

As a result, if � is su¢ ciently large (i.e., � > ���), then 
high changes from being locally
indeterminate to being locally determinate. On the contrary, if � is su¢ ciently small (i.e.,
� 2 (max f��; 0g ; ���)), then 
high exists and is locally indeterminate.

Proof of Proposition 2. Di¤erentiating (32) with respect to � and using (36) yield

@


@�
=

���
2

[1� �̂ � �� (1� � k)] (�� 1)D
� � (1� �) (1� �)| {z }
?

� @�

@�|{z}
�

: (A14)

Given � > 1=2 and � < 0, we have the following results. First, there is a unique steady-state
equilibrium value of 
 which is increasing in �, given � > 0, as reported in Figure 3a. Second,
based on (34), the growth rate is monotonically decreasing in the consumption-capital ratio
in the CM (i.e., @g=@
 = � (1� �̂)D
��1 � 1 < 0). We make use of these results and take
the di¤erentials of (34) with respect to � to obtain

@g

@�
=

@g

@
|{z}
�

� @


@�|{z}
+

< 0: (A15)

Equation (A15) shows that if � > 1=2, there exists a unique balanced-growth equilibrium in
which an increase in � reduces g.
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Proof of Proposition 3. Given � < 1=2 and � > 1, (A14) shows that given � > 0, an
increase in � leads to a decrease in 
 when 
 > 
� whereas it leads to an increase in 

when 
 < 
�. In other words, when � < 1=2 and � > 1, an increase in � increases 
low and
decreases 
high as shown in Figure 3b. We take the di¤erentials of (35) with respect to � to
obtain

@g

@�
=

�
���
 +

���2
2 [�� (1� � k)D

��1 + ���]

[1� �̂ � �� (1� � k)] (�� 1)D
� � (1� �) (1� �)

�
| {z }

?

� @�

@�|{z}
�

; (A16)

where we have used (A14). Equations (A14) and (A16) show that when 
 > 
�, g is
decreasing in �. In other words, the high-growth equilibrium ghigh is decreasing in �.
As for the case of 
 < 
�, we substitute (32) into (A16) to derive

@g

@�
=
�
� (1� �̂)D
��1 � 1

�| {z }
?

� @


@�|{z}
+

; (A17)

where we have used (A14). Equation (A17) shows that when 
 < 
�, an increase in � has
an ambiguous e¤ect on g. This result implies that glow may be decreasing in �, increasing
in � or a U-shaped function in �. To prove this statement, we de�ne a threshold value

 � [1=(� (1� �̂)D)]1=(��1) and make use of (A8). Based on 
 < 
�, the right-hand side
(RHS) of (A8) is decreasing in 
, and this result can be shown as follows:

@RHS

@

=
1


2
f[1� �̂ � �� (1� � k)] (�� 1)D
� � (1� �)(1� �)g| {z }

�

< 0: (A18)

We �rst examine the case in which glow is always decreasing in �. Suppose we have
an equilibrium 
low < 
 under a certain value of �. In this case, substituting 
 into the
RHS of (A8) yields (1 + ����) > (RHS)
=
. Although @�=@� < 0, it is possible for
1 > (RHS)
=
 even as � ! 1. This is the case when the following condition holds:
(1� �)(1� �) < (1� 1=�)
+�� (1� � k)D


�
. This result shows that an increase in � does

not cause 
low to change from 
low < 
 to 
low > 
. Therefore, under (1 � �)(1 � �) <
(1� 1=�)
+�� (1� � k)D


�
, 
low is always on the downward-sloping side of g(
) as shown

in Figure 7, which in turn implies that glow is decreasing in �.
We now examine the case in which glow is a U-shaped function in �. Once again, suppose

that we have an equilibrium 
low < 
 under a certain value of � and that the following
condition holds: (1��)(1��) > (1�1=�)
+�� (1� � k)D


�
. In this case, given @�=@� < 0,

we know that there exists a larger value of � denoted as � such that (1+����) = (RHS)
=

at � = �, where

� � ��2�2

�
n
[1� �̂ � �� (1� � k)] = [� (1� �̂)] + (1� �)(1� �) [� (1� �̂)D]1=(��1) � 1

o+�(1��)�1:
(A19)
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This result shows that an increase in � may cause 
low to change from 
low < 
 to 
low > 
.
Speci�cally, under (1��)(1��) > (1�1=�)
+�� (1� � k)D


�
,25 
low is on the downward-

sloping side of g(
) when � < �, whereas 
low is on the upward-sloping side of g(
) when
� > � as shown in Figure 7. Therefore, the overall e¤ect of � on glow follows a U-shaped
function.
Finally, we examine the case in which glow is always increasing in �. Suppose we have

an equilibrium 
low > 
. In this case, substituting 
 into the RHS of (A8) yields (1 +
����) < (RHS)
=
. Although @�=@� < 0, it is possible for (1 + ���=�) < (RHS)
=

even at � = �, where � = � � 1 is the lower bound on � (i.e., the zero lower bound on the
nominal interest rate). This is the case when the following condition holds: (1��)(1� �) >
(1 � 1=� + ���=�)
 + �� (1� � k)D


�
. In this case, a decrease in � does not cause 
low

to change from 
low > 
 to 
low < 
 for � � �. Therefore, under (1 � �)(1 � �) >

(1� 1=�+ ���=�)
+ �� (1� � k)D

�
, 
low is always on the upward-sloping side of g(
) as

shown in Figure 7, which in turn implies that glow is increasing in �.
To sum up, the overall relationship between the low-growth equilibrium glow and the

money growth rate � can be positive, negative or U-shaped.

Proof of Proposition 4. Substituting (37) into (38), we obtain

@g

@�h
=

�D
�+1

[�h(1��h)]
�
1��
2��1

�
[� (�h)�$ (�h)]

[1� (1� �) �h � ��] (�� 1)D
� � (1� �) (1� �)
, (A20)

where
� (�h) � ����h (�� �h)� (��� + �) (1� 2�h) , (A21)

$ (�h) � � (1� �)D [�h (1� �h)] 

��1. (A22)

For any values of �, we obtain that � (�h) holds the following properties: (a) @� (�h) =@�h > 0
and @2� (�h) = (@�h)

2 < 0, (b) � (0) = � (��� + �) < 0, (c) � (1) = � (1 + ���) > 0. We
de�ne a threshold value ~�h 2 (0; 1) given by � (~�h) = 0. It is obvious that ~�h is unique and
� (�h) < 0 (> 0) for any �h < ~�h (> ~�h). As for $ (�h), we �rst take di¤erentials of it with
respect to �h to obtain

@$ (�h)

@�h
= � (1� �)D
��2

��
�

2�� 1

�
(1� 2�h) 
 + (�� 1) [�h (1� �h)]

@


@�h

�
. (A23)

Substituting (37) into (A23) yields

@$ (�h)

@�h
=
�D
��1

�
1��
2��1

�
[(2�� 1) (�� 1)D
��+ � (2�h � 1) (1� �) (1� �)]

[1� (1� �) �h � ��] (�� 1)D
� � (1� �) (1� �)
, (A24)

where �(�h) � (1� �) � 2h + (1� ��) (1� 2�h). Based on this result, we de�ne a threshold
value

� ��h =
2 (1� ��)�

q
4 (1� ��)2 � 4 (1� �) (1� ��)

2 (1� �)
,

25To be more precise, we also need (1��)(1� �) < (1� 1=�+ ���=�)
+�� (1� �k)D

�
as we will show

in the next part of the proof.
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where � ��h 2 (1=2; 1). Using this threshold value � ��h , we derive �(� ��h ) = 0 and 1 � �� =
(1��)(���h )

2

2���h �1
. Moreover, substituting (32) into (A22) yields

$ (�h) =
� (1� �) [�h (1� �h)]

1� (1� �) �h � ��

�
(1 + ����)� (1� �) (1� �)




�
. (A25)

By the de�nition of � ��h , we obtain that for any �h 2 (� ��h ; 1), there is

d

d�h

�
�h (1� �h)

1� (1� �) �h � ��

�
=

�(�h)

[1� (1� �) �h � ��]2
< 0:

Hence for any �h 2 [� ��h ; 1], we can get

� (�h)�$ (�h) � � (� ��h )�
� (1� �) [� ��h (1� � ��h )]

1� (1� �) � ��h � ��

�
(1 + ����)� (1� �) (1� �)




�
= � (� ��h )� � (2� ��h � 1)

�
(1 + ����)� (1� �) (1� �)




�
=

� (1� �) (1� �)



(2� ��h � 1) + ��� [� ��h (�� � ��h ) + (1� ��) (2� ��h � 1)]

=
� (1� �) (1� �)



(2� ��h � 1) + ����� ��h (1� � ��h ) > 0;

where in the second and third line we use 1� �� =
(1��)(���h )

2

2���h �1
, and 
 is the value given by

(32) at �h. Combining with the fact that $ (�h) > 0 and the de�nition of ~�h, we can get
� (�h) < $ (�h) on �h � ~�h and � (�h) > $ (�h) on �h � � ��h . The continuity of � (�h) and
$ (�h) implies that there exists at least one zero point of � (�h)�$ (�h), and the zero points
only lie in (~�h; � ��h ).
Next we prove that the zero point of � (�h) � $ (�h) is unique on (~�h; � ��h ) when � >

1=2 and � < 0. For such �h, the corresponding 
 must satisfy (32) and � (�h) = $ (�h)
simultaneously. Combining these two equations and eliminating D
� yield

� (�h) [1� �� � (1� �) �h]

����h (1� �h)
=
� (1� �)

���

�
1 + ����� (1� �) (1� �)




�
: (A26)

It is obvious that the zero point �h and corresponding 
 also satisfy (32) and (A26) simul-
taneously. Since �h > ~�h, the left-hand side (LHS) of (A26) is larger than zero, and its
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derivative satis�es

@LHS

@�h
=

h
(1� �h)

2 + �+ �
���

i
[1� �� � (1� �) �h]

(1� �h)
2 �h

� (1� ��)

�
�+ 2 + 2�

���

�
�h � � 2h �

�
1 + �

���

�
(1� �h) � 2h

/
�
(1� �h)

2 + �+
�

���

�
1� �� � (1� �) �h

1� ��

�

�
�+ 2 + 2�

���

�
�h � � 2h �

�
1 + �

���

�
�h

(1� �h)

=
1 + �

���
� � 2h

�h
(1� �h)

2 +

�
(1� �h)

2 + �+
�

���

�
� (1� �) �h
1� ��

> 0:

Since the right-hand side of (A26) is increasing in 
, then this implies that the 
 given by
(A26) is increasing in �h on (~�h; � ��h ). Given � > 1=2 and � < 0, we have ~�h > � �h, then the
equilibrium 
 given by (32) is decreasing in �h on (~�h; � ��h ). Because the zero point always
exists, then there is a unique solution to equations (32) and (A26), i.e. the zero point of
� (�h) � $ (�h) is unique, below (above) which @g=@�h > 0(< 0). The �gure below shows
this relationship. This result implies an inverted-U relationship between g and �h.

Figure 9

Proof of Proposition 5. For the case of � < 1=2 and � > 1, the proof of Proposition
4 shows that zero points of � (�h) � $ (�h) also exist in both high equilibrium and low
equilibrium, and the zero points �h take values in (~�h; � ��h ). Since 


low < 
� < 
high for
any values of �h, then the zero points of �h in high equilibrium and low equilibrium must
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be di¤erent according to the properties of (A26), which implies that there are at least two
pairs of (�h;
) that satisfy (32) and � (�h) = $ (�h) simultaneously. Notice that equations
(32) and � (�h) = $ (�h) imply (A26), and � (�h) = $ (�h) implies�

�

�(1��)=�
�(1�2�)=� [(1� �)A]�1=�
 = � (�h)

(1�2�)=� �h (1� �h) ; (A27)

then we can combine (A26) and (A27) to eliminate 
 and obtain

� (1� �) (1� �) (1� �)
�
�

�(1��)=�
�(1�2�)=� [(1� �)A]�1=�

= � (1� �) (1 + ����) �h (1� �h)� (�h)
(1�2�)=� � [1� �� � (1� �) �h]� (�h)

(1��)=� :(A28)

Next we prove that the zero point is unique in both high-growth and low-growth equilibrium.
It su¢ ces to show that (A28) has at most two solutions. The left-hand side of (A28) is a
constant, and the derivative of right-hand side (RHS) of (A28) satis�es

@RHS

@�h
/ � (�h) +  (�h) ;

where

� (�h) = (1 + ����)
(1� 2�) �h (1� �h) [� (��� + 2) + 2��� (1� �h)]

� (�h)
;

and

 (�h) = � (1 + ����) (1� 2�h)+� (�h)�[1� �� � (1� �) �h]

�
��� + 2 +

2���

�
(1� �h)

�
:

 (�h) has the following properties: (a) @ (�h) =@�hj�h=1 = 2 (1� �)+��� (3� 2� � 2��) >
0 and @2 (�h) =@� 2h < 0, (b)  (1) = �2� (1� �) < 0 and  (0) > �1. This implies that
 (�h) < 0 and @ (�h) =@�h > 0 on �h 2 [0; 1]. Notice that when � < 1=2 and � > 1,
� (1=2) = ��� (�� 1=2) =2 < 0, which implies ~�h 2 (1=2; 1). Then � (�h) has the following
properties: (a) @� (�h) =@�h < 0 and @�2 (�h) =@� 2h > 0

26 for any �h 2 (~�h; 1], (b) � (1) = 0
and � (~�h) = +1. These results imply that � (~�h) +  (~�h) > 0 and � (1) +  (1) < 0. By
continuity, there exists at least one �h 2 (~�h; 1) such that @RHS@�h

= 0.
Moreover, notice that RHSj�h=~�h = RHSj�h=1 = 0, then there exists at most two solu-

tions of �h to (A28). As we have discussed above, there are at least two �h�s that satisfy
(A28), hence there exist exactly two solutions of �h to (A28) with one in high-growth equilib-
rium and the other in low-growth equilibrium. Therefore, in both high and low equilibrium,
the zero point of � (�h)�$ (�h) is unique. Then making use of (A20) and the properties of

low and 
high, there is a U-shaped relationship between g and �h in low-growth equilibrium,
and an inverted-U relationship between g and �h in high-growth equilibrium.

26Derivations are available upon request.
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Appendix B

In the main text, we have the following 2�2 dynamic system:

�t+1 =
1 + �

� (1� �)
�t �

�

� (1� �)
, (B1)


t+1

t

=
�
�
1� � + � (1� � k)D


�
t+1 + ���t+1
t+1

�
(1� �̂)D
�t � 
t + 1� �

. (B2)

The steady-state values of �t and 
t, denoted as � and 
, are determined by

� =
��

� [1 + �� (1� �) �]
, (B3)

(1 + ����)
 = [(1� �̂)� �� (1� � k)]D

� + (1� �) (1� �) . (B4)

Taking a linear approximation around the steady-state equilibrium values of � and 
 over
the dynamic system and using (B3) and (B4), we derive�

�t+1 � �

t+1 � 


�
=

�
a11 a12
a21 a22

� �
�t � �

t � 


�
; (B5)

where
a11 =

1 + �

� (1� �)
> 1, a12 = 0,

a21 =
���
2

� [(1� �) + � (1� �) (1� � k)D
�]

�
1 + �

� (1� �)

�
,

a22 =
(1� �) + (1� �) (1� �̂)D
�

� [(1� �) + � (1� �) (1� � k)D
�]
.

Given a12 = 0, the eigenvalues of the Jacobian matrix are a11 and a22. Note that �t and

t are both non-predetermined variables. Blanchard and Kahn (1980) show that in a linear
di¤erence model with rational expectation, the dynamic system is (a) determinate if the
number of eigenvalues of Jacobian outside the unit circle is equal to the number of non-
predetermined variables and (b) indeterminate if the number of eigenvalues outside the
unit circle is less than the number of non-predetermined variables. Given that a11 > 1,27

the Blanchard-Kahn conditions imply that the dynamic system (B5) is (a) determinate if
ja22j > 1 and (b) indeterminate if ja22j < 1. Finally, note that the eigenvalue a22 is equal
to � in the main text; therefore, our analysis of indeterminacy in the main text is consistent
with the Blanchard-Kahn conditions.

27Together with a12 = 0, this implies that �t jumps to its unique steady state � as Figure 1 shows.
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Appendix C

In this appendix we provide a numerical example that shows the values of �� and ���

can be less than 0.5. We set capital intensity � of production in the CM to 0.3 and capital
intensity � of production in the DM to 0.3. We follow Chu et al. (2014) to set the discount
factor � to 0.952, the money growth rate � to 0.073, the capital depreciation rate � to 0.038,
the consumption parameter � to 1.588 and the leisure parameter  to 5.042. As for the tax
rates, we set the capital income tax rate � k to 0.533 and the labor income tax rate �h to
0.251 as reported in Aruoba et al. (2011). Finally, the parameter A is set to 6.8 to satisfy
that the values of �� and ��� can be less than 0.5. Given the above parameter values, we
obtain �� = �0:133 and ��� = 0:311. The results imply that for any � 2 (0; 0:5), there
always exists two equilibria under � < 1=2. The higher equilibrium is locally indeterminate
when � 2 (0; ���) whereas it is locally determinate when � 2 (���; 0:5). We summarize the
parameter values and the simulation results in Table C1.

Table C1: Parameter values and simulation results
� � � � � �  A � k �h �� ���

0:300 0:300 0:952 0:073 0:038 1:588 5:042 6:800 0:533 0:251 �0:133 0:311
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