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Abstract
Invertebrates lack the cellular and physiological machinery of the adaptive immune system,

but show specificity in their immune response and immune priming. Functionally, immune

priming is comparable to immune memory in vertebrates. Individuals that have survived

exposure to a given parasite are better protected against subsequent exposures. Protection

may be cross-reactive, but demonstrations of persistent and specific protection in inverte-

brates are increasing. This immune priming can cross generations ("trans-generational"

immune priming), preparing offspring for the prevailing parasite environment. While these

phenomena gain increasing support, the mechanistic foundations underlying such immune

priming, both within and across generations, remain largely unknown. Using a transcrip-

tomic approach, we show that exposing bumblebee queens with an injection of heat-killed

bacteria, known to induce trans-generational immune priming, alters daughter (worker)

gene expression. Daughters, even when unexposed themselves, constitutively express a

core set of the genes induced upon direct bacterial exposure, including high expression of

antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition

and the induction of the toll signaling pathway, and slit-3 which is important in honeybee

immunity. Maternal exposure results in a distinct upregulation of their daughters’ immune

system, with a signature overlapping with the induced individual response to a direct expo-

sure. This will mediate mother-offspring protection, but also associated costs related to

reconfiguration of constitutive immune expression. Moreover, identification of conserved

immune pathways in memory-like responses has important implications for our understand-

ing of the innate immune system, including the innate components in vertebrates, which

share many of these pathways.
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Introduction
Parasites, broadly construed to include both macro- and micro-parasites, are ubiquitous and
can cause significant damage to their hosts. As a consequence, parasites represent a major
selective force for any organism [1]. Hosts, in turn, have adaptations that prevent parasite
establishment and reduce the costs of having an infection [2–4]. These adaptations, which can
be broadly viewed as elements of a defense system, notably including the immune response,
range in their specificity, their mode of action, and the nature of regulation [2, 5]. As invest-
ment into immunity is costly on multiple levels [6], the most efficient investment into immu-
nity will be a function of the prevailing pressure from parasites (likelihood of encounter and
virulence) and demands imposed by other life-history traits. On an ecological scale, there will
therefore be a benefit to a plastic adjustment of immune investment based on the "perceived"
risk of parasitism, if this risk can be judged to sufficient accuracy. The perception may be
related to ecological conditions, such as crowding [7], but may also result from prior immuno-
logical experience with parasites. In particular, hosts can encounter the same parasites multiple
times within their lifetime, and across generations, with prior encounters being predictive of
future risk. If hosts encounter the same parasite repeatedly, some form of memory will be adap-
tive, as it would improve resistance to that same parasite upon re-exposure and thus decrease
detrimental effects of infection, will be adaptive.

The best-studied and classic example of an adjustment in immune responses in relation to a
prior parasite exposure is the adaptive immune system of vertebrates. The adaptive immune
system, which produces specific and long-lasting protection against subsequent exposure to
the same parasite, is based on a repertoire of specialized lymphocytes and its molecular under-
pinnings are well characterized [8]. There is growing evidence that functionally comparable
processes may exist in other organisms including invertebrates [9], plants [10, 11] and even
bacteria [12]. To avoid mechanism-based confusion in terms, this phenomenon in inverte-
brates is referred to as 'immune priming'. Astonishingly, induced protection against parasites
in these systems can traverse generations, a phenomenon known as trans-generational immune
priming [10, 13, 14].

The molecular understanding of immune priming outside of the adaptive immune system
of vertebrates is still in its infancy. Some progress has been made in understanding these mech-
anisms in insects [15, 16], snails [17], and plants [18–20]. Invertebrates are particularly impor-
tant to understand in this regard as they share a number of conserved characteristics of the
innate immune system with vertebrates, including humans [21, 22]. The potential for these
innate immune components to exhibit a memory-like response is an intriguing possibility [23,
24]. While invertebrates may serve as a valuable model for understanding memory-like phe-
nomena produced solely by innate immune system, the mechanisms remain largely enigmatic.
Studies have identified the role of the toll pathway and phagocytosis within an individual’s life
[16] in Drosophila melanogaster; and cellular mechanisms seem important for immune prim-
ing in mosquitoes[25] and snails [17].

Here we investigate patterns of gene expression underlying the phenomenon of trans-gener-
ational immune priming in a social insect, the bumblebee Bombus terrestris. In social insects,
such as bumblebees, temporal and spatial overlap of worker offspring and their mothers will
mean that they are faced with a parasite threat that can, with a high probability, be predicted
from the mother’s prior immunological experience. Bombus terrestris, is a model of ecological
host-parasite interactions that shows a specific immune response [26–29], and within-individ-
ual [30, 31] and trans-generational [32, 33] immune priming. Daughters of bacterial-chal-
lenged queens show elevated antibacterial responses, but pay costs in terms of increased
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susceptibility to distinct parasites [30, 34]. The mechanisms underlying these phenotypes are
unknown.

We injected B. terrestris queens with a heat-inactivated inoculum of the Gram-positive bac-
terium Arthobacter globiformis, to replicate conditions of previous studies demonstrating
trans-generational immunity in this system [33, 34], To gain some insight into the molecular
foundations of observed trans-generational immunity, we measured genome-wide expression
of subsequently produced naïve daughters (Arthrobacter-Naïve [AN] treatment) relative to the
expression of naïve daughters born from unchallenged mothers (Naïve-Naïve [NN] treatment).
We further contrast this memory response comparison with the immune response of daughters
that are exposed to the bacterial challenge, but whose mothers were naïve (Naïve-Arthrobacter
[NA] treatment). These comparisons took place within and between matched colony blocks to
control for differences in genetic background (a matched block being colonies of sister queens
that each had been mated to brothers from a different unrelated colony) (Fig 1). An unmatched
comparison of offspring from naïve mothers (NN) and those from a mother receiving a proce-
dural control injection of sterile saline solution was used to establish if wounding per se could
be responsible for any trans-generational alterations of immune gene expression.

Results
We found that no genes were significantly differently expressed between naïve daughters of
naïve mothers (NN) and naïve daughters of procedural control mothers injected with sterile
saline. We thus feel confident that exploring the expression profile of trans-generationally

Fig 1. Diagram of our experimental design.Wemated full sister queens to brothers from an unrelated colony to create colony
blocks with limited genetic differences between them. These sisters were then injected with heat-inactivated bacteria or left
unchallenged as controls. The resulting daughters were then either left unchallenged or given an injection as above and the RNA
pooled from two individuals per colony by treatment group for RNAseq. We used additional colonies to confirm our findings with
qPCR.

doi:10.1371/journal.pone.0159635.g001
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primed workers (AN) relative to naïve workers from naïve mothers (NN) gives us an insight
into expression changes resulting from maternal exposure to a bacterial-based inoculum. Sub-
sequent RNASeq and confirmatory qPCR investigating trans-generational immune priming
were carried out in matched colony blocks of sister queens each mated to brothers from an
unrelated colony. However, we did not have enough successful colonies from sterile saline
injected queens to use their workers in this matched RNAseq design. Therefore, we analyzed
naïve offspring from these queens, irrespective of colony block, for the expression of 21
immune genes by qPCR (S1 Table). We found that even when using fairly liberal t-tests with-
out controlling for multiple testing, no genes were significantly differently expressed between
naïve daughters of naïve mothers (NN) and naïve daughters of mothers injected with sterile
saline.

Whole genome expression, as measured by mRNA sequencing on the Illumina HiSeq plat-
form revealed that when workers from un-primed, naïve, mothers were directly exposed to the
bacterial inoculum (NA) they responded with significant differential expression of 327 genes
(S2 Table). Naïve workers from primed mothers (AN) significantly altered the expression of
only 21 genes (S3 Table), but 20 of these are shared with the direct induced response (NA) (Fig
2). These shared genes (Fig 2) include all known bumblebee antimicrobial peptides (abaecin,
two apidaecins, defensin, hymenoptaecin) and a number of additional known immune genes
such as battenin, laccase-2, slit-3, and yellow [35–38]. Two genes were differentially expressed
in both experimental groups but in opposite directions. The venom protease LOC100651916
and an unknown bee specific gene LOC100643115 were more highly expressed in the AN and
NA workers, respectively. The only gene differentially expressed in the primed condition, but
not under direct induction, codes for LOC100644816, a 53aa hydrophobic (58.49% of residues)

Fig 2. The number of differentially expressed genes in naïve worker offspring of mother queens that
were injected with heat killed Gram-positive bacterium (Arthrobacter globiformis) (trans-generational
immunity treatment; AN), and worker offspring from naïvemother queens but themselves exposed to
an immune stimulus of A. globiformis (induced immune response condition; NA). The expression of
these genes is measured relative to that of naïve worker offspring of naïve mothers (NN).

doi:10.1371/journal.pone.0159635.g002
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peptide with homology to Mast Cell Degranulating Peptide (MCDP) from another bumblebee,
B. pennsylvanicus.

We confirmed the patterns determined by the whole genome transcriptome approach (Fig
3) by targeted qPCR of a suite of immune genes (S4 Table). Our qPCR results agree with our
transcriptomic results for all tested genes. This included the high constitutive expression of the
antimicrobial peptides and additionally of a beta-glucan receptor protein (BGRP, S1 Fig, S5
Table) in naïve offspring of immune-primed mothers (AN). There was a trend for higher
BGRP expression in the transcriptome of workers from primed mothers, but this was not sig-
nificant after correction for multiple testing (P< 0.01 before correction, P = 0.072 for false dis-
covery rate adjusted p-value). Differential expression of this receptor may be particularly
relevant as it can trigger the toll signaling pathway and downstream antimicrobial peptide pro-
duction[39].

We identified a number of different isoforms for putative immune response genes, including
for antimicrobial peptides (S2, S3, S4, S5 and S6 Figs: abaecin [LOC100631078], 4 isoforms;
both apidaecins [LOC100649867], 2 isoforms, and [LOC100648499], 3 isoforms, aminopepti-
dase [LOC100645702], tetraspannin [LOC100651747], a venom protease [LOC100651916], an
uncharacterized protein shared only within honeybees and bumblebees [LOC100645125], and
a novel gene [NC_015763.1:3848320–3855802] with sequence homology to A.mellifera cuticu-
lar protein 14. We also identified two dscam like genes with multiple isoforms (S2, S3, S4, S5
and S6 Figs; LOC100644003, 12 isoforms; LOC100649765, 9 isoforms). Among the signifi-
cantly differentially expressed genes, isoform transcript abundance did not vary significantly
among conditions.

Discussion
We find that offspring workers that had never been exposed themselves ("naive workers"), but
whose mothers were exposed to bacterial immune elicitors, express a strikingly exposure-like
immune response, as compared to offspring workers from naïve mothers. In fact, all but one of
the differentially expressed genes in this priming condition are shared with workers that were
directly immune stimulated with the same bacterium. This indicates a major reconfiguration of
the constitutively expressed immune gene profile, and is one that could confer benefits in the
face of repeated parasite exposures, but may also result in the costs previously described when
there is mismatch between the maternal parasite environment and the offspring parasite envi-
ronment [34]. These results give us an insight into the innate immune-related molecular path-
ways involved in invertebrate immune priming across generations.

Among the differentially expressed genes, all of the antimicrobial peptides are upregulated.
It is particularly noteworthy that these are the final product of the immune response, indicating
an immediate readiness of defense in trans-generationally primed individuals. We also find
increased expression in a number of other immunologically important genes including yellow
and laccase-2, which are involved in the melanization response [35, 36], battenin, the D.mela-
nogaster homolog of which (CLN3) regulates JNK signaling [38], and slit-3 which is induced
upon bacterial challenge in honeybees and the leaf-cutting ant Atta cephalotes (a.k.a. IRP30)
[37]. We also found that a beta-glucan receptor protein (BGRP) was more highly expressed in
naïve workers of primed queens. BGRPs induce the toll signaling pathway in invertebrates
[39]. The only gene that was differentially expressed in the primed condition, but not in work-
ers directly exposed to bacterial elicitors, was a gene with homology to mast cell degranulating
peptide (MCDP), which is has been found in venom [40]. MCDP, neuro- and immunotoxic, is
named for its degranulating effect on vertebrate granulocytes [40, 41]. Whether this peptide
also affects invertebrate granulocytes (a class of haemocytes) that are important for
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phagocytosis [42] is unknown. Interestingly, intra-generationally primed Drosophila melano-
gaster, utilize the toll pathway and phagocytosis, but not antimicrobial peptides [16] that
appear to play an important role here.

Fig 3. Log 2 fold expression based on RNAseq data (relative to naïve worker offspring from naïve mother queens) for all genes that
are significantly differentially expressed in the trans-generational priming condition (naïve offspring of bacteria exposedmothers,
blue).We also show the expression of directly bacterially exposed workers from naïve mothers (red) to demonstrate the similarity of the
induced response to a direct challenge to the signature of trans-generational immunity. All differentially expressed genes here are also
significantly differentially expressed upon direct exposure, except for LOC100644816, which encodes for mast cell degranulating peptide.
qPCR confirmation of these results can be found in S1 Fig.

doi:10.1371/journal.pone.0159635.g003
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The down syndrome cell adhesion molecule (dscam) is implicated in immune defenses, and
because of its ability to produce prodigious numbers of isoforms [43] has been proposed as a
possible mechanism for specific immune memory [44]. We detect two dscam like genes that
produce multiple isoforms. However, neither these genes nor their isoforms are differentially
expressed in the priming condition or in workers that are directly exposed to the bacterium.
While this does not rule out a role for dscam isoforms in immune priming, it suggests that dif-
ferential expression of isoforms is not a major component of trans-generational antibacterial
immune priming in this system.

On an individual level, wounding alone can lead to significant changes in gene expression
[45], and it is conceivable that a general primed response could result from cuticular trauma in
mothers. An effect of maternal experience of trauma alone influencing offspring immune phe-
notype is interesting in itself, but overall our results suggest that this is not the case. Our RNA-
Seq and follow up qPCR based on comparisons between AN and NN offspring are not
sufficient to disentangle effects of maternal exposure to a bacterial elicitor and wounding on
the production of a primed offspring phenotype. However, our targeted survey of immune
gene expression, including the apparently important antimicrobial peptides of bumblebees, in
offspring from naïve mothers and mothers receiving a procedural control injection of sterile
saline provide evidence that maternal wounding alone is not responsible for changes in off-
spring immune phenotype. Rather, it appears that it is exposure to a bacterial elicitor that trig-
gers the trans-generational response. It is possible, however, that some of the additional genes
seen differentially expressed in the direct exposure group (NA) compared to the primed group
(AN) are the result of a response to wounding within individuals.

A prior study on the bumblebee system demonstrated that trans-generational priming of
antibacterial activity takes place prior to egg laying, but persists through the development of
offspring, even in the absence of the priming mother [33]. The elevated constitutive gene
expression into adulthood, which we show here, is further testament to the persistence of the
trans-generational priming in the innate immune system, despite developmental rearrange-
ments, including the process of metamorphosis in holometabolous insects. Evidence in insects
of such elevated persistent constitutive expression of immune-related genes that is precipitated
by immune experiences in prior generations is important beyond a demonstration of the
underlying mechanistic foundations of trans-generational immunity. It will also have impor-
tant consequences for the fitness costs associated with this phenomenon, which will influence
the conditions under which it may be expected to evolve and be maintained by selection. Ele-
vated immune investment may come at a cost to an organism through resource trade-offs that
can affect phenotypic traits such as developmental time, size, etc. [46]. Higher constitutive
expression of immunity in naïve offspring may constrain their investment into other life-his-
tory traits, especially under conditions where resources are scarce. Such costs of trans-genera-
tional immunity have been demonstrated in other insect systems [47, 48]. The striking
signature of gene expression related to trans-generational immunity is also likely to underpin
other related costs, including increased susceptibility to a distinct parasite infection, as has
been previously demonstrated in this system [34].

Evidence is mounting that the evolutionarily ancient innate immune system is able to retain
information about immune history in both vertebrates and invertebrates [49], which translates
to better defenses upon subsequent exposure. This priming effect is observed both within the
lifetime of an individual and between parents and offspring. Trans-generational immune prim-
ing likely evolved as a part of parental care and investment into offspring. This may be particu-
larly important in social insects, such as B. terrestris, where generations overlap and related
individuals share an environment—including parasites—in a closed, populous, highly interac-
tive colony. While our study does not attempt to identify the mechanisms involved in transfer
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of immune compounds to the offspring, a recent paper in honeybees identified the yolk protein
vitellogenin as playing a role in binding and transferring bacterial cell components to eggs [50].
Here we find that trans-generationally primed workers, even if not infected themselves,
increase transcription of antimicrobial peptides (that in part are under the control of the toll
signaling pathway) and a key recognition protein that induces toll signaling. This transcrip-
tional signature resembles an abridged version of the normal response to infection, suggesting
that B. terrestris achieves trans-generational protection by sequestering the existing induced
responses into prophylactic constitutive expression to prevent parasite establishment. A recent
study in moths found elevated ovary expression of some immune genes in daughters of chal-
lenged mothers, hinting that these responses may even be transmitted across multiple genera-
tions [51].

Some innate immune pathways are highly conserved and are even shared between inverte-
brates and vertebrates. Functionality of the vertebrate innate immune system has also recently
been shown to be dependent on prior immunological experience, a phenomenon referred to as
trained immunity [49, 52]. An intriguing possibility is that both invertebrates and vertebrates
may share similar mechanisms of underlying these innate immune memory-like responses.

Materials and Methods
We collected queens of the bumblebee B. terrestris as they emerged from hibernation in spring
2013 in northern Switzerland and maintained them under standard colony establishment con-
ditions [26]. Collections of this species, which is not protected, took place on private land with
the permission of the owners. All of the colonies used for this experiment were microscopically
checked for common infections twice and found to be clear of identifiable infection by the try-
panosome Crithidia bombi, microsporidian Nosema bombi, or the Neogregarine Apicystis
bombi. On their production by the colonies, young queens (gynes) were removed and mated to
males from unrelated colonies. We deliberately used second generation colonies to exclude
unknown maternal effects outside of our treatments, which could have been present in field
caught queens, and in addition to control genetic background. We designed the matings such
that sister queens from one colony were mated to males all derived from a single colony to pro-
duce comparable genetic backgrounds for matching across treatments (sister queens each
mated to brothers from the same unrelated colony). Five days after mating, we hibernated the
queens for 48 days at 4°C. Seven-days after removal from hibernation, exposed queens were
injected with 2 μl of 108 colony-forming-units/mL of Arthrobacter globiformis (DSM 20124)
that had been heat inactivated by heating at 95°C for 5 min, washed three times and resus-
pended in ringer saline solution. Procedural control queens were injected only with 2 μl of ster-
ile ringer saline solution (these queens did not produce enough colonies within the matched
genetic backgrounds for inclusion within the RNASeq design, but were used in separate com-
parisons, see below). Naive, unexposed queens were handled similarly but not injected. We
then allowed queens to found colonies in the lab. Emerging adult worker offspring from naïve
queens were uniformly distributed to a naive group (NN) or an induced treatment (NA). In the
induced treatment, five-days post-eclosion daughters received an injection of 2 μl of 108 col-
ony-forming-units/mL of A. globiformis prepared as above (NA: naïve queens, A. globiformis
exposed worker daughters) and were snap frozen in liquid nitrogen 24hrs after injection. Naïve
group workers (NN) were handled similarly, but not injected, and frozen at the same time.
Similarly, we took workers from queens that were exposed to the bacterial injection or the pro-
cedural control and handled and froze them as above (AN). We extracted RNA from the work-
ers following the same protocols as in [26] but using whole abdomens. For RNA sequencing we
used the RNA from two individual workers for each of three queens and for each treatment
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combination resulting in six individuals per condition (not including workers from the
unmatched saline injected mothers, Fig 1). The RNA was pooled within each mother queen by
treatment conditions resulting in three replicate RNAseq libraries of two pooled workers for
every condition (NN, AN, NA) per matched genetic background block. To reduce ribosomal
contribution the library preparation included poly-A enrichment. This also removed any bac-
terial contamination of the library. The library preparation and sequencing used the Illumina
HiSeq 2000 platform and was carried out at the Beijing Genomics Institute.

After removing adapters and poor quality reads we mapped the reads to the B. terrestris
genome [53] with Tophat2 [54] in two ways. First, using the annotated transcripts (-G option)
to assess differential expression of known genes, and second, without this restriction to assess
isoform variation. We identified differentially expressed genes using Cuffdiff [55, 56]. In both
cases we used the current version of the B. terrestris genome (Bterr_1.0) with the accompanying
gtf annotation file, although for the–G option we reduced this to coding sequence. We limited
the maximum intron size to 50kb. The analyses compared the expression of naïve daughters of
bacterially exposed mothers (AN) vs naïve daughters of naïve mothers (NN), and separately
compared the induced response (NA) to the baseline expression of NN workers using Cuffdiff
[55, 56] and cummRbund [57].

From the un-pooled offspring samples described above, to confirm RNASeq results, we also
synthesized cDNA using the QuantiTect Reverse Transcription Kit (Qiagen) following the
manufacturers instructions. In addition to those samples contributing to the RNASeq analysis,
cDNA was synthesized from offspring of queens from three additional matched genetic back-
ground providing further AN, NA and NN samples (N = 11 for each treatment condition from
a total of seven genetic backgrounds of colonies). Prior to cDNA synthesis potential DNA con-
tamination was removed from all RNA samples using the Turbo DNA-free kit (Ambion)
according to the manufacturer’s instructions. In the reverse transcribed samples, we quantified
the expression of 25 immune genes relative to two invariant housekeeping genes (elongation
factor 1α and ribosomal protein L13 based on their scores in geNorm, qBase plus, biogazelle)
and analyzed as in [26]. Full details of these genes and their primers are in S4 Table. We used
the mean difference in expression of the target gene from the composite housekeeping gene
(dCt) from each colony for subsequent analyses. We transformed the mean dCt value for each
gene using Yeo-Johnson transformations to improve normality and homoscedasticity and used
paired t-tests within colony genetic background to assess statistical differences between NN
and AN treatments and between NN and NA treatments (S5 Table).

While unmatched with regard to genetic background, the same qPCR protocol and analysis
was used to compare gene expression of a subset of immune-related genes (S1 Table) in naïve
offspring from naïve mothers (NN) and naïve offspring from mothers receiving a procedural
control injection of sterile ringer saline.

Supporting Information
S1 Fig. Expression values (ddCt) of 25 genes of interest from the RNAseq results or a priori
predictions of relevance to immune response relative to two invariant housekeeping genes.
~ P< 0.1, � P< 0.05, �� P< 0.01, ��� P< 0.001.
(PDF)

S2 Fig. Isoform structure of the antimicrobial peptide abaecin.
(PDF)

S3 Fig. Isoform structure of the antimicrobial peptide apidaecin 73a.
(PDF)
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S4 Fig. Isoform structure of the antimicrobial peptide apidaecin 73b.
(PDF)

S5 Fig. Isoform structure of the dscam-like gene LOC100644003.
(PDF)

S6 Fig. Isoform structure of the dscam-like gene LOC100649765.
(PDF)

S1 Table. Summary statistics from analysis of qPCR data comparing naïve daughters of
mothers injected with sterile saline, as a procedural control, to naïve daughters of naïve
mothers (NN).
(PDF)

S2 Table. Differentially expressed genes between the injected daughters of naïve (NA)
mothers and naïve daughters of naïve mothers (NN).
(PDF)

S3 Table. Differentially expressed genes between the naïve daughters of injected mothers
(AN) and naïve daughters of naïve mothers (NN).
(PDF)

S4 Table. Genes used for confirmation qPCR of RNAseq data and their primer sequences.
(PDF)

S5 Table. Summary statistics from analysis of qPCR confirmation of NA vs NN and AN vs
NN. Cells highlighted in yellow are significant at p< 0.05, those highlighted in blue approach
significance p< 0.1.
(PDF)
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