ESCAPING SETS ARE NOT SIGMA-COMPACT

LASSE REMPE

ABSTRACT. Let f be a transcendental entire function. The escaping set I(f) consists of those points that tend to infinity under iteration of f. We show that I(f) is not σ -compact, resolving a question of Rippon from 2009.

1. INTRODUCTION

Let $f: \mathbb{C} \to \mathbb{C}$ be a transcendental entire function. The set

$$I(f) := \{ z \in \mathbb{C} \colon f^n(z) \to \infty \}$$

is called the *escaping set* of f, where

$$f^n = \underbrace{f \circ \cdots \circ f}_{n \text{ times}}$$

denotes the *n*-th iterate of f. The escaping set was first studied by Eremenko [Ere89] and has been the subject of intensive research in recent years; see e.g. [Obe09, RRRS11, Ber18, RS19] and their references. By definition,

$$I(f) = \{ z \in \mathbb{C} \colon \forall M \ge 0 \,\exists N \ge 0 \colon |f^n(z)| \ge M \text{ for } n \ge N \}$$
$$= \bigcap_{M \ge 0} \bigcup_{N \ge 0} \bigcap_{n=N}^{\infty} f^{-n}(\mathbb{C} \setminus D(0, M)),$$

where D(0, M) denotes the disc of radius M around 0. So I(f) is $F_{\sigma\delta}$, i.e., a countable intersection of countable unions of closed sets. Moreover, it is well-known that I(f)cannot be a G_{δ} (a countable intersection of open sets); see Lemma 2.6 below.

This raises the question, posed by Rippon in 2009 [Obe09, Problem 8, p. 2960], whether I(f) is ever F_{σ} . In other words, can I(f) be σ -compact? (See also [Lip20b].) We answer this question in the negative.

Let UO(f) consist of all $z \in \mathbb{C}$ whose orbit $\{f^n(z) : n \ge 0\}$ is unbounded, and let $BU(f) = UO(f) \setminus I(f)$ denote the "bungee set"; see [OS16].

1.1. Theorem. Let f be a transcendental entire function. Then every σ -compact subset of UO(f) omits some point of $I(f) \cap J(f)$ and some point of BU(f) $\cap J(f)$.

In particular, the sets I(f), UO(f), BU(f) and their intersections with J(f) are not σ -compact.

Acknowledgements. I thank David Lipham and Phil Rippon for interesting discussions.

Date July 3, 2020.

²⁰¹⁰ Mathematics Subject Classification. Primary 30D05, Secondary 37F10, 54D45.

LASSE REMPE

2. Proof of the Theorem

We require a result on the existence of arbitrarily slowly escaping points, which follows from work of Rippon and Stallard [RS15]; see also [RS11, Theorem 1].

2.1. Theorem. Let f be a transcendental entire function, and let $R_0 \ge 0$. Then there exists $M_0 > R_0$ with the following property. If $(a_n)_{n=0}^{\infty}$ is a sequence with $a_n \to \infty$ and $a_n \ge M_0$ for all n, then there are $\zeta \in J(f) \cap I(f)$ and $\omega \in J(f) \cap BU(f)$ with $|\zeta|, |\omega| \ge R_0$ such that $|f^n(\zeta)|, |f^n(\omega)| \le a_n$ for all $n \ge 0$.

Proof. The result is an easy consequence of [RS15, Theorem 1.2]. Indeed, in the proof of Corollary 1.3 (d) of that paper, the authors use this theorem to construct a point $\zeta \in I(f) \cap J(f)$ having an "annular itinerary" $(s_n)_{n=0}^{\infty}$ chosen such that $|f^n(\zeta)| \leq a_n$ for $n \geq N_1$ (using the notation in [RS15]). We may assume without loss of generality that $n_1 \geq 2$, which means that we can additionally ensure $s_n \geq 1$ for all n, and $s_n \leq n_1$ for $n < N_1$. Then we have $R \leq |f^n(\zeta)|$ for all n, and $|f^n(\zeta)| \leq M^{n_1}(R)$ for $n < N_1$. (Here M(R) = M(R, f) is the maximum modulus function.) The point ζ has the desired properties if we choose $R \geq \max(R_0, R(f))$ in [RS15, Theorem 1.2] and set $M_0 := M^{n_1}(R)$. To obtain ω , we instead use an unbounded sequence (\tilde{s}_n) with $\tilde{s}_n \leq s_n$ such that $\tilde{s}_n \in \{1, 2\}$ for infinitely many n.

Proof of Theorem 1.1. If $D \subset \mathbb{C}$ is closed and $z \in \mathbb{C}$, we set

$$n_D(z) := \min\{n \ge 0 \colon f^n(z) \notin D\} \le \infty,$$

with the convention that $n_D(z) = \infty$ if no such *n* exists. Since *D* is closed, and *f* is continuous, n_D depends upper semicontinuously on *z*. Note that $z \in \text{UO}(f)$ if and only if $n_D(z) < \infty$ for every compact $D \subset \mathbb{C}$.

Now let $R_0 \ge 0$ be arbitrary, and choose M_0 as in Theorem 2.1. Let $X \subset \mathrm{UO}(f)$ be σ -compact; say $X = \bigcup_{j=0}^{\infty} K_j$ where each K_j is compact. Define $M_j := M_0 + j$ and $D_j := \overline{D(0, M_j)}$. Then $n_{D_j}(z) < \infty$ for every $z \in K_j$.

Since K_j is compact and n_{D_j} is upper semicontinuous,

$$n_j := \max_{z \in K_j} n_{D_j}(z)$$

exists for every j. Set $N_0 := n_0$ and $N_{j+1} := \max(n_{j+1}, N_j + 1)$. For $n \ge 0$, define $j(n) := \min\{j : N_j \ge n\}$ and

$$a_n := M_{j(n)} = \min\{M_j \colon N_j \ge n\}.$$

Then $a_n \ge M_0$ for all n and $\lim_{n\to\infty} a_n = \infty$. So by Theorem 2.1, there are $\zeta \in I(f) \cap J(f)$ and $\omega \in \mathrm{BU}(f) \cap J(f)$ such that $|f^n(z)| \le a_n$ for $z \in \{\zeta, \omega\}$ and all $n \ge 0$.

Let $j \ge 0$. Then, for $n \le n_j \le N_j$, we have $|f^n(z)| \le a_n \le M_j$, and hence $f^n(z) \in D_j$. So $n_{D_j}(z) > n_j$, and $z \notin K_j$ by choice of n_j . Thus $z \notin X = \bigcup_{j=0}^{\infty} K_j$, as claimed.

By the expanding property of the Julia set, we obtain the following, which answers a question of Lipham (personal communication).

2.2. Corollary. Let f be a transcendental entire function and let Y be one of the sets $I(f) \cap J(f)$, $UO(f) \cap J(f)$ and $BU(f) \cap J(f)$. Then Y is nowhere σ -compact. That is, if $X \subset Y$ is σ -compact, then X is nowhere dense in Y.

Proof. Let $X \subset UO(f) \cap J(f)$ and assume that there is an open set $U \subset \mathbb{C}$ with $\emptyset \neq U \cap Y \subset X$. We will show that X is not σ -compact.

Let R_0 and M_0 be as in Theorem 2.1, and set $L_0 := J(f) \cap D(0, M_0) \setminus D(0, R_0)$. If R_0 is chosen sufficiently large, then L_0 contains no Fatou exceptional point of f. Hence there is some n such that $f^n(U) \supset L_0$, and thus $f^n(X) \supset L_0 \cap Y$.

The proof of Theorem 1.1 shows that no σ -compact subset of $UO(f) \cap J(f)$ contains $L_0 \cap Y$. (Note that we may take $a_0 = M_0$ in the proof to ensure that $|\zeta|, |\omega| \leq M_0$.) So $f^n(X)$ is not σ -compact. The image of a σ -compact set under a continuous function is again σ -compact, and the claim follows.

2.3. Remark. We may restate our proof of Theorem 1.1 in a very general setting, as follows.

Let $f: U \to V$ be continuous, where U and V are topological spaces and U is σ compact. Let UO(f) denote the set of $z \in U$ such that $f^n(z) \in U$ for all $n \ge 0$, but the
orbit $\{f^n(z)\}$ is not contained in any compact subset of U.

Suppose that $X \subset UO(f)$ is σ -compact and $D \subset U$ is compact. Then there is a nondecreasing sequence $(D_n)_{n=0}^{\infty}$ of compact subsets $D_n \subset U$ with $D \subset D_0$ and $\bigcup_{n=0}^{\infty} D_n = U$ such that X contains no point ζ with $f^n(\zeta) \in D_n$ for all $n \geq 0$.

2.4. Remark. By Remark 2.3, the set of escaping points is not σ -compact in any setting where an analogue of Theorem 2.1 holds. This includes:

- (a) transcendental meromorphic functions [RS11];
- (b) transcendental self-maps of the punctured plane [MP18, Theorem 1.2];
- (c) quasiregular self-maps $f : \mathbb{R}^d \to \mathbb{R}^d$ of transcendental type [Nic16];
- (d) continuous functions $\varphi \colon [0, \infty)$ with $\varphi(t) \not\to \infty$ as $t \to \infty$, and such that $I(\varphi) \neq \emptyset$ [ORS19, Theorem 2.2].

2.5. Remark. A more general setting than both (a) and (b) in Remark 2.4 is provided by the *Ahlfors islands maps* of Epstein; see e.g. [RR12]. These are maps $f: W \to X$, where X is a compact one-dimensional manifold, $W \subset X$ is open, and f satisfies certain transcendence conditions near ∂W . We may define the escaping set I(f) as the set of points $z \in W$ with $f^n(z) \in W$ for all n and dist $(f^n(z), \partial W) \to 0$. The same proof as in [RS11] should establish an analogue of Theorem 2.1 for transcendental Ahlfors islands maps, and hence show that I(f) is not σ -compact in this general setting.

For completeness, we conclude by giving the simple proof that I(f) is never a G_{δ} set; compare also [Lip20a, Corollary 3.2].

2.6. Lemma. Let f be a transcendental entire function. Then I(f) and $I(f) \cap J(f)$ are not G_{δ} sets.

Proof. J(f) is closed, and hence G_{δ} . The intersection of two G_{δ} sets is again G_{δ} , so it is enough to prove the claim for $I(f) \cap J(f)$. By [Ere89, Theorem 2], $I(f) \cap J(f)$ is nonempty, and hence dense in J(f) by Montel's theorem. By Baire's theorem, any two dense G_{δ} subsets of J(f) must intersect. Hence it is enough to observe that $\mathrm{BU}(f) \cap J(f)$ contains a dense G_{δ} by Montel's theorem, namely the set of points whose orbits are dense in J(f). (See [BD00, Lemma 1].)

LASSE REMPE

2.7. Remark. Lipham has pointed out the following reformulation of Corollary 2.2: Any G_{δ} set $A \subset Y := J(f) \setminus I(f)$ is nowhere dense in Y. Otherwise, there are $\zeta \in J(f)$ and $\varepsilon > 0$ such that $\overline{D(\zeta, \varepsilon)} \cap Y \subset A$; but then $B := J(f) \cap \overline{D(\zeta, \varepsilon)} \setminus A$ is an F_{σ} set with $D(\zeta, \varepsilon) \cap I(f) \cap J(f) \subset B \subset I(f) \cap J(f)$, which contradicts Corollary 2.2.

Since Y has second category in J(f), as seen in the proof of Lemma 2.6, we conclude that Y is not strongly σ -complete; that is, it cannot be written as a countable union of relatively closed G_{δ} subsets. (On the other hand, Y is clearly $G_{\delta\sigma}$ by definition.)

References

- [BD00] I. N. Baker and P. Domínguez, Residual Julia sets, J. Anal. 8 (2000), 121–137.
- [Ber18] Walter Bergweiler, Lebesgue measure of Julia sets and escaping sets of certain entire functions, Fund. Math. 242 (2018), no. 3, 281–301.
- [Ere89] A. É. Eremenko, On the iteration of entire functions, Dynamical systems and ergodic theory (Warsaw, 1986), Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 339–345.
- [Lip20a] David S. Lipham, A note on the topology of escaping endpoints, Ergodic Theory and Dynamical Systems (2020), 14.
- [Lip20b] David S. Lipham, The topological dimension of radial julia sets, Preprint arXiv:2002.00853, 2020.
- [MP18] David Martí-Pete, The escaping set of transcendental self-maps of the punctured plane, Ergodic Theory Dynam. Systems **38** (2018), no. 2, 739–760.
- [Nic16] Daniel A. Nicks, Slow escaping points of quasiregular mappings, Math. Z. **284** (2016), no. 3-4, 1053–1071.
- [Obe09] Mini-Workshop: The Escaping Set in Transcendental Dynamics, Report on the miniworkshop held December 6–12, 2009, organized by Walter Bergweiler and Gwyneth Stallard. Oberwolfach Reports. Vol. 6 (2009), no. 4, pp. 2927–2963.
- [ORS19] John W. Osborne, Philip J. Rippon, and Gwyneth M. Stallard, *The iterated minimum modulus and conjectures of Baker and Eremenko*, J. Anal. Math. **139** (2019), no. 2, 521–558.
- [OS16] John W. Osborne and David J. Sixsmith, On the set where the iterates of an entire function are neither escaping nor bounded, Ann. Acad. Sci. Fenn. Math. **41** (2016), no. 2, 561–578.
- [RR12] Lasse Rempe and Philip J. Rippon, Exotic Baker and wandering domains for Ahlfors islands maps, J. Anal. Math. 117 (2012), 297–319.
- [RRRS11] Günter Rottenfußer, Johannes Rückert, Lasse Rempe, and Dierk Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), no. 1, 77–125.
- [RS11] P. J. Rippon and G. M. Stallard, Slow escaping points of meromorphic functions, Trans. Amer. Math. Soc. 363 (2011), no. 8, 4171–4201.
- [RS15] _____, Annular itineraries for entire functions, Trans. Amer. Math. Soc. **367** (2015), no. 1, 377–399.
- [RS19] _____, Eremenko points and the structure of the escaping set, Trans. Amer. Math. Soc. **372** (2019), no. 5, 3083–3111.

DEPT. OF MATHEMATICAL SCIENCES, UNIVERSITY OF LIVERPOOL, LIVERPOOL L69 7ZL, UK, https://orcid.org/0000-0001-8032-8580

E-mail address: l.rempe@liverpool.ac.uk