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We report for the first time an integrated transcriptomic analysis of RPE/choroid
dysfunction in AMD (mixed stages) based on combining data from publicly available
microarray (GSE29801) and RNAseq (GSE135092) datasets aimed at increasing the
ability and power of detection of differentially expressed genes and AMD-associated
pathways. The analysis approach employed an integrating quantitative method
designed to eliminate bias among different transcriptomic studies. The analysis
highlighted 764 meta-genes (366 downregulated and 398 upregulated) in macular
AMD RPE/choroid and 445 meta-genes (244 downregulated and 201 upregulated)
in non-macular AMD RPE/choroid. Of these, 731 genes were newly detected as
differentially expressed (DE) genes in macular AMD RPE/choroid and 434 genes in
non-macular AMD RPE/choroid compared with controls. Over-representation analysis
of KEGG pathways associated with these DE genes mapped revealed two most
significantly associated biological processes in macular RPE/choroid in AMD, namely
the neuroactive ligand-receptor interaction pathway (represented by 30 DE genes) and
the extracellular matrix-receptor interaction signaling pathway (represented by 12 DE
genes). Furthermore, protein-protein interaction (PPI) network identified two central hub
genes involved in the control of cell proliferation/differentiation processes, HDAC1 and
CDK1. Overall, the analysis provided novel insights for broadening the exploration of
AMD pathogenesis by extending the number of molecular determinants and functional
pathways that underpin AMD-associated RPE/choroid dysfunction.

Keywords: age-related macular degeneration, retinal pigment epithelium, neurodegeneration, transcriptome,
neuroactive ligand-receptor, extracellular matrix

INTRODUCTION

The pathogenesis of age-related macular degeneration (AMD), a leading cause of irreversible
blindness in the world, is linked to degenerative changes in the retina, retinal pigment epithelium
(RPE) and choroid. Major risk factors for AMD are advanced age, family history and smoking
(Klein et al., 2007; Wang et al., 2007). At the cellular level, DNA damage, oxidative stress,
inflammation, mitochondrial dysfunction, cellular senescence, abnormal metabolism, and aberrant
proteolysis contribute to AMD development (Kay et al., 2014; Wang et al., 2019; Blasiak, 2020).
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Located between the neuroretina and choriocapillaris, the
RPE is a major tissue involved in pathogenesis sustaining
retinal function through metabolite exchanges, protein secretion,
phagocytosis of spent photoreceptor outer segments, and
immune barrier function through interaction with Bruch’s
membrane, the basement membrane of the RPE (Strauss, 2005;
Sparrow et al., 2010). Impaired RPE function has been shown to
precede photoreceptors’ death in AMD, leading to progressive
degeneration of the neuroretina. Accumulation of medium
and large-size drusen, lipo-proteinaceous deposits found below
the RPE’s basement membrane (Mitchell et al., 2018; Wang
et al., 2019; Blasiak, 2020) is a significant factor in AMD
progression from early to the advance disease, evidenced by
population-based cohorts (Klein et al., 2007; Wang et al.,
2007). The choriocapillaris, a vascular endothelium situated just
beneath the RPE and Bruch’s membrane provides nutrients
and oxygenation to the RPE (Whitmore et al., 2015) and also
represents a major site of age-related degenerative changes
with reduced vascular endothelial density (Ramrattan et al.,
1994), vulnerability to inflammation through the membrane
attack complex with increasing age, together contributing to
AMD (Mullins et al., 2014). However, to date the precise
molecular mechanisms of AMD pathogenesis and progression
from early to advanced stages are incompletely understood
(Ardeljan and Chan, 2013). Significant amount of research in
recent years has concentrated on the complement pathway
and inflammatory processes, but new emerging treatments
targeting only the complement pathway failed to improve clinical
outcomes in phase 3 trials (Mitchell et al., 2018). Clearly, an
integrated research approach considering other contributing
pathogenic mechanisms is needed to identify novel and viable
therapeutic targets.

Transcriptomic data, gathered by microarray (Booij et al.,
2009; Newman et al., 2012; Whitmore et al., 2013), RNAseq
(Whitmore et al., 2014; Kim et al., 2018) or very recently
advanced single-cell (sc)RNAseq (Voigt et al., 2019; Orozco
et al., 2020) studies provide a solid starting point for the
study of the molecular determinants of RPE/choroid dysfunction
in AMD (Morgan and DeAngelis, 2014; Tian et al., 2015).
Publicly available transcriptomic datasets allow targeted analyses
of specific cellular processes, pathways, and their interactions.
To date, transcriptomic RPE/choroid analyses focused on
topographic regions, specifically macular versus non-macular
retinal regions, have revealed different transcription profiles in
these regions associated with various macular dystrophies and
degenerative retinal diseases, including Best disease, Stargardt’s
disease and retinitis pigmentosa (Whitmore et al., 2014;
Ashikawa et al., 2017). However, identification of the causative
differentially expressed genes between AMD and age-matched
controls from individual experiments is far from conclusive
to date, conceivably due to the relatively small sample sizes
of many datasets often compounded by AMD phenotype
heterogeneity within the datasets [early and advanced AMD,
geographic atrophy (GA), and neovascular (NV) AMD samples]
and further confounded by the transcriptomic characteristics
of aging biology (De Magalhães et al., 2009; Whitmore et al.,
2013; Orozco et al., 2020). This is reflected in the generally

small overlap between differentially expressed genes from specific
AMD datasets. Other confounding factors may also include
different sample preparation methods, transcriptomic platforms
and data analysis methods employed across different studies
(Tian et al., 2015).

An integrating quantitative method of analysis of combined
datasets can eliminate bias between transcriptomic studies and
increase the power of detection of differentially expressed
genes (Zhou et al., 2016; Brown et al., 2017; Ma et al., 2017;
Alimadadi et al., 2020). Here, we describe such an analysis
approach applied to investigate different platforms of publicly
available transcriptomic datasets of post-mortem human AMD
RPE/choroid. The differential gene expression patterns, pathway
analysis and networks of protein-protein interactions (PPI) were
explored in the combined datasets.

MATERIALS AND METHODS

Data Collection
Publicly available post-mortem human AMD RPE/choroid
transcriptome datasets were accessed through the NCBI GEO
and ArrayExpress databases combined with a literature review for
individual datasets. The post-mortem human AMD RPE/choroid
transcriptome data generated by microarrays and RNAseq were
selected and filtered using the following criteria: (1) data
published between January 2010 and February 2020; (2) complete
gene expression data available (raw or normalized); (3) sample
size equal or higher than 10 in each group (AMD and control);
(4) original specimens divided into macular and non-macular
samples. Only two datasets passed these criteria and were
included in our study, GSE135092 and GSE29801. GSE135092
originated from an RNAseq study performed by Illumina
HiSeq2500. The respective gene expression data provided by this
dataset was quantified by HTSeqGenie as reads per kilobase of
gene model per million total reads (RPKM), then normalized
by DESeq2 (Orozco et al., 2020). GSE29801 dataset originated
from a study using the Agilent G4112F array, obtained after
quality control, background subtraction, and normalization as
described by Newman et al. (2012).

Data Analysis
To integrate the different study platforms, we used the two-step
conventional metanalysis approach described by Ma et al. (2017)
For each platform, individual analyses were performed separately
using the appropriate and specific bioinformatics pipeline for
the respective application (e.g., edgeR or DESeq2 or limma for
RNAseq and limma for microarray). We then combined the
p-values obtained, setting the statistical significance threshold
for each gene based on the result of this combined p-value
(Tseng et al., 2012). The combined p-value is widely used in
meta-analysis statistics of differential expressed genes since it is
simple and versatile – it was shown to be applicable to analysis of
both multiple microarray datasets and combined microarray and
RNAseq datasets (Tseng et al., 2012; Ma et al., 2017). The diagram
of data processing is shown in Figure 1. The gene expression table
from each individual dataset was annotated and analyzed by the
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FIGURE 1 | Data processing workflow and common genes between the datasets analyzed. (A) Data processing workflow. (B) Venn diagram showing the overlap of
differentially expressed genes identified by microarrays, RNAseq and meta-gene in macular and non-macular locations of RPE/choroid in AMD.

web-based analysis tool Networkanalyst1 (Xia et al., 2014, 2015;
Zhou et al., 2019). The identifiers (IDs) from different platforms
(ENSEMBL gene IDs for RNAseq and probe IDs for microarrays)
were converted to Entrez gene IDs. The log transformation
by variance stabilizing normalization (VSN) in combination
with quantile normalization was performed for microarray data.
Similarly, RNAseq data were transformed to log2 counts per
million by the log2 count procedure. Differential expression
(DE) analysis of each study was performed by limma using
adjusted p < 0.05 from Benjamini-Hochberg’s False Discovery
Rate (FDR) (Ritchie et al., 2015). To make data comparable, the
batch effect between studies was minimized using the ComBat
algorithm and then examined by principal component analysis
(PCA) (Supplementary Figures S1, S2; Johnson et al., 2007). The
batch effect removal algorithm (ComBat) was also beneficial in
background noise reduction, through the removal of genes with
totally absent expression in more than 80 percent of samples
whilst equally reducing the variability of gene expression levels
between batches (Johnson et al., 2007; Zhou et al., 2016). Using
Fischer’s approach for meta-analysis, each study p-value was
combined together using the formula below.

Fg = −2
s∑

s=1

(
ln(Pgs)

)
A calculated combined p-value for each gene was considered
significant if lower than 0.05 (Fisher, 1992; Xia et al., 2015;

1https://www.networkanalyst.ca/

Alimadadi et al., 2020). The differential significant gene list
obtained was then called the meta-gene dataset in this paper.

Data Interpretation and Functional
Analysis
The resulting meta-gene list was compared with the original
DE gene list in each of the original studies. To identify
significant pathways from the meta-gene list, over-representation
analysis (ORA) was performed using Kyoto Encyclopedia of
Genes and Genomes (KEGG) and p-values were adjusted
by Benjamini-Hochberg’s False Discovery Rate (FDR).
A protein-protein interaction (PPI) network was constructed
based on STRING database (Szklarczyk et al., 2019) and then
visualized by a web-based tool1 (Xia et al., 2014, 2015; Zhou
et al., 2019). Hub nodes were identified by high degrees and
high centrality from the PPI network. The results were then
compared with the network constructed by WEB-based GEne
SeT AnaLysis Toolkit (Zhang et al., 2005; Wang et al., 2013, 2017;
Liao et al., 2019).

RESULTS

RPE/Choroid AMD Transcriptomic
Datasets
Five post-mortem human RPE/choroid AMD transcriptome
studies were identified through the literature review shown in
Supplementary Table S1: two microarrays studies, one RNAseq,
one scRNAseq and a recent study using both RNAseq and
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scRNAseq. All of these datasets were accessible through the NCBI
GEO database but only two fulfilled our inclusion criteria, as
follows. The dataset GSE29801 was generated by a study using
Agilent Whole Human Genome 4 × 44K in situ oligonucleotide
array platform (G4112F array) (Newman et al., 2012). In this
study eyes with either a clinical or pathological diagnosis of
AMD and with age ranging from 43 to 101 years were analyzed
making use of 41 AMD macular RPE/choroid specimens [9
advanced AMD, 16 intermediate, 10 early and 6 undefined stage
using the Age Related Eye Diseases (AREDS) classification], 50
control macular RPE/choroid specimens, 38 AMD non-macular
RPE/choroid specimens (9 advanced, 14 intermediate, 9 early
and 6 undefined stage) and 46 control non-macular RPE/choroid
specimens. The GSE135092 dataset was provided by an RNAseq
study of eyes with a clinical diagnosis of AMD using the AREDS
classification and ages ranging from 59 to 98 years, performed
using the Illumina HiSeq2500 platform (Orozco et al., 2020). The
study analyzed 26 AMD macular RPE/choroid specimens (mixed
advanced stages), 105 control macular RPE/choroid specimens,
23 AMD non-macular RPE/choroid specimens and 112 control
non-macular RPE/choroid specimens (Figure 1).

Meta-Gene Dataset
The DE genes identified as a result of the combined analysis
are referred to as meta-genes. DE genes were analyzed by
integration of the two selected datasets through Networkanalyst
web-based software. Initial analysis of individual datasets
by limma with an FDR < 0.05 found only 10 DE genes
(Supplementary Table S2) in macular and 57 DE genes in
non-macular AMD RPE/choroid (Supplementary Table S3).
To further interrogate the differences between AMD and
control RPE/choroid, a more sensitive method involving Fischer’s
approach was then applied to the integrated data. After
data normalization and batch effect adjustment, the PCA
plot did not show major differences between studies, which
indicated that the batch effect was reduced between the two
studies (Supplementary Figures S1, S2). By using Fisher’s
approach for combining p-value, 764 significant meta-genes
(366 down-regulated and 398 up-regulated) were detected in
macular AMD RPE/choroid (Supplementary Table S4) and
445 meta-genes (244 down-regulated and 201 up-regulated) in
non-macular AMD RPE/choroid (Supplementary Table S5). By
ranking the combined p-values, the top 20 significant genes in
macular and non-macular AMD RPE/choroid, respectively, were
obtained and shown in Table 1.

The extent of overlap between meta-genes and original DE
genes detected in each study (Supplementary Tables S2, S3)
is shown in the Venn diagrams in Figure 1. A higher degree
of overlap was identified in macular AMD RPE/choroid, with
PRSS33 and SMOC1 detected as common DE genes in all datasets.
No overlap of DE genes was detected between all three groups
of genes in non-macular AMD RPE/choroid. Thirty-one genes
were common between the microarray or RNAseq datasets, and
the meta-genes of macular AMD RPE/choroid, while 11 common
genes were detected in non-macular AMD RPE/choroid. In
our analysis, 731 genes were newly detected as DE genes in
macular and 434 genes in non-macular AMD RPE/choroid.

TABLE 1 | Meta-gene list showing top differentially expressed genes.

EntrezID Gene symbol Fg Combined
p-value

Effect

Differential expressed genes identified in macular AMD RPE/choroid vs.
macular control RPE/choroid

84624 FNDC1 −47.991 1.72E-05 Up-regulated

4060 LUM −46.502 1.75E-05 Up-regulated

131578 LRRC15 −40.042 0.00019 Up-regulated

5803 PTPRZ1 −38.086 0.00032 Up-regulated

9547 CXCL14 −38.22 0.00032 Up-regulated

8148 TAF15 −35.072 0.00102 Up-regulated

4804 NGFR −34.669 0.00109 Up-regulated

3381 IBSP −31.756 0.00272 Up-regulated

3371 TNC −31.912 0.00272 Up-regulated

1118 CHIT1 −31.852 0.00272 Up-regulated

1515 CTSV −31.612 0.00272 Up-regulated

84466 MEGF10 −31.106 0.00278 Up-regulated

2224 FDPS −31.247 0.00278 Up-regulated

6695 SPOCK1 −30.827 0.00287 Up-regulated

55827 DCAF6 40.05 0.00019 Down-regulated

64093 SMOC1 37.387 0.00039 Down-regulated

7066 THPO 31.517 0.00272 Down-regulated

100128731 OST4 31.747 0.00272 Down-regulated

2619 GAS1 32.158 0.00272 Down-regulated

83473 KATNAL2 31.124 0.00278 Down-regulated

Differential expressed genes identified in non-macular AMD RPE/choroid
vs. non-macular control RPE/choroid

54108 CHRAC1 −40.355 0.00066 Up-regulated

10648 SCGB1D1 −36.412 0.00216 Up-regulated

64116 SLC39A8 −31.469 0.00826 Up-regulated

84656 GLYR1 −30.629 0.00826 Up-regulated

79095 C9orf16 −30.731 0.00826 Up-regulated

6422 SFRP1 −28.224 0.01414 Up-regulated

1974 EIF4A2 32.756 0.0081 Down-regulated

58155 PTBP2 30.667 0.00826 Down-regulated

400073 C12orf76 31.225 0.00826 Down-regulated

146225 CMTM2 29.187 0.0118 Down-regulated

65982 ZSCAN18 29.314 0.0118 Down-regulated

23564 DDAH2 29.244 0.0118 Down-regulated

115761 ARL11 28.924 0.01223 Down-regulated

6404 SELPLG 27.816 0.01414 Down-regulated

84695 LOXL3 27.903 0.01414 Down-regulated

8936 WASF1 27.635 0.01414 Down-regulated

8675 STX16 27.52 0.01414 Down-regulated

8803 SUCLA2 27.535 0.01414 Down-regulated

54816 ZNF280D 28.257 0.01414 Down-regulated

3187 HNRNPH1 27.798 0.01414 Down-regulated

Among the meta-genes, 70 genes were similarly differentially
expressed in both macular and non-macular AMD RPE/choroid
(Supplementary Table S6).

Furthermore, because AMD samples in GSE135092 consisted
of mixed advanced stages of AMD (GA and NV AMD), and
samples in GSE29801 consisted of advanced stages (GA and NV
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AMD), intermediate, and early stage of AMD, we performed
subgroup analysis combining each AMD stage subgroup (early,
intermediate, “mixed” advanced AMD) from GSE29801 with all
GSE135092 samples (Supplementary Table S7). Interestingly,
the presence of advanced AMD predominantly influenced the
expression of genes included in the 764 meta-genes identified
as DE in macular RPE/choroid, a stepwise reducing trend
identified in intermediate then early stage of AMD, respectively
(Supplementary Figure S3). However, to maximize the number
of samples and therefore power in this analysis, we used
the meta-genes from all RPE/choroid samples in further
downstream analyses.

KEGG Pathway Analysis
To interrogate the functional significance of meta-genes,
over-representation analyses (ORA) of KEGG pathways were
applied to both macular and non-macular meta-genes identified.
Applying FDR < 0.05, the interactions with the neuroactive
ligand-receptor and the extracellular matrix (ECM)-receptor
interaction pathways were statistically significant in macular
AMD RPE/choroid, while there was no statistically significant
pathway identified in non-macular AMD RPE/choroid. Table 2
shows the top 5 KEGG pathways and meta-genes in each pathway
found in macular and non-macular AMD RPE/choroid.

Among the identified significant genes associated with the
neuroactive ligand-receptor interaction, 13 genes were found
down-regulated in macular AMD RPE/choroid including
ADRA1A, LEPR, PENK, SCT, BDKRB1, ADRB3, PTGDR,
BDKRB2, RLN3, C5, EDN3, GABRE, and NPY1R. LEPR or
Leptin Receptor Factor was the second highest significant
down-regulated gene. LEPR was initially identified as a satiety
factor, but was subsequently shown to play a role in normal
aging and neuroprotective processes (Gorska et al., 2010;

Seshasai et al., 2015; Wauman et al., 2017). Other genes
upregulated in the neuroactive ligand-receptor interaction
pathway included GRIK3, GRPR, CHRNA1, ADRA1D, OXTR,
NPFFR1, P2RY2, MC5R, GABRB1, GRIA1, TRH, GCGR,
MTNR1A, HTR2A, GRIN2C, CHRNB4, and GABRG3.

All 12 significant genes associated with the ECM-receptor
interaction pathway were upregulated in macular AMD
RPE/choroid, with a distinct sub-pathway represented by a group
of collagen genes including COL6A3, COL9A3, and COL9A2.
The most statistically significant gene in the ECM group was
TNC or Tenascin C, which encodes a key ECM component in
the nervous system altered in various eye diseases (Kobayashi
et al., 2016). Tenascin C also plays a role in inflammation
process by regulating transforming growth factor β (TGFβ)
(Reinhard et al., 2017). Noteworthy, TGFB2 gene, an isoform of
TGFβ, was also identified as up-regulated in both macular and
non-macular meta-gene lists. Although not reaching statistical
significance in this analysis, the fatty acid metabolism pathway
was also among the enriched pathways in macular AMD
RPE/choroid. Remarkably, all meta-genes associated with this
pathway, consisting of ELOVL3, FASN, ACAT2, FADS2, HADHB,
HSD17B4, SCD, and FADS1, were not differentially expressed in
non-macular AMD RPE/choroid.

PPI Network Analysis
Since the macula is the primary anatomical area affected in
AMD, we sought to get more insight into the genes differentially
expressed in macular AMD RPE/choroid by further exploring
them by through a PPI network. For this purpose, a PPI network
was constructed using STRING database and Networkanalyst
web-based tools, with the input of 764 significant genes from
macular AMD RPE/choroid meta-gene list. Initially, a first
order network created an extensive network comprising 1718

TABLE 2 | ORA analysis showing top KEGG pathways involving the meta-genes.

Pathway p-value FDR Differential expressed gene (gene symbol)

Macular AMD RPE/choroid vs. macular control RPE/choroid

Neuroactive ligand-receptor interaction 0.000126 0.0297 CHRNA1; GRIA1; OXTR; GABRB1; NPFFR1; SCT; GRIK3; ADRA1D; TRH;
HTR2A; GRPR; ADRA1A; C5; P2RY2; PENK; LEPR; BDKRB2; BDKRB1;
GABRE; PTGDR; CHRNB4; EDN3; GCGR; NPY1R; GRIN2C; GABRG3;
MTNR1A; ADRB3; MC5R;RLN3

ECM-receptor interaction 0.000187 0.0297 COMP; RELN; IBSP; ITGB4; ITGA3; TNC; SPP1; COL6A3; COL9A3; COL9A2;
THBS2; THBS4

AMPK signaling pathway 0.000626 0.0664 SREBF1; CAB39L; IRS2; PPP2R3A; FOXO3; EEF2; ADRA1A; G6PC2; PFKL;
SCD; FASN; LEPR; PPARG; PCK2

Wnt signaling pathway 0.00126 0.0999 APC2; CAMK2B; MMP7; FZD9; WNT9B; CACYBP; DKK1; DKK2; SFRP1;
SFRP2; APC; TBL1XR1; BAMBI; RSPO3; GPC4; LGR5

Fatty acid metabolism 0.0018 0.102 ELOVL3; FASN; ACAT2; FADS2; HADHB; HSD17B4; SCD; FADS1

Non-macular AMD RPE/choroid vs. non-macular control RPE/choroid

Choline metabolism in cancer 0.00445 0.363 WASF1; WAS; PLA2G4C; AKT2; PIK3R3; DGKH; MAPK10

Regulation of actin cytoskeleton 0.00495 0.363 WASF1; DIAPH2; WAS; TMSB4X; ITGA3; SPATA13; PIK3R3; ITGA6; ITGAE;
ARHGEF7; FGD3

Osteoclast differentiation 0.00511 0.363 OSCAR; IFNAR1; TYROBP; AKT2; PIK3R3; TGFB2; MAPK10; LCK

Influenza A 0.00796 0.363 HLA-DRB5; DNAJB1; IFNAR1; XPO1; AKT2; IL18; PIK3R3; PYCARD; IFNA10

Hypertrophic cardiomyopathy (HCM) 0.00836 0.363 PRKAB2; ITGA3; ITGA6; TGFB2; CACNA1C; DAG1
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nodes and 2578 edges. To improve the clarity of the network
and obtain more important nodes, we created a zero order
PPI network (Figure 2). This network contains 14 nodes with
the highest degree of 7. Two downregulated genes with the
highest degrees and high centrality were Histone Deacetylase
1 (HDAC1) and Cyclin-dependent kinase 1 (CDK1). HDAC1
and CDK1 are both cell cycle regulators (Göder et al., 2018)
suggesting altered cell proliferation responses in macular AMD
RPE/choroid. We also input these 764 DE genes in AMD macular
RPE/choroid into the WEB-based pathway analysis tool “GEne
SeT AnaLysis Toolkit.” GEne SeT AnaLysis Toolkit constructs
networks by using Network Topology-based Analysis method
and used PPI BIOGRID as its reference list (Liao et al., 2019).
The result revealed HDAC1 and CDK1 among the top five per
cent of these genes when ranked by random walk probability
(Supplementary Table S8).

DISCUSSION

The increasing microarray and RNAseq transcriptomic datasets
available provide an important resource for exploring, at a

molecular level, the pathogenic machinery of AMD through
bioinformatics approaches (Morgan and DeAngelis, 2014; Tian
et al., 2015). However, analysis of individual AMD transcriptomic
datasets with conventional statistical approaches may not enable
comprehensive identification of DE genes and pathways in
functionally impaired RPE/choroid. For example, the microarray
analysis undertaken by Whitmore et al. (2013) concluded that
there were no significantly DE genes when FDR was applied to
the respective AMD RPE/choroid dataset. Similarly, the RNAseq
analysis described by Orozco et al. (2020) also highlighted less
than 30 putative causal genes for AMD RPE/choroid. Analysis
approaches combining different transcriptomic datasets obtained
from different platforms were recently used to detect more
DE genes in various diseases, such as dilated cardiomyopathy
(Alimadadi et al., 2020), Alzheimer’s disease (Su et al., 2019),
tuberculosis (Wang et al., 2018), rheumatoid arthritis (Badr and
Häcker, 2019), and helminth infection (Zhou et al., 2016). These
integrated analyses expand the number of specimens analyzed
and are also well suited for AMD, given the multifactorial
nature of the disease.

Here we report an analysis of normal and AMD RPE/choroid
transcriptome data performed by integrating microarray

FIGURE 2 | Zero order PPI network of meta-gene in macular AMD RPE/choroid. Downregulated nodes in red; upregulated nodes in green.
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and RNAseq datasets employing the web-based tool
Networkanalyst (Xia et al., 2015) with Fischer’s method
(Fisher, 1992; Alimadadi et al., 2020). Our analysis extended
the number of statistically significant differentially expressed
RPE/choroid genes in AMD to 764 in macular RPE/choroid,
and 445 in non-macular AMD RPE/choroid. The resulting
meta-genes identified as significantly differentially expressed
in macular AMD RPE/choroid in comparison with normal
RPE/choroid highlighted two significantly enriched pathways
of potential functional importance in AMD pathogenesis, the
neuroactive ligand-receptor interactions and extracellular matrix
(ECM)-receptor interactions.

The most significant pathway in macular AMD RPE/choroid,
the neuroactive ligand-receptor interactions had a FDR equal
to 0.0297 by ORA analysis. This pathway regulates multiple
neuroreceptors and their associated distant signaling molecules
such as leptin, thyrotropin releasing hormone (TRH) and
epinephrine (Biernacka et al., 2013; Kanehisa et al., 2016).
It was previously shown to be functionally significant in
neurotransmitter-mediated disorders such as alcohol dependence
disorder (Biernacka et al., 2013), autism spectrum disorders
(Wen et al., 2016), Parkinson’s disease (Hardy, 2010; Hamza et al.,
2011; Kong et al., 2015), as well as some types of lung cancer
(Ji et al., 2018). Our analysis suggested that 30 genes associated
with this pathway may be linked to AMD, including LEPR, a
receptor of leptin, which was initially identified in adipocytes
(Gorska et al., 2010). Noteworthy, decreased serum leptin was
observed in AMD patients in a case-control study and leptin
was hypothesized to have a neuroprotective function and to
lower the risk of AMD by removing extracellular β-amyloid
in drusen deposits, decreasing triglyceride fatty acid synthesis
and downregulating genes such as lipogenic enzyme, oxidative
stress and inflammation related genes (Seshasai et al., 2015;
Wauman et al., 2017). Our integrated data analysis identified
the downregulation of leptin receptor in macular RPE/choroid
in AMD for the first time. Cholinergic Receptor Nicotinic Alpha
1 Subunit (CHRNA1) and Cholinergic Receptor Nicotinic Beta
4 Subunit (CHRNB4), encoding two of the twelve gene subunits
of the nicotinic acetylcholine receptor (Conti-Fine et al., 2000;
Barrie et al., 2016), were found upregulated among the AMD
meta-genes. The increased expression of these genes is associated
with higher risk of lung cancer in smokers as the binding of
the receptor by nicotine can stimulate angiogenesis especially
within a context of inflammation and tumorigenesis (Yoo et al.,
2014). The upregulation of CHRNA1 and CHRNB4 in AMD
RPE/choroid may underlie one mechanism that contributes
to the increased risk of AMD in smokers. Thyroid releasing
hormone (TRH) has a central role in the thyroid hormone
pathway that is found abnormal in some AMD patients.
(Gopinath et al., 2016; Yang et al., 2018; Ma et al., 2020).
Our analysis also showed that TRH, another gene linked to
the neuroactive ligand receptor pathway, is upregulated in the
AMD RPE/choroid.

Genes associated with the ECM-receptor interaction pathway
in AMD, highlighted by our analysis, have previously been
shown to have high variability of expression between individuals
(Booij et al., 2009). The finding of multiple significantly

upregulated genes associated with this pathway in AMD
RPE/choroid underpins wound healing responses as putative
pathophysiological mechanisms implicated in AMD (Newman
et al., 2012). Tenascin C, the most statistically significant
differentially expressed gene in this pathway, can upregulate
TGFβ and promote inflammatory processes (Reinhard et al.,
2017), in line with the increased level of Tenascin C identified
in surgically excised choroidal neovascular membranes (Nicolò
et al., 2000) and observation of its secretion in neovascular AMD
(Kobayashi et al., 2016; Reinhard et al., 2017). Furthermore,
although the fatty acid metabolism pathway was not found to
be statistically significantly associated with AMD in our analysis,
the finding that all differentially expressed genes in this pathway
were found exclusively in macular RPE/choroid underlines the
geographical differences in gene expression patterns between
macular and non-macular RPE/choroid regions, previously
suggested by Whitmore et al. (2014) and Ashikawa et al.
(2017). Specific examples of genes with a macular pattern of
differential expression were Fatty Acid Desaturase 1 (FADS1)
and Fatty Acid Desaturase 2 (FADS2), genes encoding delta-5
and delta-6 desaturases, implicated in drusen formation in a
recent study (Ashikawa et al., 2017). Hence, fatty acid metabolism
abnormalities may contribute to drusen formation, an area of
interest following the suggestion of secretion by the RPE of the
lipid component of soft drusen, a hallmark of AMD progression
(Curcio, 2018a,b).

The PPI network analysis highlighted two central hub
genes involved in the control of cell proliferation/differentiation
processes, HDAC1 and CDK1. HDAC1 encodes an isoform of
histone deacetylase that is ubiquitously expressed and has a role
in transcriptional repression (Hassig et al., 1998). Modification
of chromatin structure through histone deacetylation has been
identified as a mechanism of epigenetic regulation associated
with various neurodegenerative diseases (Anderson et al., 2015).
HDAC family members are involved in multiple biological
processes including angiogenesis, inflammation and cell cycle
progression, all of which play an important role in the
pathophysiology of AMD (Tang et al., 2013). Noteworthy in this
respect are the findings from a comparative study of Alzheimer’s
disease and AMD donors that showed that HDAC1, 2, 5, and 6
expression decreased in the retina and frontal cortex of affected
individuals (Noh et al., 2008). The other hub node identified,
CDK1 or cyclin-dependent kinase 1 plays an important role in
the regulation of mitotic transition and phosphorylation of Bcl-2,
Bcl-XL, and Mcl–1 proteins (Harley et al., 2010; Terrano et al.,
2010). In the context of AMD, a retinal transcriptome analysis
of senescence-accelerated OXYS rats revealed a possible role
of CDK1 in the retinal extrinsic apoptotic processes associated
with AMD. Specifically, the study associated the increased
apoptotic activity with CDK1, which was identified as a hub
gene for functional clusters associated with the MAPK and p53
signaling pathways in the interaction network constructed from
the respective transcriptomic data (Telegina et al., 2015).

A limitation of this analysis is due to the paucity of
samples representing the individual disease stage phenotypes
and respective subgroup analyses of AMD (early, intermediate,
advanced) in the original studies (Supplementary Figure S3)
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resulting in reduced power and the ensuing application of
pathway analyses on combined datasets of mixed disease stages.
Thus the advanced AMD refers here to mixed advanced stages
of AMD (both GA and NV AMD). Clearly, an increase in the
clinical data available with post-mortem RPE/choroid samples
used in omic technologies could enable more detailed studies
into the pathophysiological processes particular to each stages of
AMD highlighting key progression factors to target for further
therapeutic intervention research (Handa et al., 2019).

In conclusion, integration of microarray data and RNAseq
data allows transcriptomic analyses of increased power and
identification of DE meta-genes in AMD RPE/choroid. Taking
such an approach, this study identified two novel pathways
characterized by significant enrichment of DE genes in AMD
RPE/choroid, namely the neuroactive-ligand receptor interaction
pathway and the ECM-receptor interaction pathway. In addition,
the PPI network analysis highlighted two hub nodes that may
link apoptotic and angiogenesis pathological processes in AMD.
The integrated functional analysis of DE genes in AMD also
revealed genes previously linked to other neurodegenerative
disease such as Alzheimer’s disease and Parkinson’s disease.
The approach used to integrate publicly available transcriptomic
datasets obtained through different experimental platforms
provided a novel insight and broadened the exploration of a
larger number of potential genes and functional pathways with
roles in AMD pathogenesis.
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