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ABSTRACT
Background: Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Monosomy 3 and BAP1 mutation are strong prognostic factors predicting metastatic risk in UM. Nuclear BAP1 (nBAP1) expression is a close immunohistochemical surrogate for both genetic alterations. Not all laboratories perform routine BAP1 immunohistochemistry or genetic testing, and rely mainly on clinical information and anatomical/morphological analyses for UM prognostication. The purpose of our study was to pilot deep learning techniques to predict nBAP1 expression on whole slide images (WSIs) of hematoxylin-and-eosin (H&E) stained UM sections. 
Materials and Methods: 140 H&E-stained UM were scanned at 40X magnification, using commercially-available WSI image scanners. The training cohort comprised 66 BAP1+ and 74 BAP1- UM, with known chromosome 3 status and clinical outcomes. Non-overlapping areas of three different dimensions (512x512, 1024x1024, 2048x2048 pixels) for comparison were extracted from tumor regions in each WSI, and were resized to 256x256 pixels. Deep convolutional neural networks (Resnet18 pre-trained on Imagenet) and auto-encoder-decoders (U-Net) were trained to predict nBAP1 expression of these patches. Trained models were tested on the patches cropped from a test cohort of WSIs of 16 BAP1+ and 28 BAP1- UM cases.
Results: The trained model with best performance achieved area-under-curve values of 0.90 for patches and 0.93 for slides on the test set.
Conclusion: Our results show the effectiveness of deep learning for predicting nBAP1 expression in UM on the basis of H&E-sections only. 
Translational relevance: Our pilot demonstrates a high capacity of artificial intelligence-related techniques for automated prediction on the basis of histomorphology, and may be translatable into routine histology laboratories. 


INTRODUCTION 
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults1. Although ocular treatments have high rates of success in controlling the tumor locally, approximately 50% of patients develop metastatic disease to the liver1. Disseminated UM is unfortunately at present incurable2.
Various parameters are well-known for determining UM patient prognosis, and this enables their stratification into metastatic risk groups for surveillance of the liver3, 4. Should the metastases be detected earlier, patients can either undergo liver surgery for removal of metastatic UM nodules, or be registered into clinical trials5. Prognostic parameters for primary UM include clinical features (age and gender of the patient; intraocular tumor location; size and extent of tumor growth), and both histomorphological and genetic features of the tumor1. With respect to the genetic features, one of the strongest parameters is the status of chromosome 3 in the UM cells: loss of one copy of chromosome 3 (i.e. monosomy 3) is associated with a poor prognosis6. Located on chromosome 3 (3p21.1) is the gene BAP1 (BRCA1 associated protein-1), which encodes for the deubiquitinating enzyme, ubiquitin carboxy-terminal hydrolase7. BAP1 mutations are associated with cancers, such as clear cell renal carcinoma, mesothelioma and non-small cell lung cancer as well as UM6-8. Somatic inactivating mutations in BAP1 have been reported in 18–48% of all UM, and in around 84% of UM with monosomy 3; this is strongly associated with metastasis and poor patient prognosis6-11. The bi-allelic inactivation of BAP1 frequently leads to a loss of nuclear BAP1 protein expression (nBAP1) on immunohistochemistry (IHC) – i.e. it can be used as a surrogate marker since its nuclear expression corresponds to a high degree with both BAP1 mutational and chromosome 3 status9, 10.
Recent work using digital image analysis (DIA) of enucleated UM specimens stained with BAP1  IHC demonstrated that DIA is a competitive alternative to manual assessment as well as gene expression profiling in prognostication of these tumors12. Since not all laboratories have access to high quality IHC facilities or to genetic testing, DIA and artificial intelligence (AI) has been applied to a variety of cancer types to predict underlying genomic changes from conventional stains13-16. Deep learning (DL), one of the major branches in AI, has burgeoned over the past decade for its superior performance compared to traditional approaches relying on hand-crafted features17.  With the help of DL techniques, we developed a pilot algorithm to predict nBAP1 expression based on hematoxylin-and-eosin (H&E) sections only of clinically and genetically well-defined cohorts of UM.


MATERIALS AND METHODS
Ethics
This study conformed to the principles of the Declaration of Helsinki and Good Clinical Practice guidelines. Approval for the study was obtained from the Health Research Authority (NRES REC ref 15/SC/0611), and all patients provided informed consent.

UM samples
H&E and BAP1-stained sections from 184 UM patients treated by enucleation or local resection at the Liverpool Ocular Oncology Centre (LOOC), Liverpool University Hospitals NHS Foundation Trust between January 2013 and December 2015 were included in this study. The specimens were processed with the Liverpool Clinical Laboratories, stained using conventional and immunohistochemical stains (including BAP1, as previously described 9, 10), and reported by the senior author.  
In total, there were 140 slides used for the training set, including 66 nBAP1+ and 74 nBAP1-. A second cohort of UM cases (n=14) was retrieved from the Liverpool Clinical Laboratory archive, and used as the test set (16 nBAP1+ and 28 nBAP1-). The scoring of the nBAP1 staining of the training set UM and the association of nBAP1 IHC to tumor cell morphology, molecular genetics and clinical outcomes has been reported in detail recently9. Chromosome 3 status was available for all UM and was determined, as previously described9. The details of the ‘training-’ and ‘test set’ cohorts of UM are provided in Supplementary Tables 1 and 2. Examples of low- and high magnification of H&E and BAP1-stained UM are provided in Figure 1.  
Whole Slide Imaging	
Sample statistics
The H&E-stained sections of all UM in the training set were scanned at 40X magnification using Aperio CS2 (LeicaBiosystems, Newcastle-Upon-Tyne, UK), and saved as whole slide images that have extremely high resolution. These slides of the test set were scanned also at 40X magnification using the VentanaDP200 (Roche, West Sussex, UK). Random slides from both cohorts were also scanned on both platforms. The use of the differing platforms was undertaken to determine the flexibility of the algorithm.

Generation of Tumor Patches
From the WSI, UM regions were first recognized visually in the H&E section and ‘cropped out’ (Figure 2). The non-overlapping tiling operation was then applied to the cropped tumor regions and patches with >90% tumor area were selected. By referencing to the counterpart BAP1-stained slide, all the selected patches were labelled on the corresponding H&E section, either as BAP1+ or BAP1-. From the total 184 UM slides (i.e. both the training and test sets), 539848, 130471 and 30677 tumor patches were cropped in 3 different dimensions, respectively (Table 1). 

DL for Prediction of nBAP1 Expression
[bookmark: _GoBack]A ‘bottom-up approach’ was developed for the prediction of nBAP1 expression using a deep convolutional neural network (DCNN). The DCNNs, as a sub-group of DL networks, are dedicated for image processing tasks18,19, and can achieve an image classification in an end-to end manner without the need of handcrafting features from images for classification. In this study, a binary prediction was obtained, i.e., nBAP1+ and nBAP1-. The overall framework is shown in Figure 3. In brief, by utilizing the labelled patches, a ResNet-1820 was trained to predict nBAP1 expression of each patch. The ResNet-18 served not only as a classifier but also as a feature extractor. The extracted feature vectors of all the tumor patches in a slide were re-assembled as a set of feature maps according to their spatial locations, defined as the ‘global feature’ map, and subsequently were fed into an auto-encoder-decoder that outputted the probability maps. By applying the element-wise product with the tumor masks, one element in a probability map corresponding to a tumor patch in the original slide, indicated the ‘posterior probability’ for this tumor patch to be nBAP1+. 
Independent Patch Prediction
Fine tuning is a widely used approach for transfer learning to train DL models and for image classification tasks, it is a common practice to train application specific models by fine-tuning ImageNet pretrained models for rich features they have learnt. A ResNet-18 pre-trained on ImageNet21 was fine-tuned again to independently classify each individual patch’s nBAP1 expression status. The skip connection operation in ResNet-18 concatenates feature maps of a functional convolution module (typically comprising a convolution layer, pooling layer, batch normalization layer and activation layer consecutively in order) with the feature map (resized if necessary) from previous module (Figure 3a). This mechanism enables back-propagated gradients to be amplified to alleviate the gradient-vanishing effect22. ResNet-18 was chosen based on the tradeoff between the performance and the computational consumption; however, other networks such as VGG-Nets23 or Dense-Nets24 will equally work. To train a ResNet-18 model, weighted cross-entropy was adopted as the loss function to compensate the imbalance between the positive and negative patches. Specifically, the losses from the positive patches were scaled up by a weight that was inversely proportional to the ratio of all positive patches in the training set, and vice versa for negative patches. 

Tumor Patches Prediction with Region-Correlation
Intuitively, a tumor patch is more likely to be nBAP1+ if its surrounding tumor patches are also nBAP1+, and vice versa. We define this prior information as the ‘region-correlation’. It has been empirically proven that the region-correlation was effective to improve the accuracy of histopathology patches classification25-28. To explore the effectiveness of region-correlation for patch classification, we further imposed region-correlation on the global feature to obtain the resultant global probability map.  The resultant probability of each tumor patch can be directly read from the global probability map.
 
We adopted the strategy modified from Takahama et al.28 to utilize region information. This allowed us to directly utilize the benefits of well-developed and ‘off-the-shelf’ auto-encoder-decoder models for this purpose. The U-Net architecture29 used is characterized by the short-cut connections of feature maps among the counterpart layers from the encoder and decoder modules, respectively (Figure 3). Specifically, the feature vector for each patch in a WSI was extracted by the convolutional module in the trained ResNet-18, and then re-organized to form a set of global features maps based on their locations in the slide, which serves as the input to a U-Net model. The U-Net model outputted a probability map with the same dimension as the input global feature maps. An element value in the probability map indicated the posterior probability to be nBAP1+ for the corresponding tumor patch in the WSI. 
A weighted cross-entropy on the probability maps was used as the loss function to train the U-Net model whereas only the losses corresponding to tumor patches were considered.  This was implemented by an element-wise product of the probability maps and the corresponding tumor masks before calculating the weighted cross-entropy.  The final decision on BAP1 status of the corresponding H&E-stained whole slide was achieved by averaging the output probability of all the patches in the tumor. 

Experimental Configurations
Patch Pre-processing
The experiments were performed independently on three different dimensions of patches cropped from slides of 40X magnification, namely 512x512, 1024x1024 and 2048x2048, respectively, and the patches of different dimensions were all further resized to 256x256. For training purposes, a sub-patch (224x224) was randomly cropped from an original patch (256 x256), and then was randomly flipped horizontally or vertically. Color jitter was applied on the sub-patch for data-augmentation before being fed to ResNet-18, which randomly changed the brightness, contrast, saturation and hue of the sub-patch with ranges all between 0.6~1.4. During validation and test periods, no data-augmentations were used and sub-patches (224x224) were cropped from the center of original patches (256x256).
Networks Training
All the 140 slides for training were randomly and evenly split into 5 sub-groups, with each sub-group having approximately even numbers of nBAP1+ and nBAP1- slides. For each dimension of patches, 5 models (each included a ResNet-18 and a U-Net) were trained, and each used one of the sub-group of slides as the validation dataset while the remaining 4 sub-groups as the training dataset (Table 2). During training, the parameters of each model that achieved the best performance on the corresponding validation set were saved and tested on the test set. Importantly, although the predictions were performed on patches, the training dataset, validation set and test sets were split at the slide-level basis, instead of at the patch-level in order to avoid ‘information leaking’, based on the intuition that patches from the same slide are highly correlated.
Stochastic gradient descent (SGD) was adopted as the training optimizer with a momentum of 0.9 and weight decay of 0.0005 for both the ResNet and U-Net.  A ResNet-18 was trained for 30 epochs with an initial learning rate of 0.001, and the learning rate was divided by 5 at epoch 10 and epoch 20, respectively. A U-Net was trained with a constant learn rate of 0.0001 for 100 epochs. 

Performance Metrics
Area under the receiver operating characteristic curve (AUC) was the main performance metric used to evaluate the trained models. A ROC profiles the relationship between the sensitivity and specificity and is obtained by sliding a threshold (between 0 and 1) over the nBAP1+ probability to calculate the corresponding sensitivity and specificity values.  A ROC closer to the top left corner means better performance; consequently, a better AUC has the value closer to 1. Besides, accuracy, precision and F1 value were also adopted which were calculated with the probability threshold 0.5.
RESULTS
Patch-based Prediction 
In what follows, we use the notation “Model(n)-k” to represent the kth model that trained and tested on the ‘n’ by ‘n’ patches. For example, Model (1024)-2 is the second model that trained and tested on the 1024x1024 patches. 
For independent patch classification (from ResNet-18), the ranges of the AUC values of 5 models are 0.66-0.80, 0.80-0.84 and 0.77-0.81 for patch size of 512x512, 1024x1024 and 2048x2048, respectively. The corresponding mean±standard deviation (SD) are 0.711±0.059, 0.825±0.012 and 0.805±0.023, respectively. For patch classification with region correlation (from U-Net), the AUC values of 5 models range from 0.67 to 0.80, 0.83 to 0.90 and 0.79 to 0.85 for patch size of 512x512, 1024x1024 and 2048x2048, respectively. The corresponding mean± SD are 0.753±0.055, 0.861±0.026 and 0.823±0.027, respectively. The patch-level performances (AUC) are shown in Table 3. 
The best performance was provided by Model(1024)-4 with region correlation, that achieved an AUC value of 0.90 (95% confidence interval (CI): 0.901-0.908). Further, it can be concluded that patches with a size of 1024x1024 performs the best, with the corresponding mean± SD AUC are 0.825±0.012 (independent patch classification) and 0.861±0.023 (region correlation), respectively. In contrast, patches with a dimension of 512x512 performed worst and unstable with smallest mean value and largest among all. By comparison, it also shows that by imposing region-correlation most cases achieved higher AUC values, with improvements ranged from 2% to 5%, compared with those by independent patch classification. 
For comparison, we also re-implemented the method from Sun et al30, which was developed for the classification of patches from BAP1-stained UM slides, and applied it to the our dataset with the same configuration of sample splitting. Table 4 shows the corresponding AUCs.  It can be seen that when trained with the same subset of samples, our method outperforms that based on the BAP-1 stained slide30, and that the performance gain can be even up to 5% (from Model(1024)-4). 

Ensemble from 5 Models
Giving a patch of a certain dimension, we calculated its ‘ensemble’ posterior probability by averaging the posterior probabilities of this patch from the 5 models. Table 5 presents the corresponding ensemble results. It shows the results by ensemble can always achieve the best or near best performances among the results from the 5 network models, as is further confirmed by Figure 4, where the ensemble ROC is the one most close to the best ROC (Model(1024)-4) and is above the 4 curves of other models. The best performance was also on the patches of 1024x1024 with an AUC value of 0.884 (95%CI: 0.879, 0.886).

Probability Maps
Figure 5 presents the probability maps of 6 randomly selected slides from the test sets. For independent patch classification, the probability maps were generated by stitching the probabilities of the tumor patches from ResNet-18 into all-zero maps, while for patch classification with region-correlation the probability were from the element-wise product of outputs from U-Net and the tumor masks. Clearly, by independent classification of patches, the probabilities are scattering in a probability map. While with region-correlation, the probability maps in comparison are more cohesive and consistent locally.  

Classification Results at the Whole Slide Level
The nBAP1 expression of a UM in the same slide is essentially unified, i.e., the BAP1 expression in a slide can either be positive or negative, but cannot have two co-existing states simultaneously. Because of this, it is meaningful to categorize a slide by the BAP1 expression. To this end, we calculated the posterior probability of a slide to be BAP1 positive by averaging the posterior probabilities of all the tumor patches in it. The posterior probabilities of patches can be from a single model or from the ‘ensemble’ of the 5 individual models.
Table 6 presents the performance metrics for slide-level classification. The best performance was obtained from the Model(1024)-4 derived from independent patch classification, with the accuracy, sensitivity, specificity, precision, F1 and AUC being 0.864, 0.813, 0.893, 0.813, 0.813 and 0.940, respectively. The performance by the ‘5 model-ensemble’ was close to that achieved by the best of the 5 individual models. Unlike the patch-level performances; however, the slide-level classifications derived from the patch classification with region-correlation are not significantly superior to the counter-parts that derived from independent patch classifications. Due to the limited number of slides for test (44 UM WSI), the 95% CIs were comparably wide (e.g., 0.881-1 and 0.856-1 for the Ensembles of the independent case and region-correlation case, respectively), as shown in Figures 6 and 7, and Table 6. 

DISCUSSION 
In this study, we demonstrate for the first time that a pilot deep learning model can be applied to predict nBAP1 expression in uveal melanoma from H&E-stained sections only, which is very difficult (if not impossible) by human pathologists. Although our model would benefit from a multicenter external validation study, our results demonstrate a ‘proof-of-concept’, i.e. it provides a feasible alternative to estimate nBAP1 status, and thereby the risk of UM metastasis. It is particularly beneficial for those laboratories without access to high quality IHC facilities or to genetic testing. In addition to independent patch classification, we further verified that Region-correlation was able to improve the performance of a patch-level classification. 

Our results show that the developed models for patch classification, which were trained on different sub-sets of the whole training set, were able to achieve promising performances. Particularly the best Model(1024)-4 by region-correlation could achieve an AUC value of up to 0.90. For slide-level prediction, the AUC value derived from independent patch classification by the best model (model(1024)-4) was up to 0.94. 

We further created an ‘ensemble’ model by averaging the posterior probabilities of a patch of certain dimension from the 5 trained models, and the related performance of the ensemble was best (or close to the best) when compared to the corresponding 5 models. Although it could not outperform the 5 models, the ensemble operation has practical relevance. That is, in the clinical ‘real world’ scenario, the ‘ground-truth’ (i.e. the nBAP1 status) of an individual slide or a tumor patch is not always available, and therefore, it is not possible to determine which individual model would give the best prediction. By applying the ‘ensemble’ model, it would guarantee the best result close-to-optimal. 

Prognostication in UM usually entails the incorporation of clinical, histomorphological and genetic parameters3, 4. The latter information may not be available in all ocular centers and hence prognostication for UM patients is based predominantly on the AJCC/TNM staging system (i.e. on clinical, anatomical and morphological parameters)31, However, direct manual analysis of digital histopathological images has proven feasible and efficient to predict and detect the related gene status of tumor cells, as a potential surrogate to both IHC and genetic testing14. This, however, requires a large number of hours of repetitive work by pathologists, annotating slides to determine the ‘ground truth’ 32, 33.  In recent years, there has been appetite to apply AI-related techniques, especially DL, for the automated analysis of digital histopathology images. Data-driven approaches have resulted in an improvement in DL techniques with respect to their objectiveness, reproducibility and accuracy, and have provided new insights into various pathological features as indicated below. There are numerous studies using DL to assess features such as cell/cytoplasm segmentation34, 35; detection of- mitoses36-40, tubules41, 42, nuclei and nucleoli 43; and grading of cancers41, 44, etc. And yet there are very few studies focused on using DL on the analysis of digital pathological images to indirectly predict gene or protein expression status, e.g. from a conventional stain such as the H&E. To the best of our knowledge, Sun et al.30 is the first group that developed a DenseNet 24 model to predict nBAP1 expression on BAP1-IHC stained UM patches. Whilst this work was groundbreaking in UM, a potential weakness of the authors’ study was the risk of ‘information leakage’ caused by splitting patches from the same slide into both the training and test sets. In the current study, we have challenged the DL to greater levels, i.e. by asking it to predict the nBAP1 IHC result from an H&E-stained section, something that even for a well-trained and experienced histopathologist would be quite difficult to do. Indeed, when we applied the Sun et al. method to our dataset, we could demonstrate that our regional correlation method designed on H&E sections outperforms that based on the BAP-1 stained UM slide30, and that the performance gain can be even up to 5% (from Model(1024)-4).

One of the major concerns to develop a machine learning model is its functionality and applicability (i.e. generalization ability). A model with higher generalization ability should be able to achieve better predictions using other unseen broader datasets. To this end, in our study, we adopted various measures to design and train the models. The choice of the ResNet-18, which served as the first-stage classifier as well the feature extractor, was chosen, since ResNet-18 has comparably fewer parameters to train, and with extensive batch normalization layers, it could alleviate the issue of ‘over-fitting’ to some extent45. Further, data augmentation approaches were adopted to relieve the limitation of a relatively small dataset, which included color jitter, random cropping and random spatial transformation, etc. To better verify the generalization ability of the developed models, the experiments were elaborately designed and employed two digital scanning platforms. First, there were 5 models, instead of just one model, trained on different subsets of the training set using patches of certain dimension. The corresponding experimental results showed the robustness and the highly generalization ability of our developed methods, since the trained models all achieved good results on the test set. Second, we split the whole dataset into a training set and a test set in a slide-based way, to avoid information leakage, ensuring that patches from the same slide would not simultaneously appear in both sets.  Lastly, we collected training and test slides separately from two scanners with different specifications, respectively. Therefore, variances in WSI were introduced among the two groups of data. In future work, we aim to validate the developed models on a wider-range of external UM cases. 

Despite the promising performances of all the trained models, there are still some aspects that can be refined, to gain an even better performance of the proposed method. We have used 184 slides in total for training (n=140) and testing (n=44). The patches from the same slide are similar in tissue morphologies, pigment etc., and thus these patches, although the total number is large, have limited ‘knowledge’ from the perspective of a DL model. In other words, although the number of tumor patches from all the slides is more than enough, the whole dataset trialed is still relatively small. This also resulted in the wide range of 95% CI for slide-level classification. With a greater number of cases, we believe the developed model can achieve better performance. Hence a large multicenter validation study would be of value, to externally validate and potentially revise our pilot model, for ultimate application in routine labs. Such a larger study would also provide a broader spectrum of tumor size and shape, enabling improved training of the DL network on small UM. In our current study, the only clue utilized for the prediction of nBAP1 expression (and therefore prognostication) was the H&E-stained slides. Other well-known prognostic variables for UM, such as patient age and gender, were not considered in this work. In the future, we intend to develop a multi-variable prognostic model, similar to (or a revision of-) the Liverpool-developed prognostic algorithm, LUMPO3 46, which could incorporate the DL tool, and its analysis of various morphological, IHC and genetic parameters of UM. 
In summary, through this work we showed that our new pilot DL techniques are able to effectively predict nBAP1 expression in UM using H&E-stained WSI images only. This work demonstrates a proof-of-concept of AI-related techniques for automated analysis of basic histological data, and could be translatable into routine laboratories. It is an important step towards an automated prediction of UM dissemination by applying digital pathology, as is already done in other cancer types. 
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FIGURE LEGENDS

Figure 1. Low- and high-power magnification images of enucleated eyes stained for hematoxylin and eosin (H&E) and BAP1 immunohistochemistry, taken after whole slide scanning. Top row: this is a nBAP1 positive UM; bottom row: a nBAP1 negative UM. The insets provide the higher power magnification of the tumor morphology and the location of the BAP1 staining.

Figure 2. Generation of tumor patches. The tumor region is first segmented from a whole slide image. The tiling operation is then applied to the tumor region. A tile with tumor ratio over 90% is cropped out as a tumor patch. 

Figure 3. Schematic diagram to show the process to predict patch-level nBAP1 expression. All the tumor patches in a slide are fed to a trained ResNet-18 which outputs the posterior probabilities of the patches (this is referred to independent patch classification). The feature vector corresponding to a tumor patch is extracted from the convolutional module (a) in the ResNet-18. The feature vectors of all the tumor patches are re-assembled into global feature maps according to the locations of tumor patches in the slide. The global feature maps are then forward to a U-Net (b), that outputs the probability map of the slide. The posterior probabilities of patches can be produced by a region correlation classification from the probability map of the slide. (a) A diagram shows a standard residual block used in the ResNet-18; (b) A diagram represents the U-net architecture used.

Figure 4. Receiver operating characteristic (ROC) curve for patch classification (Patch dimension: 1024x1024). 

Figure 5. Probability maps. The first column lists the UM slide stained with H&E, and their probability maps by independent patch classification (from ResNet-18) and by region-correlation patch classification (from U-Net) were shown on the second and third columns, respectively. The probability maps corresponding to the red dotted regions in the UM slide with zooming. Grey corresponds to nBAP1 negative while blue corresponds to nBAP1 positive. 

Figure 6. Slide-level receiver operating characteristic (ROC) curve with 95% confidence intervals of the ensemble of 5 models (independent patch classification) trained on 1024x1024 patches.

Figure 7. Slide-level receiver operating characteristic (ROC) curve with 95% confidence intervals of the ensemble of 5 models (region-correlation) trained on 1024x1024 patches.



TABLE LEGENDS
Table 1. Data with respect to patch size and numbers in the training and test sets.

Table 2. Different subsets (S1-S5) in the training set for training and validation, respectively. 

Table 3. Patch-level area under curve (AUC) on the test set.  95% confidence intervals (CIs) are in brackets.

Table 4. Patch-level area under curve (AUC) on the test set of the method from 30 and our method (with region correlation). 95% confidence intervals (CIs) are in brackets.

Table 5. Patch-level area under curve (AUC) on the test set of the ensemble model.  95% confidence intervals (CIs) are in brackets.

Table 6. Slide-level performances of the 5 models (on 1024x1024 patches) on the test set.



SUPPLEMENTARY TABLES
Suppl. Table 1: Details of the 140 uveal melanomas analysed in the Training set are summarized. Legend: Age at PM = Age at Primary Management (years); Gender – M=male, F=Female; Primary Tx = Primary Treatment; Plaque RXT= Plaque radiotherapy; PBR= Proton Beam Therapy; TTT=Transpupillary Thermotherapy; Epith = Epithelioid cells present; LBD = Largest basal diameter (mm); UH = ultrasound tumour height (mm); CBI = ciliary body involvement; EOE = extraocular extension; COD = cause of death; MM = metastatic melanoma; Chr = chromosome; L=Loss; N=Normal; G=Gain; U=unclear.

Suppl. Table 2: Details of the 44 uveal melanomas analysed in the Test set are summarized. Legend: Age at PM = Age at Primary Management (years); Gender – M=male, F=Female; Primary Tx = Primary Treatment; Plaque RXT= Plaque radiotherapy; PBR= Proton Beam Therapy; TTT=Transpupillary Thermotherapy; Epith = Epithelioid cells present; LBD = Largest basal diameter (mm); UH = ultrasound tumour height (mm); CBI = ciliary body involvement; EOE = extraocular extension; COD = cause of death; MM = metastatic melanoma; Chr = chromosome; L=Loss; N=Normal; G=Gain; U=unclear.
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Table 1. Data with respect to patch size and numbers in the training and test sets.

	
Patch 
Dimension
	Training Set 
(including Validation Set)
	Test Set

	
	positive
	negative
	positive
	negative

	512x512
	160,059
	253,097
	49,769
	76,923

	1024x1024
	38,589
	61,189
	12,066
	18,627

	2048x2048
	9,007
	14,275
	2,826
	4,569




Table 2. Different subsets (S1-S5) in the training set for training and validation, respectively. 

	
	Subsets for training
	Subset for validation

	Model 1
	S2, S3, S4, S5
	S1

	Model 2
	S1, S3, S4, S5
	S2

	Model 3
	S1, S2, S4, S5
	S3

	Model 4
	S1, S2, S3, S5
	S4

	Model 5
	 S1, S2, S3, S4
	S5




Table 3. Patch-level area under curve (AUC) on the test set. 95% confidence intervals (CIs) are in brackets.

	Patch Dimension :512 x 512

	
	Model(512)-1
	Model(512)-2
	Model(512)-3
	Model(512)-4
	Model(512)-5
	Mean/Standard Deviation

	Independent

	0.730
	0.665
	0.676
	0.805
	0.675
	0.710/0.058

	
	(0.727-0.733)
	(0.662-0.668)
	(0.673-0.679)
	(0.803-0.807)
	(0.672-0.678)

	

	Region-Correlation
	0.804
	0.721
	0.766
	0.797
	0.674
	0.753/0.054

	
	(0.802-0.80)
	(0.719-0.724)
	(0.763-0.769)
	(0.794-0.799)
	(0.672-0.677)
	

	
Patch Dimension: 1024 x 1024

	
	Model(1024)-1
	Model(1024)-2
	Model(1024)-3
	Model(1024)-4
	Model(1024)-5
	Mean/Standard Deviation

	Independent
	0.824
	0.809
	0.823
	0.843
	0.823
	0.8249/0.011

	
	(0.819-0.829)
	(0.805-0.814)
	(0.818-0.828)
	(0.839-0.847)
	(0.819-0.828)

	

	Region-Correlation
	0.853
	0.837
	0.850
	0.904
	0.858
	    0.8605/0.025

	
	(0.849-0.857)
	(0.832-0.841)
	(0.845-0.854)
	(0.900-0.907)
	(0.853-0.862)
	

	
Patch Dimension: 2048 x2048

	
	Model(2048)-1
	Model(2048)-2
	Model(2048)-3
	Model(2048)-4
	Model(2048)-5
	Mean/Standard Deviation

	Independent
	0.773
	0.788
	0.819
	0.826
	0.817
	0.8048/0.022

	
	(0.762-0.784)
	(0.777-0.798)
	(0.809-0.828)
	(0.816-0.835)
	(0.807-0.827)

	

	Region-Correlation
	0.797
	0.793
	0.857
	0.828
	0.840
	0.8233/0.027

	
	(0.786-0.808)
	(0.783-0.804)
	(0.848-0.866)
	(0.818-0.838)
	(0.830-0.849)
	




Table 4. Patch-level area under curve (AUC) on the test set of the method from Sun et al 30 and our method (with region correlation). 95% confidence intervals (CIs) are in brackets.
	
	Model(1024)-1
	Model(1024)-2
	Model(1024)-3
	Model(1024)-4
	Model(1024)-5

	Sun et al 30
	0.846 (0.842-0.850)
	0.799 (0.794-0.804)
	0.849 (0.844-0.853)
	0.854 (0.850-0.859)
	0.847 (0.843-0.851)

	Our method

	0.853 (0.849-0.857)
	0.837 (0.832-0.841)
	0.850 (0.845-0.854)
	0.904 (0.900-0.907)
	0.858 (0.853-0.862)









Table 5. Patch-level area under curve (AUC) on the test set of the ensemble model.  95% confidence intervals (CIs) are in brackets.

	Patch Dimension
	512 x 512
	1024 x 1024
	2048 x 2048

	Independent 

	0.753
(0.752, 0.753)
	0.849 
(0.847, 0.851)
	0.823 
(0.812, 0.831)

	Region-Correlation

	0.825
(0.824, 0.826)
	0.8841
(0.878, 0.886)
	0.8401 
(0.835, 0.848)



Table 6. Slide-level performances of the 5 models (on 1024x1024 patches) on the test set.

	Independent

	
	Model(1024)-1
	Model(1024)-2
	Model(1024)-3
	Model(1024)-4
	Model(1024)-5
	Ensemble

	Accuracy
	0.931
	0.795
	0.886
	0.864
	0.818
	0.863

	Sensitivity
	0.937
	0.875
	0.875
	0.813
	0.750
	0.875

	Specificity
	0.928
	0.750
	0.892
	0.893
	0.857
	0.857

	Precision
	0.882
	0.666
	0.823
	0.813
	0.750
	0.777

	F1
	0.909
	0.756
	0.848
	0.813
	0.750
	0.823

	AUC
	0.953
	0.915
	0.928
	0.940
	0.915
	0.944

	Region-Correlation

	
	Model(1024)-1
	Model(1024)-2
	Model(1024)-3
	Model(1024)-4
	Model(1024)-5
	Ensemble

	Accuracy
	0.886
	0.840
	0.840
	0.909
	0.863
	0.886

	Sensitivity
	0.875
	0.750
	0.812
	0.812
	0.750
	0.812

	Specificity
	0.892
	0.892
	0.857
	0.964
	0.928
	0.928

	Precision
	0.823
	0.800
	0.764
	0.928
	0.857
	0.866

	F1
	0.848
	0.774
	0.787
	0.866
	0.800
	0.838

	AUC
	0.912
	0.863
	0.890
	0.939
	0.915
	0.935
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