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Abstract: This paper investigates the Stochastic Container Relocation Problem in which a flexible service policy is 

adopted in the import container retrieval process. The flexible policy allows the terminal operators to determine the 

container retrieval sequence to some extent, which provides more opportunity for reducing the number of relocations and 

the truck waiting times. A more general probabilistic model that captures customers’ arrival preference is presented to 

describe the randomness for external truck arrivals within their appointed time windows. Being a multi-stage stochastic 

sequential decision-making problem, it is first formulated into a stochastic dynamic programming (SDP) model to 

minimize the expected number of relocations. Then, the SDP model is extended considering a secondary objective 

representing the truck waiting times. Tree search-based algorithms are adapted to solve the two models to their optimality. 

Heuristic algorithms are designed to seek high-quality solutions efficiently for larger problems. A discrete-event 

simulation model is developed to evaluate the optimal solutions and the heuristic solutions respectively on two 

performance metrics. Extensive computational experiments are performed based on instances from literature to verify the 

effectiveness of the proposed models and algorithms. 

Keywords: stochastic container relocation problem, appointment time window, flexible service, stochastic dynamic 

programming, tree search-based algorithm 

1 Introduction 

As critical nodes in the global container transport networks, container terminals play an important role in transhipping 

containerized cargoes between different transport modes. At container terminals, containers are handled through a series 

of operations, which can be generally divided into seaside operations (unloading/loading operations) and landside 

operations (stacking/retrieval operations). Methods for improving the operational efficiencies at container terminals have 

been studied for years and many models and algorithms have been developed (see review papers: Stahlbock and Voß, 

2008; Zhen et al., 2013; Lehnfeld and Knust, 2014; Carlo et al., 2014; Lee and Song, 2017; Dragović et al., 2017). 

One major source of inefficiency in most container terminals is the relocation move (Caserta et al., 2011a; Ku and 

Arthanari, 2016a). In a typical container terminal, containers are stored in the terminal yard after their arrivals, waiting 

for onward transport. The storage area of a yard is divided into blocks, each including 20-40 bays with each bay consisting 

of several stacks. Containers are often piled up vertically in stacks. During the container retrieval process, if the target 

container to be retrieved is not on the topmost tier, those above it – that is, the blocking containers - need to be moved to 

other stacks in the same bay. The move of blocking containers is called relocation, reshuffling, or rehandling, which is an 

unproductive operation. The Container Relocation Problem (CRP) aims at seeking a sequence of moves to retrieve all 

containers from a given bay with the minimum number of relocations, which is a combinatorial optimization problem. 

Most existing studies on the CRP assume a priori given container retrieval sequence. The CRP for import containers 

whose retrieval times are subject to uncertainty has been less investigated.  

For import containers, the stochastic arrival times of external trucks complicates the CRP as it will easily result in re-

relocations in the future. The Truck Appointment System (TAS), also known as vehicle booking system (VBS), can 
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increase the predictability for truck arrival times, which has been implemented in many container ports to control the 

truck arrivals at the terminal (Davies, 2009). Under TAS, a truck must make an appointment with the terminal in advance 

to indicate a time window in which the truck will arrive at the terminal. Therefore, each arrival truck will have an 

appointed arrival time window. As a result, the arrival precedence of trucks with different appointed time windows 

becomes pre-specified. However, the arrival sequence of the trucks within the same appointed time window remains 

uncertain, which is typically revealed during the retrieval process. The CRP that considers the randomness truck arrivals 

in the same time window is termed as the Stochastic Container Relocation Problem (SCRP) or the CRP with Time 

Windows (CRPTW) in the literature. 

The SCRP is more realistic to model the import container retrieval process. Among the very few studies on the SCRP 

(e.g. Ku and Arthanari, 2016a; Galle et al., 2018b), a common assumption is that retrieval requests are fulfilled on a first-

come-first-served (FCFS) basis. The FCFS rule appears to be reasonable in practice to ensure service equity but may lead 

to a sub-optimal solution from the overall system perspective. Besides, the service equity of the FCFS rule is debatable, 

because the trucks may experience different waiting times and the required number of relocations may be affected by 

previous trucks. Truck waiting time is part of the truck turn time, which is a key performance metric to measure the 

efficiency of a container terminal and also contributes to the evaluation of customer service levels and port 

competitiveness (de Melo da Silva et al., 2018). Some ports (e.g., Port Botany; Port Metro Vancouver) are even charged 

for a penalty if they exceed a stipulated turn time. As an alternative to the FCFS service, a flexible service may yield more 

opportunities for optimization on the number of relocations, as well as the truck waiting time. In this paper, we extend the 

SCRP to a general setting that allows some flexibility in the container retrieval sequences. We term this type of problem 

as the SCRP with flexible service policies or SCRP-FS.  

With the SCRP-FS, we also generalize the probabilistic model of truck arrivals. In the existing studies, the arrival order 

of trucks booked in the same time window is assumed to be uniformly distributed, which is not necessarily realistic. 

Customers (truckers) may have different preferences for different segments of their appointed time windows. Firstly, in 

the TAS, the trucks may not always get their desired time windows because slots are often oversubscribed (Mongelluzzo, 

2019). In order to narrow the deviation from its desired time window, the truck will have preference for either the earlier 

segment or the latter segment of the shifted appointed time window. Secondly, some terminal operators (e.g., DP World, 

Patrick) impose financial penalties on no-show (or late) trucks to ensure truckers compliance with their appointed time 

windows. To avoid such penalty, those trucks that are subject to high uncertainties on the road tend to target the earlier 

segment of the appointed time window. Such customer preference information may come from the TAS or from historical 

data that record the trucks' arrival behavior, which can be utilized to make better decisions.  

This paper aims to investigate how to use flexible service policies to improve import container relocation and retrieval 

in the presence of truck arrival uncertainties characterized by customers’ preference. The objective of this paper is: (i) to 

seek the optimal solution (including retrieval sequence and relocation positions) that retrieves all containers from a given 

bay considering both terminal relocation and external truck waiting; (ii) to quantify the reduction on the number of 

relocations and the truck waiting times by adopting the flexible service policy; (iii) to evaluate the impact of different bay 

layouts (i.e. size and fill rate) and truck arrival patterns (i.e., the number of trucks booked in a time window and the 

customer preference) on the effectiveness of the flexible policy compared with the FCFS rule; (iv) and to analyze the 

influence of customer preference on the results.  

Our contributions to the existing literature and practice can be summarized as follows: (i) We propose a new service 

policy to improve import container retrieval performance in the context of stochastic container relocation problem (SCRP) 

and generalize the SCRP to be SCRP-FS, which can provide more opportunities for optimizing the current retrieval 

practice. We also generalize the probabilistic model of truck arrivals so that the customers’ preference-based arrival 

behavior can be captured more accurately. (ii) We introduce a new optimization framework that jointly optimizes the 

expected number of relocations and the truck waiting times. The proposed model enables port operators to quantify the 

benefits of controlling the truck service sequence to both terminals and truckers, which is the first in the SCRP studies. 
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(iii) We develop exact algorithms by extending an existing algorithm with major adaptions. The incremental contributions 

of our exact algorithms include a decision tree with a new structure, a new lower bound for the expected number of 

relocations for the SCRP-FS, and a procedure for minimizing the truck waiting times batch by batch. We develop two 

efficient heuristic algorithms for solving the SCRP-FS, which can serve as decision support tools for terminal operators 

in real applications. (iv) We construct a discrete-event simulation model for evaluating the exact solutions in terms of two 

performance measures: the expected number of relocations and the truck waiting time. To the best of our knowledge, this 

study is among the first to evaluate the truck waiting time of the exact solutions with a tree structure in the context of 

uncertain CRP. (v) We conduct extensive experiments to demonstrate the effectiveness of the flexible service policy and 

the influence of the customer preference on the results. The results can provide managerial insights for terminal operators 

to manage import container operations more efficiently. 

The remainder of the paper is organized as follows. Section 2 reviews the previous work related to the CRP and SCRP 

and discusses the service policies applied in the (S)CRP. Section 3 describes the problem in detail and formulate it using 

stochastic dynamic programming. Section 4 and section 5 respectively propose exact solution algorithms and heuristic 

solution methods. A simulation model is developed in Section 6 to evaluate the solutions. The results of computational 

experiments are reported in Section 7. Section 8 summarizes the findings and provides managerial insights.  

2 Literature review 

Container relocation is related to several container handling processes at container terminals. Four types of relevant 

problems have been identified by Carlo et al. (2014): storage location assignment problem, joint retrieval sequencing and 

relocation problem, pre-marshalling problem and re-marshalling problem. An overview of these problems from a 

mathematical perspective is given in Lehnfeld and Knust (2014). The joint retrieval sequencing and relocation problem 

is the focus of this paper. 

2.1 Deterministic CRP and uncertain CRP  

Most studies on the joint retrieval sequencing and relocation problem assume a priori given retrieval sequence and only 

focus on optimizing relocation positions, which leads to the standard CRP. The basic objective of the standard CRP is to 

retrieve all containers in a given bay in a pre-defined order with the minimum number of relocations. There are also 

several variants of the CRP, such as the dynamic CRP, the unrestricted CRP, etc. We classify the relevant literature into 

two research streams: deterministic CRP and uncertain CRP, which are differentiated by whether the information on the 

containers’ retrieval times/sequences is deterministic or uncertain.  

Previous researches have largely concentrated on the first research stream, i.e. the certain version of the CRP. A number 

of (mixed) integer programming have been proposed to solve the problem (e.g. Wan et al., 2009; Caserta et al., 2012; 

Petering and Hussein, 2013; Tang et al., 2015; Zehendner et al., 2015; Expósito-Izquierdo et al., 2015; Galle et al., 2018a). 

Other studies focus on developing effective solution algorithms. Exact solution algorithms are mainly by search-based 

algorithms, e.g., (iterative deepening) A* algorithms (Zhu et al., 2012; Borjian et al., 2015a; Quispe et al., 2018), Branch 

and Bound (B&B) (Kim and Hong, 2006; Ünlüyurt and Aydın, 2012; Expósito-Izquierdo et al., 2015; Tanaka and Takii, 

2016), Branch and Price (Zehendner and Feillet, 2014), and the abstraction method (Ku and Arthanari, 2016b), Besides, 

heuristics algorithms are presented to overcome computational complexities of the CRP, e.g., beam search algorithms 

(Bacci et al., 2019; Ting and Wu, 2017) and greedy heuristics (Jin et al., 2015; Jovanovic and Voß, 2014) (c.f.Ku and 

Arthanari, 2016b and the references therein). 

In the second research stream, the uncertain CRP may be further categorized into two sub-groups: the online setting 

and the probabilistic setting, according to whether the uncertainties of the containers’ retrieval times/sequences are 

represented by probabilities or not.  

In the online setting, the knowledge of the exact container retrieval sequence is limited to a given look-ahead horizon 

and is revealed over time gradually, and the research focus is to design efficient online heuristics to relocate containers in 

real-time. Zehendner et al. (2017) investigate a case of the online CRP where the look-ahead horizon is zero and one 

container is revealed at a time. They analyze the theoretical performance of an online relocation rule called heuristic L 
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(leveling) that relocates containers to the lowest tier. Zhao and Goodchild (2010) make use of truck appointment 

information to deal with the online CRP using a simulation method. At the beginning of the retrieval process, the retrieval 

containers booked in different time windows are known, but the exact retrieval sequence of the containers booked in the 

same time windows is unknown or partially known, which is revealed as the retrieval proceeds periodically. Two heuristics 

are designed to reduce the number of relocations utilizing the truck arrival information.  

In the probabilistic setting, the uncertainties on the containers’ retrieval times/sequences are modeled by a probability 

distribution and the research purpose is to minimize the expectation of the performance measures. Given the probabilistic 

distribution of containers dwell times, Tong et al. (2015) propose two heuristic rules to determine the positions of relocated 

containers with the objective of minimizing the total expected number of relocations for retrieving all the containers from 

a bay. Considering groups of containers with uncertain group retrieval orders, de Melo da Silva et al. (2018) introduce 

the Block Retrieval Problem (BRP) and the Bi-objective Block Retrieval Problem (2BRTP). The BRP aims to minimize 

the number of relocations for the initial target group by optimizing the retrieval sequence and the relocation positions, 

which is solved by a B&B algorithm and a linear time algorithm. Then, assuming that the probability of any remaining 

group being the forthcoming one is known, the 2BRTP is introduced with the primary objective of minimizing the number 

of relocations for the initial target group and the secondary objective of minimizing the expected number of relocations 

for the forthcoming group. A B&B algorithm and a beam search algorithm are proposed for solving the 2BRTP.  

The above studies of the uncertain CRP focus on the solution algorithms without providing the details of problem 

formulation. Mathematical optimization models for the uncertain CRP in the probabilistic setting are presented in a few 

studies. Borjian et al. (2013) introduce a two-stage stochastic optimization framework for the CRP with partial information, 

in which the departure times of some containers are known, while for the remaining containers only a probability 

distribution of the retrieval order is given. The model is to minimize the weighted sum of the expected number of 

relocations and total retrieval delays, which yields the optimal sequence of moves for each possible scenario. A heuristic 

based on the stochastic optimization model is designed to obtain sub-optimal solutions. Ku and Arthanari (2016a) propose 

the CRP with Time Windows (CRPTW), in which the retrieval sequences of containers with different departure time 

windows are in ascending order by their departure time windows. It is assumed that containers with the same departure 

time windows are retrieved in the uniformly distributed order which is revealed one container at a time. The problem is 

formulated into a stochastic dynamic programming (SDP) model to minimize the expected number of relocations. A 

search-based algorithm (depth-first search) in a tree space is proposed to solve the model optimally. More recently, Galle 

et al. (2018b) study a similar CRPTW using the term SCRP. Different from Ku and Arthanari (2016a), the full exact 

retrieval order of containers booked in the same time window is revealed at once after all containers booked in the previous 

time window have been retrieved. The SCRP is formulated as a multi-stage stochastic model, called the batch model. An 

optimal search-based algorithm called Pruning-Best-First-Search (PBFS), a randomized approximate algorithm called 

PBFSA, and two new heuristics are proposed to solve the batch model. The batch model is compared with the SDP model 

in Ku and Arthanari (2016a) both theoretically and computationally to prove that it is beneficial to use the batch model in 

terms of the expected number of relocations. Note that because of the use of the same information revealing mechanism 

and the similar modelling techniques to seek global optimal solutions, the current paper positions itself to the SCRP 

proposed by Galle et al. (2018b). However, our study differs from Galle et al. (2018b) in many aspects that will be 

elaborated at the end of this section. 

Finally, it is worth mentioning that several interesting variants of the (S)CRP have also been investigated. For instance, 

a few studies consider the CRP in a three-dimensional storage area and take into account both the number of container 

movements and the working time of the yard crane (e.g., Lee and Lee, 2010; Lin et al., 2015). From the service-oriented 

standpoint, López-Plata et al. (2017) address the Blocks Relocation Problem with Waiting Times (BRP-WT) focusing on 

minimizing the sum of waiting times of a set of blocks during retrieval. Recently, Zweers et al. (2020) present a new 

optimization problem related to the SCRP, called the Stochastic Container Relocation Problem with Pre-Processing 

(SCRPPP), which aims to minimize a weighted average of the pre-processing moves in the pre-processing phase (when 
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the crane is idle) and the relocation moves in the relocation phase. A B&B algorithm and a local search heuristic are 

proposed to solve the problem.  

2.2 Service policies  

Among the literature reviewed above, most of them assume that each container has a distinct retrieval sequence that is 

exogenously determined. For import containers, this assumption corresponds to the FCFS service policy, under which the 

containers are retrieved in the order of external truck arrivals. Using the FCFS service policy may make the problem more 

tractable but meanwhile loses some opportunities for optimization. In the uncertain CRP context, three studies have 

considered flexible service policies or service out-of-order (SOOO). Zhao and Goodchild (2010) propose a pickup 

sequence dictation heuristic that dictates the retrieval sequence of containers within the first arrival group to reduce 

relocations. In the study of de Melo da Silva et al. (2018), the containers in the same group are assigned the same retrieval 

priority and their retrieval order is to be optimized. Borjian et al. (2013) assume a service time window for each container 

instead of imposing strict service order on containers. In the deterministic CRP context, a few researchers have also 

introduced the flexibility of container retrieval sequence, e.g., Kim and Hong (2006), Borjian et al. (2015b) and Zeng et 

al. (2019).  

One major concern of flexible retrievals is the possibility of causing extra delay and service inequity to some trucks. 

Zhao and Goodchild (2010) and Zeng et al. (2019) attempt to avoid this by restricting out-of-order retrievals within a 

group of containers booked in the same time window. However, Zhao and Goodchild (2010) do not analyze the impact 

of dictating the pickup sequence on external trucks. Zeng et al. (2019) find that when the number of containers booked in 

each time window is over a certain number, adjusting the pickup sequence may increase the average waiting time of 

external trucks. One possible reason for this is that they do not consider the common phenomenon of trucks queuing 

before getting the retrieval service at congested container terminals, where out-of-order retrievals may not create more 

waiting times. Borjian et al. (2015b) control the level of flexibility by limiting the number of out-of-order retrievals before 

each truck. They conclude that the average retrieval delay is decreased as a result of out-of-order retrievals, and in the 

long term, the service equity that each truck receives is not adversely affected. In the study of Kim and Hong (2006), the 

containers in the same group are assumed to be loaded into a cluster of slots of a vessel in any order, which means those 

containers share the same retrieval priority, and thus there is no issue of delay and service inequity. Similarly, de Melo da 

Silva et al. (2018) do not consider this issue either, as they assume that the containers in the same group are to be retrieved 

by the same customer. Borjian et al. (2013) set a maximum service delay for each container and consider a weighted 

objective function that jointly minimizes the expected number of relocations and total delays. It can be seen that Borjian 

et al (2013) is the only paper that applies flexible retrievals in an uncertain CRP using a mathematical optimization model. 

However, in their model, all uncertain information is revealed at once, which is not close to reality. 

In this paper, out-of-order retrievals are limited to the trucks arriving in the same sub-time window to maintain the 

service equity among subsystems (Yang et al., 2013) and to avoid excessive delay to any trucks. Meanwhile, this ensures 

that trucks arriving in the first sub time window are served before those arriving in the second sub-window, which is 

consistent with the customers’ preferences.  

Table 1 compares this paper with the closely related studies from four key aspects. This paper is differentiated from 

previous works in several ways. From the problem perspective, the SCRP-FS we propose generalizes the SCRP in the 

sense that first, a flexible service policy (SOOO), as opposed to the FCFS policy, is integrated into the multi-stage 

stochastic optimization framework. The SOOO policy allows some flexibility in the retrieval sequences of containers in 

the same group and thus provides more opportunities to reduce the number of relocations and the truck waiting times. 

Second, instead of assuming uniformly distributed truck arrival order, we propose a more general probabilistic model to 

describe the randomness of the truck arrivals within the same group. Specifically, our probabilistic model has the 

capability of capturing the customer preference-based arrival behavior, which has more practical relevance. From the 

methodology perspective, we propose a new optimization framework that not only optimizes the expected number of 

relocations (primary objective) but also optimizes the truck waiting times (secondary objective). Although our exact 
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solution algorithm is built upon the PBFS algorithm in Galle et al. (2018b), the existing PBFS algorithm does not allow 

for a straightforward adaption to our problem due to the substantial differences between the SCRP and the SCRP-FS. A 

great deal of effort has been made to adapt the PBFS algorithm to solve our problem. The major adaptions are: first, we 

construct a more general decision tree with a new structure, which adds a new layer of decision node for sequencing 

trucks and expresses nodes with a dual-matrix configuration that represents both truck appointment information and 

customer preference; second, we propose a new lower bound for the expected number of relocations for the SCRP-FS by 

including the characteristics of flexible retrieval orders and customer preference-based arrivals, which is necessary to 

prune unpromising nodes; third, we add a procedure for minimizing the truck waiting times batch by batch by using the 

derivation of a waiting time indicator. In addition, we design two fast and efficient heuristic algorithms for the SCRP-FS. 

Last, we construct a discrete event simulation model to evaluate the exact solutions with a tree structure, which is the 

pioneer in the relevant literature. The simulation model is especially needed to evaluate the truck waiting times for the 

exact solutions because the exact algorithms do not record time-related performance. 

Table 1 The comparison with the most relevant studies 

Characteristics 

The probabilistic 

model of truck 

arrival 

Information 

updating 
Service policy Objectives 

Borjian et al. 

(2015b) 
Deterministic - 

A limited number of out-

of-order retrievals before 

each truck 

The weighted number of relocations 

and retrieval delays 

Zeng et al. (2019) Deterministic - 
Out-of-order retrieval 

within each group 
The number of relocations 

Borjian et al. 

(2013) 

Scenario-based 

uncertainty  
Two-stage 

Out-of-order retrievals s.t. 

a maximum delay 

The weighted expected number of 

relocations and total delays 

Ku and Arthanari 

(2016a) 
Uniform distribution 

Multi-stage 

over individual 

trucks 

FCFS The expected number of relocations 

Galle et al. 

(2018b) 
Uniform distribution 

Multi-stage 

over groups 
FCFS The expected number of relocations 

This paper 

Customer 

preference-based 

uncertainty 

(incl. uniform 

distribution) 

Multi-stage 

over groups 

Out-of-order retrievals 

within each sub-group 

Primary objective: the expected 

number of relocations;  

Secondary objective: the total truck 

waiting times of each group 

3. Problem description and formulation 

In this section, we first describe the SCRP-FS in detail and then formulate the problem by stochastic dynamic 

programming. 

3.1 Problem description  

The studied problem is a multi-stage stochastic optimization problem. The problem is described along with the 

introduction of the basic assumptions of the SCRP, the probabilistic model of truck arrivals, the containers’ attributes, and 

the service priority.  

3.1.1 Basic assumptions 

The following assumptions are generic to the (S)CRP (e.g. Kim and Hong, 2006; Caserta et al., 2011b; Ku and Arthanari 

2016a; Galle et al., 2018b).  

A1: Relocations are performed only within the bay being considered. The initial bay layout consisting of S stacks, T 

tiers, and C containers. In order to avoid infeasible relocations, the storage capacity of the bay is restricted to be 

( 1) 1S T− +  containers.  

A2: A container is relocatable only when it is blocking the target container.  

A3: No new containers arrive at the bay during the container retrieval process.  

A4: The travel distance of the trolley and spreader of the yard crane does not have an impact on relocation costs, which 

means that the relocation effort is measured only by the number of relocations. 

A5: Each container is booked to a time window and the corresponding truck will arrive at the terminal within the 
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appointed time window. A batch of containers (trucks) (i.e., one container corresponds to one truck) is defined as the set 

of containers (trucks) booked to the same time window. The arrival precedence relationship among batches of trucks is 

known, but the exact arrival order of trucks within each batch is uncertain, which is revealed as the retrieval proceeds. 

A6: For each batch, the full arrival order of trucks from this batch is revealed at once after all containers in its prior 

batch have been retrieved. 

It is worth mentioning that A6 follows the assumption of Galle et al. (2018b), which is based on the phenomenon of 

truck congestion at gates and yards in busy terminals. The considerable number of trucks in the queue enables the terminal 

operator to have information about the full arrival order of trucks in a batch before the retrieval of this batch begins.  

3.1.2 Probabilistic model of truck arrivals 

The specific probability distribution of the arrival order of trucks within each batch is hard to predict. The existing 

studies assume a uniform distribution. In the practical situation, trucks (customers) have their preferred arrival times and 

may have preferences for either the earlier segment or the latter segment of the booked time windows, which leads to 

unequal probabilities of arriving in each segment.  

We propose a more general probabilistic model of truck arrivals, which can capture customer preference-based arrivals. 

We divide each appointment time window into two sub-time windows with identical time length. More generally, our 

proposed approach can be applied to the case where each time window is divided into multiple (more than two) sub-time 

windows. For the sake of brevity and noticing that the current TAS usually sets 30 min or 60 min for each appointment 

time window, we only focus on the case of two sub-time windows in this paper. The following assumption is made in the 

probabilistic model.  

A7: 1) Within each batch, the probability of a truck arriving at which sub time window is dependent on customer 

preference, and 2) within each sub time window, the truck arrival order is drawn from a uniform random permutation. 

This enables us to list all potential scenarios of the assignments of a batch of trucks to two sub-time windows with 

associated probabilities calculated by the customer preference. The calculation is presented in the next sub-section along 

with the introduction of containers’ attributes.  

3.1.3 Containers’ attributes 

We introduce containers’ attributes to help describe the problem. The following notations are adopted throughout the 

paper. Let kB  denote the set of containers in batch k and kC  denote the number of containers in batch k, {1,..., }k K . 

By definition 
1

K

k

k

C C
=

= . Each container has three attributes:  

(1) The first attribute, denoted by il  , {1,..., }i C  , is the priority label that represents i) the arrival precedence 

relationship among the trucks and ii) the container retrieval sequence. This label changes during the container retrieval 

process. Initially, containers in batch k are labeled by kL  that represents the arrival precedence among batches of trucks, 

which we call batch priority (see Fig. 1(a)). Let 
1

1

1
k

k j

j

L C
−

=

= + , such that given kL , there is a unique {1,..., }k K . Then, 

once the full arrival order of trucks in batch k is revealed, we get the sub-batch priority for batch k, which represents the 

arrival precedence among sub-batches of trucks. A sub-batch of trucks is the set of trucks that have arrived in the same 

sub-time window. For a container in batch k, {1,..., }k K , if its corresponding truck is revealed to arrive in the second 

sub-time window, its label changes to 1kL +  ; otherwise, its label does not change. Once the retrieval sequence of a 

container in batch k is determined, its label changes to the exact retrieval sequence that is within [ , 1k k kL L C+ − ]. 

(2) The second attribute, denoted by iu , {1,..., }i C , is a unique ID, which is used for identifying individual containers 

(trucks) (see Fig. 1(b)).  

(3) The third attribute, denoted by [0,1]ip  , {1,..., }i C , represents the customer preference of container iu  (see 

Fig. 1(c)). We define that truck iu  arrives at the first sub-time window with ip  and at the second sub-time window 

with 1 ip− . For {1,..., }k K , let kζ  refer to the possible scenario of sub-batches of trucks in batch k and ( )kp ζ  refer 
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to its probability. 1

kζ  and 2

kζ  represent two mutually exclusive and collectively exhaustive random sets, the random 

variables in which take values in i ku B , such that  1

i ku ζ  is the event that truck iu  arrives in the first sub-batch and 

 2

i ku ζ   is the event that it arrives at the second sub-batch. Then, by definition, we have 
1[ ]
ki iu ζ p =P   and 

2[ ] 1
ki iu ζ p = −P , i ku B . There are a total of 2 kC

 possible scenarios of kζ  for batch k, and a total of 
1 2 kCK

k=  

scenarios for all the batches.  

A simple example is given in Fig. 1 to illustrate the containers’ attributes and the calculation of the probability of kζ . 

There are seven containers in the initial bay that consists of three stacks and three tiers. Fig. 1(a) displays the priority 

labels represented by batch priority (1, 3, 5). Fig. 1(b) gives the container/truck ID (u1 ~ u7). Fig. 1(c) presents the customer 

preference (0.0~1.0). Fig. 1(d) displays the revealed sub-batch priority of the first batch in bold. Given the information in 

Fig. 1(a)-(c), we have the initial bay configuration. For example, container u1 is located in the third tier of stack three; 

truck u1 is in the first batch, which will arrive in the first sub-time window with a probability of 0.6 and the second sub-

time window with a probability 0.4. Let us consider 1ζ . There are totally four scenarios of 1ζ , which are respectively 

    1 2

1 1 1 4,ζ u ζ u= =  ,   1 2

1 1 4 1, ,ζ u u ζ= =   ,     1 2

1 4 1 1,ζ u ζ u= =  , and   1 2

1 1 1 4 , ,ζ ζ u u=  =  . Their probabilities are 

computed as:     ( )1 2

1 1 1 4, 0.6 (1 0.8) 0.12p ζ u ζ u= = =  − =  ;   ( )1 2
1 1 4 1, , 0.6 0.8 0.48p ζ u u ζ= = =  =  ;

    ( )1 2

1 4 1 1, (1 0.6) 0.8 0.32p ζ u ζ u= = = −  =  ;   ( )1 2

1 1 1 4, ,p ζ ζ u u= = (1 0.6) (1 0.8) 0.08= −  − =  . If truck u1 has 

arrived at the terminal in the first sub-time window and truck u4 has arrived in the second sub-time window as shown in 

Fig. 1(d), 1ζ  is revealed to be     1 2

1 1 1 4,ζ u ζ u= =  .  

      (a) Batch priority        (b) Container (truck) ID    (c) Customer preference    (d) Sub-batch priority  

Fig. 1 An illustration of containers’ attributes 

3.1.4 Service policy 

As an alternative to the FCFS policy, we propose a flexible service policy that allows Out-Of-Order retrievals for 

containers in the same Sub-batch, which is called the SOOO policy. Under this policy, a former sub-batch of trucks is 

surely served before a latter sub-batch of trucks, and the service sequence for trucks in the same sub-batch is to be 

determined by the terminal operators. As the root cause of relocation is the mismatch between containers’ stacking 

positions and their retrieval sequences, relocations can be reduced by optimizing the retrieval sequence. Besides, as 

relocation operations increase retrieval times, out-of-order retrievals can also create opportunities for reducing the truck 

waiting time in the retrieval process. Similar to Galle et al. (2018b), we make the following assumption on the retrieval 

service begin time of a batch.  

A8: The retrieval service of a batch begins at the end of the appointed time window associated with the batch. 

A8 can be justified from the following two aspects. Firstly, A8 represents the practical situation of crowded terminals 

in which trucks often queue up at gates and yards after their arrivals and wait to be served (see Pham et al., 2011; Chen 

et al., 2013a,b). On one hand, several activities, e.g., security check, permission check, etc. (see Huynh and Zumerchik, 

2010) need to be performed at the entry gates before the truck can proceed to the yard. On the other hand, for container 

terminals having a high level of congestion in the yard, internal waiting queues are also formed and trucks have to wait 

Tier 

3   1 

2 3 5 1 

1 5 5 3 

 1 2 3 Stack 
 

Tier 

3   u1 

2 u2 u3 u4 

1 u5 u6 u7 

 1 2 3 Stack 
 

Tier 

3   0.6 

2 0.7 0.5 0.8 

1 0.3 0.1 0.4 

 1 2 3 Stack 
 

Tier 

3   1 

2 3 5 2 

1 5 5 3 

 1 2 3 Stack 
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to be served (Talley and Ng, 2016; Li et al., 2019). Secondly, it is observed that the average truck turnaround time could 

be much longer than the length of the appointment time window. For example, in Los Angeles-Long Beach, the average 

truck turn time at the 12 container terminals for the last two years was above 67 minutes and the maximum value was 

nearly 100 minutes (Mongelluzzo, 2020). For some terminals, a truck appointment system with 30-minutes time windows 

has been implemented (e.g., Fenix Marine Services container (fenixmarineservices.com), Middle Harbor (Mongelluzzo, 

2016)). Given above, it is reasonable to assume that the service of a batch begins at the end of the appointed time window 

associated with the batch.  

3.2 Problem formulation 

We propose two mathematical models for the SCRP-FS. First, a Sooo model is developed with the objective of 

minimizing the expected total number of relocations to retrieval all containers from a given bay. The Sooo model is 

important to the terminal operators in reducing relocations; however, it does not consider the truck waiting times. Second, 

we develop a Sooo extension model to fully take advantage of the flexible service policy. The Sooo extension model has 

two lexicographically ordered objectives: the primary objective is to minimize the expected total number of relocations, 

and the second objective is to minimize the total truck waiting times in each batch. To a large extend, our study on the 

Sooo model is a starting point to develop the Sooo extension model, which is one of the main contributions of this paper. 

Still, the results of the Sooo are of a certain interest in their own right, and the developed algorithm serves as building 

blocks for the exact algorithm for the Sooo extension model.  

3.2.1 Sooo model 

The SCRP is a multi-stage sequential decision-making problem with dynamic information revealing. The stochastic 

dynamic programming (SDP) method is appropriate to deal with such problems (Bakker et al., 2020). The CRP related 

problems have been tackled using (stochastic) dynamic programming method, e.g. the deterministic CRP (Kim and Hong, 

2006), the SCRP (Ku and Arthanari, 2016a), and the export container stacking problem (Kim et al., 2000; Zhang et al., 

2010). In this paper, we formulate the SCRP-FS into an SDP model. The emphasis in SDP is typically in identifying the 

system states and the actions (variables) at each state (Birge and Louveaux, 2011). In the following, we first define the 

stage, state, and action for the Sooo model.  

Stage: the sequence number of the batch to be retrieved. The example in Fig. 1 is considered as stage 1 since the 1st 

batch of containers is to be retrieved.  

State: the state of each stage is the state of the bay that consists of the stacking positions of the remaining containers 

and their attributes. The input state of the kth stage is the state of the bay after the (k-1)th batch has been retrieved and 

before the scenario of the sub-batches of the kth batch is revealed. For example, Fig. 1(a)-(c) constitute the input state of 

stage 1.  

Action: a feasible action is defined as a sequence of moves to retrieve a batch of containers. Different from the 

conventional SCRP, the actions in the SCRP-FS consists of two types of actions: (i) the retrieval sequences of the 

containers (i.e., the service sequence of trucks) in each of the two sub-batches, called sequencing, and (ii) the storage 

positions of the relocated containers, called relocating.  

With these definitions, optimal actions are taken under uncertainty stage by stage. The uncertainty in the model refers 

to the scenarios of the sub-batches of each batch (at each stage). At the beginning of a stage, firstly, the scenario of this 

stage is revealed, and then the optimal actions to retrieve the batch of containers at this stage are sought accordingly 

considering all the potential scenarios of future stages. The objective is to minimize the expected total number of 

relocations to retrieve all the containers. Mathematically, the Sooo model can be formulated in a similar way in which it 

is done in Ku and Arthanari (2016a). The notations used in the model are defined as follows.  

K: the total number of batches in the initial bay, which is also the total number of stages. 

k: the stage number (the kth batch of containers to be retrieved), {1,..., }k K . 

kζ : The scenario of the sub-batches of stage k, {1,..., }k K  (a random variable). 

kS : the input state of stage k, that is, the state of the bay after the (k-1)th batch has been retrieved and before kζ  is 
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revealed, {1,..., }k K .  

( )kp ζ : The probability of kζ . This is calculated by the probabilistic model of truck arrivals introduced in section 

3.1.2.  

( , )k k kS ζa : The actions (a decision variable) taken for retrieving the kth batches of containers given kS  and kζ . 

( , ) { ( , ), ( , )}S R

k k k k k k k k kS ζ S ζ S ζ=a a a , wherein ( , )S

k k kS ζa  is the retrieval sequence decision of the containers in 

each of the two sub-batches at stage k given kS   and kζ  , and ( , )R

k k kS ζa   is the relocation position decision that 

respects ( , )S

k k kS ζa . For notational convenience, the dependence on ( , )k kS ζ  is suppressed from ( , )k k kS ζa , and we 

use ka  instead.  

( , )k k k kr S ζa : The number of relocations that are required during action ka  on the bay of state kS  given kζ . 

( , , )k k k kt S ζ a : The state transition function that maps kS , kζ , and ka  into the next state 1kS + . By ( , , )k k k kt S ζ a , 

the kth batch of containers revealed by kζ   are retrieved according to ka   from state kS  , after which 1kS +   is 

obtained.  

( )k kf S : The expected minimum total number of relocations to retrieve the remaining K-k+1 batches of containers from 

the state kS . 

The Sooo model is formulated as a recursive equation as follows:  

   
1 1

1

1 1 1 1 1 1 2 2 1 1 1 1 1 2 2( ) min ( | , ) ( ) ( ) min ( | , ) ( )
ζ

f S E r S ζ f S p ζ r S ζ f S = + = +
  


a a

a a , 

where          2 1 1 1 1( , , )S t S ζ= a                                                                 (1) 

Generally,        1 1( ) ( )min ( | , ) ( ) ,  {1,..., }
k

k

k k k k k k k k k

ζ

f S p ζ r S ζ f S k K+ += + 
a

a , 

where          1 ( , , )k k k k kS t S ζ+ = a , for {1,..., }k K , and 1 1( ) 0K Kf S+ + =                                (2) 

The recursive function of equation (2) indicates that optimal decisions can be obtained by optimizing the recursive 

function in a backward manner stage by stage.  

3.2.2 Sooo extension model 

The Sooo extension model considers two lexicographically ordered objectives. The primary objective is to minimize 

the expected total number of relocations and the secondary objective is to minimize the total truck waiting times of each 

batch sequentially. The use of the secondary objective is justified from the following three perspectives.  

Firstly, our motivation for considering the metric of truck waiting times stems from its importance not only to the 

container terminals but also to the container transport supply chain. The truck waiting time is a key performance indicator 

that measures the efficiency of storage area at a container terminal (Stahlbock and Voß, 2008; Carlo et al., 2014; 

Gharehgozli et al., 2016) and is one of the main reasons causing delays in handling external trucks and leading to low 

quality of customer service (Borjian et al. 2013). A reduction in the truck waiting time would improve the terminals’ 

competitiveness and act as an incentive to encourage external truckers’ cooperation, which is essential to achieve a smooth 

implementation of the flexible service policy.  

Secondly, longer truck waiting time in the yard for service leads to higher truck turn time and more emissions (Huynh 

et al., 2004). Terminal operators have been under enormous pressure from different parties requiring to reduce the truck 

turn time. For example, from the legislative perspective, the California Assembly Bill AB 2650 became active in 2003 in 

the US requiring port terminals to lower port-related truck congestion and vehicle emissions. Under this law, external 

trucks were a major target of regulatory efforts (Giuliano and O’Brien, 2007). Besides, from the economic perspective, 

some port authorities (e.g., Port Botany; Port Metro Vancouver) have implemented a penalty system that imposes fees on 

terminals that exceed a specified threshold of truck turn time. In addition, from the perspective of vertical cooperation in 

the container transport chain, truckers, as an import stakeholder of the hinterland transport, have stated that they won’t 

accept truck appointments until terminals can shorten turn times and end long queues (Bonney, 2015). Reducing the truck 

waiting time in the container retrieval process helps to alleviate yard congestion and thus reduce the truck turn time.  

Thirdly, the importance of the truck waiting time metric in the CRP has also been confirmed by the increasing attention 

it has received in the literature. For instance, López-Plata et al. (2017) minimize the total waiting times of the containers 
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that have expected retrieval times in the deterministic CRP. Borjian et al. (2015b) and Borjian et al. (2013) minimize the 

weighted sum of total relocations and delays in the deterministic CRP and uncertain CRP respectively. Our study is the 

first that considers two lexicographically ordered objectives when taking both the number of relocations and the trucks 

waiting time into consideration in the uncertain CRP. The reasons to sequence these two objectives (i.e. the number of 

relocations as the primary objective and the truck waiting time as the secondary objective) are: (i) the number of 

relocations has a more direct impact on the terminal; (ii) this treatment will appropriately evaluate the effect of the flexible 

policy on reducing the expected number of relocations compared to the conventional SCRP; (iii) because there may exist 

multiple optimal solutions to minimizing the expected number of relocations in the SCRP-FS, introducing the secondary 

objective can further optimize the second objective without sacrificing the primary objective. 

Fig.2 illustrates the idea behind the Sooo extension model. Let us consider the solutions for the first batch, in which 

truck u1 and u5 have been revealed to be in the first sub-batch and u7 in the second sub-batch. With regard to the primary 

objective, there are two optimal solutions to the retrieval sequence for u1, u5, and u7. Solution one is 5 1 7u u u→ → , 

and solution two is 1 5 7u u u→ → . The two solutions contribute the same number of relocations to the expected 

total number of relocations since no matter which retrieval sequence is used the blocking container u2 is relocated to stack 

two. The Sooo extension model wants to choose one that is optimal with respect to the secondary objective, i.e., 

minimizing the total waiting times of the trucks in the first batch/stage. By A8, both truck u1 and u5 are ready to be served 

when the service of this batch begins. If u5 is retrieved before u1, truck u1 suffers waiting due to the relocation of u2, which 

could have been avoided if using the alternative solution. Therefore, the optimal solution of the Sooo extension model is 

1 5 7u u u→ → .  

Tier 

3   u1 

2 u2 u3 u4 

1 u5 u6 u7 

 1 2 3 Stack 
 

Tier 

3   1 

2 4 5 5 

1 1 5 2 

 1 2 3 Stack 
 

Container ID Revealed information for the first batch 

Fig. 2 An example of illustrating the primary objective and the secondary objective 

Objective function 

Here, we develop the secondary objective function. Before getting retrieval service, truck waiting can occur at any 

point from arriving outside the in-gate to arriving at the designated yard stack until exiting the out-gate. As our main focus 

is on the container retrieval process, only the yard-to-retrieval waiting time is of our interest. In particular, we are more 

concerned with how much waiting times in the container retrieval service process can be saved as a result of the flexible 

service policy as opposed to the FCFS policy. By the assumption A8, the retrieval service for a truck cannot commence 

before the end of its appointed time window. Therefore, the waiting time of a truck before the end of its appointed time 

window is independent of our decision variables. We hence define the truck waiting time as the elapsed time between the 

end of its appointed time window and its actual retrieval time. To avoid confusion, we use the term “relevant truck waiting 

time” to represent the truck waiting time considered in this paper. It is worthwhile to note that the relevant truck waiting 

time under A8 has its practical interpretation. In practice, a truck would have an expected time to retrieve its container, 

and the difference between that and the actual retrieval time is a common measure of service quality in general terms 

(López-Plata et al., 2017). For a truck that has booked an arrival time window through the TAS, the end of its appointed 

time window can be regarded as its expected retrieval time, and the relevant truck waiting time can be used as a measure 

of service quality for the container retrieval process. 

To measure the relevant truck waiting times, we need some time-based notations. Let ke   denote the end of the 

appointed time window of the containers in batch k. Let dk denote the completion time of retrieving the last container in 

batch k, and ky   denote the service starting time of batch k. The secondary objective is optimized for each stage 
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separately in a sequential way rather than considering global optimization. This means that when optimizing the secondary 

objective of stage k, the service for stage k-1 has been completed, that is, kS  is given. This enables us to treat the service 

completion time of the (k-1)th stage (dk-1) as a constant when optimizing stage k. Given ke  and dk-1, we have ky  by  

 1max ,k k ky e d −= , {2,..., }k K ; 1 1y e= . (3) 

By equation (3), if the service completion time of batch k-1 is later than the end of the appointed time window of batch 

k, the service starting time of batch k is dk-1. Otherwise, the service starting time of batch k coincides with the end of its 

appointed time window, that is, ke . 

Under the given decisions ( , ) { ( , ), ( , )}S R

k k k k k k k k kS ζ S ζ S ζ=a a a , we now derive the explicit expressions of dk 

and the relevant waiting time of truck i in batch k ( ki B ) under kζ , which is denoted by ,
kζ

k iw . The following notations 

are introduced to extract the relevant information implied in the decision variables.  
kζ

io  : the service order of truck i, ki B  , under kζ  . Note that kζ

io   is implied in the service sequence decision 

( , )S

k k kS ζa . 

kζ

ir : the number of relocation moves needed when serving truck i, ki B , under kζ . Note that kζ

ir  is implied in 

the relocation decision ( , )R

k k kS ζa . 

rett : the handling time per retrieval move. 

relt : the handling time per relocation move. 

By A8, all the trucks in a batch have already waited at the yard stack when the service of this batch begins, and thus 

there is no idle time between the services of any two trucks in the batch. Therefore, dk is calculated by  

( )k

k

ζrel ret
k k i

i B

d y t r t



= +  +                                        (4) 

,
kζ

k iw  is calculated by  

,

,

( ) ( )k k k

ζ ζk k
k j i

ζ ζ ζrel ret rel
k k j ik i

j B o o

w y e t r t t r

 

= − +  + +  ,                      (5) 

The first term on the right side in equation (5) is the waiting time between the end of the appointed time window and 

the start of the service of batch k, the second term is the total handling time of the trucks in the batch that are served before 

truck i, and the last term is the relocation time for retrieving the container requested by truck i. Equation (5) is illustrated 

in Fig. 3 using the instance in Fig. 2, where the first batch of trucks is served in the sequence: 1 5 7u u u→ → . By 

equation (5), the waiting time of truck u1, u5, and u7, is respectively k ky e− , 
ret rel

k ky e t t− + + , and 2 2ret rel

k ky e t t− + + . 

It is observed that the handling time of u1 contributes 
rett  to the waiting time of both u5 and u7 and the handling time of 

u5 contributes 
ret relt t+  to the waiting time of u7. 

 

Fig. 3 Illustration of trucks waiting time 

Let kζ
kW  denote the total waiting times of all the trucks in batch k under kζ  with the given decisions ( , )k k kS ζa . 

Then we have  

        

  

  

  

Relocation  

Retrieval 
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( )

,

,

( ) ( )

( ) ( )

k k k k

ζ ζk k
k k k j i

k k k

k k

ζ ζ ζ ζrel ret rel
k k j ik k i

i B i B j B o o

ζ ζ ζrel ret rel
k k k i k i i

i B i B

W w y e t r t t r

y e C t r t C o t r

   

 

 
 = = − +  + + 
  
 

= −  +  +  − + 

  

 
,                  (6) 

where the first term on the right hand represents the total waiting time of all trucks in the batch before the service of this 

batch commences, the second term represents the sum of the handling times of the predecessors of each truck in the batch, 

and the third term is the total relocation times for retrieving all the containers in the batch. Because the service time of 

truck i adds to the waiting times of all its successors in the batch, ( )kζrel ret
it r t +  is weighted by ( )kζ

k iC o− . In other 

words, a part of the waiting time of a truck is a cumulative service time of all its predecessors in the batch (see Fig. 3).  

Let 
(1) ( )k kγ S  denote the primary objective for stage k, which is the expected minimum total number of relocations to 

retrieve the remaining K-k+1 batches of containers from the state kS , and 
(2) ( )k kγ S  denote the secondary objective for 

stage k, which is the expected minimum total waiting times for the trucks in batch k with the state kS . Given kS , the 

Sooo extension model aims to find the solution that minimizes the secondary objective 
(2) ( )k kγ S   among the set of 

solutions that minimize the primary objective 
(1) ( )k kγ S . Then, the Sooo extension model for stage k with the state kS , 

{1,..., }k K , is formulated as follows: 

(1) ( ) ( )k k k kγ S f S= , which is defined in (2) 

(2) ( ) ( )min k

k
k

ζ

k k k k

ζ

γ S p ζ W=
a

                                       (7) 

Derivation of optimality 

Observation 1. The optimal solution of the Sooo extension model at stage k from the state kS  under kζ  is the one 

that minimizes ( )1k k

k

ζ ζ
i k i

i B

r C o



 − +   among the set of optimal solutions ( , )k k kS ζa   with regard to the primary 

objective. 

Proof. At each stage k, dk-1 is known and thus ky  can be calculated by equation (3). Besides, ke , kC , 
rett  and 

relt  are constant. Therefore, min k

k

ζ

kW
a

 in equation (7) is equivalent to  

( )min 1k k

k
k

ζ ζ
i k i

i B

r C o



 − +
a

,                                  (8) 

where ( )1k kζ ζ
i k ir C o − +   represents the contribution of the number of relocations for retrieving container i on the 

waiting time of truck i itself and on the waiting times of all its successors in the batch.                       

Observation 1 indicates that at each stage, the secondary objective is jointly determined by the number of relocations 

for each retrieval in the batch and its retrieval sequence. 

4. Exact solution algorithms based on decision tree 

By applying the recursive equation of the Sooo model, the optimal solutions can be obtained backward from stage K 

to stage 1. This procedure is usually executed by a tree search-based algorithm in a state-space constructed by a decision 

tree. The state-of-the-art tree search-based algorithm for the SCRP in which information is revealed on a batch basis is 

the Pruning-Best-First-Search (PBFS) algorithm proposed by Galle et al. (2018b). To solve the Sooo model, we develop 

an Adapted Pruning-Best-First-Search (APBFS) algorithm by extending the PBFS algorithm; we then extend the APBFS 

algorithm to solve the Sooo extension model. The PBFS is developed for the FCFS rule and does not consider customer 
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preference, which does not allow for a straightforward adaption. The main differences between our algorithms from 

existing ones are explained below. Firstly, our decision tree is more general, which can support two types of decision-

making under flexible service policies and incorporate customer preference. In particular, our decision tree is composed 

of three classes of nodes and each node is represented by a dual-matrix configuration, which differs from the PBFS 

decision tree that is composed of two classes of nodes each represented by a single-matrix configuration. Secondly, the 

new structure of the decision tree necessitates several major adaptions in the search: first, a new decision layer is 

considered during searching and back-tracking; second, another two techniques used to decrease the search space are 

modified: the abstract technique and the lowest level to stop branching. Thirdly, a new lower bound for the expected 

number of relocations for the SCRP-FS is proposed to prune unnecessary nodes. We consider the new lower bound as 

one of the major contributions of this paper since this is the first lower bound for the SCRP-FS in the literature. Fourthly, 

our extended APBFS expands the PBFS by having the capability of minimizing the total truck waiting times of each batch, 

which has been neglected in the relevant literature. 

In sub-sections 4.1-4.3, we first introduce the elements of the proposed algorithms with a focus on the differences 

between the PBFS and the APBFS. Then, in sub-section 4.4 and 4.5, we present the APBFS for the Sooo model and the 

extended APBFS for the Sooo extension model respectively. The contribution of the extended APBFS is introduced in 

sub-section 4.5.  

4.1 Constructing a decision tree  

In a typical decision tree for the SCRP, the root node represents the initial configuration and the leaf nodes represent 

the empty configuration. Between the root node and leaf nodes, there are two types of intermediate nodes: chance nodes 

and decision nodes, which alternate in some way to form the tree. A chance node is to model the stochasticity of trucks’ 

arrival while a decision node is to model possible actions. In the PBFS, each node is represented by a single matrix that 

corresponds to the truck arrival orders. 

In the (extended) APBFS algorithm, each node is represented by a dual-matrix configuration that is composed of a 

priority matrix and a preference matrix (see Fig. 4). The priority matrix represents the priority labels of containers and 

the preference matrix represents the probability of trucks arriving in the first sub-time window (i.e. the customer 

preference). The structure of the decision tree consists of three classes of nodes, which are chance nodes, SD nodes 

(sequencing decision nodes) and RD nodes (relocating decision nodes). The SD nodes create a new decision layer between 

the chance nodes and the RD nodes to sequence trucks. In the following, we define these nodes with the introduction of 

relevant notations.  

A chance node corresponds to kS , {1,..., }k K , in which the scenario of sub-batches of batch k (i.e., kζ ) is to be 

revealed (see e.g., node 0 in Fig. 4). From a chance node, descendant nodes are created by kζ , denoted by 
kS   (see 

e.g., node 1). Let kζ⎯⎯→  represent the revelation of kζ , we have kζ

k kS S ⎯⎯→ , {1,..., }k K . 

After the revelation of the random variable, actions are taken to retrieve the containers in batch k from 
kS  . A SD 

node corresponds to 
kS  , in which the retrieval sequence for the kth batch, denoted by 

S

kD , is to be determined. From 

a SD node, descendant nodes, denoted by 
kLX  (e.g., node 5, node 6), are created by applying 

S

kD . Recall that as 

defined in section 3.1.3, kL  represents the batch priority such that each batch k corresponds to an unique kL . Let 

S
kD

⎯⎯→  represent the application of 
S

kD , we have 
S
k

k

D

k LS X ⎯⎯→ . In a RD node, the target container (the container with 

the smallest label) is to be retrieved and the relocation decisions to retrieve the container is to be determined. For batch k, 

starting from the SD node corresponding to 
kS  , kC  levels of RD nodes are created sequentially, denoted by 

iX ,  

 ,..., 1k k ki L L C + −  (e.g., node 5, 7). Let 
R

iD  denote a sequence of moves (relocation moves and retrieval move) to 

retrieve the ith container, and 1iX +  denote the configuration after applying action 
R

iD  to iX  and before applying 

action 1

R

iD +  ,  ,..., 1k k ki L L C + −  . Let 
R
iD

⎯⎯→   represent the application of 
R

iD  , we have 1

R
iD

i iX X +⎯⎯→  , 
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 ,..., 2k k ki L L C + − .  

After the retrieval of the last container in the kth batch whose retrieval sequence is 1k kL C+ − , 
1k kL CX + −
 transits to 

the next chance node corresponding to 1kS +  (e.g., node 10), which is represented by 
1

1 1

R
L Ck k

k k

D

L C kX S+ −

+ − +⎯⎯⎯⎯→ .  

To summarize, for {1,..., }k K , the state transitions from kS  to 1kS +  in the tree search are modeled by:  

if 1kC  , 
 

1

1

1 1

, ,..., 2

k

S
k

k

R
i

R
L Ck k

k k

ζ

k k

D

k L

D

i i k k k

D

L C k

S S

S X

X X i L L C

X S+ −

+

+ − +

 ⎯⎯→

  ⎯⎯→


⎯⎯→   + −

 ⎯⎯⎯⎯→

                                  

if 1kC = , 
1

R
Lk

D

k kS S +⎯⎯⎯→                                                   (9) 
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Fig. 4 A sample decision tree  

Dashed-lines: the revelation of the scenario of sub-batches; Dotted-lines: applying the sequencing action on retrieval 

order; Solid-lines: applying the relocating action and retrieving the containers; Containers in bold font: target batch of 

containers; Containers in the shaded slot: target container to be retrieved. 
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4.2 Back-tracking in the decision tree 

Given a full decision tree, the optimal objective value is calculated by back-tracking. In this section, we only focus on 

the primary objective. Let n be a node in the decision tree. Each node has a cost-to-go function, denoted by f(n), which 

represents the expected cost of the cheapest path from node n to the leaf node. Let n=0 denote the root node, and then the 

objective function is denoted by f(0). The basic idea of back-tracking is to compute the cost-to-go function f(n) for each 

node n recursively from the bottom up of the tree with the ultimate goal to obtain f(0). To calculate f(n), we need the 

immediate cost function, denoted by r(n), which represents the cost incurred by the action taken to transit node n to its 

offspring. In the SCRP-FS, f(n) is defined for all three types of nodes, which represents the minimum expected number 

of relocations required to retrieve all remaining containers from node n. r(n)is only defined for RD nodes, which 

represents the number of relocations required in order to retrieve the target container in node n. The following notations 

are used to calculate f(n). 

nλ : the number of remaining containers in node n, which is defined as the level of n. If n is a chance node or a SD 

node, there exists a unique {1,..., }k K  such that 1k nL C λ= − + .  

n : the set of offspring of a chance node n. Each node in n  is a SD node that corresponds to a realization of the 

random variable kζ , and thus 2 kC

n = . 

n : the set of offspring of a SD node n. Each node in n  corresponds to a feasible retrieval order for the containers 

in batch k, wherein 1k nL C λ= − + , and thus 1 2! !n k kζ ζ = . 

n : the set of offspring of a RD node n. n  is constructed greedily by considering all feasible combinations of the 

relocation positions of the r(n) blocking containers in node n. The maximum value of | n | is given by 
( )( 1)r nS −  when 

the number of empty slots in each candidate stack is no less than r(n), wherein S is the number of stacks.  

inp : the probability of a SD node i nn  , which is calculated by our probabilistic model of truck arrivals.  

Given the above definitions, for each node n, we have: 

 

 

( ), if (i)  is a chance node,

( ) min ( ) , if (ii)  is a SD node,

( ) min ( ) , if (iii)  is a RD node.
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i n
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                             (10) 

In equation (10), the “if (ii)” condition is a new decision layer to the PBFS algorithm. We use the example in Fig. 4 to 

illustrate equation (10). Suppose f(10) = f(11) = 1 is given. Then the f(n) of other nodes are calculated as follows: f(7) = 

r(7) + min { f(10), f(11)} = 1 + 1 = 2; f(5) = r(5) + min { f(7)} = 0 + 2 = 2; f(1) = min { f(5)} = 2; f(8) = r(8) + min { f(10)} 

= 0 + 1 = 1; f(9) = r(9) + min { f(11)} = 0 + 1 = 1; f(6) = r(6) + min { f(8), f(9)} = 2 + 1 = 3; f(2) = min { f(5), f(6)} = 2. 

It confirms that the optimal offspring of node 2 with regard to the primary objective is node 5. f(3) = min { f(6)} = 3; f(4) 

= min { f(5), f(6)} = 2. It confirms that the optimal offspring of node 4 with regard to the primary objective is node 5. f(0) 

= p1* f(1) + p2* f(2) + p3* f(3) + p4* f(4) = 0.48*2 + 0.12*2 + 0.08*3 + 0.32*2 = 2.08.  

4.3 Techniques to decrease the size of the decision tree 

For larger problems, considering a full decision tree in the tree search becomes computationally cumbersome due to 

the exponential growth of the search space with the growing size of the problem. In the PBFS, a combination of four 

techniques has been proposed to reduce the size of the tree, while ensuring the optimality of the solution. The first one is 

the BFS (Best-First-Search) exploration strategy based on a valid lower bound, which determines the search direction of 

the tree. The BFS first explores the nodes with smaller lower bound, because these nodes are the most promising nodes 

that are most likely to return small (.)f . The second technique is pruning with a lower bound. By using the pruning 

strategy, a node is fathomed if its lower bound is greater than or equal to the best (.)f  of the explored nodes. The third 
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technique is stopping the search at a level λ* at which (.)f  can be obtained using specific techniques without the need 

for further branching. Finally, the abstracting technique is used to avoid re-generating and re-computing identical nodes. 

To use these techniques in the APBFS algorithm, we make the following major adaptions. Firstly, we extend the abstract 

technique by using dual-matrix configurations. Secondly, we derive a new lower bound for the SCRP-FS. Thirdly, we use 

λ* = S to stop further branching. The following three sub-sections present these adaptions respectively.  

4.3.1 Abstraction technique 

The abstraction technique is first studied by Ku and Arthanari (2016b) to reduce the search space of the CRP and then 

is used by Ku and Arthanari (2016a) and Galle et al. (2018b) for the SCRP. The rationale behind this technique is that 

some configurations are actually equivalent in terms of their contributions to the objective function, and thus duplicate 

nodes can be avoided. Generally, each newly generated node is abstracted by using a projection rule, after which we 

determine whether to keep this node or not by comparing it with the nodes that have been explored in the same level. In 

the (extended) APBFS algorithm, two nodes are regarded as equivalent only when both their abstract priority 

configurations and abstract preference configurations are identical. This is different from the PBFS. The projection 

procedure of the abstraction technique for the (extended) APBFS algorithm is as follows, and an illustration is provided 

in Appendix A.1. We denote the application of this procedure to node n as ( )Abstract n .  

Step 1: Rank the stacks within the priority configuration according to the heights of stacks in ascending order. Ties are 

broken by ranking them lexicographically in ascending order according to the priority labels of the containers from top 

tier to bottom tier.  

Step 2: (obtain abstract priority configuration): Re-arrange the stacks within the priority configuration according to 

their rankings so that lower-ranked stacks are located on the left and higher-ranked ones on the right.  

Step 3: (obtain abstract preference configuration): Re-arrange the stacks within the preference configuration in the 

same order of the rankings of the stacks in the priority configuration. 

Remark: we observe that executing the abstract technique could be time-consuming as a newly generated node has to 

be compared with the configurations of all the existing nodes at the same level. For example, it takes about 100 seconds 

to implement the abstract technique on a node that needs to be compared with 7722 nodes at the same level. Future 

research may seek more efficient abstract techniques that allow efficient checking for repeated states, such as using a hash 

table that compares the hash value of two nodes instead of their exact configurations (Russell and Norvig, 2016). 

4.3.2 Lower bound 

A new lower bound for the SCRP-FS is proposed to prune unpromising nodes. Here we only consider the lower bound 

on the blocking containers, which is the expected number of containers that must be relocated at least once in order to 

retrieve all the containers from a node n, denoted by lb(n). We care about the blocking lower bound for RD nodes and 

chance nodes, while a lower bound for SD nodes is unnecessary because each SD node needs to be explored to return the 

cost-to-go function of a chance node. In the SCRP-FS, due to the application of the SOOO policy and the incorporation 

of customer preference, the probability of a container being blocking is different from the conventional SCRP. From now 

on throughout the paper, we refer to the method of calculating the blocking lower bound for the SCRP-FS as LB-FS. In 

the following, we explain how to compute lb(n) by LB-FS. 

Lemma 1. Let n be a node with S stacks and T tiers, each stack containing Hs containers ( 0 sH T  ). Let s

hn  denote 

the container located at stack s ( {1,..., }s S ) and tier h ( {1,..., }sh H ), s
hn

l  denote the priority label of container s

hn , 

and s
hn

p  denote the customer preference for container s

hn , then we have:  
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( )
 

    
   ( ) ( )

1

1,..., 1 1,..., 1
1, 2    1

1

min 1 min 1 1 1
s

s s s s s s
h i h i h i

s s sn ni h

H hS

n n n n n ni h i h
s h i
H l l

lb n l l l l p p
−

 −  −
= = =
 =

  
  
   =  −  − − 
    

  

 = 1 + 1              (11) 

where  A1  is the indicator function of A:  A1  = 1 if condition A is true; and 0 otherwise. 

Proof. The basic idea of computing ( )lb n  is to compute the expectation of a single container being blocking and then 

sum up the expectation for all the containers in node n. Let us fix s and compute the probability that container s

hn  is 

blocking. Clearly, for 0sH =  , container s

hn   is not blocking for sure. Now we consider 1sH   . Obviously, if 

 
 

1,..., 1
mins s

h in ni h
l l

 −
 , container s

hn  is not blocking. Then, we consider the following two cases in which container s

hn  may 

be blocking.  

(i) If 
 

 
1,..., 1
mins s

h in ni h
l l

 −
  , then container s

hn   is surely blocking. In this case, the probability that container s

hn   is 

blocking is equal to 1. In the example of Fig. 5 (a chance node), container 
5

sn   meets this condition as 

 
 

5 1,...,4
2 min 1s s

in ni
l l


=  = , and thus container 

5

sn  contributes one blocking container to ( )lb n . 
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Fig. 5 Illustration of a single stack configuration for computing the blocking lower bound 

(ii) Otherwise, 
 

 
1,..., 1
mins s

h in ni h
l l

 −
= , which means there are containers below s

hn  with the same label, then container 

s

hn  is blocking with probability. This case makes the probability a container being blocking different from that in the 

Galle et al. (2018b). Recall the SOOO policy: the first sub-batch of trucks is given higher service priority over the second 

sub-batch of trucks; the trucks in the same sub-batch are given the same service priority. Therefore, s

hn   is surely 

blocking only in the situation where s

hn  belongs to the second sub-batch and there is at least one container with the 

same label below s

hn  belonging to the first sub-batch. In this condition, the probability that container s

hn  is blocking 

is equal to ( ) ( )
1

   1

1 1 1s s
h i

s sn ni h

h

n n
i

l l

p p
−

=
=

 
 

−  − − 
  
 

 , where 1 s
in

p−  is the probability that container s

hn  belongs to the second sub-

batch, and ( )
1

   1

1 1 s
i

s sn ni h

h

n
i

l l

p
−

=
=

− −  is the probability that at least one container with label s
hn

l  below s

hn  belong to the first 

sub-batch. In Fig. 5, container 
2

sn   and 
3

sn   meet this condition. 
2  is blockingsn 

 p 

(1 0.4) (1 (1 0.5)) 0.3= −  − − = ;
3  is blockingsn 

 p (1 0.2) (1 (1 0.4) (1 0.5)) 0.56= −  − −  − = . 

Combining the above two cases, we have, 
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   ( ) ( )
1

1,..., 1 1,..., 1
   1

 is blocking min 1 min 1 1 1s s s s s s
h i h i h i

s sn ni h

h
s

h n n n n n ni h i h
i

l l

n l l l l p p
−

 −  −
=
=

 
 

    =  −  − −  
  
 

p = 1 + 1 . 

Summing the above equation for {2,..., }sh H  and {1,..., }s S , we have equation (11), which completes the proof.  

By equation (11), the ( )lb  of the single stack in Fig.5 is calculated as: 

2 3 5 is blocking  is blocking  is blocking = 0.3+0.56+1=1.86s s sn n n     + +     p p p . 

4.3.3 Lowest level to stop branching 

Another technique to decrease the size of the decision tree is stopping branching at an early level λ* without the need 

for traversing to the leaf node. λ* is regarded as the lowest level of the tree. The PBFS algorithm stops branching at 
* max{ , }Kλ S C=  and computes f(.) either using a lower bound or A* algorithm (an efficient algorithm for the classical 

CRP). Here we use λ*=S and compute f(.) using LB-FS. Noticing that the number of containers in a chance node and in 

its offspring (a SD node) is equal, it does not make sense to stop the search at a SD node, because we can stop the search 

at the chance node as soon as λ* is satisfied. In other words, the lowest level of the tree will be reached at either a chance 

node or a RD node.  

Lemma 2. Let n be a chance node or a RD node with S stacks, T tiers, and S containers, and *

nλ λ S= =  , then 

( ) ( )lb n f n= . 

Proof. Since there are only S containers remaining to be retrieved and there are S stacks, any blocking container can be 

relocated to an empty stack. As a result, the relocated container will never block other containers again. Therefore, each 

blocking container at node n will have only one relocation in the optimal solution. In addition, each relocation in the 

optimal solution is unavoidable according to the definition of lb(n). This implies that the optimal solution f(n) = lb(n), 

which completes the proof.                                                                          

4.4 The APBFS algorithm for the Sooo model 

Built upon the elements introduced above, we present the whole framework of the Adapted Pruning-Best-First-Search 

(APBFS) algorithm for the Sooo model. The following notations are used for describing the algorithm.  

APBFS

n : the set of offspring of chance node n that is used to compute ( )f n , which is the subset of n . 

APBFS

n : the set of offspring of SD node n that is used to compute ( )f n , which is the subset of n . 

APBFS

n : the set of offspring of RD node n that is used to compute ( )f n , which is the subset of n . 

Give a configuration n and lower bound LB-FS, the steps of the APBFS algorithm to return ( )f n  is as follows. 

Algorithm 1. APBFS algorithm ( ) ( , - )f n APBFS n LB FS=  

Step 1. Identify the class of node n. If n is a SD node, go to Step 4. Otherwise, go to Step 2. 

Step 2. If the level of n is not greater than S, compute ( )f n  using ( )lb n . Otherwise, go to Step 3.  

Step 3. If n is a chance node, compute ( )f n  following Step 3.1~3.3.  

Step 3.1. Construct n  by considering all possible scenarios of sub-batches to retrieve the target batch of containers 

in node n. Compute the probability of each node in  in n . 

Step 3.2. Apply Abstract(.) to each node in  in n . If the abstract configuration is new, add in  to APBFS

n  and 

compute ( )if n . If the abstract configuration is identical to a node m that is already in APBFS

n , add the 

probability of in  to the probability of m. 

Step 3.3. Compute ( )f n  by summing up the expectation of ( )if n  for each in , APBFS
i nn  . 

Step 4. If n is a SD node, compute ( )f n  following Step 4.1~4.6.  

Step 4.1. Construct n  by considering all feasible retrieval sequences to retrieve the target batch of containers in 

node n. 
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Step 4.2. Apply Abstract(.) to each node in  in n  to avoid duplicate configurations, which leads to 
n
 . 

Step 4.3. Compute the lower bound ( )ilb n  for each node in  in 
n
 . Sort the nodes in 

n
  in non-decreasing 

order of (.)lb . 

Step 4.4. Compute 
(1)( )f n , wherein 

(1)n  is the node with the smallest lower bound in 
n
 , and add 

(1)n  to APBFS

n .  

Step 4.5. Repeat for each of the remaining nodes in 
n
  in non-decreasing order of (.)lb  to construct APBFS

n : If 

the lower bound of the considered node n(k) is less than the smallest f(.) of the nodes in APBFS

n , apply 

Abstract(.) to node n(k). If the abstract configuration is identical to a node m that is already in the decision 

tree, then add m to APBFS

n ; otherwise, add the considered node to APBFS

n  and compute the cost-to-go 

function of the considered node f(n(k)) = APBFS(n(k), LB-FS).  

Step 4.6. Determine ( )f n  by taking the minimal value of ( )if n , APBFS

i nn  . 

Step 5. If n is a RD node, compute ( )f n  following Step 5.1~5.6.  

Step 5.1. Construct n  by considering all feasible relocation moves to retrieve the target container in node n. 

Step 5.2. Apply Abstract(.) to each node in  in n  to avoid duplicate configurations, which leads to 
n
 . 

Step 5.3. Compute the lower bound ( )ilb n  for each node in  in 
n
 . Sort the nodes in 

n
  in non-decreasing order 

of (.)lb . 

Step 5.4. Compute 
(1)( )f n , wherein 

(1)n  is the node with the smallest lower bound in 
n
 , and add 

(1)n  to APBFS

n .  

Step 5.5. Repeat for each of the remaining nodes in 
n
  in non-decreasing order of (.)lb  to construct APBFS

n : If 

the lower bound of the considered node n(k) is less than the smallest f(.) of the nodes in APBFS

n , apply 

Abstract(.) to node n(k). If the abstract configuration is identical to a node m that is already in the decision 

tree, then add m to APBFS

n ; otherwise, add the considered node to APBFS

n  and compute the cost-to-go 

function of the considered node f(n(k)) = APBFS(n(k), LB-FS). 

Step 5.6. Determine ( )f n  by taking the minimal value of ( ) ( )if n r n+ , APBFS

i nn  . 

4.5 The extended APBFS algorithm for the Sooo extension model  

In this section, the APBFS algorithm is extended to solve the Sooo extension model optimally. The basic idea of the 

extended APBFS algorithm is, for each SD node n, to find its best offspring that minimizes the secondary objective among 

its offspring that minimize the primary objective, i.e., f(n). Because of Observation 1 in Section 3.2.2, the secondary 

objective can be substituted by a waiting time indicator. With Observation 1, we define ( )1k k

k

ζ ζ
i k i

i B

r C o



 − +  as the 

waiting time indicator of batch k under kζ , which is jointly determined by the container retrieval sequence in batch k 

and the number of relocations for each retrieval in batch k. Recalling in the APBFS algorithm, the container retrieval 

sequence of batch k is included in the immediate offspring (RD node) of the SD node n ( 1n kλ C L= − + ), denoted by node 

m. Given such a RD node m, the optimal number of relocations for each retrieval from batch k can be obtained by tracing 

the series of optimal offspring of node m. Therefore, in the extended APBFS algorithm, the focus is on selecting the 

optimal immediate offspring of SD nodes by using the waiting time indicator. To this end, the APBFS is extended from 

three perspectives. First, the pruning strategy is adjusted to explore each candidate node that is promising with regard to 

the secondary objective. Specifically, for each SD node n, its offspring whose lower bounds are equal to the best f(n) 

found so far are not pruned (Step 4.5 in Algorithm 3). Second, for the immediate offspring of SD node n whose cost-to-

go functions are equal to f(n), we compute their waiting time indicators and then choose the one with the minimum waiting 

time indicator as the best offspring of node n (Step 4.7-4.8 in Algorithm 3). For a SD node n, the waiting time indicator 

of its immediate offspring ni, denoted by w(ni), is given by WaitTimeIndic(ni, n) in Algorithm 2. Lastly, the decision tree 

is traversed to level one, i.e., λ*= 1 (Step 2 of Algorithm 3), because our LB-FS does not apply to the secondary objective.  
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Algorithm 2. Waiting time indicator of the immediate offspring ni of SD node n: ( )iw n = ( , )iWaitTimeIndic n n  

Step 1. Set Cn to be the number of containers in the target batch in node n. 

Step 2. Set im n=  and ( ) 0iw n = .  

Step 3. For j from 1 to Cn, do Step 3.1~3.3.  

Step 3.1. Set r(m) to be the number of blocking containers in node m. 

Step 3.2. Add ( ) ( 1)nr m C j − +  to ( )iw n . 

Step 3.3. Update m by letting the new m become the optimal offspring of the current m. 

For the purpose of completeness, the steps of the extended APBFS algorithm for computing f(n) given a configuration 

n and lower bound LB-FS are presented below, and a sample decision tree developed by the extended APBFS algorithm 

is provided and explained in Appendix A.2. The differences from the APBFS algorithm are highlighted in bold font. Note 

that the f(n) returned by the APBFS algorithm and the extended APBFS algorithm is exactly the same, but the best 

offspring of SD node n may be different due to the consideration of the secondary objective function.  

Algorithm 3. Extended APBFS algorithm ( )  ( , - )f n Extended APBFS n LB FS=  

Step 1. Identify the class of node n. If n is a SD node, go to Step 4. Otherwise, go to Step 2. 

Step 2. If the level of n is not greater than one, return zero to ( )f n . Otherwise, go to Step 3.  

Step 3. If n is a chance node, compute ( )f n  following Step 3.1~3.3.  

Step 3.1. Construct n  by considering all possible scenarios of sub-batches to retrieve the target batch of containers 

in node n. Compute the probability of each node in  in n . 

Step 3.2. Apply Abstract(.) to each node in  in n . If the abstract configuration is new, add in  to APBFS

n  and 

compute ( )if n . If the abstract configuration is identical to a node m that is already in APBFS

n , add the 

probability of in  to the probability of m. 

Step 3.3. Compute ( )f n  by summing up the expectation of ( )if n  for each in , APBFS
i nn  . 

Step 4. If n is a SD node, compute ( )f n  and return the optimal offspring of n following Step 4.1~4.8.  

Step 4.1. Construct n  by considering all feasible retrieval sequences to retrieve the target batch of containers in 

node n. 

Step 4.2. Apply Abstract(.) to each node in  in n  to avoid duplicate configurations, which leads to 
n
 . 

Step 4.3. Compute the lower bound ( )ilb n  for each node in  in 
n
 . Sort the nodes in 

n
  in non-decreasing 

order of (.)lb . 

Step 4.4. Compute 
(1)( )f n , wherein 

(1)n  is the node with the smallest lower bound in 
n
 , and add 

(1)n  to APBFS

n .  

Step 4.5. Repeat for each of the remaining nodes in 
n
  in non-decreasing order of (.)lb  to construct APBFS

n : If 

the lower bound of the considered node n(k) is not greater than the smallest f(.) of the nodes in APBFS

n , 

apply Abstract(.) to node n(k). If the abstract configuration is identical to a node m that is already in the 

decision tree, then add m to APBFS

n ; otherwise, add the considered node to APBFS

n  and compute the cost-

to-go function of the considered node f(n(k)) = Extended APBFS(n(k), LB-FS).  

Step 4.6. Determine ( )f n  by taking the minimal value of ( )if n , APBFS

i nn  . 

Step 4.7. For each node in APBFS

n , compute its waiting time indicator by Algorithm 2. 

Step 4.8. Return the node in APBFS

n  that has the minimum waiting time indicator as the optimal offspring of 

node n. 

Step 5. If n is a RD node, compute ( )f n  and return the optimal offspring of n following Step 5.1~5.7.  

Step 5.1. Construct n  by considering all feasible relocation moves to retrieve the target container in node n. 
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Step 5.2. Apply Abstract(.) to each node in  in n  to avoid duplicate configurations, which leads to 
n
 . 

Step 5.3. Compute the lower bound ( )ilb n  for each node in  in 
n
 . Sort the nodes in 

n
  in non-decreasing order 

of (.)lb . 

Step 5.4. Compute 
(1)( )f n , wherein 

(1)n  is the node with the smallest lower bound in 
n
 , and add 

(1)n  to APBFS

n .  

Step 5.5. Repeat for each of the remaining nodes in n
  in non-decreasing order of (.)lb  to construct APBFS

n : If 

the lower bound of the considered node n(k) is less than the smallest f(.) of the nodes in APBFS

n , apply 

Abstract(.) to node n(k). If the abstract configuration is identical to a node m that is already in the decision 

tree, then add m to APBFS

n ; otherwise, add the considered node to APBFS

n  and compute the cost-to-go 

function of the considered node f(n(k)) = Extended APBFS(n(k), LB-FS). 

Step 5.6. Determine ( )f n  by taking the minimal value of ( ) ( )if n r n+ , APBFS

i nn  . 

Step 5.7. Return the node in APBFS

n  whose cost-to-go function equals ( )f n  as the optimal offspring of node 

n. 

5. Heuristic solution methods 

The (extended) APBFS algorithms are very time-consuming for larger problems. In this section, we propose two 

efficient heuristic algorithms for the SCRP-FS: the SEM (Sequencing based Expected Minmax) heuristic and the SEML 

(Sequencing based Expected Minmax with Look-ahead horizon) heuristic. In addition, in order to make the results of the 

Sooo (extension) model comparable to that of the batch model proposed by Galle et al. (2018b) in terms of the influence 

of service policies, we extend the EM (Expected Minmax) heuristic used in Galle et al. (2018b) to solve the batch model 

in the new context with customer preference-based arrivals. From now on, we use the “base model” to refer to the batch 

model that considers the customer preference-based arrivals. The contributions of our heuristics are summarized below.  

First, the EM extension heuristic generalizes the EM heuristic to the SCRP with customer preference information. The 

main adaptation we made to the EM heuristic is the introduction of the concepts of the Blocking Index (BI) and the Delay 

Index (DI) that calculate the stack score. The BI and DI are not needed in the EM heuristics and they cannot be easily 

inferred from the case of equal arrival probability. As presented in Appendix B.1, great effort has been made to calculate 

the BI and DI, which are used to make a more accurate decision in case of a tie in the context of non-equal arrival 

probability. This extension is especially useful for the situation of large batch size as the occurrence of ties will be more 

frequent.  

Second, we develop two new fast and efficient heuristics to solve the SCRP-FS – the SEM heuristic and the SEML 

heuristic. The main ingredients of these two heuristics are: sequencing rule and relocation rule. Regarding the relocation 

rule, we derive a new blocking index and a new delay index – BIS and DIS, to calculate the stack score by considering 

the SOOO policy, as shown in Appendix B.3. This generalizes the EM extension heuristic to a more flexible case. In 

addition, we make a contribution in terms of the sequencing rule, which is an important element of the SCRP-FS. Even 

though the SEM heuristic uses an intuitive sequencing rule, it has been shown to be effective in the computational 

experiments. The SEML heuristic further improves the SEM by using a more complex sequencing rule that applies a 

look-ahead strategy dedicated to performing the most promising retrieval sequence. 

We present these three heuristics respectively in the following three sub-sections.  

5.1 EM extension heuristic 

The EM heuristic has been computationally demonstrated to be the equal best heuristic for the batch model. The idea 

of the EM heuristic is from that of the Min-Max heuristic in the earlier literature (Caserta et al., 2012), which is based on 

the computation of a stack score that determines which stack a blocking container should be placed. In this paper, the EM 

extension heuristic is adapted from the EM heuristic to obtain sub-optimal solutions of the base model. Although the EM 

extension heuristic is not the focus of this study, its description provides a basis for explaining the SEM heuristic and the 

SEML heuristic that we will design to solve the SCRP-FS.  
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Before describing the EM extension heuristic, we first briefly introduce the EM heuristic for the batch model. In the 

batch model, once the truck arrival order of a batch is revealed, the retrieval sequence for this batch is confirmed. The 

EM heuristic only focuses on the heuristic rules for relocating. Let cl  be the priority label of container c to be relocated, 

and ( )m s  be the smallest label of a container in stack s, {1,..., }s S . For an empty stack, ( )m s  is defined as C+1. 

The heuristic rules that determine the storage position of a blocking container c from stack s are described below. 

[Condition 1] There is an available stack s s   such that ( ) cm s l  . 

Let  
{1,..., }\

= min ( ) : ( ) c
s S s

M m s m s l


   . Select the stack that satisfies ( )m s M = . Break ties by choosing from the highest 

ones, finally selecting the leftmost one if any ties remain.  

[Condition 2] For all stack s s  , ( ) cm s l  . 

Let  
{1,..., }\

= max ( )
s S s

M m s


 . Select the stack that satisfies ( )m s M = . Break ties by choosing from the ones with the 

minimum number of containers labeled M. Further ties are broken by choosing from the highest ones, finally selecting 

the leftmost one if any ties remain.  

The EM heuristic is relatively intuitive. The idea is to minimize the expected number of blocking containers after each 

relocation move. In Condition 1, c can surely avoid being relocated again, and we say a ‘good’ move is possible. In this 

condition, EM chooses the stack with the minimum ( )m s , since the stacks with larger ( )m s  can be saved as candidate 

stacks for positioning blocking containers with greater labels. In condition 2, we say a ‘good’ move is impossible. There 

are two cases. If cM l=  (which implies that c will be relocated again in the future with probability), the stack with the 

minimum number of containers labeled M is chosen, which can minimize the probability of c being relocated again. The 

rationale behind it is that there is an equal chance for any container being the first one to be retrieved among the containers 

labeled M. On the other hand, if cM l  (which means that c will surely be relocated again in the future), the stack with 

the maximum ( )m s  is chosen to delay the next relocation of c as much as possible. Ties are broken by selecting the stack 

with the minimum number of containers labeled M to delay c being relocated again, as there is an equal chance for any 

container being the first one to be retrieved among containers labeled M.  

Now we extend the EM as an application to the base model. The EM extension follows the heuristic rule for Condition 

1 but applies new rules for Condition 2. The following rules are used in the EM extension for Condition 2: 

Let  
{1,..., }\

= max ( )
s S s

M m s


 . Select the stack that satisfies ( )m s M = . In case of ties, if cM l= , choose from the ones 

with the minimum ( )BI s  ; if cM l  , choose from the ones with the minimum ( )DI s  . Further ties are broken by 

choosing from the highest ones, finally selecting the leftmost one if any ties remain.  

The main difference between the EM and the EM extension is the way of breaking ties in the case where more than 

one stack satisfies ( )m s M =  in Condition 2. With the consideration of customer preference, more accurate criteria are 

required to break the tie. For this purpose, we introduce two indexes to calculate the stack stores: Blocking Index (BI) 

and Delay index (DI). The BI of a stack s, denoted by ( )BI s , is defined as the probability of a container being blocking 

if relocated to s. The DI of a stack s, denoted by ( )DI s , is defined as the probability of a container with the smallest 

label in stack s being the first one to be retrieved within its batch. The details of how to calculate the BI and the DI are 

given in Appendix B.1. 

5.2 SEM (Sequencing based Expected Minmax) heuristic 

The SEM heuristic is proposed to solve the SCRP-FS. Two decisions are to be made by the SEM: sequencing the trucks 

within the same sub-batch, and relocating the blocking containers. The main idea of the sequencing rule is to avoid as 

many current relocations as possible. The relocating rule is similar to the EM extension heuristic but new blocking index 

and delay index are introduced to consider the SOOO policy. In the following, we first introduce the outline of the SEM 
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heuristic and then describe the heuristic rules in detail. 

5.2.1 Outline of the SEM 

In the SEM heuristic, the decision on the retrieval sequence is made one container at a time using a sequencing rule 

and then the consequent blocking containers are relocated using a relocating rule. The following notations are defined 

and used throughout Section 5.2 and 5.3:  

it : the ith target container, {1,..., }i C . 

cr : the number of relocations needed for retrieving container c. 

 : the bay configuration. Let 0  represent the initial configuration.  

lmin : the smallest label of containers in  .  

 : the set of containers labeled lmin  in  . 

The general steps of the SEM heuristic are as follows: 

Step 0. Let  = 0 . Set k=1 and i=1, i.e., the index of the first batch and the index of the first target container.  

Step 1. If k > K, STOP – all containers have been retrieved; otherwise, given   and the truck arrival information of 

batch k, update   by adding the number of containers in the first sub-batch to the labels of the containers in the second 

sub-batch.  

Step 2. Identify lmin  and construct  . If there is only one container in  , let this container be it ; otherwise, 

determine it  and update   accordingly using the Sequencing Rule.  

Step 3. Calculate 
it

r . If 0
it

r = , go to step 4; otherwise, move the 
it

r  number of blocking containers from top to 

bottom to the stacks determined by the Relocating Rule and   is updated as a result. 

Step 4. Retrieve it  from  . If 
1

k

j

j

i C
=

= , which means all containers in batch k have been retrieved, then set 

k=k+1 and go to step 1; otherwise, set i=i+1, go to step 2.  

5.2.2 Heuristic rules in the SEM 

The sequencing rule and the relocation rule are introduced here.  

Sequencing rule 

The SEM heuristic uses an intuitive sequencing rule, the main idea of which is choosing the container with the least 

number of blocking containers from the candidate containers.  

Step 1. Given  , lmin , and  , compute the cr  of each container c .  

Step 2. Sort { : }cr c  in non-decreasing order of cr . Choose the one with the lowest cr  from   as the target 

container it , breaking ties arbitrarily.  

Step 3. Update   by increasing the labels of the containers in \ it  by one.  

Appendix B.2 provides an example illustrating the above sequencing rule.  

Relocating rule 

The relocating rule used in the SEM heuristic follows the basic idea of the rule in the EM extension heuristic but uses 

a new blocking index and a new delay index - BIS (blocking index considering sequencing) and DIS (delay index 

considering sequencing) - to break ties. This is important because the blocking container in the batch model is not 

necessarily blocking in the SCRP-FS in which the container retrieval sequence is flexible. Therefore, in order to make 

correct decisions for the relocation positions, we need new indexes that can take into account the flexible service sequence. 

The idea behind the BIS is that container c being blocking if relocated to stack s  occurs only in the scenario where c 

is in the latter sub-batch and there is at least one container i sc M   in the former sub-batch, where sM   is the set of 
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containers labeled M and located in s . The idea behind the DIS is that a container ic  is surely being the first one to be 

retrieved in its batch only in the situation that satisfies the following two conditions: 1) ic  is in the former sub-batch; 2) 

ic  has the lowest number of blocking containers among the containers in the former sub-batch. The details of computing 

( )BIS s  and ( )DIS s  are given in Appendix B.3.  

For the sake of completeness, the relocating rule of the SEM to determine the storage position of a blocking container 

c from stack s is presented as follows.  

[Condition 1] There is an available stack s s   such that ( ) cm s l  . 

Let  
{1,..., }\

= min ( ) : ( ) c
s S s

M m s m s l


   . Select a stack that satisfies ( )m s M = . Break ties by choosing from the highest 

ones, finally selecting the leftmost one if any ties remain.  

[Condition 2] For all stack s s  , ( ) cm s l  . 

Let  
{1,..., }\

= max ( )
s S s

M m s


 . Select a stack that satisfies ( )m s M = . In case of ties, if cM l= , choose from the ones with 

the minimum ( )BIS s ; if cM l , choose from the ones with the minimum ( )DIS s . Further ties are broken by choosing 

from the highest ones, finally selecting the leftmost one if any ties remain.  

5.3 SEML (Sequencing based Expected Minmax with Look-ahead horizon) heuristic 

The SEML improves the SEM by using a sophisticated sequencing rule that applies a look-ahead strategy dedicated to 

performing the most promising retrieval sequence. Recalling the sequencing rule of the SEM heuristic, in case of tie that 

more than one container has the lowest number of blocking containers among the containers with the smallest labels, i.e., 

there is more than one potential target container, the SEM chooses one arbitrarily as the next target container (Step 2 in 

Section 5.2.2). The idea of the SEML heuristic is to break this tie more precisely with look-ahead evaluation. The look-

ahead horizon H is equal to the number of potential target containers in case of the tie. To be more specific, the SEML 

first evaluates the contribution of each feasible retrieval sequence of the potential target containers to the total number of 

relocations, and then, the sequence that contributes least is selected as the actual retrieval sequence of these potential 

target containers. The contribution is measured by the sum of the number of realized relocations during the retrievals of 

the potential target containers and the lower bound of the configuration after these retrievals. A new lower bound is 

proposed with minor modification of the LB-FS, because the SEML applies to both SD nodes and RD nodes while the 

LB-FS does not apply to SD nodes. In the new lower bound, the containers with the same priority label whose truck arrival 

sequence have been revealed are not considered blocking each other. The relocating rule used in the SEML is the same 

as that in the SEM. The details of the sequencing rule are presented below, and an illustration is provided in Appendix 

B.4. 

Step 1. Given  , lmin , and  , compute the cr  of each container c .  

Step 2. Sort { : }cr c   in non-decreasing order of cr  . Construct the set of potential target containers 

  | min :c cc r r c=  . Set   | min :c cH c r r c= =  . If H=1, then choose the only potential target container as the 

target container it . Update   by increasing the labels of the containers in \ it  by one. Otherwise, go to Step 3.  

Step 3. Look-ahead evaluation 

Step 3.1. Update   by increasing the labels of the non-potential containers in   by H. 

Step 3.2. Enumerate all feasible retrieval sequences (H! number in total) for the potential target containers. 

Step 3.3. Update the labels of the potential target containers according to one feasible retrieval sequence that has not 

been evaluated and obtain a tentative configuration to be evaluated.  

Step 3.4. Given the tentative configuration, retrieve the potential target containers, move the blocking containers 

according to the relocating rule, and count the number of relocations incurred. Compute the lower bound 
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of the consequent configuration and the contribution. If all retrieval sequences have been evaluated, choose 

the one with the least contribution as the determined retrieval sequence for the potential target containers, 

breaking ties arbitrarily. Then, update   according to the determined retrieval sequence of the potential 

target containers; otherwise, go to Step 3.3.  

Step 3.5. The container with lmin  is selected as the target container it .  

6. Simulation model 

In this section, we develop a discrete-event simulation model to evaluate the effectiveness of the exact algorithms and 

the heuristics respectively in terms of the two performance metrics: the total number of relocations and the average 

relevant truck waiting time. Simulation is needed for evaluating heuristics because the solutions of the heuristics depend 

on the scenario of truck arrivals. The necessity of a simulation model for evaluating exact algorithms is because the exact 

algorithms to be evaluated (the (extended) APBFS algorithm and the PBFS algorithm) do not record the service 

completion time for each batch. Hence, in order to evaluate the relevant truck waiting time, we need to simulate the 

complete retrieval process by using the optimal solutions. To the best of the authors’ knowledge, this study is the first one 

that implements a simulation model to evaluate SCRP’s optimal solutions that are derived from in a decision tree. Our 

main focus in this section is to show how to evaluate the solutions of the exact algorithms by using the developed discrete-

event simulation model.  

6.1 Input and output data 

The input data of the simulation model includes: i) the problem instance that consists of the container stacking 

configuration, the batch information and the customer preference, ii) the truck arrival times, and iii) the handling time per 

relocation move and the handling time per retrieval move. The direct output for each container/truck includes: i) the 

number of relocations, ii) the service starting time, and iii) the service completion time. Then, we can output the total 

number of relocations and the average relevant truck waiting time. By definition, the relevant waiting time of a truck is 

calculated by: service completion time – service starting time – the handling time per retrieval move. The average relevant 

waiting time for a sample is obtained by taking the average over the relevant waiting times of all trucks. In addition, we 

also output the average delay and the average turn time, which will be explained in Section 7.3.2. 

6.2 Model structure and functions  

The simulation model consists of three major programs: a truck generator, an optimizer, and a simulator, which are 

subsequently described in detail. All programs are implemented in Matlab.  

6.2.1 Truck generator 

The truck generator program creates truck arrival times. Given a problem instance with an initial priority matrix and a 

customer matrix, N samples of truck arrival times are generated by respecting the appointed time windows and customer 

preferences. First, the sub-batch of a truck is generated based on the probability given by its customer preference p, such 

that on expectation each truck is allocated to the first sub-batch for N*p times and the second sub-batch for N*(1-p) times. 

Second, the sub arrival time window of the truck is generated by using its sub-batch, its appointed time window, and the 

length of the implemented appointment time window. Last, the specific arrival time of the truck is uniformly generated 

within its sub arrival time window. To ensure a fair comparison of different algorithms, seed initialized distribution is 

used. Thus, identical random truck arrival times can be used in simulating different algorithms and the simulation results 

are repeatable by applying identical problem instances.  

6.2.2 Optimizer and simulator  

The optimizer program generates the decisions on retrieval sequence and relocation positions, which feeds the simulator 

to perform tasks. The simulator is the core of the simulation model. Its main task is to perform the moves specified by the 

output of the optimizer, keep track of the state of the container stack, count the number of relocations, and record the 

time-related performance. The simulation model can evaluate both the exact algorithms and the heuristics but differs in 
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the optimizers and the way the simulators extract the decisions from the output of the optimizers. When evaluating 

heuristics, the relevant heuristic is used as an optimizer; and the simulator reads both the problem instance and the output 

of the truck generator. When evaluating the exact algorithms, the exact algorithm is used as an optimizer to produce the 

optimal solutions; and the simulator reads the problem instance and executes the optimal solutions. Details of the 

simulation model for evaluating exact algorithms are described below.  

The simulation model contains three types of discrete events: revealing the truck arrival information for a batch, 

relocating a container, and retrieving a container. Given a problem instance, first, the optimizer is invoked, that is, an 

exact algorithm is executed to obtain the optimal solution. The obtained optimal solution is cached in a tree structure, 

which we call ‘solution tree’. The simulator reads a truck arrival sample output by the generator and reveals it batch by 

batch. Once a batch is revealed, the simulator looks up the solution tree to extract the decisions for that batch and performs 

retrieval moves and relocation moves accordingly. An overview of the architecture of the simulation model is presented 

in Fig. 6.  
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Fig. 6 The architecture of the simulating model for evaluating exact algorithms  

We use the example in Fig. A.2 in Appendix A to illustrate the simulation process. Given the problem instance, i.e., the 

initial node in Fig. A.2, the optimizer is first invoked to generate the solution tree. Then, given a sample of truck arrival 

times, the simulator reads the sample and reveals it batch by batch. Once a batch is revealed, the simulator looks up the 

solution tree to identify the SD that matches the revealed container stack and extracts the optimal retrieval sequence for 

that batch. The decision on the retrieval sequence of a batch is included in the best offspring (a RD node) of the identified 

SD node. For example, let us consider the scenario in which the truck arrival information of the first batch is revealed as 

that in node n. Firstly, the optimal retrieval sequence for the first batch is extracted to be the one indicated in node n2. The 

simulator then retrieves container 3 and records its service start time and service completion time. Secondly, the container 

stack is changed to n3. Notice that the next container to be retrieved (container 4) has a blocking container. When there 

are blocking containers to be relocated, the simulator looks up the solution tree to identify the optimal relocation positions. 

The decisions on the relocation positions are obtained by tracing the best offspring (e.g., n4) of the node in which the 

blocking containers are located (e.g., n3). In the considered scenario, the best relocation position for the blocking container 

above container 4 is identified to be the empty stack. The simulator then relocates the blocking container to the empty 

stack, retrieve container 4, and records the service starting time and service completion time of container 4. Finally, the 

container stack is changed to node n4. After that, the simulator continues to reveal the truck arrival information for the 

second batch and perform tasks in the same way. It should be noted that after each event, the container stack needs to be 

abstracted to ensure that it can be matched with one of the nodes in the solution tree.  

7. Computational experiments 

In this section, we test the proposed models and solution methods through enormous numerical experiments using the 

simulation model introduced in Section 6. We present four sets of experiments. Firstly, we test the solving capabilities of 

the two proposed exact solution algorithms; and we show the improvement of the Sooo extension model over the Sooo 



 

28 

 

model on the relevant truck waiting time. Secondly, we evaluate the effectiveness and the efficiency of the two proposed 

heuristics by comparing them with the exact solutions of the Sooo extension model; and we compare the performances 

of the two heuristics to conclude a superior one. Thirdly, we evaluate the effect of the proposed flexible service policy as 

opposed to the FCFS policy and analyze the impacts of the combinations of different bay layouts and fill rates, average 

batch sizes and customer preferences on the effect of the flexible service policy. Lastly, we analyze the influence of 

customer preference on the Sooo extension model.  

All algorithms and simulation models are coded in MATLAB 2018a, partially based on the source code of Galle et al. 

(2018b) which is available at https://github.com/vgalle/StochasticCRP. All experiments are performed on a desktop with 

Intel® Core ™ i5-7500 3.40 GHz CPU, 8 GB of RAM, and 64-bit Windows 10 Enterprise. The time limit for running the 

exact algorithm for each instance is set to one hour (3600 seconds) because some instances are extremely time-consuming. 

Our experiment dataset is adapted from the set of CRPTW instances in the literature (Ku and Arthanari, 2016a) which 

is available at http://crp-timewindow.blogspot.com. The existing instance set is composed of 1440 instances forming 48 

classes. The problem classes are characterized by the size (T×S) and the fill rate (μ) of the bay, with T varying from three 

to six tiers, S varying from five to ten stacks and two μ being considered: 50% and 67%. Given a bay size and a fill rate, 

the number of containers in the bay is calculated by C = round(μ*T*S), where round(x) rounds x to its closer integer. 

There are on average two containers per batch, i.e., the average batch size is two. For each such class setting, 30 instances 

are included, varying in the stacking positions of the containers and the number of containers of each batch. To provide a 

meaningful interpretation for our model, we consider larger batches with up to on average six containers per batch. The 

instances of larger batches are obtained by slightly modifying the existing instance set following the method in Galle et 

al. (2018b), which merges r batches using /w w r =    , where w is the original batch of a container and w  is its modified 

batch. As a result, we have instances with small batches (on average 2 containers per batch), large batches (on average 4 

containers per batch), and ultra-large batches (on average 6 containers per batch). We use ‘the number of tiers (T) – the 

number of stacks (S) – the fill rate (μ) – the average batch size (B)’ to represent our problem class. We do not distinguish 

problem scales accurately because all the relevant factors – T, S, μ, B – have an influence on the computation times of the 

exact algorithms and the random initial configuration of the container stack also has a great influence. Instead, we consider 

a problem as a larger problem if it has a larger rate and/or larger batches while other factors (T and S) are the same. 

Because the instances with ultra-large batches are very hard to be solved optimally, we only use their near-optimal 

solutions obtained by heuristics to show a positive difference between the FCFS policy and the SOOO policy in Section 

7.3.2. 

Regarding the customer preference, we consider three scenarios of homogenous preference, in which the preferences 

of all trucks are respectively 0%, 50%, and 100%, and a scenario of heterogeneous preference, in which the preference of 

each truck is randomly generated and thus differs from each other. The instances with scenario ‘50%’ are referred to as 

the benchmark set, as they are equivalent to the instance set of the batch model. In this scenario, the probability of each 

SD node is the same (i.e., 0.25). In the scenario ‘0%’ and ‘100%’, all trucks will arrive at the second sub-time window 

and the first sub-time window respectively. The truck generator program introduced in Section 6.1 is used to generate 

1000 samples of truck series for each instance associated with a scenario of customer preference. The appointment time 

window is set to be 30 minutes. The handling times per relocation move and per retrieval move are calibrated according 

to the technical capabilities of yard cranes. A Rubber-Tyred Gantry Crane (RTG) can perform 20–25 moves on average 

per hour, but its realized performance in practice is typically less than 12 moves per hour (Saanen, 2011), which indicates 

that each move takes on average 2.4 - 5 minutes. Considering that a retrieval move usually takes longer to complete than 

a relocation move due to the need for coordination with the truck drivers, we set 2 minutes for a relocation move and 4 

minutes for a retrieval move.  

7.1 Performance of the proposed models and exact algorithms 

In this section, we evaluate the performances of the exact algorithms, test the tightness of LB-FS, and compare the 

average relevant truck waiting time between the Sooo model and the Sooo extension model. All results are obtained by 

simulating optimal solutions. 
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7.1.1 Performances of the exact algorithms 

Table 2 shows the results of instances with small batches and the 50% fill rate. The first three columns list the problem 

class, which is characterized by the number of stacks (S), the number of tiers (T), and the number of containers (C). The 

average batch size is omitted here as all instances have the same average batch size (i.e., two). Column ‘lb’ gives the value 

of lower bound obtained by our proposed lower bound LB-FS. Columns five to nine and Columns ten to fourteen 

respectively report the simulation results of the APBFS algorithm and the extended APBFS algorithm. Column ‘Opt’ 

gives the average of the expected total number of relocations over 30 instances, which is the theoretically optimal solution 

obtained by the exact algorithm. Colum ‘Solved’ reports the number of instances that the relevant exact algorithm is able 

to solve to optimality within the time limit (1 hour), where ‘√’ indicates that all 30 instances for a problem class are solved 

to optimality. Column ‘CPU(s)’ reports the average computation time for the solvable instances in seconds. Column ‘Rel’ 

and column ‘AveWait’ respectively give the average of the total number of relocations and the average of the relevant 

truck waiting time over 30 instances, each one based on 1000 samples, which are obtained by simulation.  

Table 2 Results of the APBFS and the extended APBFS algorithm for instances with small batches and 50% fill rate 

T S C lb 

 Sooo - APBFS   Sooo extension - extended APBFS  

Opt Solved CPU(s) Rel 
AveWait 

(min) 
 Opt Solved CPU(s) Rel 

AveWait 

(min) 

3 5 8 1.454  1.478 √ 0.02 1.478 3.319  1.478 √ 0.03 1.478 3.207 

 6 9 1.558  1.582 √ 0.02 1.581 3.428  1.582 √ 0.03 1.581 3.303 

 7 11 2.608  2.654 √ 0.02 2.654 3.485  2.654 √ 0.03 2.654 3.356 

 8 12 2.163  2.169 √ 0.01 2.169 3.091  2.169 √ 0.03 2.169 3.014 

 9 14 2.875  2.884 √ 0.02 2.885 3.226  2.884 √ 0.04 2.885 3.106 

 10 15 3.092  3.094 √ 0.03 3.093 3.044  3.094 √ 0.06 3.093 2.930 

4 5 10 2.725  2.856 √ 0.02 2.855 3.534  2.856 √ 0.03 2.855 3.411 

 6 12 3.371  3.461 √ 0.03 3.466 3.532  3.461 √ 0.05 3.466 3.351 

 7 14 3.817  3.944 √ 0.04 3.941 3.485  3.944 √ 0.05 3.941 3.324 

 8 16 4.475  4.555 √ 0.16 4.559 3.556  4.555 √ 0.20 4.559 3.390 

 9 18 5.467  5.526 √ 0.29 5.523 3.691  5.526 √ 0.34 5.523 3.474 

 10 20 5.983  6.016 √ 0.72 6.015 3.334  6.016 √ 0.80 6.015 3.181 

5 5 13 4.371  4.883 √ 0.16 4.883 4.042  4.883 √ 0.19 4.884 3.900 

 6 15 5.138  5.546 √ 2.44 5.544 3.708  5.546 √ 2.98 5.544 3.553 

 7 18 6.246  6.575 √ 0.72 6.573 3.993  6.575 √ 0.77 6.573 3.777 

 8 20 7.017  7.519 √ 7.57 7.516 3.695  7.519 √ 8.16 7.516 3.482 

 9 23 8.358  8.699 29 67.35 8.696 3.835  8.699 29 68.25 8.696 3.606 

 10 25 8.883  9.237 29 39.40 9.238 3.719  9.237 29 49.37 9.238 3.517 

6 5 15 5.975  7.004 √ 4.56 6.999 4.034  7.004 √ 5.06 6.999 3.886 

 6 18 6.900  7.729 √ 5.48 7.728 4.162  7.729 √ 6.18 7.728 3.959 

 7 21 8.575  8.925 23 294.96 8.991 4.026  8.925 22 160.87 8.923 3.787 

 8 24 9.258  9.886 22 150.07 9.881 3.998  9.886 22 164.07 9.882 3.748 

 9 27 10.275  10.538 18 100.24 10.538 3.661  10.538 18 104.47 10.538 3.419 

 10 30 11.692  11.576 19 285.31 11.599 3.785  11.576 18 108.52 11.576 3.580 

*Note: customer preference scenario: 50% 

From Table 2, we can see that the solution capacity of the two algorithms is quite similar. Both of them are capable of 

solving all the instances with T= 3 and T=4 in less than one second and 98.9% (178/180) of the instances with T=5 within 

the time limit. As T increases to six, some instances are extremely time-consuming. We call the instances that cannot be 

solved within one hour ‘hard instances’. The number of hard instances for each problem class is basically the same as that 

for the PBFS algorithms, which indicates that our proposed exact algorithms are effective for the SCRP-FS. We observe 

that the hard instances for the two proposed algorithms are the same except the classes of (T=6, S=7) and (T=6, S=10). 
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This is because the search rules used in the two algorithms are basically the same. The only difference is that in the 

extended APBFS algorithm the nodes that perform equally in terms of the primary objective are further explored in order 

to find the node that is optimal to the secondary objective. This leads to that the extended APBFS algorithm requires a 

longer CPU time to prove optimality, which can be observed from the CPU columns. It should be pointed out that for the 

problem classes of (T=6, S=7) and (T=6, S=10), the CPU times for Sooo extension are much shorter than that of Sooo. 

This is because the Sooo model is able to solve one more instance than the Sooo extension model within the allowed 

computational time limit (i.e. 3600 seconds), and this extra instance is too time-consuming to solve for the Sooo extension 

model. A fair comparison of two models can be referred to Section 7.1.2 and Table C.4. Due to the unavailability of the 

optimal solutions for hard instances, these hard instances are excluded from the simulation. For the problem class that 

includes any hard instance, Table 2 only reports the average over the solved instances in columns ‘CPU’, ‘Rel’ and 

‘AveWait’. In addition, as expected, the optimal solutions in terms of the total expected number of relocations (Opt) of 

the two models are the same. Besides, the gap between the ‘Opt’ and the ‘Rel’ in both models is insignificant, which is 

within [-0.08%, 0.09%], indicating that our samples are large enough to approximate the actual values.  

The results of the extended APBFS algorithm for larger instances are given in Appendix C.1. From Table 2 and 

Appendix C.1, we can conclude that the extended APBFS can solve 87.5% (42/48) of the instances with T=3,4 within 30 

seconds. In the tables in Appendix C.1, lb* represents the calibrated lower bound, which takes the average of the lb of the 

instances that are solved optimally. By comparing lb*and Opt, we can find that the relative difference between the lower 

bound and the optimal solution for instances with higher stacks (larger T) is greater than that with lower stacks (smaller 

T). This can be explained by the fact that the chance of a container being relocated more than once in a bay with higher 

stacks is greater than that in a bay with lower stacks. Since our lower bound only counts the number of blocking containers 

that are relocated at least once, it is tighter for lower bays. For all the instances with lower bays (T=3, 4) in Table 2 and 

Appendix C.1, our lower bound is within 13.11% of the optimal solution, and in about 73% (35/48) cases our lower bound 

is very close to the optimal solution with a gap within 5%. Since in many container terminals, laden containers are stacked 

up to four tiers due to safety issues and efficiency considerations, our lower bound can efficiently evaluate the least 

number of relocations needed to empty a bay, which could help to determine a favorable container stacking configuration.  

Remark: it is observed that the CPU time deviates greatly for different instances even their problem classes are the 

same. After a closer check, we find that the initial configuration of the container stack has a great influence on the solution 

computational efficiency. 

7.1.2 Comparison of the Sooo model and the Sooo extension model 

For a fair comparison of the relevant truck waiting time between the two models, we calibrate the results of ‘CPU’, 

‘Rel’ and ‘AveWait’ in Table 2 to ensure that only the instances that are solved optimally by both algorithms are included 

into the comparison. The calibrated results are presented in italic in Table C.4 of Appendix C.2. Besides, we compare the 

results of the two models for instances with a 67% fill rate, which are shown in Table 3 and Table 4 (the numbers in italic 

represent the calibrated results). Comparing the ‘Rel’ of the two models, it is found that the simulated total number of 

relocations of the two models are the same in most cases, with only five problem class occurring a difference of 0.001 

number of relocations. The occurrence of this difference seems counterintuitive, but it might happen only because we are 

sampling. However, as the difference is quite trivial, it is fair to compare the ‘AveWait’ of the two models based on our 

samples. Column ‘Gap[AveWait]’ reports the gap between the average relevant truck waiting time of the two models, 

which represents the benefits of taking into account the truck waiting time. 

Comparing Table 3 with Table C.4, we can find that the gaps in the average relevant truck waiting time between the 

two models are more significant for instances with a larger fill rate. Besides, in a comparison between Table 3 and Table 

4, it can be found that the instances with more concentrated truck arrival patterns, that is, ‘0%’ customer preference 

scenario, benefit more from the Sooo extension model. In addition, the results of small batches and large batches indicate 

that the batch size does not have a significant influence on the relative difference of the relevant truck waiting time 

between the two models. From Table C.4 and Tables 3-4, we can conclude that the reduction in the average relevant truck 
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waiting time in the Sooo extension model over the Sooo model is between 2.5% and 11%. Moreover, the CPU results 

confirm that the extended APBFS algorithm takes a longer time to obtain the optimal solution than the APBFS algorithm. 

Table 3 Comparison between the Sooo model and the Sooo extension model for instances with 67% fill rate and ‘50%’ 

customer preference scenario 

T S C 

 Sooo  Sooo extension  
Gap 

[AveWait] 
 

Solved CPU(s) Rel 
AveWait 

(min) 
 Solved CPU(s) Rel 

AveWait 

(min) 
 

Small batches 

3 5 10  √ 0.04 2.786 3.387  √ 0.05 2.786 3.224  4.81% 

 6 12  √ 0.04 3.620 3.710  √ 0.05 3.620 3.524  5.01% 

 7 14  √ 0.03 3.759 3.655  √ 0.06 3.759 3.506  4.08% 

 8 16  √ 0.05 4.382 3.577  √ 0.08 4.382 3.385  5.37% 

 9 18  √ 0.07 4.816 3.580  √ 0.11 4.816 3.408  4.80% 

 10 20  √ 0.07 5.066 3.327  √ 0.11 5.066 3.176  4.54% 

4 5 13  √ 0.11 5.071 4.130  √ 0.14 5.071 3.976  3.73% 

 6 16  √ 1.10 6.931 4.109  √ 1.19 6.931 3.898  5.14% 

 7 19  √ 1.01 6.929 3.646  √ 1.16 6.929 3.465  4.96% 

 8 21  √ 13.98 7.969 3.829  √ 20.25 7.969 3.601  5.95% 

 9 24  √ 11.08 9.257 3.825  √ 11.80 9.257 3.619  5.39% 

 10 27  27 69.81 9.622 3.620  27 92.17 9.622 3.426  5.36% 

Large batches 

3 5 10  √ 0.51 2.403 7.208  √ 0.90 2.403 6.945  3.65% 

 6 12  √ 0.58 3.245 7.804  √ 1.21 3.245 7.468  4.31% 

 7 14  √ 1.41 3.518 8.119  √ 3.58 3.518 7.720  4.91% 

 8 16  √ 1.13 4.180 7.671  √ 3.36 4.179 7.281  5.08% 

 9 18  √ 1.46 4.484 7.680  √ 4.05 4.485 7.349  4.31% 

 10 20  √ 0.93 4.755 7.338  √ 3.40 4.755 6.937  5.46% 

4 5 13  √ 8.60 4.632 8.618  √ 27.60 4.631 8.342  3.20% 

 6 16  28 13.31 6.167 8.502  28 39.35 6.167 8.091  4.83% 

 7 19  28 36.99 6.307 7.681  28 175.06 6.307 7.310  4.83% 

 8 21  28 12.32 

 

7.027 8.036  26 73.15 7.027 7.580  5.67% 

 9 24  27 71.98 8.208 8.086  24 320.01 8.208 7.655  5.33% 

 10 27  23 153.87 8.898 7.673  21 441.13 8.898 7.233  5.73% 
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Table 4 Comparison between the Sooo model and the Sooo extension model for instances with 67% fill rate and ‘0%’ 

customer preference scenario 

T S C 

 Sooo  Sooo extension  
Gap 

[AveWait] 
 

Solved CPU(s) Rel 
AveWait 

(min) 
 Solved CPU(s) Rel 

AveWait 

(min) 
 

Small batches 

3 5 10  √ 0.03 2.500 3.307  √ 0.04 2.500 2.993  9.48% 

 6 12  √ 0.03 3.367 3.672  √ 0.04 3.367 3.289  10.44% 

 7 14  √ 0.03 3.567 3.595  √ 0.05 3.567 3.329  7.42% 

 8 16  √ 0.05 4.100 3.546  √ 0.07 4.100 3.171  10.58% 

 9 18  √ 0.07 4.533 3.533  √ 0.10 4.533 3.204  9.33% 

 10 20  √ 0.07 4.867 3.320  √ 0.10 4.867 3.023  8.94% 

4 5 13  √ 0.06 4.600 3.944  √ 0.09 4.600 3.667  7.02% 

 6 16  √ 0.18 6.600 4.067  √ 0.21 6.600 3.633  10.66% 

 7 19  √ 0.20 6.567 3.589  √ 0.25 6.567 3.239  9.77% 

 8 21  √ 1.06 7.633 3.803  √ 1.31 7.633 3.384  11.02% 

 9 24  √ 2.96 8.967 3.836  √ 3.26 8.967 3.422  10.79% 

 10 27  29 7.71 9.379 3.630  29 8.56 9.379 3.246  10.56% 

Large batches 

3 5 10  √ 0.46 1.800 6.887  √ 0.83 1.800 6.327  8.13% 

 6 12  √ 0.50 2.700 7.683  √ 1.07 2.700 6.861  10.70% 

 7 14  √ 1.23 2.967 7.990  √ 3.48 2.967 7.152  10.49% 

 8 16  √ 0.94 3.533 7.471  √ 2.33 3.533 6.704  10.26% 

 9 18  √ 1.08 3.833 7.452  √ 2.88 3.833 6.852  8.05% 

 10 20  √ 0.82 4.233 7.287  √ 2.99 4.233 6.503  10.75% 

4 5 13  √ 1.82 3.667 8.103  √ 6.19 3.667 7.441  8.16% 

 6 16  √ 8.28 5.467 8.283  √ 132.93 5.467 7.433  10.26% 

 7 19  √ 10.48 5.533 7.484  √ 173.77 5.533 6.789  9.28% 

 8 21  √ 9.28 6.214 7.762  28 86.46 6.214 6.986  9.99% 

 9 24  √ 25.06 7.733 8.042  √ 331.17 7.733 7.200  10.47% 

 10 27  29 27.63 8.429 7.569  28 84.01 8.429 6.788  10.31% 

7.2 Effectiveness of the proposed heuristics 

In this section, we evaluate the effectiveness of the heuristic algorithms. First, we compare the results of the proposed 

two heuristics with that of the extended APBFS algorithm. Second, we compare the performances of the two heuristics.  

7.2.1 Comparison of the exact solutions and heuristic solutions 

Table 5 compares the SEM heuristic and the SEML heuristic with that of the extended APBFS algorithm on instances 

with small batches and a 50% fill rate. For a fair comparison, the heuristic results are calibrated (in italic) to ensure that 

the comparison is based on the instances that are solved to optimality by the extended APBFS algorithm. Because the 

CPU times of both heuristics are less than 1 second, they are not presented here. The best heuristic result for each problem 

class is highlighted in bold, from which it can be observed that in almost all cases the SEML heuristic outperforms the 

SEM heuristic. In addition, from the column Gap[Rel], we can see that for instances with T=3,4, our proposed SEML 

heuristic performs quite well, with only at most 0.64% difference from the optimal solutions in terms of the total number 

of relocations. Overall, the SEML heuristic is at most 3.41% more than the optimal total number of relocations. Regarding 

the average relevant truck waiting time (Gap[AveWait]), the result of the SEML heuristic is at most 1.49% more than that 

of the extended APBFS algorithm. Besides, occasionally, the SEML heuristic even outperforms the extended APBFS 

algorithm slightly in terms of the relevant truck waiting time. This is not surprising, because the Sooo extension model 

aims to minimize the total waiting times of each batch sequentially rather than minimizing the total waiting times of all 
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the trucks. Because the total waiting time of all trucks is jointly determined by the number of relocations of and the service 

sequence of each truck, the solutions with the same total number of relocations may lead to different total waiting time 

and it might also happen that the solutions with more relocations lead to less total waiting time.  

Table 5 Comparison of the extended APBFS algorithm, SEM and SEML heuristics for small batches and 50% fill rate 

T S C 

Extended APBFS  SEM  SEML 

Rel AveWait  Rel AveWait Gap[Rel] Gap[AveWait]  Rel AveWait Gap[Rel] Gap[AveWait] 

3 5 8 1.478 3.207  1.478 3.208 0.00% 0.02%  1.478 3.208 0.00% 0.02% 

 6 9 1.581 3.303  1.582 3.303 0.07% 0.02%  1.581 3.303 0.00% 0.00% 

 7 11 2.654 3.356  2.654 3.359 0.00% 0.08%  2.654 3.359 0.00% 0.08% 

 8 12 2.169 3.014  2.174 3.015 0.22% 0.04%  2.169 3.014 0.00% 0.01% 

 9 14 2.885 3.106  2.886 3.106 0.05% 0.01%  2.886 3.106 0.03% 0.01% 

 10 15 3.093 2.930  3.100 2.931 0.22% 0.04%  3.100 2.931 0.22% 0.04% 

4 5 10 2.855 3.411  2.891 3.408 1.26% -0.09%  2.874 3.403 0.64% -0.22% 

 6 12 3.466 3.351  3.481 3.356 0.44% 0.15%  3.471 3.353 0.14% 0.06% 

 7 14 3.941 3.324  3.986 3.332 1.15% 0.25%  3.960 3.327 0.49% 0.10% 

 8 16 4.559 3.390  4.578 3.389 0.42% -0.02%  4.578 3.389 0.42% -0.02% 

 9 18 5.523 3.474  5.532 3.471 0.15% -0.09%  5.532 3.472 0.15% -0.06% 

 10 20 6.015 3.181  6.018 3.183 0.06% 0.06%  6.016 3.183 0.01% 0.06% 

5 5 13 4.884 3.900  5.047 3.921 3.36% 0.55%  5.031 3.920 3.02% 0.51% 

 6 15 5.544 3.553  5.633 3.558 1.61% 0.16%  5.619 3.554 1.35% 0.04% 

 7 18 6.573 3.777  6.631 3.790 0.88% 0.33%  6.619 3.785 0.70% 0.20% 

 8 20 7.516 3.482  7.636 3.500 1.60% 0.52%  7.619 3.497 1.37% 0.43% 

 9 23 8.696 3.606  8.733 3.610 0.42% 0.11%  8.710 3.607 0.16% 0.04% 

 10 25 9.238 3.517  9.301 3.518 0.68% 0.03%  9.285 3.515 0.50% -0.05% 

6 5 15 6.999 3.886  7.237 3.944 3.40% 1.48%  7.238 3.944 3.41% 1.49% 

 6 18 7.728 3.959  7.918 3.964 2.47% 0.13%  7.913 3.963 2.40% 0.11% 

 7 21 8.923 3.787  9.011 3.772 0.98% -0.40%  9.011 3.772 0.98% -0.40% 

 8 24 9.882 3.748  9.987 3.755 1.06% 0.16%  9.994 3.755 1.13% 0.18% 

 9 27 10.538 3.419  10.652 3.429 1.08% 0.28%  10.652 3.429 1.08% 0.28% 

 10 30 11.572 3.580  11.579 3.578 0.06% -0.06%  11.579 3.578 0.06% -0.06% 

*Note: customer preference scenario: 50% 

We compare the SEML heuristic with the extended APBFS algorithm on larger instances in Appendix C.1. The 

comparisons are based on the instances that can be solved optimally by both the exact algorithm and the heuristic 

algorithm. It can be seen that for the problem classes in Table 5 and in Appendix C.1 for which we have access to the 

optimal solutions of all the 30 instances, the maximum gaps for the total number of relocations and the average relevant 

truck waiting time are 4.28% and 1.49% respectively; and in about 84% (41/49) cases, the total number of relocations 

obtained by the SEML heuristic is very close to the optimal solutions with gaps no more than 2%. Besides, for the problem 

classes for which we only have access to the optimal solutions of part of the 30 instances, the maximum gap for the total 

number of relocations and the average relevant truck waiting time are 9.80% and 1.53% respectively. With an enormous 

number of instances in a range of sizes being evaluated, our experiments show strong evidence that the SEML heuristic 

is a good solution to the SCRP-FS of practical sizes.  

7.2.2 Comparison of the two heuristics 

Furthermore, we compare the performance between the SME heuristic and the SMEL heuristic on all the instances with 

a 67% fill rate. Appendix D displays the gaps between the two heuristics for instances with three to six tiers respectively. 

The horizontal axis presents the characteristics of each instance: the customer preference scenario (P), the average batch 

size (B), and the number of stacks (S). Gap[Rel]=(SEM[Rel]–SEML[Rel])/SEM[Rel]×100%, and Gap[AveWait]= 
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(SEM[AveWait]–SEML[AveWait])/SEM[AveWait] × 100%. In most cases, the SEML heuristic shows superior 

performance on both measures to that of SEM heuristic, which confirms the importance of looking ahead on the decision 

making of retrieval sequence. Although in very few cases the good performance on ‘Rel’ of the SEML heuristic is at the 

expense of ‘AveWait’, the increases on ‘AveWait’ are no more than 1% compared with SEM. Given the better performance 

quality of the SEML heuristic, we use SEML as the heuristic solver for the SCRP-FS in the remaining experiments.  

7.3 Effect of the flexible service policy 

In this section, we first verify the effectiveness of our proposed flexible service policy by comparing the Sooo extension 

model with the base model. Then, various instances with different bay sizes and fill rates, batch sizes and customer 

preference scenarios are tested to investigate their impacts on the effect of the flexible service policy.  

7.3.1 Comparison of the base model and the Sooo extension model on the benchmark 

In order to evaluate the effect of the proposed flexible service policy as opposed to the FCFS policy, we compare the 

results of the Sooo extension model with the base model on the benchmark set. The benchmark set consists of the instances 

with a 50% fill rate, small batches, and the ‘50%’ customer preference scenario. In order to obtain the results of the base 

model, we slightly adapt the PBFS algorithm in Galle et al. (2018b) by using a new lower bound that incorporates the 

characteristics of customer preference, which is similar to the idea of computing the BI in the EM extension algorithm. 

Table 6 reports the calibrated results for comparison. Gap[Rel]=(Base model[Rel]–Sooo extension model[Rel])/ Base 

model[Rel]×100%, and Gap[AveWait]=(Base model[AveWait]– Sooo extension model[AveWait])/ Base 

model[AveWait]×100%. We can see that around 2% - 13% reduction in the total number of relocations can be achieved 

by the Sooo extension model compared with the base model on the benchmark set. The effectiveness of the flexible policy 

is also demonstrated by the around 4.3% - 8.4% reduction in the average relevant truck waiting time.  

Table 6 Comparison between the base model and the Sooo extension model on the benchmark instance set 

T S C 

Base model*  Sooo extension model  Gap 

Opt Solved CPU(s) Rel 
AveWait 

(min) 
 Opt Solved CPU(s) Rel 

AveWait 

(min) 

 Gap[Rel] Gap 

[AveWait] 

3 5 8 1.703 √ 0.02 1.700 3.436  1.478 √ 0.03 1.478 3.207  13.03% 6.66% 

 6 9 1.739 √ 0.01 1.737 3.487  1.582 √ 0.03 1.581 3.303  9.00% 5.28% 

 7 11 2.878 √ 0.02 2.878 3.544  2.654 √ 0.03 2.654 3.356  7.79% 5.30% 

 8 12 2.308 √ 0.02 2.307 3.148  2.169 √ 0.03 2.169 3.014  5.95% 4.26% 

 9 14 3.004 √ 0.02 3.006 3.235  2.884 √ 0.04 2.885 3.106  4.02% 3.98% 

 10 15 3.192 √ 0.02 3.193 3.066  3.094 √ 0.06 3.093 2.930  3.14% 4.45% 

4 5 10 3.108 √ 0.02 3.107 3.657  2.856 √ 0.03 2.855 3.411  8.08% 6.74% 

 6 12 3.675 √ 0.03 3.676 3.559  3.461 √ 0.05 3.466 3.351  5.70% 5.85% 

 7 14 4.164 √ 0.03 4.164 3.522  3.944 √ 0.05 3.941 3.324  5.37% 5.62% 

 8 16 4.819 √ 0.16 4.820 3.592  4.555 √ 0.20 4.559 3.390  5.42% 5.63% 

 9 18 5.730 √ 0.33 5.729 3.670  5.526 √ 0.34 5.523 3.474  3.58% 5.35% 

 10 20 6.275 √ 0.75 6.272 3.353  6.016 √ 0.80 6.015 3.181  4.10% 5.13% 

5 5 13 5.323 √ 0.15 5.325 4.198  4.883 √ 0.19 4.884 3.900  8.29% 7.09% 

 6 15 5.911 √ 4.38 5.914 3.813  5.546 √ 2.98 5.544 3.553  6.25% 6.83% 

 7 18 6.965 √ 1.11 6.969 4.046  6.575 √ 0.77 6.573 3.777  5.68% 6.64% 

 8 20 7.847 √ 7.85 7.846 3.703  7.519 √ 8.16 7.516 3.482  4.21% 5.98% 

 9 23 8.999 28 70.96 9.005 3.829  8.704 29 70.61 8.701 3.609  3.38% 5.76% 

 10 25 9.547 29 47.92 9.547 3.716  9.237 29 49.37 9.238 3.517  3.24% 5.34% 

6 5 15 7.595 √ 4.98 7.590 4.244  7.004 √ 5.06 6.999 3.886  7.79% 8.43% 

 6 18 8.232 √ 17.45 8.231 4.249  7.729 √ 6.18 7.728 3.959  6.11% 6.82% 

 7 21 9.394 23 251.90 9.393 4.077  8.925 22 160.87 8.923 3.787  5.00% 7.11% 

 8 24 10.318 22 134.48 10.313 3.989  9.886 22 164.07 9.882 3.748  4.18% 6.03% 

 9 27 10.713 18 103.13 10.714 3.609  10.538 18 104.47 10.538 3.419  1.64% 5.26% 

 10 30 11.804 17 234.62 11.809 3.774  11.551 18 114.81 11.547 3.583  2.22% 5.06% 

*Note: The base model refers to the batch model of Galle et al. (2018b) in the new context of customer preference-based 
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arrivals. 

7.3.2 Effect of the flexible service policy in different scenarios 

Based on all instances (including the instances with ultra-large batches), we analyze the impacts of the combinations 

of different bay sizes (T*S) and fill rates (μ), truck appointment patterns (the average batch size) and truck arrival 

behaviors (the customer preference scenario) on the effects of the flexible service policy. The results of all instances are 

obtained by simulating heuristic solutions except the results of the benchmark set which are from the optimal solutions in 

Table 6.  

Effect on the number of relocations 

Fig. 7 depicts the relative reduction in the total number of relocations. In each figure, six plots are presented, varying 

in the average batch size in the horizontal direction and the customer preference scenario in the vertical direction. Note 

that because the relative reductions for the ‘0%’ and ‘100%’ customer preference scenarios are the same, we only present 

the result of one scenario in the vertical direction. As shown in Fig. 7, the effect on relocation reduction is more significant 

for the cases with larger batch sizes and the cases with more concentrated truck arrivals within the appointed time window 

(i.e., the ‘0%’ customer preference scenario). The reason is that these cases provide more opportunities for out-of-order 

retrievals to reduce relocations as there are more trucks in the same sub-batch. Note that under the cases where the 

customer preference scenario is ‘0%’, the SCRP-FS is equivalent to the deterministic CRP with flexible service policies 

(CRP-FS) in which all the trucks in the same batch are allowed to be retrieved out-of-order. The effect of the flexible 

service policy is maximized in the context of the CRP-FS as the container retrieval order has the greatest flexibility and 

meanwhile, the truck arrival uncertainties are completely offset.  

 

Fig. 7(a) Effect of the flexible service policy on the total number of relocations for instances of 50% fill rate 
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Fig. 7(b) Effect of the flexible service policy on the total number of relocations for instances of 67% fill rate 

Furthermore, we can find that the relative reduction in the number of relocations depends on the bay size (T*S) and the 

fill rate (μ). In general, the percentage is decreasing as the bay size and the fill rate get larger. To understand this, let us 

consider the benefits of the flexible service policy. For each out-of-order retrieval, the direct benefit is avoiding one 

relocation, and the indirect benefit is avoiding future relocations that might be caused by the blocking container if it is 

not retrieved out-of-order. As T and μ increases, the likelihood of blocking become greater, but the increasing number of 

blocking containers cannot be offset completely by implementing the proposed flexible service policy as only the 

containers in the same sub-batch are allowed to be retrieved out-of-order. In addition, as S increases, it is more likely that 

a better relocating stack can be found for a relocated container, meaning that the relocated container being blocking again 

in the future is less likely to occur, and thus the benefit of out-of-order retrieval is diminishing. This indicates that the bay 

of smaller size and sparse stacking can benefit more from the flexible service policy. For the instances with on average 

six trucks per batch and the ‘50%’ customer preference scenario, the peak relative reduction on the number of relocations 

is around 38% and 30% respectively for the bay of 50% and 67% fill rate. This leads to a 9.6% and 11.3% reduction in 

the average relevant waiting time respectively for the bay of 50% and 67% fill rate (see Appendix E.3). 

Effect on the trucks waiting time 

We also report the absolute reduction in the two performances. Note that the application of the flexible policy always 

leads to positive reductions, we use “absolute reduction” only to differentiate it from “relative reduction”. The absolute 

reduction on the average relevant truck waiting times shows a similar pattern as that on the total number of relocations 

(see Appendix E.1 and Appendix E.2). However, in contrast to Fig. 7, the bay’s height and fill rate has a positive impact 

on the relative reduction in the average relevant truck waiting time (see Appendix E.3). This is because the total relevant 

truck waiting times include a fixed amount of time that is not influenced by the service policy. Recalling Section 3.2.2, 

for each batch k, no matter what the solution is, we have to add ( )
1

kC

ret
k

j

t C j

=

 −  to the total relevant waiting times, 

which is a fixed value. To obtain an accurate understanding of the effect of the flexible service policy on reducing trucks’ 

waiting times, we deduct this fixed amount of time from the total relevant waiting times and then take the average, 
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resulting in a new average waiting time. To differentiate, we call it average delay time. The average delay time represents 

the waiting time caused to each truck only due to relocation operations.  

 

Fig. 8(a) Effect of the flexible service policy on average delay time for instances of 50% fill rate 

 

Fig. 8(b) Effect of the flexible service policy on average delay time for instances of 67% fill rate 

Fig. 8 depicts the relative reduction in the average delay time. The similar trend between Fig. 7 and Fig. 8 indicates 

that the reduction in the number of relocations plays a direct role in reducing the average delay time. For the instances 
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with ultra-large batches and the customer preference scenario being ‘50%’, about 50% and 44% of the average delay time 

can be reduced respectively for the bay of 50% and 67% fill rate as a result of out-of-order retrievals. The experiment 

results also demonstrate (not presented in the figure) that on average one reduction in the number of relocations results in 

1.07 minutes and 0.93 minutes reduction in the average relevant truck waiting time across all instances respectively for 

the bay of 50% and 67% fill rate. 

Moreover, we also measure the average turn time under the flexible service policy, which is shown in Appendix E.4. 

The turn time of a truck is defined as the elapse of time between its arrival time and its retrieval service completion time. 

Appendix E.4 shows an average difference of 15-minutes in the average turn time between the ‘0%’ customer preference 

scenario and the ‘100%’ customer preference scenario. This is only due to the difference between the truck arrival times 

that are generated for the two scenarios. Noticing that our appointment time window is set to be 30 minutes, the 15-

minutes difference validates our simulation results.  

Effect on the service equity 

Out-of-order retrievals might make some trucks perceive unfair service due to the adjustment of the service sequence. 

To examine the equity of truck service, we use box plots to display the distributions of the truck turn time under the FCFS 

policy and the flexible policy respectively, which is contrasted in Fig. 9. It can be observed that the maximum values of 

the truck turn time (among all trucks’ turn times including the outliers) under the flexible service policy are generally 

greater than that under the FCFS policy. This is not surprising because the flexible service policy makes some trucks that 

arrive earlier being served at a later time due to the sequencing decision. However, because we restrict the out-of-order 

retrievals within the same sub-group, the trucks arriving in the first sub-window will always be serviced before the trucks 

arriving in the second sub-window, which means the service equity between two sub-groups of trucks is maintained. It 

can be seen that the difference of the maximum turn times between two policies is only about five minutes among the 

cases in Fig. 9. Besides, the differences are not obvious for the cases with higher tiers (T = 5, 6), and in some cases, the 

flexible policy even has a shorter maximum turn time. The reason is that the instances with higher tiers require a higher 

average number of relocations to retrieve a container, while the flexible policy can significantly reduce the number of 

relocations and avoid the long waiting time compared to the FCFC service. Moreover, the flexible policy has a lower 

minimum value of the truck turn time; and more importantly, the median and the mean of the trucks’ turn time under the 

flexible policy are always smaller than those under the FCFS policy.  

These results demonstrate that when the FCFS policy is replaced by the flexible policy, although some trucks may 

experience a little longer turn time, on average the service each truck receives can be improved. This goal is consistent 

with most of the existing relevant literature, e.g., minimizing the average waiting time (Borjian et al., 2015b; Zeng et al., 

2019) or minimizing total delay times (Borjian et al., 2013). 

 

 



 

39 

 

 

Fig. 9 Grouped box plots of the truck turn time under two service policies for the instances with 67% fill rate, ‘50%’ 

customer preference scenario and on average 6 containers per batch 

7.4 Influence of customer preference 

In this section, we analyze the influence of customer preferences on the results of the Sooo extension model. We 

consider three sets of customer preference scenario: i) all trucks arrive at the first sub-time window with the probability 

of 100% (‘100%’); ii) all trucks arrive at the first sub-time window with the probability of 50% (‘50%’); iii) trucks arrive 

at the first sub-time window with different probabilities (heterogeneous). Appendix F reports the results obtained by the 

extended APBFS algorithm of these three sets of customer preference scenarios on the instances with small batches and 

a 50% fill rate. For the heterogeneous scenario, we generate 10 samples of customer preferences randomly for each of the 

30 instances of each problem class, and hence, each problem class has 300 instances to be solved. The number of instances 

that are solved optimally is given in the form ‘x/300’ and ‘√’ indicates that all instances out of 300 are solved optimally. 

Note that it takes about six days to obtain the results of the problem class with T=6 and S=9 for the heterogeneous scenario 

since 127 out of 300 instances cannot be solved optimally within one hour, we did not conduct the experiments of the 

problem class with T=6 and S=10 (because it would take much longer computational time than six days).  

Concerning the computational efficiency, from Appendix F, it is observed that the instances with the ‘100%’ scenario 

take less time to obtain optimal solutions than the ‘50%’ scenario, and there are fewer hard instances for the ‘100%’ 

scenario. This can be explained by the fact that in the ‘100%’ scenario, each chance node only has one offspring, which 

reduces the burden of the decision tree. By contrast, the heterogeneous scenario takes more time to be solved. The reason 

is that the abstract technique does not work efficiently for the heterogeneous scenario as it rarely happens that two nodes 
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are equivalent since the preferences of customers differ from each other. Even so, there is no obvious change in the number 

of hard instances, which can be seen from the ‘Solved’ columns of the ‘50’ scenario and the heterogeneous scenario. 

In terms of the objective values, from Fig. 10, we can see that the heterogenous scenario and the ‘50%’ scenario perform 

similarly, which have obvious differences from the ‘100’ scenario. This implies that if all customers tend to arrive at a 

specific sub-time window of their appointed time windows, the results will be influenced significantly. Besides, if 

customers have heterogeneous preferences, we can use the results of the ‘50%’ scenario as an approximation of the 

objective values of the heterogeneous scenario. However, this does not mean that the solution of the ‘50%’ scenario is 

feasible to the solution of the heterogeneous scenario.  

 

(a) Comparison of the total number of relocations 

 

(b) Comparison of the average relevant truck waiting time 

  Fig. 10 Comparison between three sets of customer preference scenarios for instances with small batches and a 50% 

fill rate 

We summarize the key findings of the experiments below. Firstly, the solution capacity of the two proposed exact 

solution algorithms is quite similar. The extended APBFS algorithm can solve 87.5% of the instances with T=3,4 within 

30 seconds. Secondly, our proposed lower bound LB-FS is more effective for instances with lower tiers (T=3,4). In 73% 

of the instances with T=3,4, our lower bound is fairly close to the optimal solution with a gap within 5%. Thirdly, for the 

instances that can be solved optimally, the Sooo extension model can reduce the average relevant truck waiting time by 

2.5% - 11% in comparison to the Sooo model, which indicates the significance of considering truck waiting time in 

addressing the SCRP-FS. Fourthly, the SEML heuristic outperforms the SEM heuristic in both performances, which 

demonstrates the importance of looking ahead on the decision-making of retrieval sequence. For the instances that we 
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have access to the optimal solutions, in about 84% cases the total number of relocations obtained by the SEML heuristic 

is very close to the optimal solutions with a gap within 2%, and the maximum gap is 4.28%. Fifthly, the proposed flexible 

service policy can significantly reduce both the number of relocations and the relevant truck waiting times. Although 

some trucks may experience a little longer turn time, on average the service each truck receives can be improved. For the 

benchmark instance set, the largest relative reduction on the number of relocations is around 38% and 30%, which leads 

to a 9.6% and 11.3% reduction in the average relevant waiting time, respectively, for the bay of a 50% and a 67% fill rate. 

The benefit is more obvious for the instances with smaller and sparse bays, larger batches, and concentrated truck arrivals 

within one of the sub-time windows. Lastly, customers preferring a specific sub-time window of their appointed time 

windows has a great influence on the results.  

8. Conclusions 

In this paper, we have considered the stochastic container relocation problem with flexible service policies (termed as 

SCRP-FS), which focuses on retrieving and relocating import containers with uncertain truck arrival orders. The trucks 

arrive at the terminal randomly within their appointed time windows. The containers whose designated trucks arrive at 

the same sub-time window are allowed to be retrieved out-of-order. Customers (trucks)’ preference is taken into 

consideration to describe the randomness of truck arrivals within the same time window. The problem is first formulated 

by a stochastic dynamic programming model to minimize the expected number of relocations, which is termed as the 

Sooo model. Then a Sooo extension model is developed considering a primary objective the same as the Sooo model and 

a secondary objective of minimizing the total truck waiting times of each batch sequentially. The Sooo extension model 

not only considers the terminal operator’s objective but also the trucks’ objective. Built upon a state-of-the-art algorithm 

for solving the SCRP, tree search-based algorithms are developed to make optimal recommendations about the retrieval 

sequence of the next batch of containers and the relocation positions of the blocking containers. Moreover, two heuristic 

algorithms, SEM and SEML, are designed to seek high-quality solutions efficiently for practical-size problems. A discrete 

event-driven simulation model is developed to evaluate the performance of the algorithms (optimal and heuristic). 

Extensive computational experiments demonstrate the effectiveness of the models and the algorithms.  

On the theoretical side, firstly, the SCRP-FS generalizes the conventional SCRP from two perspectives. On the one 

hand, the flexible service policy relaxes the traditional FCFS policy, which provides more opportunities for reducing the 

number of relocations and allows for reducing the trucks’ waiting time as well. On the other hand, the assumption of 

uniformly distributed truck arrivals within the same time window is relaxed by a more general probabilistic model. The 

capability of capturing the customers’ preference-based arrival behavior, in particular, is a major advantage of the 

probabilistic model. Secondly, the proposed methodology contributes to the literature of solving multiple objective multi-

stage stochastic optimization problems by embedding the optimization of the secondary objectives within the multi-stage 

optimization procedure for the primary objective. Such methodology may be applicable to other transportation 

optimization problems such as berth allocation problems or train loading problems, in which decisions are made 

dynamically and multiple objectives are prioritized.  

On the practical side, based on our findings, we provide some managerial insights to terminal operators and truck 

companies. Firstly, by slightly diverting the current FCFS service policy to the flexible service policy that implements 

out-of-order retrievals within half of the appointment time window, both the number of relocations and the average truck 

waiting time during the retrieval service can be significantly reduced; and the service equity between two sub-groups of 

trucks is maintained. Secondly, the flexible service policy is more beneficial in the following practical situations: the 

container terminal uses small bay or/and sparse stacking strategy; the containers to be retrieved in a bay are booked in 

large batches; the trucks arrive within either the earlier segment or the latter segment of their appointed time windows 

concentratedly. Thirdly, customer preference has a great influence on both the number of relocations and the truck waiting 

times during the retrieval service. Lastly, the developed SEML heuristic can generate good solutions very fast, which can 

be applied in practice to enable the real-time dynamic decision-making for the SCRP-FS. 

This paper provides several directions for further research. Firstly, the proposed models and algorithms are reasonably 
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general and flexible, which allows for further refining and improvement, e.g. terminal operators could choose different 

sizes of the sub-batches or multiple sub-batches. The optimization framework will be similar and the structure of the 

decision tree does not need change. However, if the terminal operator decides to have more sub-batches, the size of the 

search tree will be larger due to the consideration of more possibilities of sub-batches. Hence, a more efficient search 

algorithm needs to be developed to obtain exact solutions. Nevertheless, our proposed heuristics are supposed to be still 

efficient because their time complexities are decreasing with the decrease of the batch size. Besides, the benefits of the 

flexible service policy need to be further evaluated because the terminal operator will have less control over the truck 

service sequence if they use more sub-batches. Secondly, this study could be extended to address more general SCRP 

problems where trucks do not necessarily arrive within their appointed time windows. In the real world, the arrival of a 

truck may be prior to or later than the appointed time window. An extended arrival time window that includes both the 

preceding and the succeeding time window relative to the appointed time window is more appropriate to predict trucks’ 

arrival times. The probability of the deviation from the appointed time window could be gained from historical data and 

be considered as our proposed customer preference. Thirdly, based on our proposed lower bound, more efficient stacking 

policies considering the possibility of out-of-order retrievals in the future could be developed to stack import containers 

in an orderly configuration so that fewer relocations are needed during the retrieval process.  
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Appendix A. Some illustrations of the exact algorithms 

A.1. Illustration of the abstraction technique 

Fig. A.1(a) shows the application of the abstract technique on the node 10 and node 11 in Fig. 4. By (10)Abstract  and 

(11)Abstract , node 10 and node 11 are projected to the same abstract configuration. This means if (10)f  is known, (11)f  

can be directly returned to be (10)f   without further branching. Fig. A.1(b) illustrates two unequivalent abstract 

configurations due to the difference in their abstract preference configurations although they have the same abstract 

priority configuration.  
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Fig. A.1. Illustration of the abstraction technique 

A.2. A sample decision tree developed by the extended APBFS algorithm 
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Fig. A.2. A sample decision tree developed by the extended APBFS algorithm. 
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Fig. A.2 presents a decision tree developed by the extended APBFS algorithm. The initial node in this decision tree is 

the abstract configuration of the last node in the decision tree of Fig. 4. Let us focus on the nodes highlighted with upward 

diagonal background: n, n1, and n2, to illustrate the consideration of the secondary objective. n is a SD node with

1 2{ , }APBFS

n n n =  , and f(n)=1. As 1 2( ) ( ) 1 ( )f n f n f n= = =  , we calculate the waiting time indicator of n1 and n2 by 

Algorithm 2. We obtain that 2 1( ) 1 ( ) 2w n w n=  = . Therefore, the best offspring of node n is n2 (step 4.7-4.8 in Algorithm 

3). Note that in the APBFS algorithm, if n1 is first added into APBFS

n , n2 will not be able to be included into APBFS

n  as 

2( ) 1lb n =  is not less than 1( )f n , which means that we lose the opportunity to find the optimal solution with regard to 

the secondary objective. 

  

Appendix B. Details of the heuristics 

B.1. Calculating the BI and DI of the EM extension heuristic 

Fig. B.1 is used for illustration, which shows how the EM extension heuristic makes decisions on a simple example 

where the truck arrival sequence of the three containers in the first batch ( 7 10 5, ,u u u ) has been revealed. The container in 

the shaded slot is the target container to be retrieved. The container in the upward diagonal slot is the blocking container 

to be relocated at the current step. The numbers under the priority matrix correspond to the m(s) of each candidate stack, 

and the value of M is also given.  
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Fig. B.1. Decisions by the EM extension heuristic on an example 

(1) Method of computing BI 

If cM l= , EM extension selects the stack with the minimum ( )BI s  to minimize the probability of c being blocking 

if c is relocated to stack s . Given a configuration B with M, a stack s where c is located before being relocated, a stack 

s   that satisfies ( )m s M =  , ( )BI s   is computed as follows. Step 1 in Fig. B.1 is used to illustrate the computing 

method. Without special instruction, the ‘stack 1’ used in this sub-section refers to the stack 1 in the configuration under 

step 1 in Fig. B.1.  

Let  1,...,s NM c c =  , | |sN M =  , be the set of containers labeled M and located in s  . We first compute the 

probability that c is not blocking if relocated to s , i.e., 1 ( )BI s− . Let us consider the two cases in terms of the sub-

batch of c: #1) c is in the former sub-batch; #2) c is in the latter sub-batch. 

#1. c is in the former sub-batch.  

Under case 1, we consider two mutually exclusive sub-cases (#1.1 and #1.2) in terms of the sub-batch of containers in 
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sM  .  

#1.1. At least one container i sc M   is in the former sub-batch. 

There are totally 
1

N

k

N

k=

 
 
 

  scenarios that satisfy #1.1. Let 1 2, ,...,

N

k

k k k kComb comb comb comb

 
 
 

  
=  
  

 denote the set of 

all scenarios represented by the combinations of the N elements in sM   taken k,  1,...,k N= . The size of kComb  is 

N

k

 
 
 

. Each element i

k kcomb Comb , 1,...,
N

i
k

   
  
   

, represents a scenario where the elements in i

kcomb  are in the 

former sub-batch. For example (see Fig. B.1), in the configuration of step 1, 1 1 2{ , }M u u=  , N=2, 

 1 2

1 1 1,Comb comb comb=  , wherein  1

1 1comb u=  ,  2

1 2comb u=  , and 1

2 2{ }Comb comb=  , wherein 

 1

2 1 2,comb u u=  . The probability of kComb   is equal to 
1

(1 )
j j

i i
j k j k

N

k

c c

i c comb c comb

p p

 
 
 

=  

−    . Then the probability that c is not 

blocking in the scenario set kComb  is equal to 
1

(1 ) / ( 1)
j j i

i i
j k j k

N

k

c c c

i c comb c comb

p p k p

 
 
 

=  

− +    . Considering all combinations from 

k=1 to k=N, we have the probability that c is not blocking in case 1.1, which is equal to 

1 1

(1 ) / ( 1)
j j i

i i
j k j k

N

kN

c c c

k i c comb c comb

p p k p

 
 
 

= =  

− +    . Taking stack 1 for example, we have  

2

2

1 1 1 1

(1 ) / ( 1) (1 ) / ( 1)
j j i j j i

i i i i
j k j k j k j k

N

k kN

c c c c c c

k i k ic comb c comb c comb c comb

p p k p p p k p

   
   
   

= = = =   

− +  = − +      =(0.3×0.9/2+0.1×0.7/2+0.3×0.1/3)×0.5=0.09. 

#1.2. All containers in sM   are in the latter sub-batch.  

In this case, c is surely not blocking. Then the probability that c is not blocking in case 1.2 is equal to 
1

(1 )
i

N

c c

i

p p
=

−  . 

Taking stack 1 for example, we have 
2

1 1

(1 ) (1 )
i i

N

c c c c

i i

p p p p
= =

−  = −   =0.7×0.9×0.5=0.315. 

#2. c is in the latter sub-batch.  

In this case, there exists only one scenario in which it is possible that c is not blocking, that is, all containers in sM   

are in the latter sub-slot. Then the probability that c is not blocking in case 2 is equal to
1

(1 ) (1 ) / ( 1)
i

N

c c

i

p p N
=

−  − + . 

Taking stack 1 for example, we have 
2

1 1

(1 ) (1 ) / ( 1) (1 ) (1 ) / 3
i i

N

c c c c

i i

p p N p p
= =

−  − + = −  −  =0.7×0.9×0.5/3=0.105. 

The above cases exhaust all the possible scenarios of the sub-batches of the containers labeled M. Therefore, by 

summing the above expressions, we have the probability that c is not blocking if relocated to s , i.e., 1 ( )BI s− , as 

expressed in Eq. (A.1):  

1 1 1 1

1 ( ) (1 ) / ( 1) (1 ) (1 ) (1 ) / ( 1)
j j i i i

i i
j k j k

N

k N NN

c c c c c c c

k i i ic comb c comb

BI s p p k p p p p p N

 
 
 

= = = = 

− = − +  + −  + −  − +      
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       ( )
1 1 1

(1 ) / ( 1) (1 ) (1 ) / ( 1)
j j i i

i i
j k j k

N

k NN

c c c c c c

k i ic comb c comb

p p k p p p p N

 
 
 

= = = 

= − +  + −  + − +                   (A.1) 

Finally, we have the probability of c being blocking if relocated to s , i.e., ( )BI s , as calculated by Eq. (A.2).  

( )
1 1 1

( ) 1 (1 ) / ( 1) (1 ) (1 ) / ( 1)
j j i i

i i
j k j k

N

k NN

c c c c c c

k i ic comb c comb

BI s p p k p p p p N

 
 
 

= = = 

 = − − +  − −  + − +            (A.2) 

For example (see Fig. B.1), in the configuration of step 1, the BI of stack 1 is calculated as 

( )(1) 1 0.09 0.315 0.105 0.49BI = − + + = . Also, we obtain BI(2)=0.7 by Eq. (A.2). As BI(1)<BI(2), stack 1 is selected as 

the relocating stack at step 1 by the EM extension heuristic.  

(2) Method of computing DI 

If cM l , which means that it is unavoidable that c will be relocated again in the future, EM extension selects the stack 

with the minimum ( )DI s  to delay the next relocation of c. Given a configuration B with M, a stack s where c is located 

before being relocated, a stack s  that satisfies ( )m s M = , ( )DI s  is computed as follows. Step 3 in Fig. B.1. is used 

to illustrate the computing method. Without special instruction, the ‘configuration’ used in this sub-section refers to the 

configuration at step 3 in Fig. B.1.  

Let  1 1,...,B LM c c +=  , | | 1BM L= +  , be the set of all containers labeled M in configuration B, and sM    be the set of 

containers labeled M and located in s  . For example, in the illustrated configuration,  1 2 8 3, , ,BM u u u u=  , L=3, 

 1 1 2 8, ,M u u u=  , and  2 3M u=  . Given a candidate stack s  , we first compute the probability of each container 

i sc M   being the first one to be retrieved among the containers in BM , denoted by ( )iDI c . Since the retrieval of any 

container i sc M    will cause the next relocation of c if c is relocated to s  , by definition, we have 

( ) ( )
i s

i

c M

DI s DI c


 =  . 

Now let us consider a container i sc M   and compute ( )iDI c . Suppose all the containers in \B iM c  are located in 

a dummy stack and ic  is the container to be relocated to this stack. Then ( )iDI c  is equal to the probability that ic  

is not blocking if relocated to this dummy stack. Therefore, using the Eq. (A.1) of calculating 1 ( )BI s− , ( )iDI c  is 

computed by Eq. (A.3). 

( )
, ,

1 1 \ \

( ) (1 ) / 1 (1 ) (1 ) (1 ) / ( 1)
j j i j i j i

n n
j B i j B ij c k j c ki i

L

kL

i c c c c c c c

k n c M c c M cc cmb c cmb

DI c p p k p p p p p L

 
 
 

= =   

 =  − +  + −  + −  − +      

( ) ( )
, ,

1 1 \

(1 ) / 1 (1 ) (1 ) / ( 1)
j j i j i i

n n
j B ij c k j c ki i

L

kL

c c c c c c

k n c M cc cmb c cmb

p p k p p p p L

 
 
 

= =  

=  − +  + −  + − +                 (A.

3) 

wherein, , ,i i

n

c k c kcmb Cmb  . 1 2

, , , ,, ,...,
i i i i

L

k

c k c k c k c kCmb cmb cmb cmb

 
 
 

  
=  
  

  denotes the set of all scenarios represented by the 

combinations of the L elements in \B iM c  ( i sc M  ) taken k,  1,...,k L= . The size of 
,ic kCmb  is 

L

k

 
  
 

.  
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Therefore, ( ) ( )
i s

i

c M

DI s DI c


 =   is computed by Eq. (A.4).  

( ) ( )
, ,

1 1 \

( ) (1 ) / 1 (1 ) (1 ) / ( 1)
j j i j i i

n n
i s j B ij c k j c ki i

L

kL

c c c c c c

c M k n c M cc cmb c cmb

DI s p p k p p p p L


 
 
 

 = =  

 
 

 =  − +  + −  + − + 
 
 

         (A.4) 

Let us calculate 8( )DI u   in the illustrated configuration.  
8 8 8 8

1 2 3

,1 ,1 ,1 ,1, ,u u u uCmb cmb cmb cmb=  , wherein  
8

1

,1 1ucmb u=  , 

 
8

2

,1 2ucmb u= , and  
8

3

,1 3ucmb u= ;  
8 8 8 8

1 2 3

,2 ,2 ,2 ,2, ,u u u uCmb cmb cmb cmb= , wherein  
8

1

,2 1 2,ucmb u u= ,  
8

2

,2 1 3,ucmb u u= , and 

 
8

3

,2 2 3,ucmb u u= ;  
8 8

1

,3 ,3u uCmb cmb= , wherein  
8

1

,3 1 2 3, ,ucmb u u u= . For  1,...,3k = , we calculate the first term of Eq. 

(A.3):  

For k=1, ( ) ( )
8

,1 ,18 8

3

1

1

(1 ) / 1 1 0.1 0.7 0.1 0.3 0.9 0.1 0.9 0.7 0.9 / 2 0.5 0.15025
j j

n n
j u j u

c c u

n c cmb c cmb

p p p

 
 
 

=  

 − +  =   +   +    =    

For k=2, ( ) ( )
8

,2 ,28 8

3

2

1

(1 ) / 2 1 0.1 0.3 0.1 0.1 0.9 0.7 0.3 0.9 0.9 / 3 0.5 0.0515
j j

n n
j u j u

c c u

n c cmb c cmb

p p p

 
 
 

=  

 − +  =   +   +    =    

For k=3, ( )
8

,3 ,38 8

3

3

1

(1 ) / 3 1 0.1 0.3 0.9 / 4 0.5 0.003375
j j

n n
j u j u

c c u

n c cmb c cmb

p p p

 
 
 

=  

 − +  =    =    

Summing the above expressions, we have, 

( )
8

, ,8 8

3

3

1 1

(1 ) / 1 0.15025 0.0515 0.003375 0.205125
j j

n n
j u k j u k

k

c c u

k n c cmb c cmb

p p k p

 
 
 

= =  

 − +  = + + =    

Then, we calculate the second term of Eq. (A.3): 

( ) ( )
8 8

8\

(1 ) (1 ) / ( 1) (0.9 0.7 0.1) 0.5 0.5 / 4 0.039375
j

j B

c u u

c M u

p p p L


−  + − + =    + =  

By Eq. (A.4), we have 8( ) 0.205125 0.039375 0.2445DI u = + =  . In the same way, we obtain 2( ) 0.1385DI u =  , 

1( ) 0.0485DI u =  , and 3( ) 0.5685DI u =  . Therefore, 8 2 1(1) ( ) ( ) ( )DI DI u DI u DI u  = + +  =0.2445+0.1385+0.0485=0.4315, 

and 3(2) ( ) 0.5685DI DI u= = . As (1) (2)DI DI , stack 1 is selected as the target relocating stack at step 3 by the EM 

extension heuristic. 

B.2. An illustrative example for the SEM heuristic  

We use Fig. B.2. to illustrate the sequencing decision of the SEM heuristic. In the initial configuration 0X , there are 

five batches of containers. The truck arrival information of the first batch is revealed to be that 7u  is in the first sub-

batch and 5u  and 10u  are in the second sub-batch, as shown in bold in Step 1. Now we present the decisions to retrieve 

the first batch containers. The container in the shaded slot represents the target container to be retrieved. The container in 

the upward diagonal slot represents the blocking container to be relocated. At Step 1, 1lmin = , 7{ }u = , and thus 

there is no doubt that 7u   is selected as the target container. After retrieving 7u  , 2lmin =  , 5 10{ , }u u =  , and 

5 10( ) ( ) 1r u r u= = . As 5 10( ) ( )r u r u= , the SEM selects 10u  as the target container arbitrarily. After Step 4, 3lmin = , 

5{ }u = , and thus 5u  is selected as the target container out of question. 
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Fig. B.2. Decisions by the SEM heuristic on an example 

B.3. Calculating the BIS and DIS of the SEM heuristic 

Fig. B.2 is used for illustration. 

(1) Method of computing BIS 

Given a configuration B with M, a stack s where c is located before being relocated, a stack s   that satisfies 

( )m s M = , the method of computing ( )BIS s  is introduced here. Let  1,...,s NM c c = , | |sN M = , be the set of 

containers labeled M and located in s . Container c being blocking if relocated to s  occurs only in the scenario 

where c is in the latter sub-batch and there is at least one container i sc M   in the former sub-batch. Therefore, we have, 

( ) ( )
( )

( ) 1 1 1
i

i

c c

c M s

BIS s p p


 
 = − − −  

 
                                 (A.5) 

The term ( )
( )

1
i

i

c

c M s

p


−  of Eq. (A.5) is the probability that all the containers in sM   are in the latter sub-batch, and 

thus ( )
( )

1 1
i

i

c

c M s

p


 
− −  

 
  is the probability that at least one of them is in the former sub-batch. 

Take the configuration at step 1 (see Fig. B.2) for example. 8c u= , M=4, and thus stack 1 and stack 2 are candidate 

stacks. By Eq. (A.5), ( )( )(1) 1 0.5 1 0.7 0.9 0.185BIS = − −  = , ( )( )(2) 1 0.5 1 0.1 0.45BIS = − − = . As BIS(1)<BIS(2), stack 

1 is selected for relocating 8u .  

(2) Method of computing DIS 

In the sequencing rule introduced above, the one with the lowest number of blocking containers among the containers 

with the smallest label is selected as the target container, ties being broken arbitrarily. Therefore, a container ic  is surely 

being the first one to be retrieved in its batch only in the situation that satisfies the following two conditions: 1) ic  is in 

the former sub-batch; 2) ic  is with the lowest number of blocking containers (i.e., 
icr ) among the containers in the 

former sub-batch. The second condition means that all the containers above ic  labeled M must be in the latter sub-batch 

and for each stack s   that satisfies ( )m s M =  , if there are containers labeled M among the top 1
icr +   number of 

containers (if any) in stack s , these containers must be in the latter sub-batch.  

Given a configuration B with M, a stack s where c is located before being relocated, a stack Ms S , wherein MS  is 

the set of stack that satisfies ( )m s M = , the method of computing ( )DIS s  is introduced here. Let sM   be the set of 
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containers labeled M located in s . Given a candidate stack s , we first compute the probability of each container 

i sc M    surely being the first one to be retrieved in its batch, denoted by ( )iDIS c  . By definition, we have 

( ) ( )
i s

i

c M

DIS s DIS c


 =  . Let ( , )T n s  denote the set of top n number of containers labeled M in stack s. Then, we have 

( ( ), ) \ ( ( ) 1, )

( ) (1 ) (1 )
i j j

j i M j i

i c c c

c T r c s s S s c T r c s

DIS c p p p
      +

 =  − −    . By summing the ( )iDIS c   of all containers i sc M   , we 

get,  

( ( ), ) \ ( ( ) 1, )

( ) (1 ) (1 )
i j j

i s j i M j i

c c c

c M c T r c s s S s c T r c s

DIS s p p p
        +

 =  − −                         (A.6) 

Taking the configuration at step 3 (see Fig. B.2) for example, where 11c u=  , M=4,  1,2MS =  , let us compute 

2( )DIS u  . 2( ) 1r u =  ,  8(1,1)T u=  ,  3(2,2)T u=  , and thus
( ( ), )

(1 )
j

j i

c

c T r c s

p


−
(1,1)

(1 )
j

j

c

c T

p


= − 8
(1 ) 0.5up= − =  , 

\ ( ( ) 1, )

(1 )
j

M j i

c

s S s c T r c s

p
    +

− 
{2} (2, )

(1 )
j

j

c

s c T s

p
  

= −  3
(1 ) 0.1up= − =  . Consequently, 2( ) 0.3 0.5 0.1 0.015DIS u =   =  . 

Similarly, we get 8( ) 0.5DIS u =  , 1( ) 0.0035DIS u =  , and 3( ) 0.315DIS u =  . By Eq. (A.6), we have 

2 8 1(1) ( ) ( ) ( ) 0.5 0.015 0.0035 0.5185DIS DIS u DIS u DIS u  = + + = + + =  and 3(2) ( ) 0.315DIS DIS u= =  . As 

(2) (1)DIS DIS , stack 2 is selected for relocating 11u .  

B.4. An illustrative example for the SEML heuristic  

We use Fig. B.3, which continues Step 2 of Fig. B.2, to illustrate the sequencing rule of the SEML heuristic. For brevity, 

we only present the priority matrix. After step 2, 2lmin = , and 5 10{ , }u u = . Because 5 10( ) ( ) 1r u r u= = , both 5u  and 

10u  are potential target containers (H=2). Hence, we evaluate the contribution of the two feasible retrieval sequences 

respectively: 5 10u u→  and 10 5u u→ , through step 3 to step 6. The final configurations after implementing the two 

sequences are given at step 7. It is obvious that the two final configurations have the same lower bound. And because 

both of the sequences cause two realized relocations, their contributions are the same. Therefore, we can choose one 

arbitrarily from 5 10u u→  and 10 5u u→  as the determined retrieval sequence for 5u  and 10u . 
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Fig. B.3. Decisions by the SEML heuristic on an example 
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Appendix C. Performance of the proposed models and exact algorithms 

Note that in the tables, the “Opt” column represents the optimal expected number of relocations obtained by the 

corresponding exact algorithms; the “Rel” column represents the estimated number of relocations obtained by simulation.  

C.1. Results of the extended APBFS algorithm, the SEML heuristic, and the lower bound 

Table C.1 Performance of the extended APBFS algorithm, the SEML heuristics and lower bound for instances with 

small batches and 67% fill rate 

T S C lb 

Extended APBFS  SEML  Gap 

lb* Opt Solved CPU(s) Rel 
AveWait 

(min) 
 Rel 

AveWait 

(min) 
 

Gap 

[Rel] 

Gap 

[AveWait] 

3 5 10 2.621 2.621 2.789 √ 0.05 2.786 3.224  2.786 3.222  0.00% -0.06% 

 6 12 3.433 3.433 3.621 √ 0.05 3.620 3.524  3.659 3.526  1.08% 0.06% 

 7 14 3.708 3.708 3.756 √ 0.06 3.759 3.506  3.786 3.506  0.72% 0.00% 

 8 16 4.254 4.254 4.379 √ 0.08 4.382 3.385  4.405 3.389  0.52% 0.12% 

 9 18 4.592 4.592 4.815 √ 0.11 4.816 3.408  4.846 3.408  0.62% 0.00% 

 10 20 5.021 5.021 5.067 √ 0.11 5.066 3.176  5.073 3.179  0.14% 0.09% 

4 5 13 4.433 4.433 5.073 √ 0.14 5.071 3.976  5.241 3.972  3.35% -0.10% 

 6 16 6.017 6.017 6.925 √ 1.19 6.931 3.898  7.200 3.936  3.88% 0.97% 

 7 19 6.042 6.042 6.927 √ 1.16 6.929 3.465  7.026 3.475  1.40% 0.29% 

 8 21 7.375 7.375 7.967 √ 20.25 7.969 3.601  8.016 3.605  0.59% 0.11% 

 9 24 8.775 8.775 9.259 √ 11.80 9.257 3.619  9.353 3.619  1.04% 0.00% 

 10 27 8.992 8.935 9.618 27 92.17 9.622 3.426  9.709 3.424  0.90% -0.05% 

5 5 17 7.358 7.058 8.802 26 24.26 8.802 4.145  9.187 4.172  4.37% 0.66% 

 6 20 7.992 7.522 8.465 23 66.56 8.468 3.774  8.679 3.796  2.49% 0.59% 

 7 23 9.475 9.091 10.339 22 340.50 10.340 3.934  10.569 3.945  2.21% 0.28% 

 8 27 11.354 10.816 11.570 17 803.78 11.568 3.705  11.671 3.714  0.89% 0.24% 

 9 30 12.879 12.388 13.436 10 728.19 13.436 3.669  13.555 3.673  0.89% 0.10% 

 10 34 14.229 12.5 12.983 11 195.66 12.990 3.549  13.032 3.548  0.32% -0.02% 

6 5 20 9.496 8.958 11.183 15 613.80 11.181 4.085  12.006 4.148  7.38% 1.53% 

 6 24 11.304 10.894 12.341 13 491.90 12.343 4.102  12.527 4.127  1.49% 0.60% 

 7 28 13.258 13.75 15.375 2 253.16 15.357 3.864  15.359 3.918  0.01% 1.39% 

 8 32 15.367 13.2 13.869 5 693.38 13.865 3.695  13.865 3.685  0.00% -0.26% 

 9 36 16.454 16.5 16.500 2 949.85 16.504 3.646  16.504 3.652  0.00% 0.18% 

 10 40 19.375 15.25 15.250 1 232.22 15.259 3.857  15.259 3.880  0.00% 0.61% 

Note: customer preference scenario: 50% 
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Table C.2 Performance of the extended APBFS algorithm, the SEML heuristics and lower bound for instances with 

large batches and 50% fill rate 

T S C lb 

Extended APBFS  SEML  Gap 

lb* Opt Solved CPU(s) Rel 
AveWait 

(min) 
 Rel 

AveWait 

(min) 
 

Gap 

[Rel] 

Gap 

[AveWait] 

3 5 8 1.263 1.263 1.278 √ 0.45 1.281 7.206  1.283 7.215  0.16% 0.12% 

 6 9 1.317 1.317 1.334 √ 0.32 1.336 7.388  1.336 7.389  0.00% 0.01% 

 7 11 2.317 2.317 2.340 √ 0.47 2.339 7.075  2.339 7.078  0.00% 0.04% 

 8 12 1.971 1.971 1.973 √ 0.55 1.969 6.499  1.969 6.499  0.00% 0.00% 

 9 14 2.617 2.617 2.621 √ 0.72 2.614 6.764  2.615 6.764  0.04% 0.00% 

 10 15 2.908 2.908 2.914 √ 0.86 2.915 6.708  2.915 6.710  0.00% 0.03% 

4 5 10 2.546 2.546 2.703 √ 0.56 2.702 6.967  2.779 6.991  2.85% 0.34% 

 6 12 3.183 3.183 3.315 √ 1.13 3.312 7.122  3.357 7.140  1.36% 0.25% 

 7 14 3.550 3.550 3.645 √ 4.50 3.648 7.473  3.662 7.479  0.38% 0.08% 

 8 16 4.058 4.058 4.094 √ 6.46 4.090 7.502  4.102 7.507  0.29% 0.07% 

 9 18 5.233 5.233 5.274 √ 19.65 5.273 7.408  5.297 7.409  0.46% 0.01% 

 10 20 5.746 5.746 5.799 √ 16.80 5.803 6.863  5.844 6.869  0.71% 0.09% 

5 5 13 3.952 3.952 4.470 √ 32.02 4.466 8.154  4.633 8.187  3.74% 0.40% 

 6 15 4.844 4.821 5.181 29 84.30 5.181 7.586  5.323 7.610  2.74% 0.31% 

 7 18 5.704 5.594 5.809 28 75.49 5.809 8.007  5.843 7.988  0.58% -0.24% 

 8 20 6.813 6.690 6.971 27 102.75 6.974 7.315  7.055 7.327  1.16% 0.17% 

 9 23 7.950 7.894 8.206 26 419.04 8.205 7.691  8.274 7.701  0.84% 0.12% 

 10 25 8.671 8.65 8.875 25 183.02 8.870 7.441  8.933 7.446  0.71% 0.07% 

6 5 15 5.717 5.714 6.599 28 197.67 6.602 8.074  6.857 8.134  3.86% 0.75% 

 6 18 6.404 6.125 6.840 26 273.82 6.842 8.244  7.056 8.257  3.13% 0.16% 

 7 21 8.140 7.545 7.975 14 271.02 7.976 8.125  8.074 8.159  1.23% 0.42% 

 8 24 8.985 8.351 8.668 13 548.95 8.670 7.690  8.730 7.696  0.70% 0.08% 

 9 27 9.913 9.366 9.758 14 589.12 9.763 7.122  9.878 7.173  1.18% 0.72% 

 10 30 11.552 10.714 10.884 12 207.75 10.890 7.468  10.891 7.469  0.00% 0.02% 

Note: customer preference scenario: 50% 
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Table C.3 Performance of the extended APBFS algorithm, the SEML heuristics and lower bound for instances with 

large batches and 67% fill rate 

T S C lb 

Extended APBFS  SEML  Gap 

lb* Opt Solved CPU(s) Rel 
AveWait 

(min) 
 Rel 

AveWait 

(min) 
 

Gap 

[Rel] 

Gap 

[AveWait] 

3 5 10 2.296 2.296 2.404 √ 0.90 2.403 6.945  2.415 6.953  0.50% 0.12% 

 6 12 3.113 3.113 3.239 √ 1.21 3.245 7.468  3.277 7.477  0.99% 0.12% 

 7 14 3.463 3.463 3.520 √ 3.58 3.518 7.720  3.527 7.723  0.26% 0.04% 

 8 16 4.100 4.100 4.176 √ 3.36 4.179 7.281  4.186 7.282  0.17% 0.01% 

 9 18 4.346 4.346 4.483 √ 4.05 4.485 7.349  4.541 7.365  1.25% 0.22% 

 10 20 4.717 4.717 4.755 √ 3.40 4.755 6.937  4.760 6.940  0.11% 0.04% 

4 5 13 4.127 4.127 4.635 √ 27.60 4.631 8.342  4.829 8.368  4.28% 0.31% 

 6 16 5.629 5.594 6.169 28 39.35 6.167 8.091  6.398 8.142  3.74% 0.62% 

 7 19 5.754 5.728 6.318 28 175.06 6.307 7.310  6.397 7.320  1.43% 0.14% 

 8 21 6.921 6.726 7.025 26 73.15 7.027 7.580  7.171 7.591  2.04% 0.15% 

 9 24 8.229 7.859 8.201 24 320.01 8.208 7.655  8.314 7.663  1.30% 0.10% 

 10 27 8.888 8.429 8.897 21 441.13 8.898 7.233  8.994 7.246  1.08% 0.18% 

5 5 17 7.006 6.679 7.664 22 498.41 7.677 8.612  8.178 8.684  6.52% 0.84% 

 6 20 7.677 6.863 7.398 16 151.72 7.402 7.596  7.703 7.644  4.07% 0.64% 

 7 23 9.208 7.889 8.566 9 443.50 8.566 7.681  8.755 7.723  2.20% 0.54% 

 8 27 10.838 10.271 10.696 6 1091.25 10.678 7.467  10.871 7.477  1.81% 0.13% 

 9 30 12.546 10.219 10.914 4 858.35 10.912 7.368  10.955 7.381  0.39% 0.17% 

 10 34 13.925 10.979 11.264 6 549.90 11.249 7.162  11.264 7.177  0.13% 0.21% 

6 5 20 9.183 8.075 9.527 5 1567 9.529 8.042  10.463 8.162  9.80% 1.49% 

 6 24 11.067 9.844 10.531 2 1019.19 10.506 7.841  10.590 7.871  0.80% 0.38% 

 7 28 12.967 - - 0 - - -  - -  - - 

 8 32 14.829 11.75 11.781 1 694.38 11.745 8.051  11.740 8.050  -0.04% -0.01% 

 9 36 16.196 - - 0 - - -  - -  - - 

 10 40 18.935 - - 0 - - -  - -  - - 

Note: customer preference scenario: 50% 

  



 

56 

 

C.2. The calibrated results of Table 2 for the comparison between the Sooo model and the Sooo extension model 

Table C.4. Comparison between the Sooo model and the Sooo extension model with small batches and 50% fill rate 

T S C 

 Sooo- APBFS  Sooo extension- extended APBFS  
Gap 

[AveWait] 
 

Solved CPU(s) Rel 
AveWait 

(min) 
 Solved CPU(s) Rel 

AveWait 

(min) 
 

3 5 8  √ 0.02 1.478 3.319  √ 0.03 1.478 3.207  3.38% 

 6 9  √ 0.02 1.581 3.428  √ 0.03 1.581 3.303  3.65% 

 7 11  √ 0.02 2.654 3.485  √ 0.03 2.654 3.356  3.70% 

 8 12  √ 0.01 2.169 3.091  √ 0.03 2.169 3.014  2.49% 

 9 14  √ 0.02 2.885 3.226  √ 0.04 2.885 3.106  3.72% 

 10 15  √ 0.03 3.093 3.044  √ 0.06 3.093 2.930  3.77% 

4 5 10  √ 0.02 2.855 3.534  √ 0.03 2.855 3.411  3.49% 

 6 12  √ 0.03 3.466 3.532  √ 0.05 3.466 3.351  5.12% 

 7 14  √ 0.04 3.941 3.485  √ 0.05 3.941 3.324  4.61% 

 8 16  √ 0.16 4.559 3.556  √ 0.20 4.559 3.390  4.67% 

 9 18  √ 0.29 5.523 3.691  √ 0.34 5.523 3.474  5.87% 

 10 20  √ 0.72 6.015 3.334  √ 0.80 6.015 3.181  4.59% 

5 5 13  √ 0.16 4.883 4.042  √ 0.19 4.884 3.900  3.53% 

 6 15  √ 2.44 5.544 3.708  √ 2.98 5.544 3.553  4.19% 

 7 18  √ 0.72 6.573 3.993  √ 0.77 6.573 3.777  5.39% 

 8 20  √ 7.57 7.516 3.695  √ 8.16 7.516 3.482  5.77% 

 9 23  29 67.35 8.696 3.835  29 68.25 8.696 3.606  5.96% 

 10 25  29 39.40 9.238 3.719  29 49.37 9.238 3.517  5.43% 

6 5 15  √ 4.56 6.999 4.034  √ 5.06 6.999 3.886  3.66% 

 6 18  √ 5.48 7.728 4.162  √ 6.18 7.728 3.959  4.89% 

 7 21  23 148.91 8.923 4.006  22 160.87 8.923 3.787  5.46% 

 8 24  22 150.07 9.881 3.998  22 164.07 9.882 3.748  6.24% 

 9 27  18 100.24 10.538 3.661  18 104.47 10.538 3.419  6.60% 

 10 30  19 108.42 11.576 3.804  18 108.52 11.576 3.580  5.90% 

*Note: customer preference scenario: 50% 
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Appendix D. Comparisons between the SEM heuristic and the SEML heuristic 

 

 

(a) Instances of three tiers 

 

(b) Instances of four tiers 

 

(c) Instances of five tiers 
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(d) Instances of six tiers 

Fig. D.1. Comparisons between the SEM heuristic and the SEML heuristic for all the instances with 67% fill rate 

 

Appendix E. Additional results for the effectiveness of the flexible service policy 

E.1. Absolute reduction on the total number of relocations 

 

Fig. E.1 (a) Reduction on the total number of relocations by the flexible service policy for instances of 50% fill rate 
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Fig. E.1 (b) Reduction on the total number of relocations by the flexible service policy for instances of 67% fill rate 

E.2. Absolute reduction on the average relevant truck waiting time 

 

Fig. E.2 (a) Reduction on the average relevant waiting time by the flexible service policy for instances of 50% fill rate 
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Fig. E.2 (b) Reduction on the average relevant waiting time by the flexible service policy for instances of 67% fill rate 

E.3. Relative reduction on the average relevant truck waiting time 

 

Fig. E.3 (a) Effect of the flexible service policy on average relevant waiting time for instances of 50% fill rate 
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Fig. E.3 (b) Effect of the flexible service policy on average relevant waiting time for instances of 67% fill rate 
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E.4. Average truck turn time  

Table E.1 Results of the average truck turn time for all instances under the flexible service policy 

   Fill rate = 50%  Fill rate = 67% 

S B P T=3 T=4 T=5 T=6  T=3 T=4 T=5 T=6 

5 2 0 13.995 14.178 14.652 14.590  13.981 14.660 14.894 15.052 

 2 0.5 21.709 21.915 22.396 22.393  21.731 22.467 22.764 22.975 

 2 1 28.995 29.178 29.631 29.577  28.981 29.660 29.894 30.049 

 4 0 17.676 17.402 18.330 18.276  17.370 18.551 18.984 18.983 

 4 0.5 25.717 25.492 26.678 26.682  25.452 26.875 27.434 27.629 

 4 1 32.676 32.402 33.315 33.276  32.370 33.525 33.956 33.967 

 6 0 20.630 20.320 22.102 22.467  20.532 23.169 24.930 24.936 

 6 0.5 29.109 28.927 31.329 31.828  29.179 32.577 34.865 35.674 

 6 1 35.630 35.320 37.102 37.467  35.532 38.169 39.918 39.906 

6 2 0 14.125 14.142 14.296 14.669  14.305 14.667 14.648 14.983 

 2 0.5 21.804 21.859 22.055 22.454  22.038 22.437 22.459 22.851 

 2 1 29.125 29.142 29.296 29.669  29.305 29.667 29.648 29.983 

 4 0 17.944 17.594 18.031 18.821  17.892 18.495 18.653 19.230 

 4 0.5 25.899 25.640 26.209 27.128  25.975 26.745 26.998 27.769 

 4 1 32.944 32.594 33.031 33.821  32.892 33.495 33.653 34.221 

 6 0 20.377 21.716 22.086 24.077  21.880 23.528 24.706 26.605 

 6 0.5 28.733 30.411 30.961 33.468  30.576 32.725 34.531 36.959 

 6 1 35.377 36.716 37.086 39.077  36.880 38.528 39.706 41.485 

7 2 0 14.175 14.160 14.528 14.639  14.331 14.258 14.670 15.027 

 2 0.5 21.852 21.829 22.277 22.295  22.003 21.976 22.455 22.861 

 2 1 29.175 29.160 29.528 29.626  29.331 29.258 29.670 30.008 

 4 0 17.613 17.892 18.410 18.411  18.174 17.818 18.652 19.758 

 4 0.5 25.582 25.977 26.580 26.658  26.221 25.893 26.891 28.330 

 4 1 32.613 32.892 33.410 33.408  33.174 32.818 33.637 34.751 

 6 0 21.210 21.924 23.390 24.223  22.480 22.009 25.351 29.294 

 6 0.5 29.559 30.513 32.495 33.544  31.099 30.922 34.755 39.858 

 6 1 36.210 36.924 38.390 39.223  37.480 37.009 40.325 44.297 

8 2 0 13.881 14.188 14.271 14.625  14.172 14.377 14.612 14.973 

 2 0.5 21.514 21.891 21.999 22.247  21.889 22.115 22.374 22.779 

 2 1 28.881 29.188 29.271 29.614  29.172 29.377 29.607 29.969 

 4 0 17.154 17.964 17.976 18.730  17.706 18.142 18.487 19.407 

 4 0.5 24.989 26.001 26.062 26.947  25.777 26.277 26.712 27.788 

 4 1 32.154 32.964 32.976 33.730  32.706 33.142 33.478 34.399 

 6 0 20.435 22.649 23.074 24.595  22.098 23.526 24.767 29.260 

 6 0.5 28.524 31.295 31.759 33.710  30.625 32.603 33.968 39.559 

 6 1 35.435 37.649 38.074 39.595  37.098 38.526 39.767 44.264 

9 2 0 13.979 14.280 14.413 14.382  14.206 14.415 14.764 14.757 

 2 0.5 21.610 21.981 22.111 21.918  21.917 22.125 22.521 22.542 

 2 1 28.979 29.280 29.413 29.382  29.206 29.415 29.757 29.751 

 4 0 17.411 17.937 18.368 18.120  17.885 18.235 19.012 18.968 

 4 0.5 25.265 25.906 26.439 26.213  25.866 26.314 27.258 27.298 

 4 1 32.411 32.937 33.368 33.120  32.885 33.235 34.006 33.959 

 6 0 21.281 22.632 23.580 23.853  22.558 23.807 26.444 27.431 

 6 0.5 29.524 31.075 32.547 32.706  31.083 32.673 36.034 37.316 

 6 1 36.281 37.632 38.580 38.853  37.558 38.807 41.430 42.431 

10 2 0 13.805 14.016 14.343 14.524  14.026 14.271 14.573 14.751 

 2 0.5 21.436 21.686 22.020 22.074  21.692 21.963 22.287 22.502 

 2 1 28.805 29.016 29.343 29.518  29.026 29.271 29.571 29.747 

 4 0 17.383 17.450 18.151 18.725  17.516 17.854 18.340 19.175 



 

63 

 

 4 0.5 25.208 25.376 26.165 26.799  25.442 25.880 26.421 27.433 

 4 1 32.383 32.450 33.151 33.720  32.516 32.854 33.338 34.173 

 6 0 20.750 21.174 23.791 25.256  21.192 22.956 25.013 27.868 

 6 0.5 28.878 29.498 32.363 34.376  29.493 31.476 34.084 37.408 

 6 1 35.750 36.174 38.791 40.256  36.192 37.956 40.005 42.872 

 

Appendix F. Results of three sets of customer preference scenarios 

Table F.1 Comparison between three sets of customer preference scenarios for small batches and 50% fill rate 

T S C 

 ‘100%’ preference scenario  ‘50%’ preference scenario  Heterogeneous preference scenario 

 Solved CPU(s) Rel AveWait  Solved CPU(s) Rel AveWait  Solved CPU(s) Rel AveWait 

3 5 8  √ 0.04 1.267 2.992  √ 0.03 1.478 3.207  √ 0.02 1.475 3.205 

 6 9  √ 0.03 1.433 3.126  √ 0.03 1.581 3.303  √ 0.03 1.593 3.306 

 7 11  √ 0.03 2.433 3.170  √ 0.03 2.654 3.356  √ 0.04 2.638 3.348 

 8 12  √ 0.03 2.033 2.883  √ 0.03 2.169 3.014  √ 0.04 2.158 3.017 

 9 14  √ 0.05 2.767 2.976  √ 0.04 2.885 3.106  √ 0.05 2.885 3.111 

 10 15  √ 0.06 3.000 2.800  √ 0.06 3.093 2.930  √ 0.07 3.088 2.939 

4 5 10  √ 0.04 2.633 3.180  √ 0.03 2.855 3.411  √ 0.04 2.862 3.418 

 6 12  √ 0.05 3.267 3.144  √ 0.05 3.466 3.351  √ 0.06 3.475 3.355 

 7 14  √ 0.07 3.733 3.148  √ 0.05 3.941 3.324  √ 0.08 3.944 3.340 

 8 16  √ 0.15 4.300 3.192  √ 0.20 4.559 3.390  √ 0.31 4.533 3.387 

 9 18  √ 0.37 5.333 3.274  √ 0.34 5.523 3.474  √ 0.76 5.531 3.477 

 10 20  √ 0.27 5.767 3.010  √ 0.80 6.015 3.181  √ 2.65 6.003 3.187 

5 5 13  √ 0.08 4.500 3.621  √ 0.19 4.884 3.900  √ 0.32 4.856 3.884 

 6 15  √ 0.20 5.200 3.307  √ 2.98 5.544 3.553  √ 34.94 5.552 3.565 

 7 18  √ 0.28 6.200 3.519  √ 0.77 6.573 3.777  √ 2.29 6.562 3.783 

 8 20  √ 1.43 7.200 3.267  √ 8.16 7.516 3.482  √ 34.67 7.501 3.484 

 9 23  √ 5.00 8.414 3.388  29/30 68.25 8.696 3.606  284/300 151.57 8.700 3.615 

 10 25  √ 7.33 8.931 3.321  29/30 49.37 9.238 3.517  285/300 158.48 9.235 3.529 

6 5 15  √ 1.25 6.400 3.560  √ 5.06 6.999 3.886  √ 15.69 7.008 3.897 

 6 18  √ 0.99 7.233 3.670  √ 6.18 7.728 3.959  299/300 65.82 7.727 3.963 

 7 21  27/30 44.46 8.455 3.506  22/30 160.87 8.923 3.787  208/300 260.84 8.843 3.795 

 8 24  25/30 23.52 9.333 3.500  22/30 69.554 9.758 3.725  208/300 184.58 9.751 3.734 

 9 27  24/30 48.71 10.389 3.235  18/30 104.47 10.538 3.419  173/300 194.41 10.530 3.428 

 10 30  23/30 38.75 11.333 3.404  18/30 108.52 11.572 3.580  - - - - 

 


