

1

The stochastic container relocation problem with flexible service policies

Yuanjun Feng a, Dong-Ping Song a,, Dong Li a

a School of Management, University of Liverpool, Chatham Street, Liverpool, L69 7ZH, UK

Qingcheng Zeng b

b School of Maritime Economics and Management, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China

Abstract: This paper investigates the Stochastic Container Relocation Problem in which a flexible service policy is

adopted in the import container retrieval process. The flexible policy allows the terminal operators to determine the

container retrieval sequence to some extent, which provides more opportunity for reducing the number of relocations and

the truck waiting times. A more general probabilistic model that captures customers’ arrival preference is presented to

describe the randomness for external truck arrivals within their appointed time windows. Being a multi-stage stochastic

sequential decision-making problem, it is first formulated into a stochastic dynamic programming (SDP) model to

minimize the expected number of relocations. Then, the SDP model is extended considering a secondary objective

representing the truck waiting times. Tree search-based algorithms are adapted to solve the two models to their optimality.

Heuristic algorithms are designed to seek high-quality solutions efficiently for larger problems. A discrete-event

simulation model is developed to evaluate the optimal solutions and the heuristic solutions respectively on two

performance metrics. Extensive computational experiments are performed based on instances from literature to verify the

effectiveness of the proposed models and algorithms.

Keywords: stochastic container relocation problem, appointment time window, flexible service, stochastic dynamic

programming, tree search-based algorithm

1 Introduction

As critical nodes in the global container transport networks, container terminals play an important role in transhipping

containerized cargoes between different transport modes. At container terminals, containers are handled through a series

of operations, which can be generally divided into seaside operations (unloading/loading operations) and landside

operations (stacking/retrieval operations). Methods for improving the operational efficiencies at container terminals have

been studied for years and many models and algorithms have been developed (see review papers: Stahlbock and Voß,

2008; Zhen et al., 2013; Lehnfeld and Knust, 2014; Carlo et al., 2014; Lee and Song, 2017; Dragović et al., 2017).

One major source of inefficiency in most container terminals is the relocation move (Caserta et al., 2011a; Ku and

Arthanari, 2016a). In a typical container terminal, containers are stored in the terminal yard after their arrivals, waiting

for onward transport. The storage area of a yard is divided into blocks, each including 20-40 bays with each bay consisting

of several stacks. Containers are often piled up vertically in stacks. During the container retrieval process, if the target

container to be retrieved is not on the topmost tier, those above it – that is, the blocking containers - need to be moved to

other stacks in the same bay. The move of blocking containers is called relocation, reshuffling, or rehandling, which is an

unproductive operation. The Container Relocation Problem (CRP) aims at seeking a sequence of moves to retrieve all

containers from a given bay with the minimum number of relocations, which is a combinatorial optimization problem.

Most existing studies on the CRP assume a priori given container retrieval sequence. The CRP for import containers

whose retrieval times are subject to uncertainty has been less investigated.

For import containers, the stochastic arrival times of external trucks complicates the CRP as it will easily result in re-

relocations in the future. The Truck Appointment System (TAS), also known as vehicle booking system (VBS), can

 Corresponding author.

 E-mail addresses: Yuanjun.Feng@liverpool.ac.uk (Y. Feng), Dongping.Song@liverpool.ac.uk (D. Song), Dongli@liverpool.ac.uk

(D. Li), qzeng@dlmu.edu.cn (Q. Zeng).

2

increase the predictability for truck arrival times, which has been implemented in many container ports to control the

truck arrivals at the terminal (Davies, 2009). Under TAS, a truck must make an appointment with the terminal in advance

to indicate a time window in which the truck will arrive at the terminal. Therefore, each arrival truck will have an

appointed arrival time window. As a result, the arrival precedence of trucks with different appointed time windows

becomes pre-specified. However, the arrival sequence of the trucks within the same appointed time window remains

uncertain, which is typically revealed during the retrieval process. The CRP that considers the randomness truck arrivals

in the same time window is termed as the Stochastic Container Relocation Problem (SCRP) or the CRP with Time

Windows (CRPTW) in the literature.

The SCRP is more realistic to model the import container retrieval process. Among the very few studies on the SCRP

(e.g. Ku and Arthanari, 2016a; Galle et al., 2018b), a common assumption is that retrieval requests are fulfilled on a first-

come-first-served (FCFS) basis. The FCFS rule appears to be reasonable in practice to ensure service equity but may lead

to a sub-optimal solution from the overall system perspective. Besides, the service equity of the FCFS rule is debatable,

because the trucks may experience different waiting times and the required number of relocations may be affected by

previous trucks. Truck waiting time is part of the truck turn time, which is a key performance metric to measure the

efficiency of a container terminal and also contributes to the evaluation of customer service levels and port

competitiveness (de Melo da Silva et al., 2018). Some ports (e.g., Port Botany; Port Metro Vancouver) are even charged

for a penalty if they exceed a stipulated turn time. As an alternative to the FCFS service, a flexible service may yield more

opportunities for optimization on the number of relocations, as well as the truck waiting time. In this paper, we extend the

SCRP to a general setting that allows some flexibility in the container retrieval sequences. We term this type of problem

as the SCRP with flexible service policies or SCRP-FS.

With the SCRP-FS, we also generalize the probabilistic model of truck arrivals. In the existing studies, the arrival order

of trucks booked in the same time window is assumed to be uniformly distributed, which is not necessarily realistic.

Customers (truckers) may have different preferences for different segments of their appointed time windows. Firstly, in

the TAS, the trucks may not always get their desired time windows because slots are often oversubscribed (Mongelluzzo,

2019). In order to narrow the deviation from its desired time window, the truck will have preference for either the earlier

segment or the latter segment of the shifted appointed time window. Secondly, some terminal operators (e.g., DP World,

Patrick) impose financial penalties on no-show (or late) trucks to ensure truckers compliance with their appointed time

windows. To avoid such penalty, those trucks that are subject to high uncertainties on the road tend to target the earlier

segment of the appointed time window. Such customer preference information may come from the TAS or from historical

data that record the trucks' arrival behavior, which can be utilized to make better decisions.

This paper aims to investigate how to use flexible service policies to improve import container relocation and retrieval

in the presence of truck arrival uncertainties characterized by customers’ preference. The objective of this paper is: (i) to

seek the optimal solution (including retrieval sequence and relocation positions) that retrieves all containers from a given

bay considering both terminal relocation and external truck waiting; (ii) to quantify the reduction on the number of

relocations and the truck waiting times by adopting the flexible service policy; (iii) to evaluate the impact of different bay

layouts (i.e. size and fill rate) and truck arrival patterns (i.e., the number of trucks booked in a time window and the

customer preference) on the effectiveness of the flexible policy compared with the FCFS rule; (iv) and to analyze the

influence of customer preference on the results.

Our contributions to the existing literature and practice can be summarized as follows: (i) We propose a new service

policy to improve import container retrieval performance in the context of stochastic container relocation problem (SCRP)

and generalize the SCRP to be SCRP-FS, which can provide more opportunities for optimizing the current retrieval

practice. We also generalize the probabilistic model of truck arrivals so that the customers’ preference-based arrival

behavior can be captured more accurately. (ii) We introduce a new optimization framework that jointly optimizes the

expected number of relocations and the truck waiting times. The proposed model enables port operators to quantify the

benefits of controlling the truck service sequence to both terminals and truckers, which is the first in the SCRP studies.

3

(iii) We develop exact algorithms by extending an existing algorithm with major adaptions. The incremental contributions

of our exact algorithms include a decision tree with a new structure, a new lower bound for the expected number of

relocations for the SCRP-FS, and a procedure for minimizing the truck waiting times batch by batch. We develop two

efficient heuristic algorithms for solving the SCRP-FS, which can serve as decision support tools for terminal operators

in real applications. (iv) We construct a discrete-event simulation model for evaluating the exact solutions in terms of two

performance measures: the expected number of relocations and the truck waiting time. To the best of our knowledge, this

study is among the first to evaluate the truck waiting time of the exact solutions with a tree structure in the context of

uncertain CRP. (v) We conduct extensive experiments to demonstrate the effectiveness of the flexible service policy and

the influence of the customer preference on the results. The results can provide managerial insights for terminal operators

to manage import container operations more efficiently.

The remainder of the paper is organized as follows. Section 2 reviews the previous work related to the CRP and SCRP

and discusses the service policies applied in the (S)CRP. Section 3 describes the problem in detail and formulate it using

stochastic dynamic programming. Section 4 and section 5 respectively propose exact solution algorithms and heuristic

solution methods. A simulation model is developed in Section 6 to evaluate the solutions. The results of computational

experiments are reported in Section 7. Section 8 summarizes the findings and provides managerial insights.

2 Literature review

Container relocation is related to several container handling processes at container terminals. Four types of relevant

problems have been identified by Carlo et al. (2014): storage location assignment problem, joint retrieval sequencing and

relocation problem, pre-marshalling problem and re-marshalling problem. An overview of these problems from a

mathematical perspective is given in Lehnfeld and Knust (2014). The joint retrieval sequencing and relocation problem

is the focus of this paper.

2.1 Deterministic CRP and uncertain CRP

Most studies on the joint retrieval sequencing and relocation problem assume a priori given retrieval sequence and only

focus on optimizing relocation positions, which leads to the standard CRP. The basic objective of the standard CRP is to

retrieve all containers in a given bay in a pre-defined order with the minimum number of relocations. There are also

several variants of the CRP, such as the dynamic CRP, the unrestricted CRP, etc. We classify the relevant literature into

two research streams: deterministic CRP and uncertain CRP, which are differentiated by whether the information on the

containers’ retrieval times/sequences is deterministic or uncertain.

Previous researches have largely concentrated on the first research stream, i.e. the certain version of the CRP. A number

of (mixed) integer programming have been proposed to solve the problem (e.g. Wan et al., 2009; Caserta et al., 2012;

Petering and Hussein, 2013; Tang et al., 2015; Zehendner et al., 2015; Expósito-Izquierdo et al., 2015; Galle et al., 2018a).

Other studies focus on developing effective solution algorithms. Exact solution algorithms are mainly by search-based

algorithms, e.g., (iterative deepening) A* algorithms (Zhu et al., 2012; Borjian et al., 2015a; Quispe et al., 2018), Branch

and Bound (B&B) (Kim and Hong, 2006; Ünlüyurt and Aydın, 2012; Expósito-Izquierdo et al., 2015; Tanaka and Takii,

2016), Branch and Price (Zehendner and Feillet, 2014), and the abstraction method (Ku and Arthanari, 2016b), Besides,

heuristics algorithms are presented to overcome computational complexities of the CRP, e.g., beam search algorithms

(Bacci et al., 2019; Ting and Wu, 2017) and greedy heuristics (Jin et al., 2015; Jovanovic and Voß, 2014) (c.f.Ku and

Arthanari, 2016b and the references therein).

In the second research stream, the uncertain CRP may be further categorized into two sub-groups: the online setting

and the probabilistic setting, according to whether the uncertainties of the containers’ retrieval times/sequences are

represented by probabilities or not.

In the online setting, the knowledge of the exact container retrieval sequence is limited to a given look-ahead horizon

and is revealed over time gradually, and the research focus is to design efficient online heuristics to relocate containers in

real-time. Zehendner et al. (2017) investigate a case of the online CRP where the look-ahead horizon is zero and one

container is revealed at a time. They analyze the theoretical performance of an online relocation rule called heuristic L

4

(leveling) that relocates containers to the lowest tier. Zhao and Goodchild (2010) make use of truck appointment

information to deal with the online CRP using a simulation method. At the beginning of the retrieval process, the retrieval

containers booked in different time windows are known, but the exact retrieval sequence of the containers booked in the

same time windows is unknown or partially known, which is revealed as the retrieval proceeds periodically. Two heuristics

are designed to reduce the number of relocations utilizing the truck arrival information.

In the probabilistic setting, the uncertainties on the containers’ retrieval times/sequences are modeled by a probability

distribution and the research purpose is to minimize the expectation of the performance measures. Given the probabilistic

distribution of containers dwell times, Tong et al. (2015) propose two heuristic rules to determine the positions of relocated

containers with the objective of minimizing the total expected number of relocations for retrieving all the containers from

a bay. Considering groups of containers with uncertain group retrieval orders, de Melo da Silva et al. (2018) introduce

the Block Retrieval Problem (BRP) and the Bi-objective Block Retrieval Problem (2BRTP). The BRP aims to minimize

the number of relocations for the initial target group by optimizing the retrieval sequence and the relocation positions,

which is solved by a B&B algorithm and a linear time algorithm. Then, assuming that the probability of any remaining

group being the forthcoming one is known, the 2BRTP is introduced with the primary objective of minimizing the number

of relocations for the initial target group and the secondary objective of minimizing the expected number of relocations

for the forthcoming group. A B&B algorithm and a beam search algorithm are proposed for solving the 2BRTP.

The above studies of the uncertain CRP focus on the solution algorithms without providing the details of problem

formulation. Mathematical optimization models for the uncertain CRP in the probabilistic setting are presented in a few

studies. Borjian et al. (2013) introduce a two-stage stochastic optimization framework for the CRP with partial information,

in which the departure times of some containers are known, while for the remaining containers only a probability

distribution of the retrieval order is given. The model is to minimize the weighted sum of the expected number of

relocations and total retrieval delays, which yields the optimal sequence of moves for each possible scenario. A heuristic

based on the stochastic optimization model is designed to obtain sub-optimal solutions. Ku and Arthanari (2016a) propose

the CRP with Time Windows (CRPTW), in which the retrieval sequences of containers with different departure time

windows are in ascending order by their departure time windows. It is assumed that containers with the same departure

time windows are retrieved in the uniformly distributed order which is revealed one container at a time. The problem is

formulated into a stochastic dynamic programming (SDP) model to minimize the expected number of relocations. A

search-based algorithm (depth-first search) in a tree space is proposed to solve the model optimally. More recently, Galle

et al. (2018b) study a similar CRPTW using the term SCRP. Different from Ku and Arthanari (2016a), the full exact

retrieval order of containers booked in the same time window is revealed at once after all containers booked in the previous

time window have been retrieved. The SCRP is formulated as a multi-stage stochastic model, called the batch model. An

optimal search-based algorithm called Pruning-Best-First-Search (PBFS), a randomized approximate algorithm called

PBFSA, and two new heuristics are proposed to solve the batch model. The batch model is compared with the SDP model

in Ku and Arthanari (2016a) both theoretically and computationally to prove that it is beneficial to use the batch model in

terms of the expected number of relocations. Note that because of the use of the same information revealing mechanism

and the similar modelling techniques to seek global optimal solutions, the current paper positions itself to the SCRP

proposed by Galle et al. (2018b). However, our study differs from Galle et al. (2018b) in many aspects that will be

elaborated at the end of this section.

Finally, it is worth mentioning that several interesting variants of the (S)CRP have also been investigated. For instance,

a few studies consider the CRP in a three-dimensional storage area and take into account both the number of container

movements and the working time of the yard crane (e.g., Lee and Lee, 2010; Lin et al., 2015). From the service-oriented

standpoint, López-Plata et al. (2017) address the Blocks Relocation Problem with Waiting Times (BRP-WT) focusing on

minimizing the sum of waiting times of a set of blocks during retrieval. Recently, Zweers et al. (2020) present a new

optimization problem related to the SCRP, called the Stochastic Container Relocation Problem with Pre-Processing

(SCRPPP), which aims to minimize a weighted average of the pre-processing moves in the pre-processing phase (when

5

the crane is idle) and the relocation moves in the relocation phase. A B&B algorithm and a local search heuristic are

proposed to solve the problem.

2.2 Service policies

Among the literature reviewed above, most of them assume that each container has a distinct retrieval sequence that is

exogenously determined. For import containers, this assumption corresponds to the FCFS service policy, under which the

containers are retrieved in the order of external truck arrivals. Using the FCFS service policy may make the problem more

tractable but meanwhile loses some opportunities for optimization. In the uncertain CRP context, three studies have

considered flexible service policies or service out-of-order (SOOO). Zhao and Goodchild (2010) propose a pickup

sequence dictation heuristic that dictates the retrieval sequence of containers within the first arrival group to reduce

relocations. In the study of de Melo da Silva et al. (2018), the containers in the same group are assigned the same retrieval

priority and their retrieval order is to be optimized. Borjian et al. (2013) assume a service time window for each container

instead of imposing strict service order on containers. In the deterministic CRP context, a few researchers have also

introduced the flexibility of container retrieval sequence, e.g., Kim and Hong (2006), Borjian et al. (2015b) and Zeng et

al. (2019).

One major concern of flexible retrievals is the possibility of causing extra delay and service inequity to some trucks.

Zhao and Goodchild (2010) and Zeng et al. (2019) attempt to avoid this by restricting out-of-order retrievals within a

group of containers booked in the same time window. However, Zhao and Goodchild (2010) do not analyze the impact

of dictating the pickup sequence on external trucks. Zeng et al. (2019) find that when the number of containers booked in

each time window is over a certain number, adjusting the pickup sequence may increase the average waiting time of

external trucks. One possible reason for this is that they do not consider the common phenomenon of trucks queuing

before getting the retrieval service at congested container terminals, where out-of-order retrievals may not create more

waiting times. Borjian et al. (2015b) control the level of flexibility by limiting the number of out-of-order retrievals before

each truck. They conclude that the average retrieval delay is decreased as a result of out-of-order retrievals, and in the

long term, the service equity that each truck receives is not adversely affected. In the study of Kim and Hong (2006), the

containers in the same group are assumed to be loaded into a cluster of slots of a vessel in any order, which means those

containers share the same retrieval priority, and thus there is no issue of delay and service inequity. Similarly, de Melo da

Silva et al. (2018) do not consider this issue either, as they assume that the containers in the same group are to be retrieved

by the same customer. Borjian et al. (2013) set a maximum service delay for each container and consider a weighted

objective function that jointly minimizes the expected number of relocations and total delays. It can be seen that Borjian

et al (2013) is the only paper that applies flexible retrievals in an uncertain CRP using a mathematical optimization model.

However, in their model, all uncertain information is revealed at once, which is not close to reality.

In this paper, out-of-order retrievals are limited to the trucks arriving in the same sub-time window to maintain the

service equity among subsystems (Yang et al., 2013) and to avoid excessive delay to any trucks. Meanwhile, this ensures

that trucks arriving in the first sub time window are served before those arriving in the second sub-window, which is

consistent with the customers’ preferences.

Table 1 compares this paper with the closely related studies from four key aspects. This paper is differentiated from

previous works in several ways. From the problem perspective, the SCRP-FS we propose generalizes the SCRP in the

sense that first, a flexible service policy (SOOO), as opposed to the FCFS policy, is integrated into the multi-stage

stochastic optimization framework. The SOOO policy allows some flexibility in the retrieval sequences of containers in

the same group and thus provides more opportunities to reduce the number of relocations and the truck waiting times.

Second, instead of assuming uniformly distributed truck arrival order, we propose a more general probabilistic model to

describe the randomness of the truck arrivals within the same group. Specifically, our probabilistic model has the

capability of capturing the customer preference-based arrival behavior, which has more practical relevance. From the

methodology perspective, we propose a new optimization framework that not only optimizes the expected number of

relocations (primary objective) but also optimizes the truck waiting times (secondary objective). Although our exact

6

solution algorithm is built upon the PBFS algorithm in Galle et al. (2018b), the existing PBFS algorithm does not allow

for a straightforward adaption to our problem due to the substantial differences between the SCRP and the SCRP-FS. A

great deal of effort has been made to adapt the PBFS algorithm to solve our problem. The major adaptions are: first, we

construct a more general decision tree with a new structure, which adds a new layer of decision node for sequencing

trucks and expresses nodes with a dual-matrix configuration that represents both truck appointment information and

customer preference; second, we propose a new lower bound for the expected number of relocations for the SCRP-FS by

including the characteristics of flexible retrieval orders and customer preference-based arrivals, which is necessary to

prune unpromising nodes; third, we add a procedure for minimizing the truck waiting times batch by batch by using the

derivation of a waiting time indicator. In addition, we design two fast and efficient heuristic algorithms for the SCRP-FS.

Last, we construct a discrete event simulation model to evaluate the exact solutions with a tree structure, which is the

pioneer in the relevant literature. The simulation model is especially needed to evaluate the truck waiting times for the

exact solutions because the exact algorithms do not record time-related performance.

Table 1 The comparison with the most relevant studies

Characteristics

The probabilistic

model of truck

arrival

Information

updating
Service policy Objectives

Borjian et al.

(2015b)
Deterministic -

A limited number of out-

of-order retrievals before

each truck

The weighted number of relocations

and retrieval delays

Zeng et al. (2019) Deterministic -
Out-of-order retrieval

within each group
The number of relocations

Borjian et al.

(2013)

Scenario-based

uncertainty
Two-stage

Out-of-order retrievals s.t.

a maximum delay

The weighted expected number of

relocations and total delays

Ku and Arthanari

(2016a)
Uniform distribution

Multi-stage

over individual

trucks

FCFS The expected number of relocations

Galle et al.

(2018b)
Uniform distribution

Multi-stage

over groups
FCFS The expected number of relocations

This paper

Customer

preference-based

uncertainty

(incl. uniform

distribution)

Multi-stage

over groups

Out-of-order retrievals

within each sub-group

Primary objective: the expected

number of relocations;

Secondary objective: the total truck

waiting times of each group

3. Problem description and formulation

In this section, we first describe the SCRP-FS in detail and then formulate the problem by stochastic dynamic

programming.

3.1 Problem description

The studied problem is a multi-stage stochastic optimization problem. The problem is described along with the

introduction of the basic assumptions of the SCRP, the probabilistic model of truck arrivals, the containers’ attributes, and

the service priority.

3.1.1 Basic assumptions

The following assumptions are generic to the (S)CRP (e.g. Kim and Hong, 2006; Caserta et al., 2011b; Ku and Arthanari

2016a; Galle et al., 2018b).

A1: Relocations are performed only within the bay being considered. The initial bay layout consisting of S stacks, T

tiers, and C containers. In order to avoid infeasible relocations, the storage capacity of the bay is restricted to be

(1) 1S T− + containers.

A2: A container is relocatable only when it is blocking the target container.

A3: No new containers arrive at the bay during the container retrieval process.

A4: The travel distance of the trolley and spreader of the yard crane does not have an impact on relocation costs, which

means that the relocation effort is measured only by the number of relocations.

A5: Each container is booked to a time window and the corresponding truck will arrive at the terminal within the

7

appointed time window. A batch of containers (trucks) (i.e., one container corresponds to one truck) is defined as the set

of containers (trucks) booked to the same time window. The arrival precedence relationship among batches of trucks is

known, but the exact arrival order of trucks within each batch is uncertain, which is revealed as the retrieval proceeds.

A6: For each batch, the full arrival order of trucks from this batch is revealed at once after all containers in its prior

batch have been retrieved.

It is worth mentioning that A6 follows the assumption of Galle et al. (2018b), which is based on the phenomenon of

truck congestion at gates and yards in busy terminals. The considerable number of trucks in the queue enables the terminal

operator to have information about the full arrival order of trucks in a batch before the retrieval of this batch begins.

3.1.2 Probabilistic model of truck arrivals

The specific probability distribution of the arrival order of trucks within each batch is hard to predict. The existing

studies assume a uniform distribution. In the practical situation, trucks (customers) have their preferred arrival times and

may have preferences for either the earlier segment or the latter segment of the booked time windows, which leads to

unequal probabilities of arriving in each segment.

We propose a more general probabilistic model of truck arrivals, which can capture customer preference-based arrivals.

We divide each appointment time window into two sub-time windows with identical time length. More generally, our

proposed approach can be applied to the case where each time window is divided into multiple (more than two) sub-time

windows. For the sake of brevity and noticing that the current TAS usually sets 30 min or 60 min for each appointment

time window, we only focus on the case of two sub-time windows in this paper. The following assumption is made in the

probabilistic model.

A7: 1) Within each batch, the probability of a truck arriving at which sub time window is dependent on customer

preference, and 2) within each sub time window, the truck arrival order is drawn from a uniform random permutation.

This enables us to list all potential scenarios of the assignments of a batch of trucks to two sub-time windows with

associated probabilities calculated by the customer preference. The calculation is presented in the next sub-section along

with the introduction of containers’ attributes.

3.1.3 Containers’ attributes

We introduce containers’ attributes to help describe the problem. The following notations are adopted throughout the

paper. Let kB denote the set of containers in batch k and kC denote the number of containers in batch k, {1,..., }k K .

By definition
1

K

k

k

C C
=

= . Each container has three attributes:

(1) The first attribute, denoted by il , {1,..., }i C , is the priority label that represents i) the arrival precedence

relationship among the trucks and ii) the container retrieval sequence. This label changes during the container retrieval

process. Initially, containers in batch k are labeled by kL that represents the arrival precedence among batches of trucks,

which we call batch priority (see Fig. 1(a)). Let
1

1

1
k

k j

j

L C
−

=

= + , such that given kL , there is a unique {1,..., }k K . Then,

once the full arrival order of trucks in batch k is revealed, we get the sub-batch priority for batch k, which represents the

arrival precedence among sub-batches of trucks. A sub-batch of trucks is the set of trucks that have arrived in the same

sub-time window. For a container in batch k, {1,..., }k K , if its corresponding truck is revealed to arrive in the second

sub-time window, its label changes to 1kL + ; otherwise, its label does not change. Once the retrieval sequence of a

container in batch k is determined, its label changes to the exact retrieval sequence that is within [, 1k k kL L C+ −].

(2) The second attribute, denoted by iu , {1,..., }i C , is a unique ID, which is used for identifying individual containers

(trucks) (see Fig. 1(b)).

(3) The third attribute, denoted by [0,1]ip , {1,..., }i C , represents the customer preference of container iu (see

Fig. 1(c)). We define that truck iu arrives at the first sub-time window with ip and at the second sub-time window

with 1 ip− . For {1,..., }k K , let kζ refer to the possible scenario of sub-batches of trucks in batch k and ()kp ζ refer

8

to its probability. 1

kζ and 2

kζ represent two mutually exclusive and collectively exhaustive random sets, the random

variables in which take values in i ku B , such that 1

i ku ζ is the event that truck iu arrives in the first sub-batch and

 2

i ku ζ is the event that it arrives at the second sub-batch. Then, by definition, we have
1[]
ki iu ζ p =P and

2[] 1
ki iu ζ p = −P , i ku B . There are a total of 2 kC

 possible scenarios of kζ for batch k, and a total of
1 2 kCK

k=

scenarios for all the batches.

A simple example is given in Fig. 1 to illustrate the containers’ attributes and the calculation of the probability of kζ .

There are seven containers in the initial bay that consists of three stacks and three tiers. Fig. 1(a) displays the priority

labels represented by batch priority (1, 3, 5). Fig. 1(b) gives the container/truck ID (u1 ~ u7). Fig. 1(c) presents the customer

preference (0.0~1.0). Fig. 1(d) displays the revealed sub-batch priority of the first batch in bold. Given the information in

Fig. 1(a)-(c), we have the initial bay configuration. For example, container u1 is located in the third tier of stack three;

truck u1 is in the first batch, which will arrive in the first sub-time window with a probability of 0.6 and the second sub-

time window with a probability 0.4. Let us consider 1ζ . There are totally four scenarios of 1ζ , which are respectively

 1 2

1 1 1 4,ζ u ζ u= = , 1 2

1 1 4 1, ,ζ u u ζ= = , 1 2

1 4 1 1,ζ u ζ u= = , and 1 2

1 1 1 4 , ,ζ ζ u u= = . Their probabilities are

computed as: ()1 2

1 1 1 4, 0.6 (1 0.8) 0.12p ζ u ζ u= = = − = ; ()1 2
1 1 4 1, , 0.6 0.8 0.48p ζ u u ζ= = = = ;

 ()1 2

1 4 1 1, (1 0.6) 0.8 0.32p ζ u ζ u= = = − = ; ()1 2

1 1 1 4, ,p ζ ζ u u= = (1 0.6) (1 0.8) 0.08= − − = . If truck u1 has

arrived at the terminal in the first sub-time window and truck u4 has arrived in the second sub-time window as shown in

Fig. 1(d), 1ζ is revealed to be 1 2

1 1 1 4,ζ u ζ u= = .

 (a) Batch priority (b) Container (truck) ID (c) Customer preference (d) Sub-batch priority

Fig. 1 An illustration of containers’ attributes

3.1.4 Service policy

As an alternative to the FCFS policy, we propose a flexible service policy that allows Out-Of-Order retrievals for

containers in the same Sub-batch, which is called the SOOO policy. Under this policy, a former sub-batch of trucks is

surely served before a latter sub-batch of trucks, and the service sequence for trucks in the same sub-batch is to be

determined by the terminal operators. As the root cause of relocation is the mismatch between containers’ stacking

positions and their retrieval sequences, relocations can be reduced by optimizing the retrieval sequence. Besides, as

relocation operations increase retrieval times, out-of-order retrievals can also create opportunities for reducing the truck

waiting time in the retrieval process. Similar to Galle et al. (2018b), we make the following assumption on the retrieval

service begin time of a batch.

A8: The retrieval service of a batch begins at the end of the appointed time window associated with the batch.

A8 can be justified from the following two aspects. Firstly, A8 represents the practical situation of crowded terminals

in which trucks often queue up at gates and yards after their arrivals and wait to be served (see Pham et al., 2011; Chen

et al., 2013a,b). On one hand, several activities, e.g., security check, permission check, etc. (see Huynh and Zumerchik,

2010) need to be performed at the entry gates before the truck can proceed to the yard. On the other hand, for container

terminals having a high level of congestion in the yard, internal waiting queues are also formed and trucks have to wait

Tier

3 1

2 3 5 1

1 5 5 3

 1 2 3 Stack

Tier

3 u1

2 u2 u3 u4

1 u5 u6 u7

 1 2 3 Stack

Tier

3 0.6

2 0.7 0.5 0.8

1 0.3 0.1 0.4

 1 2 3 Stack

Tier

3 1

2 3 5 2

1 5 5 3

 1 2 3 Stack

9

to be served (Talley and Ng, 2016; Li et al., 2019). Secondly, it is observed that the average truck turnaround time could

be much longer than the length of the appointment time window. For example, in Los Angeles-Long Beach, the average

truck turn time at the 12 container terminals for the last two years was above 67 minutes and the maximum value was

nearly 100 minutes (Mongelluzzo, 2020). For some terminals, a truck appointment system with 30-minutes time windows

has been implemented (e.g., Fenix Marine Services container (fenixmarineservices.com), Middle Harbor (Mongelluzzo,

2016)). Given above, it is reasonable to assume that the service of a batch begins at the end of the appointed time window

associated with the batch.

3.2 Problem formulation

We propose two mathematical models for the SCRP-FS. First, a Sooo model is developed with the objective of

minimizing the expected total number of relocations to retrieval all containers from a given bay. The Sooo model is

important to the terminal operators in reducing relocations; however, it does not consider the truck waiting times. Second,

we develop a Sooo extension model to fully take advantage of the flexible service policy. The Sooo extension model has

two lexicographically ordered objectives: the primary objective is to minimize the expected total number of relocations,

and the second objective is to minimize the total truck waiting times in each batch. To a large extend, our study on the

Sooo model is a starting point to develop the Sooo extension model, which is one of the main contributions of this paper.

Still, the results of the Sooo are of a certain interest in their own right, and the developed algorithm serves as building

blocks for the exact algorithm for the Sooo extension model.

3.2.1 Sooo model

The SCRP is a multi-stage sequential decision-making problem with dynamic information revealing. The stochastic

dynamic programming (SDP) method is appropriate to deal with such problems (Bakker et al., 2020). The CRP related

problems have been tackled using (stochastic) dynamic programming method, e.g. the deterministic CRP (Kim and Hong,

2006), the SCRP (Ku and Arthanari, 2016a), and the export container stacking problem (Kim et al., 2000; Zhang et al.,

2010). In this paper, we formulate the SCRP-FS into an SDP model. The emphasis in SDP is typically in identifying the

system states and the actions (variables) at each state (Birge and Louveaux, 2011). In the following, we first define the

stage, state, and action for the Sooo model.

Stage: the sequence number of the batch to be retrieved. The example in Fig. 1 is considered as stage 1 since the 1st

batch of containers is to be retrieved.

State: the state of each stage is the state of the bay that consists of the stacking positions of the remaining containers

and their attributes. The input state of the kth stage is the state of the bay after the (k-1)th batch has been retrieved and

before the scenario of the sub-batches of the kth batch is revealed. For example, Fig. 1(a)-(c) constitute the input state of

stage 1.

Action: a feasible action is defined as a sequence of moves to retrieve a batch of containers. Different from the

conventional SCRP, the actions in the SCRP-FS consists of two types of actions: (i) the retrieval sequences of the

containers (i.e., the service sequence of trucks) in each of the two sub-batches, called sequencing, and (ii) the storage

positions of the relocated containers, called relocating.

With these definitions, optimal actions are taken under uncertainty stage by stage. The uncertainty in the model refers

to the scenarios of the sub-batches of each batch (at each stage). At the beginning of a stage, firstly, the scenario of this

stage is revealed, and then the optimal actions to retrieve the batch of containers at this stage are sought accordingly

considering all the potential scenarios of future stages. The objective is to minimize the expected total number of

relocations to retrieve all the containers. Mathematically, the Sooo model can be formulated in a similar way in which it

is done in Ku and Arthanari (2016a). The notations used in the model are defined as follows.

K: the total number of batches in the initial bay, which is also the total number of stages.

k: the stage number (the kth batch of containers to be retrieved), {1,..., }k K .

kζ : The scenario of the sub-batches of stage k, {1,..., }k K (a random variable).

kS : the input state of stage k, that is, the state of the bay after the (k-1)th batch has been retrieved and before kζ is

10

revealed, {1,..., }k K .

()kp ζ : The probability of kζ . This is calculated by the probabilistic model of truck arrivals introduced in section

3.1.2.

(,)k k kS ζa : The actions (a decision variable) taken for retrieving the kth batches of containers given kS and kζ .

(,) { (,), (,)}S R

k k k k k k k k kS ζ S ζ S ζ=a a a , wherein (,)S

k k kS ζa is the retrieval sequence decision of the containers in

each of the two sub-batches at stage k given kS and kζ , and (,)R

k k kS ζa is the relocation position decision that

respects (,)S

k k kS ζa . For notational convenience, the dependence on (,)k kS ζ is suppressed from (,)k k kS ζa , and we

use ka instead.

(,)k k k kr S ζa : The number of relocations that are required during action ka on the bay of state kS given kζ .

(, ,)k k k kt S ζ a : The state transition function that maps kS , kζ , and ka into the next state 1kS + . By (, ,)k k k kt S ζ a ,

the kth batch of containers revealed by kζ are retrieved according to ka from state kS , after which 1kS + is

obtained.

()k kf S : The expected minimum total number of relocations to retrieve the remaining K-k+1 batches of containers from

the state kS .

The Sooo model is formulated as a recursive equation as follows:

1 1

1

1 1 1 1 1 1 2 2 1 1 1 1 1 2 2() min (| ,) () () min (| ,) ()
ζ

f S E r S ζ f S p ζ r S ζ f S = + = +

a a

a a ,

where 2 1 1 1 1(, ,)S t S ζ= a (1)

Generally, 1 1() ()min (| ,) () , {1,..., }
k

k

k k k k k k k k k

ζ

f S p ζ r S ζ f S k K+ += +
a

a ,

where 1 (, ,)k k k k kS t S ζ+ = a , for {1,..., }k K , and 1 1() 0K Kf S+ + = (2)

The recursive function of equation (2) indicates that optimal decisions can be obtained by optimizing the recursive

function in a backward manner stage by stage.

3.2.2 Sooo extension model

The Sooo extension model considers two lexicographically ordered objectives. The primary objective is to minimize

the expected total number of relocations and the secondary objective is to minimize the total truck waiting times of each

batch sequentially. The use of the secondary objective is justified from the following three perspectives.

Firstly, our motivation for considering the metric of truck waiting times stems from its importance not only to the

container terminals but also to the container transport supply chain. The truck waiting time is a key performance indicator

that measures the efficiency of storage area at a container terminal (Stahlbock and Voß, 2008; Carlo et al., 2014;

Gharehgozli et al., 2016) and is one of the main reasons causing delays in handling external trucks and leading to low

quality of customer service (Borjian et al. 2013). A reduction in the truck waiting time would improve the terminals’

competitiveness and act as an incentive to encourage external truckers’ cooperation, which is essential to achieve a smooth

implementation of the flexible service policy.

Secondly, longer truck waiting time in the yard for service leads to higher truck turn time and more emissions (Huynh

et al., 2004). Terminal operators have been under enormous pressure from different parties requiring to reduce the truck

turn time. For example, from the legislative perspective, the California Assembly Bill AB 2650 became active in 2003 in

the US requiring port terminals to lower port-related truck congestion and vehicle emissions. Under this law, external

trucks were a major target of regulatory efforts (Giuliano and O’Brien, 2007). Besides, from the economic perspective,

some port authorities (e.g., Port Botany; Port Metro Vancouver) have implemented a penalty system that imposes fees on

terminals that exceed a specified threshold of truck turn time. In addition, from the perspective of vertical cooperation in

the container transport chain, truckers, as an import stakeholder of the hinterland transport, have stated that they won’t

accept truck appointments until terminals can shorten turn times and end long queues (Bonney, 2015). Reducing the truck

waiting time in the container retrieval process helps to alleviate yard congestion and thus reduce the truck turn time.

Thirdly, the importance of the truck waiting time metric in the CRP has also been confirmed by the increasing attention

it has received in the literature. For instance, López-Plata et al. (2017) minimize the total waiting times of the containers

11

that have expected retrieval times in the deterministic CRP. Borjian et al. (2015b) and Borjian et al. (2013) minimize the

weighted sum of total relocations and delays in the deterministic CRP and uncertain CRP respectively. Our study is the

first that considers two lexicographically ordered objectives when taking both the number of relocations and the trucks

waiting time into consideration in the uncertain CRP. The reasons to sequence these two objectives (i.e. the number of

relocations as the primary objective and the truck waiting time as the secondary objective) are: (i) the number of

relocations has a more direct impact on the terminal; (ii) this treatment will appropriately evaluate the effect of the flexible

policy on reducing the expected number of relocations compared to the conventional SCRP; (iii) because there may exist

multiple optimal solutions to minimizing the expected number of relocations in the SCRP-FS, introducing the secondary

objective can further optimize the second objective without sacrificing the primary objective.

Fig.2 illustrates the idea behind the Sooo extension model. Let us consider the solutions for the first batch, in which

truck u1 and u5 have been revealed to be in the first sub-batch and u7 in the second sub-batch. With regard to the primary

objective, there are two optimal solutions to the retrieval sequence for u1, u5, and u7. Solution one is 5 1 7u u u→ → ,

and solution two is 1 5 7u u u→ → . The two solutions contribute the same number of relocations to the expected

total number of relocations since no matter which retrieval sequence is used the blocking container u2 is relocated to stack

two. The Sooo extension model wants to choose one that is optimal with respect to the secondary objective, i.e.,

minimizing the total waiting times of the trucks in the first batch/stage. By A8, both truck u1 and u5 are ready to be served

when the service of this batch begins. If u5 is retrieved before u1, truck u1 suffers waiting due to the relocation of u2, which

could have been avoided if using the alternative solution. Therefore, the optimal solution of the Sooo extension model is

1 5 7u u u→ → .

Tier

3 u1

2 u2 u3 u4

1 u5 u6 u7

 1 2 3 Stack

Tier

3 1

2 4 5 5

1 1 5 2

 1 2 3 Stack

Container ID Revealed information for the first batch

Fig. 2 An example of illustrating the primary objective and the secondary objective

Objective function

Here, we develop the secondary objective function. Before getting retrieval service, truck waiting can occur at any

point from arriving outside the in-gate to arriving at the designated yard stack until exiting the out-gate. As our main focus

is on the container retrieval process, only the yard-to-retrieval waiting time is of our interest. In particular, we are more

concerned with how much waiting times in the container retrieval service process can be saved as a result of the flexible

service policy as opposed to the FCFS policy. By the assumption A8, the retrieval service for a truck cannot commence

before the end of its appointed time window. Therefore, the waiting time of a truck before the end of its appointed time

window is independent of our decision variables. We hence define the truck waiting time as the elapsed time between the

end of its appointed time window and its actual retrieval time. To avoid confusion, we use the term “relevant truck waiting

time” to represent the truck waiting time considered in this paper. It is worthwhile to note that the relevant truck waiting

time under A8 has its practical interpretation. In practice, a truck would have an expected time to retrieve its container,

and the difference between that and the actual retrieval time is a common measure of service quality in general terms

(López-Plata et al., 2017). For a truck that has booked an arrival time window through the TAS, the end of its appointed

time window can be regarded as its expected retrieval time, and the relevant truck waiting time can be used as a measure

of service quality for the container retrieval process.

To measure the relevant truck waiting times, we need some time-based notations. Let ke denote the end of the

appointed time window of the containers in batch k. Let dk denote the completion time of retrieving the last container in

batch k, and ky denote the service starting time of batch k. The secondary objective is optimized for each stage

12

separately in a sequential way rather than considering global optimization. This means that when optimizing the secondary

objective of stage k, the service for stage k-1 has been completed, that is, kS is given. This enables us to treat the service

completion time of the (k-1)th stage (dk-1) as a constant when optimizing stage k. Given ke and dk-1, we have ky by

 1max ,k k ky e d −= , {2,..., }k K ; 1 1y e= . (3)

By equation (3), if the service completion time of batch k-1 is later than the end of the appointed time window of batch

k, the service starting time of batch k is dk-1. Otherwise, the service starting time of batch k coincides with the end of its

appointed time window, that is, ke .

Under the given decisions (,) { (,), (,)}S R

k k k k k k k k kS ζ S ζ S ζ=a a a , we now derive the explicit expressions of dk

and the relevant waiting time of truck i in batch k (ki B) under kζ , which is denoted by ,
kζ

k iw . The following notations

are introduced to extract the relevant information implied in the decision variables.
kζ

io : the service order of truck i, ki B , under kζ . Note that kζ

io is implied in the service sequence decision

(,)S

k k kS ζa .

kζ

ir : the number of relocation moves needed when serving truck i, ki B , under kζ . Note that kζ

ir is implied in

the relocation decision (,)R

k k kS ζa .

rett : the handling time per retrieval move.

relt : the handling time per relocation move.

By A8, all the trucks in a batch have already waited at the yard stack when the service of this batch begins, and thus

there is no idle time between the services of any two trucks in the batch. Therefore, dk is calculated by

()k

k

ζrel ret
k k i

i B

d y t r t

= + + (4)

,
kζ

k iw is calculated by

,

,

() ()k k k

ζ ζk k
k j i

ζ ζ ζrel ret rel
k k j ik i

j B o o

w y e t r t t r

= − + + + , (5)

The first term on the right side in equation (5) is the waiting time between the end of the appointed time window and

the start of the service of batch k, the second term is the total handling time of the trucks in the batch that are served before

truck i, and the last term is the relocation time for retrieving the container requested by truck i. Equation (5) is illustrated

in Fig. 3 using the instance in Fig. 2, where the first batch of trucks is served in the sequence: 1 5 7u u u→ → . By

equation (5), the waiting time of truck u1, u5, and u7, is respectively k ky e− ,
ret rel

k ky e t t− + + , and 2 2ret rel

k ky e t t− + + .

It is observed that the handling time of u1 contributes
rett to the waiting time of both u5 and u7 and the handling time of

u5 contributes
ret relt t+ to the waiting time of u7.

Fig. 3 Illustration of trucks waiting time

Let kζ
kW denote the total waiting times of all the trucks in batch k under kζ with the given decisions (,)k k kS ζa .

Then we have

Relocation

Retrieval

13

()

,

,

() ()

() ()

k k k k

ζ ζk k
k k k j i

k k k

k k

ζ ζ ζ ζrel ret rel
k k j ik k i

i B i B j B o o

ζ ζ ζrel ret rel
k k k i k i i

i B i B

W w y e t r t t r

y e C t r t C o t r

 = = − + + +

= − + + − +

, (6)

where the first term on the right hand represents the total waiting time of all trucks in the batch before the service of this

batch commences, the second term represents the sum of the handling times of the predecessors of each truck in the batch,

and the third term is the total relocation times for retrieving all the containers in the batch. Because the service time of

truck i adds to the waiting times of all its successors in the batch, ()kζrel ret
it r t + is weighted by ()kζ

k iC o− . In other

words, a part of the waiting time of a truck is a cumulative service time of all its predecessors in the batch (see Fig. 3).

Let
(1) ()k kγ S denote the primary objective for stage k, which is the expected minimum total number of relocations to

retrieve the remaining K-k+1 batches of containers from the state kS , and
(2) ()k kγ S denote the secondary objective for

stage k, which is the expected minimum total waiting times for the trucks in batch k with the state kS . Given kS , the

Sooo extension model aims to find the solution that minimizes the secondary objective
(2) ()k kγ S among the set of

solutions that minimize the primary objective
(1) ()k kγ S . Then, the Sooo extension model for stage k with the state kS ,

{1,..., }k K , is formulated as follows:

(1) () ()k k k kγ S f S= , which is defined in (2)

(2) () ()min k

k
k

ζ

k k k k

ζ

γ S p ζ W=
a

 (7)

Derivation of optimality

Observation 1. The optimal solution of the Sooo extension model at stage k from the state kS under kζ is the one

that minimizes ()1k k

k

ζ ζ
i k i

i B

r C o

 − + among the set of optimal solutions (,)k k kS ζa with regard to the primary

objective.

Proof. At each stage k, dk-1 is known and thus ky can be calculated by equation (3). Besides, ke , kC ,
rett and

relt are constant. Therefore, min k

k

ζ

kW
a

 in equation (7) is equivalent to

()min 1k k

k
k

ζ ζ
i k i

i B

r C o

 − +
a

, (8)

where ()1k kζ ζ
i k ir C o − + represents the contribution of the number of relocations for retrieving container i on the

waiting time of truck i itself and on the waiting times of all its successors in the batch.

Observation 1 indicates that at each stage, the secondary objective is jointly determined by the number of relocations

for each retrieval in the batch and its retrieval sequence.

4. Exact solution algorithms based on decision tree

By applying the recursive equation of the Sooo model, the optimal solutions can be obtained backward from stage K

to stage 1. This procedure is usually executed by a tree search-based algorithm in a state-space constructed by a decision

tree. The state-of-the-art tree search-based algorithm for the SCRP in which information is revealed on a batch basis is

the Pruning-Best-First-Search (PBFS) algorithm proposed by Galle et al. (2018b). To solve the Sooo model, we develop

an Adapted Pruning-Best-First-Search (APBFS) algorithm by extending the PBFS algorithm; we then extend the APBFS

algorithm to solve the Sooo extension model. The PBFS is developed for the FCFS rule and does not consider customer

14

preference, which does not allow for a straightforward adaption. The main differences between our algorithms from

existing ones are explained below. Firstly, our decision tree is more general, which can support two types of decision-

making under flexible service policies and incorporate customer preference. In particular, our decision tree is composed

of three classes of nodes and each node is represented by a dual-matrix configuration, which differs from the PBFS

decision tree that is composed of two classes of nodes each represented by a single-matrix configuration. Secondly, the

new structure of the decision tree necessitates several major adaptions in the search: first, a new decision layer is

considered during searching and back-tracking; second, another two techniques used to decrease the search space are

modified: the abstract technique and the lowest level to stop branching. Thirdly, a new lower bound for the expected

number of relocations for the SCRP-FS is proposed to prune unnecessary nodes. We consider the new lower bound as

one of the major contributions of this paper since this is the first lower bound for the SCRP-FS in the literature. Fourthly,

our extended APBFS expands the PBFS by having the capability of minimizing the total truck waiting times of each batch,

which has been neglected in the relevant literature.

In sub-sections 4.1-4.3, we first introduce the elements of the proposed algorithms with a focus on the differences

between the PBFS and the APBFS. Then, in sub-section 4.4 and 4.5, we present the APBFS for the Sooo model and the

extended APBFS for the Sooo extension model respectively. The contribution of the extended APBFS is introduced in

sub-section 4.5.

4.1 Constructing a decision tree

In a typical decision tree for the SCRP, the root node represents the initial configuration and the leaf nodes represent

the empty configuration. Between the root node and leaf nodes, there are two types of intermediate nodes: chance nodes

and decision nodes, which alternate in some way to form the tree. A chance node is to model the stochasticity of trucks’

arrival while a decision node is to model possible actions. In the PBFS, each node is represented by a single matrix that

corresponds to the truck arrival orders.

In the (extended) APBFS algorithm, each node is represented by a dual-matrix configuration that is composed of a

priority matrix and a preference matrix (see Fig. 4). The priority matrix represents the priority labels of containers and

the preference matrix represents the probability of trucks arriving in the first sub-time window (i.e. the customer

preference). The structure of the decision tree consists of three classes of nodes, which are chance nodes, SD nodes

(sequencing decision nodes) and RD nodes (relocating decision nodes). The SD nodes create a new decision layer between

the chance nodes and the RD nodes to sequence trucks. In the following, we define these nodes with the introduction of

relevant notations.

A chance node corresponds to kS , {1,..., }k K , in which the scenario of sub-batches of batch k (i.e., kζ) is to be

revealed (see e.g., node 0 in Fig. 4). From a chance node, descendant nodes are created by kζ , denoted by
kS (see

e.g., node 1). Let kζ⎯⎯→ represent the revelation of kζ , we have kζ

k kS S ⎯⎯→ , {1,..., }k K .

After the revelation of the random variable, actions are taken to retrieve the containers in batch k from
kS . A SD

node corresponds to
kS , in which the retrieval sequence for the kth batch, denoted by

S

kD , is to be determined. From

a SD node, descendant nodes, denoted by
kLX (e.g., node 5, node 6), are created by applying

S

kD . Recall that as

defined in section 3.1.3, kL represents the batch priority such that each batch k corresponds to an unique kL . Let

S
kD

⎯⎯→ represent the application of
S

kD , we have
S
k

k

D

k LS X ⎯⎯→ . In a RD node, the target container (the container with

the smallest label) is to be retrieved and the relocation decisions to retrieve the container is to be determined. For batch k,

starting from the SD node corresponding to
kS , kC levels of RD nodes are created sequentially, denoted by

iX ,

 ,..., 1k k ki L L C + − (e.g., node 5, 7). Let
R

iD denote a sequence of moves (relocation moves and retrieval move) to

retrieve the ith container, and 1iX + denote the configuration after applying action
R

iD to iX and before applying

action 1

R

iD + , ,..., 1k k ki L L C + − . Let
R
iD

⎯⎯→ represent the application of
R

iD , we have 1

R
iD

i iX X +⎯⎯→ ,

15

 ,..., 2k k ki L L C + − .

After the retrieval of the last container in the kth batch whose retrieval sequence is 1k kL C+ − ,
1k kL CX + −
 transits to

the next chance node corresponding to 1kS + (e.g., node 10), which is represented by
1

1 1

R
L Ck k

k k

D

L C kX S+ −

+ − +⎯⎯⎯⎯→ .

To summarize, for {1,..., }k K , the state transitions from kS to 1kS + in the tree search are modeled by:

if 1kC ,

1

1

1 1

, ,..., 2

k

S
k

k

R
i

R
L Ck k

k k

ζ

k k

D

k L

D

i i k k k

D

L C k

S S

S X

X X i L L C

X S+ −

+

+ − +

 ⎯⎯→

 ⎯⎯→

⎯⎯→ + −

 ⎯⎯⎯⎯→

if 1kC = ,
1

R
Lk

D

k kS S +⎯⎯⎯→ (9)

5

3 3

1

15

5

0.4 0.4

0.3 0.3

0.5

0.6

0.2

0.4 0.4

0.3 0.3

0.5

0.6

0.2

5

3 3

1

25

5

0.4 0.4

0.3 0.3

0.5

0.6

0.2

5

3 3

1

15

5

0.4 0.4

0.3 0.3

0.5

0.6

0.2

5

3 3

2

15

5

0.4 0.4

0.3 0.3

0.5

0.6

0.2

5

3 3

2

25

5

0.4 0.4

0.3 0.3

0.5

0.6

0.2

5

3 3

1

25

5

0.4 0.4

0.3 0.3

0.5

0.6

0.2

5

3 3

2

15

5

0.4 0.4

0.3 0.3

0.5

0.2

5

3 3

25

5

0.4 0.4

0.3 0.3

0.50.6

5

3 3

2

5

5

0.4 0.4

0.3 0.3

0.60.5

5

3 3

5

5

2

0.4 0.4

0.3 0.3

0.5

5

3 3

5

5

0.4 0.4

0.3 0.3

0.5

5

3 3

5

5

P=0.48

P=0.12 P=0.08
P=0.32

Chance node

Sequencing decision

(SD) nodes

Relocating decision

(RD) nodes

0

1 2 3 4

5 6

7 8 9

10 11

RD nodes

Chance nodes

Fig. 4 A sample decision tree

Dashed-lines: the revelation of the scenario of sub-batches; Dotted-lines: applying the sequencing action on retrieval

order; Solid-lines: applying the relocating action and retrieving the containers; Containers in bold font: target batch of

containers; Containers in the shaded slot: target container to be retrieved.

16

4.2 Back-tracking in the decision tree

Given a full decision tree, the optimal objective value is calculated by back-tracking. In this section, we only focus on

the primary objective. Let n be a node in the decision tree. Each node has a cost-to-go function, denoted by f(n), which

represents the expected cost of the cheapest path from node n to the leaf node. Let n=0 denote the root node, and then the

objective function is denoted by f(0). The basic idea of back-tracking is to compute the cost-to-go function f(n) for each

node n recursively from the bottom up of the tree with the ultimate goal to obtain f(0). To calculate f(n), we need the

immediate cost function, denoted by r(n), which represents the cost incurred by the action taken to transit node n to its

offspring. In the SCRP-FS, f(n) is defined for all three types of nodes, which represents the minimum expected number

of relocations required to retrieve all remaining containers from node n. r(n)is only defined for RD nodes, which

represents the number of relocations required in order to retrieve the target container in node n. The following notations

are used to calculate f(n).

nλ : the number of remaining containers in node n, which is defined as the level of n. If n is a chance node or a SD

node, there exists a unique {1,..., }k K such that 1k nL C λ= − + .

n : the set of offspring of a chance node n. Each node in n is a SD node that corresponds to a realization of the

random variable kζ , and thus 2 kC

n = .

n : the set of offspring of a SD node n. Each node in n corresponds to a feasible retrieval order for the containers

in batch k, wherein 1k nL C λ= − + , and thus 1 2! !n k kζ ζ = .

n : the set of offspring of a RD node n. n is constructed greedily by considering all feasible combinations of the

relocation positions of the r(n) blocking containers in node n. The maximum value of | n | is given by
()(1)r nS − when

the number of empty slots in each candidate stack is no less than r(n), wherein S is the number of stacks.

inp : the probability of a SD node i nn , which is calculated by our probabilistic model of truck arrivals.

Given the above definitions, for each node n, we have:

(), if (i) is a chance node,

() min () , if (ii) is a SD node,

() min () , if (iii) is a RD node.

i

i n

i n

i n

n i

n

i
n

i
n

p f n n

f n f n n

r n f n n

=

 +

 (10)

In equation (10), the “if (ii)” condition is a new decision layer to the PBFS algorithm. We use the example in Fig. 4 to

illustrate equation (10). Suppose f(10) = f(11) = 1 is given. Then the f(n) of other nodes are calculated as follows: f(7) =

r(7) + min { f(10), f(11)} = 1 + 1 = 2; f(5) = r(5) + min { f(7)} = 0 + 2 = 2; f(1) = min { f(5)} = 2; f(8) = r(8) + min { f(10)}

= 0 + 1 = 1; f(9) = r(9) + min { f(11)} = 0 + 1 = 1; f(6) = r(6) + min { f(8), f(9)} = 2 + 1 = 3; f(2) = min { f(5), f(6)} = 2.

It confirms that the optimal offspring of node 2 with regard to the primary objective is node 5. f(3) = min { f(6)} = 3; f(4)

= min { f(5), f(6)} = 2. It confirms that the optimal offspring of node 4 with regard to the primary objective is node 5. f(0)

= p1* f(1) + p2* f(2) + p3* f(3) + p4* f(4) = 0.48*2 + 0.12*2 + 0.08*3 + 0.32*2 = 2.08.

4.3 Techniques to decrease the size of the decision tree

For larger problems, considering a full decision tree in the tree search becomes computationally cumbersome due to

the exponential growth of the search space with the growing size of the problem. In the PBFS, a combination of four

techniques has been proposed to reduce the size of the tree, while ensuring the optimality of the solution. The first one is

the BFS (Best-First-Search) exploration strategy based on a valid lower bound, which determines the search direction of

the tree. The BFS first explores the nodes with smaller lower bound, because these nodes are the most promising nodes

that are most likely to return small (.)f . The second technique is pruning with a lower bound. By using the pruning

strategy, a node is fathomed if its lower bound is greater than or equal to the best (.)f of the explored nodes. The third

17

technique is stopping the search at a level λ* at which (.)f can be obtained using specific techniques without the need

for further branching. Finally, the abstracting technique is used to avoid re-generating and re-computing identical nodes.

To use these techniques in the APBFS algorithm, we make the following major adaptions. Firstly, we extend the abstract

technique by using dual-matrix configurations. Secondly, we derive a new lower bound for the SCRP-FS. Thirdly, we use

λ* = S to stop further branching. The following three sub-sections present these adaptions respectively.

4.3.1 Abstraction technique

The abstraction technique is first studied by Ku and Arthanari (2016b) to reduce the search space of the CRP and then

is used by Ku and Arthanari (2016a) and Galle et al. (2018b) for the SCRP. The rationale behind this technique is that

some configurations are actually equivalent in terms of their contributions to the objective function, and thus duplicate

nodes can be avoided. Generally, each newly generated node is abstracted by using a projection rule, after which we

determine whether to keep this node or not by comparing it with the nodes that have been explored in the same level. In

the (extended) APBFS algorithm, two nodes are regarded as equivalent only when both their abstract priority

configurations and abstract preference configurations are identical. This is different from the PBFS. The projection

procedure of the abstraction technique for the (extended) APBFS algorithm is as follows, and an illustration is provided

in Appendix A.1. We denote the application of this procedure to node n as ()Abstract n .

Step 1: Rank the stacks within the priority configuration according to the heights of stacks in ascending order. Ties are

broken by ranking them lexicographically in ascending order according to the priority labels of the containers from top

tier to bottom tier.

Step 2: (obtain abstract priority configuration): Re-arrange the stacks within the priority configuration according to

their rankings so that lower-ranked stacks are located on the left and higher-ranked ones on the right.

Step 3: (obtain abstract preference configuration): Re-arrange the stacks within the preference configuration in the

same order of the rankings of the stacks in the priority configuration.

Remark: we observe that executing the abstract technique could be time-consuming as a newly generated node has to

be compared with the configurations of all the existing nodes at the same level. For example, it takes about 100 seconds

to implement the abstract technique on a node that needs to be compared with 7722 nodes at the same level. Future

research may seek more efficient abstract techniques that allow efficient checking for repeated states, such as using a hash

table that compares the hash value of two nodes instead of their exact configurations (Russell and Norvig, 2016).

4.3.2 Lower bound

A new lower bound for the SCRP-FS is proposed to prune unpromising nodes. Here we only consider the lower bound

on the blocking containers, which is the expected number of containers that must be relocated at least once in order to

retrieve all the containers from a node n, denoted by lb(n). We care about the blocking lower bound for RD nodes and

chance nodes, while a lower bound for SD nodes is unnecessary because each SD node needs to be explored to return the

cost-to-go function of a chance node. In the SCRP-FS, due to the application of the SOOO policy and the incorporation

of customer preference, the probability of a container being blocking is different from the conventional SCRP. From now

on throughout the paper, we refer to the method of calculating the blocking lower bound for the SCRP-FS as LB-FS. In

the following, we explain how to compute lb(n) by LB-FS.

Lemma 1. Let n be a node with S stacks and T tiers, each stack containing Hs containers (0 sH T). Let s

hn denote

the container located at stack s ({1,..., }s S) and tier h ({1,..., }sh H), s
hn

l denote the priority label of container s

hn ,

and s
hn

p denote the customer preference for container s

hn , then we have:

18

()

 () ()

1

1,..., 1 1,..., 1
1, 2 1

1

min 1 min 1 1 1
s

s s s s s s
h i h i h i

s s sn ni h

H hS

n n n n n ni h i h
s h i
H l l

lb n l l l l p p
−

 − −
= = =
 =

 = − − −

 = 1 + 1 (11)

where A1 is the indicator function of A: A1 = 1 if condition A is true; and 0 otherwise.

Proof. The basic idea of computing ()lb n is to compute the expectation of a single container being blocking and then

sum up the expectation for all the containers in node n. Let us fix s and compute the probability that container s

hn is

blocking. Clearly, for 0sH = , container s

hn is not blocking for sure. Now we consider 1sH . Obviously, if

1,..., 1
mins s

h in ni h
l l

 −
 , container s

hn is not blocking. Then, we consider the following two cases in which container s

hn may

be blocking.

(i) If

1,..., 1
mins s

h in ni h
l l

 −
 , then container s

hn is surely blocking. In this case, the probability that container s

hn is

blocking is equal to 1. In the example of Fig. 5 (a chance node), container
5

sn meets this condition as

5 1,...,4
2 min 1s s

in ni
l l

= = , and thus container

5

sn contributes one blocking container to ()lb n .

1

sn

2

sn

3

sn

5

sn

4

sn

2

1

2

2

2

0.2

0.0

0.5

0.4

0.6

Fig. 5 Illustration of a single stack configuration for computing the blocking lower bound

(ii) Otherwise,

1,..., 1
mins s

h in ni h
l l

 −
= , which means there are containers below s

hn with the same label, then container

s

hn is blocking with probability. This case makes the probability a container being blocking different from that in the

Galle et al. (2018b). Recall the SOOO policy: the first sub-batch of trucks is given higher service priority over the second

sub-batch of trucks; the trucks in the same sub-batch are given the same service priority. Therefore, s

hn is surely

blocking only in the situation where s

hn belongs to the second sub-batch and there is at least one container with the

same label below s

hn belonging to the first sub-batch. In this condition, the probability that container s

hn is blocking

is equal to () ()
1

 1

1 1 1s s
h i

s sn ni h

h

n n
i

l l

p p
−

=
=

− − −

 , where 1 s
in

p− is the probability that container s

hn belongs to the second sub-

batch, and ()
1

 1

1 1 s
i

s sn ni h

h

n
i

l l

p
−

=
=

− − is the probability that at least one container with label s
hn

l below s

hn belong to the first

sub-batch. In Fig. 5, container
2

sn and
3

sn meet this condition.
2 is blockingsn

 p

(1 0.4) (1 (1 0.5)) 0.3= − − − = ;
3 is blockingsn

 p (1 0.2) (1 (1 0.4) (1 0.5)) 0.56= − − − − = .

Combining the above two cases, we have,

19

 () ()
1

1,..., 1 1,..., 1
 1

 is blocking min 1 min 1 1 1s s s s s s
h i h i h i

s sn ni h

h
s

h n n n n n ni h i h
i

l l

n l l l l p p
−

 − −
=
=

 = − − −

p = 1 + 1 .

Summing the above equation for {2,..., }sh H and {1,..., }s S , we have equation (11), which completes the proof.

By equation (11), the ()lb of the single stack in Fig.5 is calculated as:

2 3 5 is blocking is blocking is blocking = 0.3+0.56+1=1.86s s sn n n + + p p p .

4.3.3 Lowest level to stop branching

Another technique to decrease the size of the decision tree is stopping branching at an early level λ* without the need

for traversing to the leaf node. λ* is regarded as the lowest level of the tree. The PBFS algorithm stops branching at
* max{ , }Kλ S C= and computes f(.) either using a lower bound or A* algorithm (an efficient algorithm for the classical

CRP). Here we use λ*=S and compute f(.) using LB-FS. Noticing that the number of containers in a chance node and in

its offspring (a SD node) is equal, it does not make sense to stop the search at a SD node, because we can stop the search

at the chance node as soon as λ* is satisfied. In other words, the lowest level of the tree will be reached at either a chance

node or a RD node.

Lemma 2. Let n be a chance node or a RD node with S stacks, T tiers, and S containers, and *

nλ λ S= = , then

() ()lb n f n= .

Proof. Since there are only S containers remaining to be retrieved and there are S stacks, any blocking container can be

relocated to an empty stack. As a result, the relocated container will never block other containers again. Therefore, each

blocking container at node n will have only one relocation in the optimal solution. In addition, each relocation in the

optimal solution is unavoidable according to the definition of lb(n). This implies that the optimal solution f(n) = lb(n),

which completes the proof.

4.4 The APBFS algorithm for the Sooo model

Built upon the elements introduced above, we present the whole framework of the Adapted Pruning-Best-First-Search

(APBFS) algorithm for the Sooo model. The following notations are used for describing the algorithm.

APBFS

n : the set of offspring of chance node n that is used to compute ()f n , which is the subset of n .

APBFS

n : the set of offspring of SD node n that is used to compute ()f n , which is the subset of n .

APBFS

n : the set of offspring of RD node n that is used to compute ()f n , which is the subset of n .

Give a configuration n and lower bound LB-FS, the steps of the APBFS algorithm to return ()f n is as follows.

Algorithm 1. APBFS algorithm () (, -)f n APBFS n LB FS=

Step 1. Identify the class of node n. If n is a SD node, go to Step 4. Otherwise, go to Step 2.

Step 2. If the level of n is not greater than S, compute ()f n using ()lb n . Otherwise, go to Step 3.

Step 3. If n is a chance node, compute ()f n following Step 3.1~3.3.

Step 3.1. Construct n by considering all possible scenarios of sub-batches to retrieve the target batch of containers

in node n. Compute the probability of each node in in n .

Step 3.2. Apply Abstract(.) to each node in in n . If the abstract configuration is new, add in to APBFS

n and

compute ()if n . If the abstract configuration is identical to a node m that is already in APBFS

n , add the

probability of in to the probability of m.

Step 3.3. Compute ()f n by summing up the expectation of ()if n for each in , APBFS
i nn .

Step 4. If n is a SD node, compute ()f n following Step 4.1~4.6.

Step 4.1. Construct n by considering all feasible retrieval sequences to retrieve the target batch of containers in

node n.

20

Step 4.2. Apply Abstract(.) to each node in in n to avoid duplicate configurations, which leads to
n
 .

Step 4.3. Compute the lower bound ()ilb n for each node in in
n
 . Sort the nodes in

n
 in non-decreasing

order of (.)lb .

Step 4.4. Compute
(1)()f n , wherein

(1)n is the node with the smallest lower bound in
n
 , and add

(1)n to APBFS

n .

Step 4.5. Repeat for each of the remaining nodes in
n
 in non-decreasing order of (.)lb to construct APBFS

n : If

the lower bound of the considered node n(k) is less than the smallest f(.) of the nodes in APBFS

n , apply

Abstract(.) to node n(k). If the abstract configuration is identical to a node m that is already in the decision

tree, then add m to APBFS

n ; otherwise, add the considered node to APBFS

n and compute the cost-to-go

function of the considered node f(n(k)) = APBFS(n(k), LB-FS).

Step 4.6. Determine ()f n by taking the minimal value of ()if n , APBFS

i nn .

Step 5. If n is a RD node, compute ()f n following Step 5.1~5.6.

Step 5.1. Construct n by considering all feasible relocation moves to retrieve the target container in node n.

Step 5.2. Apply Abstract(.) to each node in in n to avoid duplicate configurations, which leads to
n
 .

Step 5.3. Compute the lower bound ()ilb n for each node in in
n
 . Sort the nodes in

n
 in non-decreasing order

of (.)lb .

Step 5.4. Compute
(1)()f n , wherein

(1)n is the node with the smallest lower bound in
n
 , and add

(1)n to APBFS

n .

Step 5.5. Repeat for each of the remaining nodes in
n
 in non-decreasing order of (.)lb to construct APBFS

n : If

the lower bound of the considered node n(k) is less than the smallest f(.) of the nodes in APBFS

n , apply

Abstract(.) to node n(k). If the abstract configuration is identical to a node m that is already in the decision

tree, then add m to APBFS

n ; otherwise, add the considered node to APBFS

n and compute the cost-to-go

function of the considered node f(n(k)) = APBFS(n(k), LB-FS).

Step 5.6. Determine ()f n by taking the minimal value of () ()if n r n+ , APBFS

i nn .

4.5 The extended APBFS algorithm for the Sooo extension model

In this section, the APBFS algorithm is extended to solve the Sooo extension model optimally. The basic idea of the

extended APBFS algorithm is, for each SD node n, to find its best offspring that minimizes the secondary objective among

its offspring that minimize the primary objective, i.e., f(n). Because of Observation 1 in Section 3.2.2, the secondary

objective can be substituted by a waiting time indicator. With Observation 1, we define ()1k k

k

ζ ζ
i k i

i B

r C o

 − + as the

waiting time indicator of batch k under kζ , which is jointly determined by the container retrieval sequence in batch k

and the number of relocations for each retrieval in batch k. Recalling in the APBFS algorithm, the container retrieval

sequence of batch k is included in the immediate offspring (RD node) of the SD node n (1n kλ C L= − +), denoted by node

m. Given such a RD node m, the optimal number of relocations for each retrieval from batch k can be obtained by tracing

the series of optimal offspring of node m. Therefore, in the extended APBFS algorithm, the focus is on selecting the

optimal immediate offspring of SD nodes by using the waiting time indicator. To this end, the APBFS is extended from

three perspectives. First, the pruning strategy is adjusted to explore each candidate node that is promising with regard to

the secondary objective. Specifically, for each SD node n, its offspring whose lower bounds are equal to the best f(n)

found so far are not pruned (Step 4.5 in Algorithm 3). Second, for the immediate offspring of SD node n whose cost-to-

go functions are equal to f(n), we compute their waiting time indicators and then choose the one with the minimum waiting

time indicator as the best offspring of node n (Step 4.7-4.8 in Algorithm 3). For a SD node n, the waiting time indicator

of its immediate offspring ni, denoted by w(ni), is given by WaitTimeIndic(ni, n) in Algorithm 2. Lastly, the decision tree

is traversed to level one, i.e., λ*= 1 (Step 2 of Algorithm 3), because our LB-FS does not apply to the secondary objective.

21

Algorithm 2. Waiting time indicator of the immediate offspring ni of SD node n: ()iw n = (,)iWaitTimeIndic n n

Step 1. Set Cn to be the number of containers in the target batch in node n.

Step 2. Set im n= and () 0iw n = .

Step 3. For j from 1 to Cn, do Step 3.1~3.3.

Step 3.1. Set r(m) to be the number of blocking containers in node m.

Step 3.2. Add () (1)nr m C j − + to ()iw n .

Step 3.3. Update m by letting the new m become the optimal offspring of the current m.

For the purpose of completeness, the steps of the extended APBFS algorithm for computing f(n) given a configuration

n and lower bound LB-FS are presented below, and a sample decision tree developed by the extended APBFS algorithm

is provided and explained in Appendix A.2. The differences from the APBFS algorithm are highlighted in bold font. Note

that the f(n) returned by the APBFS algorithm and the extended APBFS algorithm is exactly the same, but the best

offspring of SD node n may be different due to the consideration of the secondary objective function.

Algorithm 3. Extended APBFS algorithm () (, -)f n Extended APBFS n LB FS=

Step 1. Identify the class of node n. If n is a SD node, go to Step 4. Otherwise, go to Step 2.

Step 2. If the level of n is not greater than one, return zero to ()f n . Otherwise, go to Step 3.

Step 3. If n is a chance node, compute ()f n following Step 3.1~3.3.

Step 3.1. Construct n by considering all possible scenarios of sub-batches to retrieve the target batch of containers

in node n. Compute the probability of each node in in n .

Step 3.2. Apply Abstract(.) to each node in in n . If the abstract configuration is new, add in to APBFS

n and

compute ()if n . If the abstract configuration is identical to a node m that is already in APBFS

n , add the

probability of in to the probability of m.

Step 3.3. Compute ()f n by summing up the expectation of ()if n for each in , APBFS
i nn .

Step 4. If n is a SD node, compute ()f n and return the optimal offspring of n following Step 4.1~4.8.

Step 4.1. Construct n by considering all feasible retrieval sequences to retrieve the target batch of containers in

node n.

Step 4.2. Apply Abstract(.) to each node in in n to avoid duplicate configurations, which leads to
n
 .

Step 4.3. Compute the lower bound ()ilb n for each node in in
n
 . Sort the nodes in

n
 in non-decreasing

order of (.)lb .

Step 4.4. Compute
(1)()f n , wherein

(1)n is the node with the smallest lower bound in
n
 , and add

(1)n to APBFS

n .

Step 4.5. Repeat for each of the remaining nodes in
n
 in non-decreasing order of (.)lb to construct APBFS

n : If

the lower bound of the considered node n(k) is not greater than the smallest f(.) of the nodes in APBFS

n ,

apply Abstract(.) to node n(k). If the abstract configuration is identical to a node m that is already in the

decision tree, then add m to APBFS

n ; otherwise, add the considered node to APBFS

n and compute the cost-

to-go function of the considered node f(n(k)) = Extended APBFS(n(k), LB-FS).

Step 4.6. Determine ()f n by taking the minimal value of ()if n , APBFS

i nn .

Step 4.7. For each node in APBFS

n , compute its waiting time indicator by Algorithm 2.

Step 4.8. Return the node in APBFS

n that has the minimum waiting time indicator as the optimal offspring of

node n.

Step 5. If n is a RD node, compute ()f n and return the optimal offspring of n following Step 5.1~5.7.

Step 5.1. Construct n by considering all feasible relocation moves to retrieve the target container in node n.

22

Step 5.2. Apply Abstract(.) to each node in in n to avoid duplicate configurations, which leads to
n
 .

Step 5.3. Compute the lower bound ()ilb n for each node in in
n
 . Sort the nodes in

n
 in non-decreasing order

of (.)lb .

Step 5.4. Compute
(1)()f n , wherein

(1)n is the node with the smallest lower bound in
n
 , and add

(1)n to APBFS

n .

Step 5.5. Repeat for each of the remaining nodes in n
 in non-decreasing order of (.)lb to construct APBFS

n : If

the lower bound of the considered node n(k) is less than the smallest f(.) of the nodes in APBFS

n , apply

Abstract(.) to node n(k). If the abstract configuration is identical to a node m that is already in the decision

tree, then add m to APBFS

n ; otherwise, add the considered node to APBFS

n and compute the cost-to-go

function of the considered node f(n(k)) = Extended APBFS(n(k), LB-FS).

Step 5.6. Determine ()f n by taking the minimal value of () ()if n r n+ , APBFS

i nn .

Step 5.7. Return the node in APBFS

n whose cost-to-go function equals ()f n as the optimal offspring of node

n.

5. Heuristic solution methods

The (extended) APBFS algorithms are very time-consuming for larger problems. In this section, we propose two

efficient heuristic algorithms for the SCRP-FS: the SEM (Sequencing based Expected Minmax) heuristic and the SEML

(Sequencing based Expected Minmax with Look-ahead horizon) heuristic. In addition, in order to make the results of the

Sooo (extension) model comparable to that of the batch model proposed by Galle et al. (2018b) in terms of the influence

of service policies, we extend the EM (Expected Minmax) heuristic used in Galle et al. (2018b) to solve the batch model

in the new context with customer preference-based arrivals. From now on, we use the “base model” to refer to the batch

model that considers the customer preference-based arrivals. The contributions of our heuristics are summarized below.

First, the EM extension heuristic generalizes the EM heuristic to the SCRP with customer preference information. The

main adaptation we made to the EM heuristic is the introduction of the concepts of the Blocking Index (BI) and the Delay

Index (DI) that calculate the stack score. The BI and DI are not needed in the EM heuristics and they cannot be easily

inferred from the case of equal arrival probability. As presented in Appendix B.1, great effort has been made to calculate

the BI and DI, which are used to make a more accurate decision in case of a tie in the context of non-equal arrival

probability. This extension is especially useful for the situation of large batch size as the occurrence of ties will be more

frequent.

Second, we develop two new fast and efficient heuristics to solve the SCRP-FS – the SEM heuristic and the SEML

heuristic. The main ingredients of these two heuristics are: sequencing rule and relocation rule. Regarding the relocation

rule, we derive a new blocking index and a new delay index – BIS and DIS, to calculate the stack score by considering

the SOOO policy, as shown in Appendix B.3. This generalizes the EM extension heuristic to a more flexible case. In

addition, we make a contribution in terms of the sequencing rule, which is an important element of the SCRP-FS. Even

though the SEM heuristic uses an intuitive sequencing rule, it has been shown to be effective in the computational

experiments. The SEML heuristic further improves the SEM by using a more complex sequencing rule that applies a

look-ahead strategy dedicated to performing the most promising retrieval sequence.

We present these three heuristics respectively in the following three sub-sections.

5.1 EM extension heuristic

The EM heuristic has been computationally demonstrated to be the equal best heuristic for the batch model. The idea

of the EM heuristic is from that of the Min-Max heuristic in the earlier literature (Caserta et al., 2012), which is based on

the computation of a stack score that determines which stack a blocking container should be placed. In this paper, the EM

extension heuristic is adapted from the EM heuristic to obtain sub-optimal solutions of the base model. Although the EM

extension heuristic is not the focus of this study, its description provides a basis for explaining the SEM heuristic and the

SEML heuristic that we will design to solve the SCRP-FS.

23

Before describing the EM extension heuristic, we first briefly introduce the EM heuristic for the batch model. In the

batch model, once the truck arrival order of a batch is revealed, the retrieval sequence for this batch is confirmed. The

EM heuristic only focuses on the heuristic rules for relocating. Let cl be the priority label of container c to be relocated,

and ()m s be the smallest label of a container in stack s, {1,..., }s S . For an empty stack, ()m s is defined as C+1.

The heuristic rules that determine the storage position of a blocking container c from stack s are described below.

[Condition 1] There is an available stack s s such that () cm s l .

Let
{1,..., }\

= min () : () c
s S s

M m s m s l

 . Select the stack that satisfies ()m s M = . Break ties by choosing from the highest

ones, finally selecting the leftmost one if any ties remain.

[Condition 2] For all stack s s , () cm s l .

Let
{1,..., }\

= max ()
s S s

M m s

 . Select the stack that satisfies ()m s M = . Break ties by choosing from the ones with the

minimum number of containers labeled M. Further ties are broken by choosing from the highest ones, finally selecting

the leftmost one if any ties remain.

The EM heuristic is relatively intuitive. The idea is to minimize the expected number of blocking containers after each

relocation move. In Condition 1, c can surely avoid being relocated again, and we say a ‘good’ move is possible. In this

condition, EM chooses the stack with the minimum ()m s , since the stacks with larger ()m s can be saved as candidate

stacks for positioning blocking containers with greater labels. In condition 2, we say a ‘good’ move is impossible. There

are two cases. If cM l= (which implies that c will be relocated again in the future with probability), the stack with the

minimum number of containers labeled M is chosen, which can minimize the probability of c being relocated again. The

rationale behind it is that there is an equal chance for any container being the first one to be retrieved among the containers

labeled M. On the other hand, if cM l (which means that c will surely be relocated again in the future), the stack with

the maximum ()m s is chosen to delay the next relocation of c as much as possible. Ties are broken by selecting the stack

with the minimum number of containers labeled M to delay c being relocated again, as there is an equal chance for any

container being the first one to be retrieved among containers labeled M.

Now we extend the EM as an application to the base model. The EM extension follows the heuristic rule for Condition

1 but applies new rules for Condition 2. The following rules are used in the EM extension for Condition 2:

Let
{1,..., }\

= max ()
s S s

M m s

 . Select the stack that satisfies ()m s M = . In case of ties, if cM l= , choose from the ones

with the minimum ()BI s ; if cM l , choose from the ones with the minimum ()DI s . Further ties are broken by

choosing from the highest ones, finally selecting the leftmost one if any ties remain.

The main difference between the EM and the EM extension is the way of breaking ties in the case where more than

one stack satisfies ()m s M = in Condition 2. With the consideration of customer preference, more accurate criteria are

required to break the tie. For this purpose, we introduce two indexes to calculate the stack stores: Blocking Index (BI)

and Delay index (DI). The BI of a stack s, denoted by ()BI s , is defined as the probability of a container being blocking

if relocated to s. The DI of a stack s, denoted by ()DI s , is defined as the probability of a container with the smallest

label in stack s being the first one to be retrieved within its batch. The details of how to calculate the BI and the DI are

given in Appendix B.1.

5.2 SEM (Sequencing based Expected Minmax) heuristic

The SEM heuristic is proposed to solve the SCRP-FS. Two decisions are to be made by the SEM: sequencing the trucks

within the same sub-batch, and relocating the blocking containers. The main idea of the sequencing rule is to avoid as

many current relocations as possible. The relocating rule is similar to the EM extension heuristic but new blocking index

and delay index are introduced to consider the SOOO policy. In the following, we first introduce the outline of the SEM

24

heuristic and then describe the heuristic rules in detail.

5.2.1 Outline of the SEM

In the SEM heuristic, the decision on the retrieval sequence is made one container at a time using a sequencing rule

and then the consequent blocking containers are relocated using a relocating rule. The following notations are defined

and used throughout Section 5.2 and 5.3:

it : the ith target container, {1,..., }i C .

cr : the number of relocations needed for retrieving container c.

 : the bay configuration. Let 0 represent the initial configuration.

lmin : the smallest label of containers in .

 : the set of containers labeled lmin in .

The general steps of the SEM heuristic are as follows:

Step 0. Let = 0 . Set k=1 and i=1, i.e., the index of the first batch and the index of the first target container.

Step 1. If k > K, STOP – all containers have been retrieved; otherwise, given and the truck arrival information of

batch k, update by adding the number of containers in the first sub-batch to the labels of the containers in the second

sub-batch.

Step 2. Identify lmin and construct . If there is only one container in , let this container be it ; otherwise,

determine it and update accordingly using the Sequencing Rule.

Step 3. Calculate
it

r . If 0
it

r = , go to step 4; otherwise, move the
it

r number of blocking containers from top to

bottom to the stacks determined by the Relocating Rule and is updated as a result.

Step 4. Retrieve it from . If
1

k

j

j

i C
=

= , which means all containers in batch k have been retrieved, then set

k=k+1 and go to step 1; otherwise, set i=i+1, go to step 2.

5.2.2 Heuristic rules in the SEM

The sequencing rule and the relocation rule are introduced here.

Sequencing rule

The SEM heuristic uses an intuitive sequencing rule, the main idea of which is choosing the container with the least

number of blocking containers from the candidate containers.

Step 1. Given , lmin , and , compute the cr of each container c .

Step 2. Sort { : }cr c in non-decreasing order of cr . Choose the one with the lowest cr from as the target

container it , breaking ties arbitrarily.

Step 3. Update by increasing the labels of the containers in \ it by one.

Appendix B.2 provides an example illustrating the above sequencing rule.

Relocating rule

The relocating rule used in the SEM heuristic follows the basic idea of the rule in the EM extension heuristic but uses

a new blocking index and a new delay index - BIS (blocking index considering sequencing) and DIS (delay index

considering sequencing) - to break ties. This is important because the blocking container in the batch model is not

necessarily blocking in the SCRP-FS in which the container retrieval sequence is flexible. Therefore, in order to make

correct decisions for the relocation positions, we need new indexes that can take into account the flexible service sequence.

The idea behind the BIS is that container c being blocking if relocated to stack s occurs only in the scenario where c

is in the latter sub-batch and there is at least one container i sc M in the former sub-batch, where sM is the set of

25

containers labeled M and located in s . The idea behind the DIS is that a container ic is surely being the first one to be

retrieved in its batch only in the situation that satisfies the following two conditions: 1) ic is in the former sub-batch; 2)

ic has the lowest number of blocking containers among the containers in the former sub-batch. The details of computing

()BIS s and ()DIS s are given in Appendix B.3.

For the sake of completeness, the relocating rule of the SEM to determine the storage position of a blocking container

c from stack s is presented as follows.

[Condition 1] There is an available stack s s such that () cm s l .

Let
{1,..., }\

= min () : () c
s S s

M m s m s l

 . Select a stack that satisfies ()m s M = . Break ties by choosing from the highest

ones, finally selecting the leftmost one if any ties remain.

[Condition 2] For all stack s s , () cm s l .

Let
{1,..., }\

= max ()
s S s

M m s

 . Select a stack that satisfies ()m s M = . In case of ties, if cM l= , choose from the ones with

the minimum ()BIS s ; if cM l , choose from the ones with the minimum ()DIS s . Further ties are broken by choosing

from the highest ones, finally selecting the leftmost one if any ties remain.

5.3 SEML (Sequencing based Expected Minmax with Look-ahead horizon) heuristic

The SEML improves the SEM by using a sophisticated sequencing rule that applies a look-ahead strategy dedicated to

performing the most promising retrieval sequence. Recalling the sequencing rule of the SEM heuristic, in case of tie that

more than one container has the lowest number of blocking containers among the containers with the smallest labels, i.e.,

there is more than one potential target container, the SEM chooses one arbitrarily as the next target container (Step 2 in

Section 5.2.2). The idea of the SEML heuristic is to break this tie more precisely with look-ahead evaluation. The look-

ahead horizon H is equal to the number of potential target containers in case of the tie. To be more specific, the SEML

first evaluates the contribution of each feasible retrieval sequence of the potential target containers to the total number of

relocations, and then, the sequence that contributes least is selected as the actual retrieval sequence of these potential

target containers. The contribution is measured by the sum of the number of realized relocations during the retrievals of

the potential target containers and the lower bound of the configuration after these retrievals. A new lower bound is

proposed with minor modification of the LB-FS, because the SEML applies to both SD nodes and RD nodes while the

LB-FS does not apply to SD nodes. In the new lower bound, the containers with the same priority label whose truck arrival

sequence have been revealed are not considered blocking each other. The relocating rule used in the SEML is the same

as that in the SEM. The details of the sequencing rule are presented below, and an illustration is provided in Appendix

B.4.

Step 1. Given , lmin , and , compute the cr of each container c .

Step 2. Sort { : }cr c in non-decreasing order of cr . Construct the set of potential target containers

 | min :c cc r r c= . Set | min :c cH c r r c= = . If H=1, then choose the only potential target container as the

target container it . Update by increasing the labels of the containers in \ it by one. Otherwise, go to Step 3.

Step 3. Look-ahead evaluation

Step 3.1. Update by increasing the labels of the non-potential containers in by H.

Step 3.2. Enumerate all feasible retrieval sequences (H! number in total) for the potential target containers.

Step 3.3. Update the labels of the potential target containers according to one feasible retrieval sequence that has not

been evaluated and obtain a tentative configuration to be evaluated.

Step 3.4. Given the tentative configuration, retrieve the potential target containers, move the blocking containers

according to the relocating rule, and count the number of relocations incurred. Compute the lower bound

26

of the consequent configuration and the contribution. If all retrieval sequences have been evaluated, choose

the one with the least contribution as the determined retrieval sequence for the potential target containers,

breaking ties arbitrarily. Then, update according to the determined retrieval sequence of the potential

target containers; otherwise, go to Step 3.3.

Step 3.5. The container with lmin is selected as the target container it .

6. Simulation model

In this section, we develop a discrete-event simulation model to evaluate the effectiveness of the exact algorithms and

the heuristics respectively in terms of the two performance metrics: the total number of relocations and the average

relevant truck waiting time. Simulation is needed for evaluating heuristics because the solutions of the heuristics depend

on the scenario of truck arrivals. The necessity of a simulation model for evaluating exact algorithms is because the exact

algorithms to be evaluated (the (extended) APBFS algorithm and the PBFS algorithm) do not record the service

completion time for each batch. Hence, in order to evaluate the relevant truck waiting time, we need to simulate the

complete retrieval process by using the optimal solutions. To the best of the authors’ knowledge, this study is the first one

that implements a simulation model to evaluate SCRP’s optimal solutions that are derived from in a decision tree. Our

main focus in this section is to show how to evaluate the solutions of the exact algorithms by using the developed discrete-

event simulation model.

6.1 Input and output data

The input data of the simulation model includes: i) the problem instance that consists of the container stacking

configuration, the batch information and the customer preference, ii) the truck arrival times, and iii) the handling time per

relocation move and the handling time per retrieval move. The direct output for each container/truck includes: i) the

number of relocations, ii) the service starting time, and iii) the service completion time. Then, we can output the total

number of relocations and the average relevant truck waiting time. By definition, the relevant waiting time of a truck is

calculated by: service completion time – service starting time – the handling time per retrieval move. The average relevant

waiting time for a sample is obtained by taking the average over the relevant waiting times of all trucks. In addition, we

also output the average delay and the average turn time, which will be explained in Section 7.3.2.

6.2 Model structure and functions

The simulation model consists of three major programs: a truck generator, an optimizer, and a simulator, which are

subsequently described in detail. All programs are implemented in Matlab.

6.2.1 Truck generator

The truck generator program creates truck arrival times. Given a problem instance with an initial priority matrix and a

customer matrix, N samples of truck arrival times are generated by respecting the appointed time windows and customer

preferences. First, the sub-batch of a truck is generated based on the probability given by its customer preference p, such

that on expectation each truck is allocated to the first sub-batch for N*p times and the second sub-batch for N*(1-p) times.

Second, the sub arrival time window of the truck is generated by using its sub-batch, its appointed time window, and the

length of the implemented appointment time window. Last, the specific arrival time of the truck is uniformly generated

within its sub arrival time window. To ensure a fair comparison of different algorithms, seed initialized distribution is

used. Thus, identical random truck arrival times can be used in simulating different algorithms and the simulation results

are repeatable by applying identical problem instances.

6.2.2 Optimizer and simulator

The optimizer program generates the decisions on retrieval sequence and relocation positions, which feeds the simulator

to perform tasks. The simulator is the core of the simulation model. Its main task is to perform the moves specified by the

output of the optimizer, keep track of the state of the container stack, count the number of relocations, and record the

time-related performance. The simulation model can evaluate both the exact algorithms and the heuristics but differs in

27

the optimizers and the way the simulators extract the decisions from the output of the optimizers. When evaluating

heuristics, the relevant heuristic is used as an optimizer; and the simulator reads both the problem instance and the output

of the truck generator. When evaluating the exact algorithms, the exact algorithm is used as an optimizer to produce the

optimal solutions; and the simulator reads the problem instance and executes the optimal solutions. Details of the

simulation model for evaluating exact algorithms are described below.

The simulation model contains three types of discrete events: revealing the truck arrival information for a batch,

relocating a container, and retrieving a container. Given a problem instance, first, the optimizer is invoked, that is, an

exact algorithm is executed to obtain the optimal solution. The obtained optimal solution is cached in a tree structure,

which we call ‘solution tree’. The simulator reads a truck arrival sample output by the generator and reveals it batch by

batch. Once a batch is revealed, the simulator looks up the solution tree to extract the decisions for that batch and performs

retrieval moves and relocation moves accordingly. An overview of the architecture of the simulation model is presented

in Fig. 6.

Output

Problem

Instance

Truck Arrival

TimesT
ru

ck

G
en

er
a
to

r

Input

Reveal a batch

Optimizer

Decisions for the revealed batch

Perform retrieval and relocation

Solution Tree

Container

Stack

Simulator

Fig. 6 The architecture of the simulating model for evaluating exact algorithms

We use the example in Fig. A.2 in Appendix A to illustrate the simulation process. Given the problem instance, i.e., the

initial node in Fig. A.2, the optimizer is first invoked to generate the solution tree. Then, given a sample of truck arrival

times, the simulator reads the sample and reveals it batch by batch. Once a batch is revealed, the simulator looks up the

solution tree to identify the SD that matches the revealed container stack and extracts the optimal retrieval sequence for

that batch. The decision on the retrieval sequence of a batch is included in the best offspring (a RD node) of the identified

SD node. For example, let us consider the scenario in which the truck arrival information of the first batch is revealed as

that in node n. Firstly, the optimal retrieval sequence for the first batch is extracted to be the one indicated in node n2. The

simulator then retrieves container 3 and records its service start time and service completion time. Secondly, the container

stack is changed to n3. Notice that the next container to be retrieved (container 4) has a blocking container. When there

are blocking containers to be relocated, the simulator looks up the solution tree to identify the optimal relocation positions.

The decisions on the relocation positions are obtained by tracing the best offspring (e.g., n4) of the node in which the

blocking containers are located (e.g., n3). In the considered scenario, the best relocation position for the blocking container

above container 4 is identified to be the empty stack. The simulator then relocates the blocking container to the empty

stack, retrieve container 4, and records the service starting time and service completion time of container 4. Finally, the

container stack is changed to node n4. After that, the simulator continues to reveal the truck arrival information for the

second batch and perform tasks in the same way. It should be noted that after each event, the container stack needs to be

abstracted to ensure that it can be matched with one of the nodes in the solution tree.

7. Computational experiments

In this section, we test the proposed models and solution methods through enormous numerical experiments using the

simulation model introduced in Section 6. We present four sets of experiments. Firstly, we test the solving capabilities of

the two proposed exact solution algorithms; and we show the improvement of the Sooo extension model over the Sooo

28

model on the relevant truck waiting time. Secondly, we evaluate the effectiveness and the efficiency of the two proposed

heuristics by comparing them with the exact solutions of the Sooo extension model; and we compare the performances

of the two heuristics to conclude a superior one. Thirdly, we evaluate the effect of the proposed flexible service policy as

opposed to the FCFS policy and analyze the impacts of the combinations of different bay layouts and fill rates, average

batch sizes and customer preferences on the effect of the flexible service policy. Lastly, we analyze the influence of

customer preference on the Sooo extension model.

All algorithms and simulation models are coded in MATLAB 2018a, partially based on the source code of Galle et al.

(2018b) which is available at https://github.com/vgalle/StochasticCRP. All experiments are performed on a desktop with

Intel® Core ™ i5-7500 3.40 GHz CPU, 8 GB of RAM, and 64-bit Windows 10 Enterprise. The time limit for running the

exact algorithm for each instance is set to one hour (3600 seconds) because some instances are extremely time-consuming.

Our experiment dataset is adapted from the set of CRPTW instances in the literature (Ku and Arthanari, 2016a) which

is available at http://crp-timewindow.blogspot.com. The existing instance set is composed of 1440 instances forming 48

classes. The problem classes are characterized by the size (T×S) and the fill rate (μ) of the bay, with T varying from three

to six tiers, S varying from five to ten stacks and two μ being considered: 50% and 67%. Given a bay size and a fill rate,

the number of containers in the bay is calculated by C = round(μ*T*S), where round(x) rounds x to its closer integer.

There are on average two containers per batch, i.e., the average batch size is two. For each such class setting, 30 instances

are included, varying in the stacking positions of the containers and the number of containers of each batch. To provide a

meaningful interpretation for our model, we consider larger batches with up to on average six containers per batch. The

instances of larger batches are obtained by slightly modifying the existing instance set following the method in Galle et

al. (2018b), which merges r batches using /w w r = , where w is the original batch of a container and w is its modified

batch. As a result, we have instances with small batches (on average 2 containers per batch), large batches (on average 4

containers per batch), and ultra-large batches (on average 6 containers per batch). We use ‘the number of tiers (T) – the

number of stacks (S) – the fill rate (μ) – the average batch size (B)’ to represent our problem class. We do not distinguish

problem scales accurately because all the relevant factors – T, S, μ, B – have an influence on the computation times of the

exact algorithms and the random initial configuration of the container stack also has a great influence. Instead, we consider

a problem as a larger problem if it has a larger rate and/or larger batches while other factors (T and S) are the same.

Because the instances with ultra-large batches are very hard to be solved optimally, we only use their near-optimal

solutions obtained by heuristics to show a positive difference between the FCFS policy and the SOOO policy in Section

7.3.2.

Regarding the customer preference, we consider three scenarios of homogenous preference, in which the preferences

of all trucks are respectively 0%, 50%, and 100%, and a scenario of heterogeneous preference, in which the preference of

each truck is randomly generated and thus differs from each other. The instances with scenario ‘50%’ are referred to as

the benchmark set, as they are equivalent to the instance set of the batch model. In this scenario, the probability of each

SD node is the same (i.e., 0.25). In the scenario ‘0%’ and ‘100%’, all trucks will arrive at the second sub-time window

and the first sub-time window respectively. The truck generator program introduced in Section 6.1 is used to generate

1000 samples of truck series for each instance associated with a scenario of customer preference. The appointment time

window is set to be 30 minutes. The handling times per relocation move and per retrieval move are calibrated according

to the technical capabilities of yard cranes. A Rubber-Tyred Gantry Crane (RTG) can perform 20–25 moves on average

per hour, but its realized performance in practice is typically less than 12 moves per hour (Saanen, 2011), which indicates

that each move takes on average 2.4 - 5 minutes. Considering that a retrieval move usually takes longer to complete than

a relocation move due to the need for coordination with the truck drivers, we set 2 minutes for a relocation move and 4

minutes for a retrieval move.

7.1 Performance of the proposed models and exact algorithms

In this section, we evaluate the performances of the exact algorithms, test the tightness of LB-FS, and compare the

average relevant truck waiting time between the Sooo model and the Sooo extension model. All results are obtained by

simulating optimal solutions.

29

7.1.1 Performances of the exact algorithms

Table 2 shows the results of instances with small batches and the 50% fill rate. The first three columns list the problem

class, which is characterized by the number of stacks (S), the number of tiers (T), and the number of containers (C). The

average batch size is omitted here as all instances have the same average batch size (i.e., two). Column ‘lb’ gives the value

of lower bound obtained by our proposed lower bound LB-FS. Columns five to nine and Columns ten to fourteen

respectively report the simulation results of the APBFS algorithm and the extended APBFS algorithm. Column ‘Opt’

gives the average of the expected total number of relocations over 30 instances, which is the theoretically optimal solution

obtained by the exact algorithm. Colum ‘Solved’ reports the number of instances that the relevant exact algorithm is able

to solve to optimality within the time limit (1 hour), where ‘√’ indicates that all 30 instances for a problem class are solved

to optimality. Column ‘CPU(s)’ reports the average computation time for the solvable instances in seconds. Column ‘Rel’

and column ‘AveWait’ respectively give the average of the total number of relocations and the average of the relevant

truck waiting time over 30 instances, each one based on 1000 samples, which are obtained by simulation.

Table 2 Results of the APBFS and the extended APBFS algorithm for instances with small batches and 50% fill rate

T S C lb

 Sooo - APBFS Sooo extension - extended APBFS

Opt Solved CPU(s) Rel
AveWait

(min)
 Opt Solved CPU(s) Rel

AveWait

(min)

3 5 8 1.454 1.478 √ 0.02 1.478 3.319 1.478 √ 0.03 1.478 3.207

 6 9 1.558 1.582 √ 0.02 1.581 3.428 1.582 √ 0.03 1.581 3.303

 7 11 2.608 2.654 √ 0.02 2.654 3.485 2.654 √ 0.03 2.654 3.356

 8 12 2.163 2.169 √ 0.01 2.169 3.091 2.169 √ 0.03 2.169 3.014

 9 14 2.875 2.884 √ 0.02 2.885 3.226 2.884 √ 0.04 2.885 3.106

 10 15 3.092 3.094 √ 0.03 3.093 3.044 3.094 √ 0.06 3.093 2.930

4 5 10 2.725 2.856 √ 0.02 2.855 3.534 2.856 √ 0.03 2.855 3.411

 6 12 3.371 3.461 √ 0.03 3.466 3.532 3.461 √ 0.05 3.466 3.351

 7 14 3.817 3.944 √ 0.04 3.941 3.485 3.944 √ 0.05 3.941 3.324

 8 16 4.475 4.555 √ 0.16 4.559 3.556 4.555 √ 0.20 4.559 3.390

 9 18 5.467 5.526 √ 0.29 5.523 3.691 5.526 √ 0.34 5.523 3.474

 10 20 5.983 6.016 √ 0.72 6.015 3.334 6.016 √ 0.80 6.015 3.181

5 5 13 4.371 4.883 √ 0.16 4.883 4.042 4.883 √ 0.19 4.884 3.900

 6 15 5.138 5.546 √ 2.44 5.544 3.708 5.546 √ 2.98 5.544 3.553

 7 18 6.246 6.575 √ 0.72 6.573 3.993 6.575 √ 0.77 6.573 3.777

 8 20 7.017 7.519 √ 7.57 7.516 3.695 7.519 √ 8.16 7.516 3.482

 9 23 8.358 8.699 29 67.35 8.696 3.835 8.699 29 68.25 8.696 3.606

 10 25 8.883 9.237 29 39.40 9.238 3.719 9.237 29 49.37 9.238 3.517

6 5 15 5.975 7.004 √ 4.56 6.999 4.034 7.004 √ 5.06 6.999 3.886

 6 18 6.900 7.729 √ 5.48 7.728 4.162 7.729 √ 6.18 7.728 3.959

 7 21 8.575 8.925 23 294.96 8.991 4.026 8.925 22 160.87 8.923 3.787

 8 24 9.258 9.886 22 150.07 9.881 3.998 9.886 22 164.07 9.882 3.748

 9 27 10.275 10.538 18 100.24 10.538 3.661 10.538 18 104.47 10.538 3.419

 10 30 11.692 11.576 19 285.31 11.599 3.785 11.576 18 108.52 11.576 3.580

*Note: customer preference scenario: 50%

From Table 2, we can see that the solution capacity of the two algorithms is quite similar. Both of them are capable of

solving all the instances with T= 3 and T=4 in less than one second and 98.9% (178/180) of the instances with T=5 within

the time limit. As T increases to six, some instances are extremely time-consuming. We call the instances that cannot be

solved within one hour ‘hard instances’. The number of hard instances for each problem class is basically the same as that

for the PBFS algorithms, which indicates that our proposed exact algorithms are effective for the SCRP-FS. We observe

that the hard instances for the two proposed algorithms are the same except the classes of (T=6, S=7) and (T=6, S=10).

30

This is because the search rules used in the two algorithms are basically the same. The only difference is that in the

extended APBFS algorithm the nodes that perform equally in terms of the primary objective are further explored in order

to find the node that is optimal to the secondary objective. This leads to that the extended APBFS algorithm requires a

longer CPU time to prove optimality, which can be observed from the CPU columns. It should be pointed out that for the

problem classes of (T=6, S=7) and (T=6, S=10), the CPU times for Sooo extension are much shorter than that of Sooo.

This is because the Sooo model is able to solve one more instance than the Sooo extension model within the allowed

computational time limit (i.e. 3600 seconds), and this extra instance is too time-consuming to solve for the Sooo extension

model. A fair comparison of two models can be referred to Section 7.1.2 and Table C.4. Due to the unavailability of the

optimal solutions for hard instances, these hard instances are excluded from the simulation. For the problem class that

includes any hard instance, Table 2 only reports the average over the solved instances in columns ‘CPU’, ‘Rel’ and

‘AveWait’. In addition, as expected, the optimal solutions in terms of the total expected number of relocations (Opt) of

the two models are the same. Besides, the gap between the ‘Opt’ and the ‘Rel’ in both models is insignificant, which is

within [-0.08%, 0.09%], indicating that our samples are large enough to approximate the actual values.

The results of the extended APBFS algorithm for larger instances are given in Appendix C.1. From Table 2 and

Appendix C.1, we can conclude that the extended APBFS can solve 87.5% (42/48) of the instances with T=3,4 within 30

seconds. In the tables in Appendix C.1, lb* represents the calibrated lower bound, which takes the average of the lb of the

instances that are solved optimally. By comparing lb*and Opt, we can find that the relative difference between the lower

bound and the optimal solution for instances with higher stacks (larger T) is greater than that with lower stacks (smaller

T). This can be explained by the fact that the chance of a container being relocated more than once in a bay with higher

stacks is greater than that in a bay with lower stacks. Since our lower bound only counts the number of blocking containers

that are relocated at least once, it is tighter for lower bays. For all the instances with lower bays (T=3, 4) in Table 2 and

Appendix C.1, our lower bound is within 13.11% of the optimal solution, and in about 73% (35/48) cases our lower bound

is very close to the optimal solution with a gap within 5%. Since in many container terminals, laden containers are stacked

up to four tiers due to safety issues and efficiency considerations, our lower bound can efficiently evaluate the least

number of relocations needed to empty a bay, which could help to determine a favorable container stacking configuration.

Remark: it is observed that the CPU time deviates greatly for different instances even their problem classes are the

same. After a closer check, we find that the initial configuration of the container stack has a great influence on the solution

computational efficiency.

7.1.2 Comparison of the Sooo model and the Sooo extension model

For a fair comparison of the relevant truck waiting time between the two models, we calibrate the results of ‘CPU’,

‘Rel’ and ‘AveWait’ in Table 2 to ensure that only the instances that are solved optimally by both algorithms are included

into the comparison. The calibrated results are presented in italic in Table C.4 of Appendix C.2. Besides, we compare the

results of the two models for instances with a 67% fill rate, which are shown in Table 3 and Table 4 (the numbers in italic

represent the calibrated results). Comparing the ‘Rel’ of the two models, it is found that the simulated total number of

relocations of the two models are the same in most cases, with only five problem class occurring a difference of 0.001

number of relocations. The occurrence of this difference seems counterintuitive, but it might happen only because we are

sampling. However, as the difference is quite trivial, it is fair to compare the ‘AveWait’ of the two models based on our

samples. Column ‘Gap[AveWait]’ reports the gap between the average relevant truck waiting time of the two models,

which represents the benefits of taking into account the truck waiting time.

Comparing Table 3 with Table C.4, we can find that the gaps in the average relevant truck waiting time between the

two models are more significant for instances with a larger fill rate. Besides, in a comparison between Table 3 and Table

4, it can be found that the instances with more concentrated truck arrival patterns, that is, ‘0%’ customer preference

scenario, benefit more from the Sooo extension model. In addition, the results of small batches and large batches indicate

that the batch size does not have a significant influence on the relative difference of the relevant truck waiting time

between the two models. From Table C.4 and Tables 3-4, we can conclude that the reduction in the average relevant truck

31

waiting time in the Sooo extension model over the Sooo model is between 2.5% and 11%. Moreover, the CPU results

confirm that the extended APBFS algorithm takes a longer time to obtain the optimal solution than the APBFS algorithm.

Table 3 Comparison between the Sooo model and the Sooo extension model for instances with 67% fill rate and ‘50%’

customer preference scenario

T S C

 Sooo Sooo extension
Gap

[AveWait]

Solved CPU(s) Rel
AveWait

(min)
 Solved CPU(s) Rel

AveWait

(min)

Small batches

3 5 10 √ 0.04 2.786 3.387 √ 0.05 2.786 3.224 4.81%

 6 12 √ 0.04 3.620 3.710 √ 0.05 3.620 3.524 5.01%

 7 14 √ 0.03 3.759 3.655 √ 0.06 3.759 3.506 4.08%

 8 16 √ 0.05 4.382 3.577 √ 0.08 4.382 3.385 5.37%

 9 18 √ 0.07 4.816 3.580 √ 0.11 4.816 3.408 4.80%

 10 20 √ 0.07 5.066 3.327 √ 0.11 5.066 3.176 4.54%

4 5 13 √ 0.11 5.071 4.130 √ 0.14 5.071 3.976 3.73%

 6 16 √ 1.10 6.931 4.109 √ 1.19 6.931 3.898 5.14%

 7 19 √ 1.01 6.929 3.646 √ 1.16 6.929 3.465 4.96%

 8 21 √ 13.98 7.969 3.829 √ 20.25 7.969 3.601 5.95%

 9 24 √ 11.08 9.257 3.825 √ 11.80 9.257 3.619 5.39%

 10 27 27 69.81 9.622 3.620 27 92.17 9.622 3.426 5.36%

Large batches

3 5 10 √ 0.51 2.403 7.208 √ 0.90 2.403 6.945 3.65%

 6 12 √ 0.58 3.245 7.804 √ 1.21 3.245 7.468 4.31%

 7 14 √ 1.41 3.518 8.119 √ 3.58 3.518 7.720 4.91%

 8 16 √ 1.13 4.180 7.671 √ 3.36 4.179 7.281 5.08%

 9 18 √ 1.46 4.484 7.680 √ 4.05 4.485 7.349 4.31%

 10 20 √ 0.93 4.755 7.338 √ 3.40 4.755 6.937 5.46%

4 5 13 √ 8.60 4.632 8.618 √ 27.60 4.631 8.342 3.20%

 6 16 28 13.31 6.167 8.502 28 39.35 6.167 8.091 4.83%

 7 19 28 36.99 6.307 7.681 28 175.06 6.307 7.310 4.83%

 8 21 28 12.32

7.027 8.036 26 73.15 7.027 7.580 5.67%

 9 24 27 71.98 8.208 8.086 24 320.01 8.208 7.655 5.33%

 10 27 23 153.87 8.898 7.673 21 441.13 8.898 7.233 5.73%

32

Table 4 Comparison between the Sooo model and the Sooo extension model for instances with 67% fill rate and ‘0%’

customer preference scenario

T S C

 Sooo Sooo extension
Gap

[AveWait]

Solved CPU(s) Rel
AveWait

(min)
 Solved CPU(s) Rel

AveWait

(min)

Small batches

3 5 10 √ 0.03 2.500 3.307 √ 0.04 2.500 2.993 9.48%

 6 12 √ 0.03 3.367 3.672 √ 0.04 3.367 3.289 10.44%

 7 14 √ 0.03 3.567 3.595 √ 0.05 3.567 3.329 7.42%

 8 16 √ 0.05 4.100 3.546 √ 0.07 4.100 3.171 10.58%

 9 18 √ 0.07 4.533 3.533 √ 0.10 4.533 3.204 9.33%

 10 20 √ 0.07 4.867 3.320 √ 0.10 4.867 3.023 8.94%

4 5 13 √ 0.06 4.600 3.944 √ 0.09 4.600 3.667 7.02%

 6 16 √ 0.18 6.600 4.067 √ 0.21 6.600 3.633 10.66%

 7 19 √ 0.20 6.567 3.589 √ 0.25 6.567 3.239 9.77%

 8 21 √ 1.06 7.633 3.803 √ 1.31 7.633 3.384 11.02%

 9 24 √ 2.96 8.967 3.836 √ 3.26 8.967 3.422 10.79%

 10 27 29 7.71 9.379 3.630 29 8.56 9.379 3.246 10.56%

Large batches

3 5 10 √ 0.46 1.800 6.887 √ 0.83 1.800 6.327 8.13%

 6 12 √ 0.50 2.700 7.683 √ 1.07 2.700 6.861 10.70%

 7 14 √ 1.23 2.967 7.990 √ 3.48 2.967 7.152 10.49%

 8 16 √ 0.94 3.533 7.471 √ 2.33 3.533 6.704 10.26%

 9 18 √ 1.08 3.833 7.452 √ 2.88 3.833 6.852 8.05%

 10 20 √ 0.82 4.233 7.287 √ 2.99 4.233 6.503 10.75%

4 5 13 √ 1.82 3.667 8.103 √ 6.19 3.667 7.441 8.16%

 6 16 √ 8.28 5.467 8.283 √ 132.93 5.467 7.433 10.26%

 7 19 √ 10.48 5.533 7.484 √ 173.77 5.533 6.789 9.28%

 8 21 √ 9.28 6.214 7.762 28 86.46 6.214 6.986 9.99%

 9 24 √ 25.06 7.733 8.042 √ 331.17 7.733 7.200 10.47%

 10 27 29 27.63 8.429 7.569 28 84.01 8.429 6.788 10.31%

7.2 Effectiveness of the proposed heuristics

In this section, we evaluate the effectiveness of the heuristic algorithms. First, we compare the results of the proposed

two heuristics with that of the extended APBFS algorithm. Second, we compare the performances of the two heuristics.

7.2.1 Comparison of the exact solutions and heuristic solutions

Table 5 compares the SEM heuristic and the SEML heuristic with that of the extended APBFS algorithm on instances

with small batches and a 50% fill rate. For a fair comparison, the heuristic results are calibrated (in italic) to ensure that

the comparison is based on the instances that are solved to optimality by the extended APBFS algorithm. Because the

CPU times of both heuristics are less than 1 second, they are not presented here. The best heuristic result for each problem

class is highlighted in bold, from which it can be observed that in almost all cases the SEML heuristic outperforms the

SEM heuristic. In addition, from the column Gap[Rel], we can see that for instances with T=3,4, our proposed SEML

heuristic performs quite well, with only at most 0.64% difference from the optimal solutions in terms of the total number

of relocations. Overall, the SEML heuristic is at most 3.41% more than the optimal total number of relocations. Regarding

the average relevant truck waiting time (Gap[AveWait]), the result of the SEML heuristic is at most 1.49% more than that

of the extended APBFS algorithm. Besides, occasionally, the SEML heuristic even outperforms the extended APBFS

algorithm slightly in terms of the relevant truck waiting time. This is not surprising, because the Sooo extension model

aims to minimize the total waiting times of each batch sequentially rather than minimizing the total waiting times of all

33

the trucks. Because the total waiting time of all trucks is jointly determined by the number of relocations of and the service

sequence of each truck, the solutions with the same total number of relocations may lead to different total waiting time

and it might also happen that the solutions with more relocations lead to less total waiting time.

Table 5 Comparison of the extended APBFS algorithm, SEM and SEML heuristics for small batches and 50% fill rate

T S C

Extended APBFS SEM SEML

Rel AveWait Rel AveWait Gap[Rel] Gap[AveWait] Rel AveWait Gap[Rel] Gap[AveWait]

3 5 8 1.478 3.207 1.478 3.208 0.00% 0.02% 1.478 3.208 0.00% 0.02%

 6 9 1.581 3.303 1.582 3.303 0.07% 0.02% 1.581 3.303 0.00% 0.00%

 7 11 2.654 3.356 2.654 3.359 0.00% 0.08% 2.654 3.359 0.00% 0.08%

 8 12 2.169 3.014 2.174 3.015 0.22% 0.04% 2.169 3.014 0.00% 0.01%

 9 14 2.885 3.106 2.886 3.106 0.05% 0.01% 2.886 3.106 0.03% 0.01%

 10 15 3.093 2.930 3.100 2.931 0.22% 0.04% 3.100 2.931 0.22% 0.04%

4 5 10 2.855 3.411 2.891 3.408 1.26% -0.09% 2.874 3.403 0.64% -0.22%

 6 12 3.466 3.351 3.481 3.356 0.44% 0.15% 3.471 3.353 0.14% 0.06%

 7 14 3.941 3.324 3.986 3.332 1.15% 0.25% 3.960 3.327 0.49% 0.10%

 8 16 4.559 3.390 4.578 3.389 0.42% -0.02% 4.578 3.389 0.42% -0.02%

 9 18 5.523 3.474 5.532 3.471 0.15% -0.09% 5.532 3.472 0.15% -0.06%

 10 20 6.015 3.181 6.018 3.183 0.06% 0.06% 6.016 3.183 0.01% 0.06%

5 5 13 4.884 3.900 5.047 3.921 3.36% 0.55% 5.031 3.920 3.02% 0.51%

 6 15 5.544 3.553 5.633 3.558 1.61% 0.16% 5.619 3.554 1.35% 0.04%

 7 18 6.573 3.777 6.631 3.790 0.88% 0.33% 6.619 3.785 0.70% 0.20%

 8 20 7.516 3.482 7.636 3.500 1.60% 0.52% 7.619 3.497 1.37% 0.43%

 9 23 8.696 3.606 8.733 3.610 0.42% 0.11% 8.710 3.607 0.16% 0.04%

 10 25 9.238 3.517 9.301 3.518 0.68% 0.03% 9.285 3.515 0.50% -0.05%

6 5 15 6.999 3.886 7.237 3.944 3.40% 1.48% 7.238 3.944 3.41% 1.49%

 6 18 7.728 3.959 7.918 3.964 2.47% 0.13% 7.913 3.963 2.40% 0.11%

 7 21 8.923 3.787 9.011 3.772 0.98% -0.40% 9.011 3.772 0.98% -0.40%

 8 24 9.882 3.748 9.987 3.755 1.06% 0.16% 9.994 3.755 1.13% 0.18%

 9 27 10.538 3.419 10.652 3.429 1.08% 0.28% 10.652 3.429 1.08% 0.28%

 10 30 11.572 3.580 11.579 3.578 0.06% -0.06% 11.579 3.578 0.06% -0.06%

*Note: customer preference scenario: 50%

We compare the SEML heuristic with the extended APBFS algorithm on larger instances in Appendix C.1. The

comparisons are based on the instances that can be solved optimally by both the exact algorithm and the heuristic

algorithm. It can be seen that for the problem classes in Table 5 and in Appendix C.1 for which we have access to the

optimal solutions of all the 30 instances, the maximum gaps for the total number of relocations and the average relevant

truck waiting time are 4.28% and 1.49% respectively; and in about 84% (41/49) cases, the total number of relocations

obtained by the SEML heuristic is very close to the optimal solutions with gaps no more than 2%. Besides, for the problem

classes for which we only have access to the optimal solutions of part of the 30 instances, the maximum gap for the total

number of relocations and the average relevant truck waiting time are 9.80% and 1.53% respectively. With an enormous

number of instances in a range of sizes being evaluated, our experiments show strong evidence that the SEML heuristic

is a good solution to the SCRP-FS of practical sizes.

7.2.2 Comparison of the two heuristics

Furthermore, we compare the performance between the SME heuristic and the SMEL heuristic on all the instances with

a 67% fill rate. Appendix D displays the gaps between the two heuristics for instances with three to six tiers respectively.

The horizontal axis presents the characteristics of each instance: the customer preference scenario (P), the average batch

size (B), and the number of stacks (S). Gap[Rel]=(SEM[Rel]–SEML[Rel])/SEM[Rel]×100%, and Gap[AveWait]=

34

(SEM[AveWait]–SEML[AveWait])/SEM[AveWait] × 100%. In most cases, the SEML heuristic shows superior

performance on both measures to that of SEM heuristic, which confirms the importance of looking ahead on the decision

making of retrieval sequence. Although in very few cases the good performance on ‘Rel’ of the SEML heuristic is at the

expense of ‘AveWait’, the increases on ‘AveWait’ are no more than 1% compared with SEM. Given the better performance

quality of the SEML heuristic, we use SEML as the heuristic solver for the SCRP-FS in the remaining experiments.

7.3 Effect of the flexible service policy

In this section, we first verify the effectiveness of our proposed flexible service policy by comparing the Sooo extension

model with the base model. Then, various instances with different bay sizes and fill rates, batch sizes and customer

preference scenarios are tested to investigate their impacts on the effect of the flexible service policy.

7.3.1 Comparison of the base model and the Sooo extension model on the benchmark

In order to evaluate the effect of the proposed flexible service policy as opposed to the FCFS policy, we compare the

results of the Sooo extension model with the base model on the benchmark set. The benchmark set consists of the instances

with a 50% fill rate, small batches, and the ‘50%’ customer preference scenario. In order to obtain the results of the base

model, we slightly adapt the PBFS algorithm in Galle et al. (2018b) by using a new lower bound that incorporates the

characteristics of customer preference, which is similar to the idea of computing the BI in the EM extension algorithm.

Table 6 reports the calibrated results for comparison. Gap[Rel]=(Base model[Rel]–Sooo extension model[Rel])/ Base

model[Rel]×100%, and Gap[AveWait]=(Base model[AveWait]– Sooo extension model[AveWait])/ Base

model[AveWait]×100%. We can see that around 2% - 13% reduction in the total number of relocations can be achieved

by the Sooo extension model compared with the base model on the benchmark set. The effectiveness of the flexible policy

is also demonstrated by the around 4.3% - 8.4% reduction in the average relevant truck waiting time.

Table 6 Comparison between the base model and the Sooo extension model on the benchmark instance set

T S C

Base model* Sooo extension model Gap

Opt Solved CPU(s) Rel
AveWait

(min)
 Opt Solved CPU(s) Rel

AveWait

(min)

 Gap[Rel] Gap

[AveWait]

3 5 8 1.703 √ 0.02 1.700 3.436 1.478 √ 0.03 1.478 3.207 13.03% 6.66%

 6 9 1.739 √ 0.01 1.737 3.487 1.582 √ 0.03 1.581 3.303 9.00% 5.28%

 7 11 2.878 √ 0.02 2.878 3.544 2.654 √ 0.03 2.654 3.356 7.79% 5.30%

 8 12 2.308 √ 0.02 2.307 3.148 2.169 √ 0.03 2.169 3.014 5.95% 4.26%

 9 14 3.004 √ 0.02 3.006 3.235 2.884 √ 0.04 2.885 3.106 4.02% 3.98%

 10 15 3.192 √ 0.02 3.193 3.066 3.094 √ 0.06 3.093 2.930 3.14% 4.45%

4 5 10 3.108 √ 0.02 3.107 3.657 2.856 √ 0.03 2.855 3.411 8.08% 6.74%

 6 12 3.675 √ 0.03 3.676 3.559 3.461 √ 0.05 3.466 3.351 5.70% 5.85%

 7 14 4.164 √ 0.03 4.164 3.522 3.944 √ 0.05 3.941 3.324 5.37% 5.62%

 8 16 4.819 √ 0.16 4.820 3.592 4.555 √ 0.20 4.559 3.390 5.42% 5.63%

 9 18 5.730 √ 0.33 5.729 3.670 5.526 √ 0.34 5.523 3.474 3.58% 5.35%

 10 20 6.275 √ 0.75 6.272 3.353 6.016 √ 0.80 6.015 3.181 4.10% 5.13%

5 5 13 5.323 √ 0.15 5.325 4.198 4.883 √ 0.19 4.884 3.900 8.29% 7.09%

 6 15 5.911 √ 4.38 5.914 3.813 5.546 √ 2.98 5.544 3.553 6.25% 6.83%

 7 18 6.965 √ 1.11 6.969 4.046 6.575 √ 0.77 6.573 3.777 5.68% 6.64%

 8 20 7.847 √ 7.85 7.846 3.703 7.519 √ 8.16 7.516 3.482 4.21% 5.98%

 9 23 8.999 28 70.96 9.005 3.829 8.704 29 70.61 8.701 3.609 3.38% 5.76%

 10 25 9.547 29 47.92 9.547 3.716 9.237 29 49.37 9.238 3.517 3.24% 5.34%

6 5 15 7.595 √ 4.98 7.590 4.244 7.004 √ 5.06 6.999 3.886 7.79% 8.43%

 6 18 8.232 √ 17.45 8.231 4.249 7.729 √ 6.18 7.728 3.959 6.11% 6.82%

 7 21 9.394 23 251.90 9.393 4.077 8.925 22 160.87 8.923 3.787 5.00% 7.11%

 8 24 10.318 22 134.48 10.313 3.989 9.886 22 164.07 9.882 3.748 4.18% 6.03%

 9 27 10.713 18 103.13 10.714 3.609 10.538 18 104.47 10.538 3.419 1.64% 5.26%

 10 30 11.804 17 234.62 11.809 3.774 11.551 18 114.81 11.547 3.583 2.22% 5.06%

*Note: The base model refers to the batch model of Galle et al. (2018b) in the new context of customer preference-based

35

arrivals.

7.3.2 Effect of the flexible service policy in different scenarios

Based on all instances (including the instances with ultra-large batches), we analyze the impacts of the combinations

of different bay sizes (T*S) and fill rates (μ), truck appointment patterns (the average batch size) and truck arrival

behaviors (the customer preference scenario) on the effects of the flexible service policy. The results of all instances are

obtained by simulating heuristic solutions except the results of the benchmark set which are from the optimal solutions in

Table 6.

Effect on the number of relocations

Fig. 7 depicts the relative reduction in the total number of relocations. In each figure, six plots are presented, varying

in the average batch size in the horizontal direction and the customer preference scenario in the vertical direction. Note

that because the relative reductions for the ‘0%’ and ‘100%’ customer preference scenarios are the same, we only present

the result of one scenario in the vertical direction. As shown in Fig. 7, the effect on relocation reduction is more significant

for the cases with larger batch sizes and the cases with more concentrated truck arrivals within the appointed time window

(i.e., the ‘0%’ customer preference scenario). The reason is that these cases provide more opportunities for out-of-order

retrievals to reduce relocations as there are more trucks in the same sub-batch. Note that under the cases where the

customer preference scenario is ‘0%’, the SCRP-FS is equivalent to the deterministic CRP with flexible service policies

(CRP-FS) in which all the trucks in the same batch are allowed to be retrieved out-of-order. The effect of the flexible

service policy is maximized in the context of the CRP-FS as the container retrieval order has the greatest flexibility and

meanwhile, the truck arrival uncertainties are completely offset.

Fig. 7(a) Effect of the flexible service policy on the total number of relocations for instances of 50% fill rate

4 5 6 7 8 9 10 11
0%

20%

40%

60%

80%
CustPref=0 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0%

20%

40%

60%

80%
CustPref=0.5 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0%

20%

40%

60%

80%
CustPref=0 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0%

20%

40%

60%

80%
CustPref=0.5 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0%

20%

40%

60%

80%
CustPref=0 BatchSize=6

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0%

20%

40%

60%

80%
CustPref=0.5 BatchSize=6

T = 3

T = 4

T = 5

T = 6

Number of stacks

R
el

at
iv

e
R

ed
u
c
ti

o
n
 i

n
 T

o
ta

l
N

u
m

b
er

 o
f

R
el

o
ca

ti
o

n
s

36

Fig. 7(b) Effect of the flexible service policy on the total number of relocations for instances of 67% fill rate

Furthermore, we can find that the relative reduction in the number of relocations depends on the bay size (T*S) and the

fill rate (μ). In general, the percentage is decreasing as the bay size and the fill rate get larger. To understand this, let us

consider the benefits of the flexible service policy. For each out-of-order retrieval, the direct benefit is avoiding one

relocation, and the indirect benefit is avoiding future relocations that might be caused by the blocking container if it is

not retrieved out-of-order. As T and μ increases, the likelihood of blocking become greater, but the increasing number of

blocking containers cannot be offset completely by implementing the proposed flexible service policy as only the

containers in the same sub-batch are allowed to be retrieved out-of-order. In addition, as S increases, it is more likely that

a better relocating stack can be found for a relocated container, meaning that the relocated container being blocking again

in the future is less likely to occur, and thus the benefit of out-of-order retrieval is diminishing. This indicates that the bay

of smaller size and sparse stacking can benefit more from the flexible service policy. For the instances with on average

six trucks per batch and the ‘50%’ customer preference scenario, the peak relative reduction on the number of relocations

is around 38% and 30% respectively for the bay of 50% and 67% fill rate. This leads to a 9.6% and 11.3% reduction in

the average relevant waiting time respectively for the bay of 50% and 67% fill rate (see Appendix E.3).

Effect on the trucks waiting time

We also report the absolute reduction in the two performances. Note that the application of the flexible policy always

leads to positive reductions, we use “absolute reduction” only to differentiate it from “relative reduction”. The absolute

reduction on the average relevant truck waiting times shows a similar pattern as that on the total number of relocations

(see Appendix E.1 and Appendix E.2). However, in contrast to Fig. 7, the bay’s height and fill rate has a positive impact

on the relative reduction in the average relevant truck waiting time (see Appendix E.3). This is because the total relevant

truck waiting times include a fixed amount of time that is not influenced by the service policy. Recalling Section 3.2.2,

for each batch k, no matter what the solution is, we have to add ()
1

kC

ret
k

j

t C j

=

 − to the total relevant waiting times,

which is a fixed value. To obtain an accurate understanding of the effect of the flexible service policy on reducing trucks’

waiting times, we deduct this fixed amount of time from the total relevant waiting times and then take the average,

4 5 6 7 8 9 10 11
0%

20%

40%

60%
CustPref=0 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0%

20%

40%

60%
CustPref=0.5 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0%

20%

40%

60%
CustPref=0 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0%

20%

40%

60%
CustPref=0.5 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0%

20%

40%

60%
CustPref=0 BatchSize=6

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0%

20%

40%

60%
CustPref=0.5 BatchSize=6

T = 3

T = 4

T = 5

T = 6

Number of stacks

R
el

at
iv

e
R

ed
u
c
ti

o
n
 i

n
 T

o
ta

l
N

u
m

b
er

 o
f

R
el

o
ca

ti
o

n
s

37

resulting in a new average waiting time. To differentiate, we call it average delay time. The average delay time represents

the waiting time caused to each truck only due to relocation operations.

Fig. 8(a) Effect of the flexible service policy on average delay time for instances of 50% fill rate

Fig. 8(b) Effect of the flexible service policy on average delay time for instances of 67% fill rate

Fig. 8 depicts the relative reduction in the average delay time. The similar trend between Fig. 7 and Fig. 8 indicates

that the reduction in the number of relocations plays a direct role in reducing the average delay time. For the instances

4 5 6 7 8 9 10 11
15%

35%

55%

75%

95%
CustPref=0 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
15%

35%

55%

75%

95%
CustPref=0.5 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
15%

35%

55%

75%

95%
CustPref=0 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
15%

35%

55%

75%

95%
CustPref=0.5 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
15%

35%

55%

75%

95%
CustPref=0 BatchSize=6

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
15%

35%

55%

75%

95%
CustPref=0.5 BatchSize=6

T = 3

T = 4

T = 5

T = 6

Number of stacks

R
el

at
iv

e
R

ed
u
c
ti

o
n
 i

n
 A

v
er

ag
e
 D

el
a
y
 T

im
e

4 5 6 7 8 9 10 11
10%

25%

40%

55%

70%

85%
CustPref=0 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
10%

25%

40%

55%

70%

85%
CustPref=0.5 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
10%

25%

40%

55%

70%

85%
CustPref=0 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
10%

25%

40%

55%

70%

85%
CustPref=0.5 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
10%

25%

40%

55%

70%

85%
CustPref=0 BatchSize=6

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
10%

25%

40%

55%

70%

85%
CustPref=0.5 BatchSize=6

T = 3

T = 4

T = 5

T = 6

Number of stacks

R
el

at
iv

e
R

ed
u
c
ti

o
n
 i

n
 A

v
er

ag
e
 D

el
a
y
 T

im
e

38

with ultra-large batches and the customer preference scenario being ‘50%’, about 50% and 44% of the average delay time

can be reduced respectively for the bay of 50% and 67% fill rate as a result of out-of-order retrievals. The experiment

results also demonstrate (not presented in the figure) that on average one reduction in the number of relocations results in

1.07 minutes and 0.93 minutes reduction in the average relevant truck waiting time across all instances respectively for

the bay of 50% and 67% fill rate.

Moreover, we also measure the average turn time under the flexible service policy, which is shown in Appendix E.4.

The turn time of a truck is defined as the elapse of time between its arrival time and its retrieval service completion time.

Appendix E.4 shows an average difference of 15-minutes in the average turn time between the ‘0%’ customer preference

scenario and the ‘100%’ customer preference scenario. This is only due to the difference between the truck arrival times

that are generated for the two scenarios. Noticing that our appointment time window is set to be 30 minutes, the 15-

minutes difference validates our simulation results.

Effect on the service equity

Out-of-order retrievals might make some trucks perceive unfair service due to the adjustment of the service sequence.

To examine the equity of truck service, we use box plots to display the distributions of the truck turn time under the FCFS

policy and the flexible policy respectively, which is contrasted in Fig. 9. It can be observed that the maximum values of

the truck turn time (among all trucks’ turn times including the outliers) under the flexible service policy are generally

greater than that under the FCFS policy. This is not surprising because the flexible service policy makes some trucks that

arrive earlier being served at a later time due to the sequencing decision. However, because we restrict the out-of-order

retrievals within the same sub-group, the trucks arriving in the first sub-window will always be serviced before the trucks

arriving in the second sub-window, which means the service equity between two sub-groups of trucks is maintained. It

can be seen that the difference of the maximum turn times between two policies is only about five minutes among the

cases in Fig. 9. Besides, the differences are not obvious for the cases with higher tiers (T = 5, 6), and in some cases, the

flexible policy even has a shorter maximum turn time. The reason is that the instances with higher tiers require a higher

average number of relocations to retrieve a container, while the flexible policy can significantly reduce the number of

relocations and avoid the long waiting time compared to the FCFC service. Moreover, the flexible policy has a lower

minimum value of the truck turn time; and more importantly, the median and the mean of the trucks’ turn time under the

flexible policy are always smaller than those under the FCFS policy.

These results demonstrate that when the FCFS policy is replaced by the flexible policy, although some trucks may

experience a little longer turn time, on average the service each truck receives can be improved. This goal is consistent

with most of the existing relevant literature, e.g., minimizing the average waiting time (Borjian et al., 2015b; Zeng et al.,

2019) or minimizing total delay times (Borjian et al., 2013).

39

Fig. 9 Grouped box plots of the truck turn time under two service policies for the instances with 67% fill rate, ‘50%’

customer preference scenario and on average 6 containers per batch

7.4 Influence of customer preference

In this section, we analyze the influence of customer preferences on the results of the Sooo extension model. We

consider three sets of customer preference scenario: i) all trucks arrive at the first sub-time window with the probability

of 100% (‘100%’); ii) all trucks arrive at the first sub-time window with the probability of 50% (‘50%’); iii) trucks arrive

at the first sub-time window with different probabilities (heterogeneous). Appendix F reports the results obtained by the

extended APBFS algorithm of these three sets of customer preference scenarios on the instances with small batches and

a 50% fill rate. For the heterogeneous scenario, we generate 10 samples of customer preferences randomly for each of the

30 instances of each problem class, and hence, each problem class has 300 instances to be solved. The number of instances

that are solved optimally is given in the form ‘x/300’ and ‘√’ indicates that all instances out of 300 are solved optimally.

Note that it takes about six days to obtain the results of the problem class with T=6 and S=9 for the heterogeneous scenario

since 127 out of 300 instances cannot be solved optimally within one hour, we did not conduct the experiments of the

problem class with T=6 and S=10 (because it would take much longer computational time than six days).

Concerning the computational efficiency, from Appendix F, it is observed that the instances with the ‘100%’ scenario

take less time to obtain optimal solutions than the ‘50%’ scenario, and there are fewer hard instances for the ‘100%’

scenario. This can be explained by the fact that in the ‘100%’ scenario, each chance node only has one offspring, which

reduces the burden of the decision tree. By contrast, the heterogeneous scenario takes more time to be solved. The reason

is that the abstract technique does not work efficiently for the heterogeneous scenario as it rarely happens that two nodes

T
ru

ck
 t

u
rn

 t
im

e
(m

in
u
te

s)

Number of stacks

Mean FCFS Flexible

40

are equivalent since the preferences of customers differ from each other. Even so, there is no obvious change in the number

of hard instances, which can be seen from the ‘Solved’ columns of the ‘50’ scenario and the heterogeneous scenario.

In terms of the objective values, from Fig. 10, we can see that the heterogenous scenario and the ‘50%’ scenario perform

similarly, which have obvious differences from the ‘100’ scenario. This implies that if all customers tend to arrive at a

specific sub-time window of their appointed time windows, the results will be influenced significantly. Besides, if

customers have heterogeneous preferences, we can use the results of the ‘50%’ scenario as an approximation of the

objective values of the heterogeneous scenario. However, this does not mean that the solution of the ‘50%’ scenario is

feasible to the solution of the heterogeneous scenario.

(a) Comparison of the total number of relocations

(b) Comparison of the average relevant truck waiting time

 Fig. 10 Comparison between three sets of customer preference scenarios for instances with small batches and a 50%

fill rate

We summarize the key findings of the experiments below. Firstly, the solution capacity of the two proposed exact

solution algorithms is quite similar. The extended APBFS algorithm can solve 87.5% of the instances with T=3,4 within

30 seconds. Secondly, our proposed lower bound LB-FS is more effective for instances with lower tiers (T=3,4). In 73%

of the instances with T=3,4, our lower bound is fairly close to the optimal solution with a gap within 5%. Thirdly, for the

instances that can be solved optimally, the Sooo extension model can reduce the average relevant truck waiting time by

2.5% - 11% in comparison to the Sooo model, which indicates the significance of considering truck waiting time in

addressing the SCRP-FS. Fourthly, the SEML heuristic outperforms the SEM heuristic in both performances, which

demonstrates the importance of looking ahead on the decision-making of retrieval sequence. For the instances that we

1

2

3

4

5

6

7

8

9

10

11

5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9

3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6

T
o

ta
l

n
u
m

b
er

 o
f

re
lo

ca
ti

o
n
s

S

100%

50%

Heterogenous

T

2.6

2.8

3

3.2

3.4

3.6

3.8

4

5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9

3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6

A
v
er

ag
e

re
le

v
an

t
tr

u
ck

 w
ai

ti
n
g
 t

im
e

S

100%

50%

Heterogeneous

T

41

have access to the optimal solutions, in about 84% cases the total number of relocations obtained by the SEML heuristic

is very close to the optimal solutions with a gap within 2%, and the maximum gap is 4.28%. Fifthly, the proposed flexible

service policy can significantly reduce both the number of relocations and the relevant truck waiting times. Although

some trucks may experience a little longer turn time, on average the service each truck receives can be improved. For the

benchmark instance set, the largest relative reduction on the number of relocations is around 38% and 30%, which leads

to a 9.6% and 11.3% reduction in the average relevant waiting time, respectively, for the bay of a 50% and a 67% fill rate.

The benefit is more obvious for the instances with smaller and sparse bays, larger batches, and concentrated truck arrivals

within one of the sub-time windows. Lastly, customers preferring a specific sub-time window of their appointed time

windows has a great influence on the results.

8. Conclusions

In this paper, we have considered the stochastic container relocation problem with flexible service policies (termed as

SCRP-FS), which focuses on retrieving and relocating import containers with uncertain truck arrival orders. The trucks

arrive at the terminal randomly within their appointed time windows. The containers whose designated trucks arrive at

the same sub-time window are allowed to be retrieved out-of-order. Customers (trucks)’ preference is taken into

consideration to describe the randomness of truck arrivals within the same time window. The problem is first formulated

by a stochastic dynamic programming model to minimize the expected number of relocations, which is termed as the

Sooo model. Then a Sooo extension model is developed considering a primary objective the same as the Sooo model and

a secondary objective of minimizing the total truck waiting times of each batch sequentially. The Sooo extension model

not only considers the terminal operator’s objective but also the trucks’ objective. Built upon a state-of-the-art algorithm

for solving the SCRP, tree search-based algorithms are developed to make optimal recommendations about the retrieval

sequence of the next batch of containers and the relocation positions of the blocking containers. Moreover, two heuristic

algorithms, SEM and SEML, are designed to seek high-quality solutions efficiently for practical-size problems. A discrete

event-driven simulation model is developed to evaluate the performance of the algorithms (optimal and heuristic).

Extensive computational experiments demonstrate the effectiveness of the models and the algorithms.

On the theoretical side, firstly, the SCRP-FS generalizes the conventional SCRP from two perspectives. On the one

hand, the flexible service policy relaxes the traditional FCFS policy, which provides more opportunities for reducing the

number of relocations and allows for reducing the trucks’ waiting time as well. On the other hand, the assumption of

uniformly distributed truck arrivals within the same time window is relaxed by a more general probabilistic model. The

capability of capturing the customers’ preference-based arrival behavior, in particular, is a major advantage of the

probabilistic model. Secondly, the proposed methodology contributes to the literature of solving multiple objective multi-

stage stochastic optimization problems by embedding the optimization of the secondary objectives within the multi-stage

optimization procedure for the primary objective. Such methodology may be applicable to other transportation

optimization problems such as berth allocation problems or train loading problems, in which decisions are made

dynamically and multiple objectives are prioritized.

On the practical side, based on our findings, we provide some managerial insights to terminal operators and truck

companies. Firstly, by slightly diverting the current FCFS service policy to the flexible service policy that implements

out-of-order retrievals within half of the appointment time window, both the number of relocations and the average truck

waiting time during the retrieval service can be significantly reduced; and the service equity between two sub-groups of

trucks is maintained. Secondly, the flexible service policy is more beneficial in the following practical situations: the

container terminal uses small bay or/and sparse stacking strategy; the containers to be retrieved in a bay are booked in

large batches; the trucks arrive within either the earlier segment or the latter segment of their appointed time windows

concentratedly. Thirdly, customer preference has a great influence on both the number of relocations and the truck waiting

times during the retrieval service. Lastly, the developed SEML heuristic can generate good solutions very fast, which can

be applied in practice to enable the real-time dynamic decision-making for the SCRP-FS.

This paper provides several directions for further research. Firstly, the proposed models and algorithms are reasonably

42

general and flexible, which allows for further refining and improvement, e.g. terminal operators could choose different

sizes of the sub-batches or multiple sub-batches. The optimization framework will be similar and the structure of the

decision tree does not need change. However, if the terminal operator decides to have more sub-batches, the size of the

search tree will be larger due to the consideration of more possibilities of sub-batches. Hence, a more efficient search

algorithm needs to be developed to obtain exact solutions. Nevertheless, our proposed heuristics are supposed to be still

efficient because their time complexities are decreasing with the decrease of the batch size. Besides, the benefits of the

flexible service policy need to be further evaluated because the terminal operator will have less control over the truck

service sequence if they use more sub-batches. Secondly, this study could be extended to address more general SCRP

problems where trucks do not necessarily arrive within their appointed time windows. In the real world, the arrival of a

truck may be prior to or later than the appointed time window. An extended arrival time window that includes both the

preceding and the succeeding time window relative to the appointed time window is more appropriate to predict trucks’

arrival times. The probability of the deviation from the appointed time window could be gained from historical data and

be considered as our proposed customer preference. Thirdly, based on our proposed lower bound, more efficient stacking

policies considering the possibility of out-of-order retrievals in the future could be developed to stack import containers

in an orderly configuration so that fewer relocations are needed during the retrieval process.

Acknowledgments

The authors thank three anonymous reviewers’ constructive comments that have helped improve the presentation of

the paper. We also thank Ku and Arthanari (2016a) and Galle et al. (2018b) for their published source data. This study is

partially supported by the China Scholarship Council, the Royal Society (Grant No. IEC\NSFC\170100), the EU H2020

(Grant No. 777742, EC H2020-MSCA-RISE-2017), the National Natural Science Foundation of China (Grant No.

71671021), and Fundamental Research Funds for the Central Universities.

References

Bacci, T., Mattia, S. and Ventura, P., 2019. The bounded beam search algorithm for the block relocation problem. Comput.

Oper. Res. 103, 252-264.

Bakker, H., Dunke, F. and Nickel, S., 2020. A structuring review on multi-stage optimization under uncertainty: Aligning

concepts from theory and practice. Omega, 96, 102080.

Birge, J.R., Louveaux, F., 2011. Introduction to stochastic programming, Second Ed. Springer, New York, pp. 89.

Bonney, J. 2015. US ports move toward truck appointment model, JOC.com, Apr 27 2015. https://www.joc.com/port-

news/us-ports/port-new-york-and-new-jersey/us-ports-move-toward-truck-appointment-model_20150427.html.

(accessed. 23/02/2020).

Borjian, S., Manshadi, V., Barnhart, C., Jaillet, P., 2013. Dynamic Stochastic Optimization of Reshuffles in Container

Terminals. Working paper, Massachusetts Institute of Technology, Cambridge.

Borjian, S., Galle, V., Manshadi, V.H., Barnhart, C., Jaillet, P., 2015a. Container Relocation Problem: Approximation,

Asymptotic, and Incomplete Information. Working paper, Massachusetts Institute of Technology, Cambridge.

Borjian, S., Manshadi, V.H., Barnhart, C., Jaillet, P., 2015b. Managing Relocation and Delay in Container Terminals with

Flexible Service Policies. Working paper, Massachusetts Institute of Technology, Cambridge.

Carlo, H.J., Vis, I.F.A., Roodbergen, K.J., 2014. Storage yard operations in container terminals: Literature overview,

trends, and research directions. Eur. J. Oper. Res. 235, 412–430.

Caserta, M., Schwarze, S., Voß, S., 2012. A mathematical formulation and complexity considerations for the blocks

relocation problem. Eur. J. Oper. Res. 219, 96–104.

Caserta, M., Schwarze, S., Voß, S., 2011a. Container Rehandling at Maritime Container Terminals, in: Böse, J.W. (Ed.),

Handbook of Terminal Planning. Operations Research/Computer Science Interfaces Series. Springer, New York, pp.

247–269.

Caserta, M., Voß, S., Sniedovich, M., 2011b. Applying the corridor method to a blocks relocation problem. OR Spectr.

33, 915–929.

43

Chen, G., Govindan, K., Golias, M.M., 2013a. Reducing truck emissions at container terminals in a low carbon economy:

Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern. Transp. Res. Part E Logist.

Transp. Rev. 55, 3–22.

Chen, G., Govindan, K., Yang, Z., 2013b. Managing truck arrivals with time windows to alleviate gate congestion at

container terminals. Int. J. Prod. Econ. 141, 179–188.

Davies, P., 2009. Container Terminal Reservation Systems Paper. 3rd Annu. METRANS Natl. Urban Freight Conf. 1–

19.

de Melo da Silva, M., Erdoğan, G., Battarra, M., Strusevich, V., 2018. The Block Retrieval Problem. Eur. J. Oper. Res.

265, 931–950.

Dragović, B., Tzannatos, E., Park, N.K., 2017. Simulation modelling in ports and container terminals: literature overview

and analysis by research field, application area and tool. Flex. Serv. Manuf. J. 29, 4–34.

DP World. https://www.londongateway.com/port/book-a-vehicle (accessed. 28/02/2020).

Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, J.M., 2015. An exact approach for the Blocks Relocation

Problem. Expert Syst. Appl. 42, 6408–6422.

fenixmarineservices.com. https://www.fenixmarineservices.com/terminal/#appointments. (accessed. 21/02/2020).

Galle, V., Barnhart, C., Jaillet, P., 2018a. A new binary formulation of the restricted Container Relocation Problem based

on a binary encoding of configurations. Eur. J. Oper. Res. 267, 467–477.

Galle, V., Manshadi, V., Borjian Boroujeni, S., Barnhart, C., Jaillet, P., 2018b. The Stochastic Container Relocation

Problem. Transp. Sci. 52, 1035–1058.

Giuliano, G. and O’Brien, T., 2007. Reducing port-related truck emissions: The terminal gate appointment system at the

Ports of Los Angeles and Long Beach. Transp. Res. Part D Transp. Environ. 12(7), 460-473.

Gharehgozli, A.H., Roy, D. and de Koster, R., 2016. Sea container terminals: New technologies and OR models. Marit.

Econ. Logist. 18(2),103-140.

Huynh, N., Walton, C.M. and Davis, J., 2004. Finding the number of yard cranes needed to achieve desired truck turn

time at marine container terminals. Transp Res Record. 1873(1), 99-108.

Huynh, N., Zumerchik, J., 2010. Analysis of Stacking Priority Rules to Improve Drayage Operations Using Existing and

Emerging Technologies. Transp. Res. Rec. 2162, 1–8.

Jovanovic, R. and Voß, S., 2014. A chain heuristic for the blocks relocation problem. Comput. Ind. Eng. 75, 79-86.

Jin, B., Zhu, W. and Lim, A., 2015. Solving the container relocation problem by an improved greedy look-ahead heuristic.

Eur. J. Oper. Res. 240(3), 837-847.

Kim, K.H., Hong, G.P., 2006. A heuristic rule for relocating blocks. Comput. Oper. Res. 33, 940–954.

Kim, K.H., Park, Y.M., Ryu, K.R., 2000. Deriving decision rules to locate export containers in container yards. Eur. J.

Oper. Res. 124(1), 89-101.

Ku, D., Arthanari, T.S., 2016a. Container relocation problem with time windows for container departure. Eur. J. Oper.

Res. 252, 1031–1039.

Ku, D., Arthanari, T.S., 2016b. On the abstraction method for the container relocation problem. Comput. Oper. Res. 68,

110–122.

Lee, Y., & Lee, Y. J., 2010. A heuristic for retrieving containers from a yard. Comput. Oper. Res, 37(6), 1139-1147.

Lee, C.Y., Song, D.P., 2017. Ocean container transport in global supply chains: Overview and research opportunities.

Transp. Res. Part B Methodol. 95, 442–474.

Lehnfeld, J., Knust, S., 2014. Loading, unloading and premarshalling of stacks in storage areas: Survey and classification.

Eur. J. Oper. Res. 239, 297–312.

Lin, D.Y., Lee, Y.J. and Lee, Y., 2015. The container retrieval problem with respect to relocation. Transp. Res. Part C

Emerg. Technol. 52.132-143.

Li, N., Chen, G., Ng, M., Talley, W.K. and Jin, Z., 2019. Optimized appointment scheduling for export container

deliveries at marine terminals. Marit Policy Manag. 1-23.

https://www.londongateway.com/port/book-a-vehicle

44

López-Plata, I., Expósito-Izquierdo, C., Lalla-Ruiz, E., Melián-Batista, B., Moreno-Vega, J.M., 2017. Minimizing the

Waiting Times of block retrieval operations in stacking facilities. Comput. Ind. Eng. 103, 70–84.

Mongelluzzo, B. 2016. Long Beach automated terminal expects fastest harbor truck turns, JOC.com, Feb 11, 2016.

https://www.joc.com/port-news/us-ports/port-long-beach/long-beach-automated-terminal-expects-fastest-harbor-

truck-turns_20160211.html (accessed. 21/02/2020).

Mongelluzzo, B. 2019. LA-LB truckers: We need true interoperable chassis pools, JOC.com, Oct 29 2019.

https://www.joc.com/port-news/la-lb-truckers-we-need-true-interoperable-chassis-pools_20191029.html. (accessed.

29/02/2020).

Mongelluzzo, B. 2020. Technology, mandatory truck slots push LA-LB turn times to near six-year low, JOC.com, Jan 13

2020.https://www.joc.com/port-news/terminal-operators/technology-mandatory-truck-slots-push-la-lb-turn-times-

almost-six-year-low_20200113.html. (accessed. 22/02/2020).

Patrick. http://www.patrick.com.au/documents/VBS-Charges-Melbourne-July-2018.pdf (accessed. 28/02/2020).

Petering, M.E.H., Hussein, M.I., 2013. A new mixed integer program and extended look-ahead heuristic algorithm for

the block relocation problem. Eur. J. Oper. Res. 231, 120–130.

Pham, Q., Huynh, N., Xie, Y., 2011. Estimating Truck Queuing Time at Marine Terminal Gates. Transp. Res. Rec. J.

Transp. Res. Board 2222, 43–53.

Port Botany. https://www.adventintermodal.com/customers/port-botany-new-south-wales-australia/ (accessed.

29/02/2020).

Port Metro Vancouver. https://cleanairactionplan.org/documents/final-2017-clean-air-action-plan-update.pdf/ (accessed.

21/02/2020).

Quispe, K.E.Y., Lintzmayer, C.N. and Xavier, E.C., 2018. An exact algorithm for the blocks relocation problem with new

lower bounds. Comput. Oper. Res. 99, 206-217.

Russell, S.J. and Norvig, P., 2016. Artificial intelligence: a modern approach. Third Ed. Pearson Education Limited,

Malaysia, pp. 80.

Stahlbock, R., Voß, S., 2008. Operations research at container terminals: A literature update. OR Spectr. 30, 1–52.

Saanen, Y. A., 2011. Modeling techniques in planning of terminals: The quantitative approach. In Böse, J.W. (Ed.),

Handbook of Terminal Planning. Operations Research/Computer Science Interfaces Series. Springer, New York. pp.

83–102.

Talley, W.K. and Ng, M., 2016. Port multi-service congestion. Transp. Res. Part E Logist. Transp. Rev. 94, 66-70.

Tanaka, S., Takii, K., 2016. A faster branch-and-bound algorithm for the block relocation problem. IEEE Trans. Autom.

Sci. Eng. 13, 181–190.

Tang, L., Jiang, W., Liu, J., Dong, Y., 2015. Research into container reshuffling and stacking problems in container

terminal yards. IIE Trans. 47, 751–766.

Ting, C.J. and Wu, K.C., 2017. Optimizing container relocation operations at container yards with beam search. Transp.

Res. Part E Logist. Transp. Rev. 103, 17-31.

Tong, X., Woo, Y.J., Jang, D.-W., Kim, K.H., 2015. Heuristic Rules Based on a Probabilistic Model and a Genetic

Algorithm for Relocating Inbound Containers with Uncertain Pickup Times. Int. J. Ind. Eng. Appl. Pract. 22, 93–101.

Ünlüyurt, T., Aydın, C., 2012. Improved rehandling strategies for the container retrieval process. J. Adv. Transp. 46, 378–

393.

Wan, Y., Liu, J., Tsai, P.-C., 2009. The Assignment of Storage Locations to Containers for a Container Stack. Nav. Res.

Logist. 56, 699–713.

Yang, M., Allen, T.T., Fry, M.J., Kelton, W.D., 2013. The call for equity: simulation optimization models to minimize

the range of waiting times. IIE Trans. 45, 781–795.

Zehendner, E., Caserta, M., Feillet, D., Schwarze, S., Voß, S., 2015. An improved mathematical formulation for the

blocks relocation problem. Eur. J. Oper. Res. 245(2), 415–422.

Zehendner, E., Feillet, D., 2014. A branch and price approach for the container relocation problem. Int. J. Prod. Res. 52,

7159–7176.

http://www.patrick.com.au/documents/VBS-Charges-Melbourne-July-2018.pdf
https://www.adventintermodal.com/customers/port-botany-new-south-wales-australia/
https://cleanairactionplan.org/documents/final-2017-clean-air-action-plan-update.pdf/

45

Zehendner, E., Feillet, D., Jaillet, P., 2017. An algorithm with performance guarantee for the Online Container Relocation

Problem. Eur. J. Oper. Res. 259, 48–62.

Zeng, Q., Feng, Y., Yang, Z., 2019. Integrated optimization of pickup sequence and container rehandling based on partial

truck arrival information. Comput. Ind. Eng. 127, 366–382.

Zhang, C., Chen, W., Shi, L., Zheng, L., 2010. A note on deriving decision rules to locate export containers in container

yards. Eur. J. Oper. Res. 205, 483–485.

Zhao, W., Goodchild, A. V., 2010. The impact of truck arrival information on container terminal rehandling. Transp. Res.

Part E Logist. Transp. Rev. 46, 327–343.

Zhen, L., Jiang, X., Lee, L.H., Chew, E.P., 2013. A Review on Yard Management in Container Terminals. Ind. Eng.

Manag. Syst. 12, 289–304.

Zhu, W., Qin, H., Lim, A., Zhang, H., 2012. Iterative deepening A* algorithms for the container relocation problem. IEEE

Trans. Autom. Sci. Eng. 9, 710–722.

Zweers, B.G., Bhulai, S. and van der Mei, R.D., 2020. Optimizing pre-processing and relocation moves in the Stochastic

Container Relocation Problem. Eur. J. Oper. Res. 283(3), 954–971.

46

Appendix A. Some illustrations of the exact algorithms

A.1. Illustration of the abstraction technique

Fig. A.1(a) shows the application of the abstract technique on the node 10 and node 11 in Fig. 4. By (10)Abstract and

(11)Abstract , node 10 and node 11 are projected to the same abstract configuration. This means if (10)f is known, (11)f

can be directly returned to be (10)f without further branching. Fig. A.1(b) illustrates two unequivalent abstract

configurations due to the difference in their abstract preference configurations although they have the same abstract

priority configuration.

0.4 0.4

0.3 0.3

0.5

5

3 3

5

5

0.4 0.4

0.3 0.3

0.5

5

3 3

5

5

0.40.4

0.30.3

0.5

3

5

5

3

5

Original

configuration:

Abstract

configuration:

0.4 0.4

0.3 0.3

0.1

5

3 4

6

55

0.5

0.4 0.4

0.3 0.3

0.5

6

4 3

5

5 5

0.1

0.40.4

0.30.3

0.5

3

5

5

4

6

5

0.1

0.40.4

0.30.3

0.1

3

5

5

4

6

5

0.5

Abstraction Abstraction

 (a) Equivalent configuration (b) Unequivalent configuration

Fig. A.1. Illustration of the abstraction technique

A.2. A sample decision tree developed by the extended APBFS algorithm

0.40.4

0.30.3

0.5

3

5

5

4

5

0.40.4

0.30.3

0.5

3

5

5

3

5

0.40.4

0.30.3

0.5

4

5

5

3

5

0.40.4

0.30.3

0.5

4

5

5

4

5

0.40.4

0.30.3

0.5

3

5

5

4

5

0.40.4

0.30.3

0.5

4

5

5

3

5

0.4

0.30.3

0.5

5

5

4

5

0.30.30.5

55 5

0.40.4

0.30.3

0.5

3

5

5

3

5

P=0.24

P=0.16 P=0.24
P=0.36

0.4

0.30.30.5

55

4

5

n

1n 2n

3n

4n

Fig. A.2. A sample decision tree developed by the extended APBFS algorithm.

47

Fig. A.2 presents a decision tree developed by the extended APBFS algorithm. The initial node in this decision tree is

the abstract configuration of the last node in the decision tree of Fig. 4. Let us focus on the nodes highlighted with upward

diagonal background: n, n1, and n2, to illustrate the consideration of the secondary objective. n is a SD node with

1 2{ , }APBFS

n n n = , and f(n)=1. As 1 2() () 1 ()f n f n f n= = = , we calculate the waiting time indicator of n1 and n2 by

Algorithm 2. We obtain that 2 1() 1 () 2w n w n= = . Therefore, the best offspring of node n is n2 (step 4.7-4.8 in Algorithm

3). Note that in the APBFS algorithm, if n1 is first added into APBFS

n , n2 will not be able to be included into APBFS

n as

2() 1lb n = is not less than 1()f n , which means that we lose the opportunity to find the optimal solution with regard to

the secondary objective.

Appendix B. Details of the heuristics

B.1. Calculating the BI and DI of the EM extension heuristic

Fig. B.1 is used for illustration, which shows how the EM extension heuristic makes decisions on a simple example

where the truck arrival sequence of the three containers in the first batch (7 10 5, ,u u u) has been revealed. The container in

the shaded slot is the target container to be retrieved. The container in the upward diagonal slot is the blocking container

to be relocated at the current step. The numbers under the priority matrix correspond to the m(s) of each candidate stack,

and the value of M is also given.

0.5

0.6

0.8

0.4

0.9 0.8 0.20.1

0.3

0.5

0.7

1

8

10

2

4 3 114

4

4

8

0.5

0.6

0.8

0.4

0.9 0.8 0.20.1

0.3

0.5

0.7

8

10

2

4 3 114

4

4

8

0.6

0.8

0.4

0.9 0.8 0.20.1

0.3

0.5

0.7

8

10

2

4 3 114

4

4

8

0.6

0.8

0.4

0.9 0.8 0.20.1

0.3

0.5

0.7

8

10

4 3 114

4

4

8

0.6

0.8

0.9 0.8 0.20.1

0.3

0.5

0.7

8

10

4 3 114

4

4

8

0.6

0.8

0.9 0.8 0.20.1

0.3

0.5

0.7

Priority

matrix

Preference

matrix

4 4 2 4 4 3 4 4 11

M = 4 M = 4 M = 11

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Container ID

1u 5u 9u

10u6u

3u

2u 4u

7u

8u

11u

1u 5u 9u

10u6u

3u

2u 4u

7u8u 11u

1u 5u 9u

10u6u

3u

2u 4u

8u 11u

1u 5u 9u

10u6u

3u

2u 4u

8u

11u

1u 5u 9u

6u

3u

2u 4u

8u

11u

1u 5u 9u

6u

3u

2u 4u

8u

11u

()m s

1

8

10

2

4 3 114

4

4

8

Fig. B.1. Decisions by the EM extension heuristic on an example

(1) Method of computing BI

If cM l= , EM extension selects the stack with the minimum ()BI s to minimize the probability of c being blocking

if c is relocated to stack s . Given a configuration B with M, a stack s where c is located before being relocated, a stack

s that satisfies ()m s M = , ()BI s is computed as follows. Step 1 in Fig. B.1 is used to illustrate the computing

method. Without special instruction, the ‘stack 1’ used in this sub-section refers to the stack 1 in the configuration under

step 1 in Fig. B.1.

Let 1,...,s NM c c = , | |sN M = , be the set of containers labeled M and located in s . We first compute the

probability that c is not blocking if relocated to s , i.e., 1 ()BI s− . Let us consider the two cases in terms of the sub-

batch of c: #1) c is in the former sub-batch; #2) c is in the latter sub-batch.

#1. c is in the former sub-batch.

Under case 1, we consider two mutually exclusive sub-cases (#1.1 and #1.2) in terms of the sub-batch of containers in

48

sM .

#1.1. At least one container i sc M is in the former sub-batch.

There are totally
1

N

k

N

k=

 scenarios that satisfy #1.1. Let 1 2, ,...,

N

k

k k k kComb comb comb comb

=

 denote the set of

all scenarios represented by the combinations of the N elements in sM taken k, 1,...,k N= . The size of kComb is

N

k

. Each element i

k kcomb Comb , 1,...,
N

i
k

, represents a scenario where the elements in i

kcomb are in the

former sub-batch. For example (see Fig. B.1), in the configuration of step 1, 1 1 2{ , }M u u= , N=2,

 1 2

1 1 1,Comb comb comb= , wherein 1

1 1comb u= , 2

1 2comb u= , and 1

2 2{ }Comb comb= , wherein

 1

2 1 2,comb u u= . The probability of kComb is equal to
1

(1)
j j

i i
j k j k

N

k

c c

i c comb c comb

p p

=

− . Then the probability that c is not

blocking in the scenario set kComb is equal to
1

(1) / (1)
j j i

i i
j k j k

N

k

c c c

i c comb c comb

p p k p

=

− + . Considering all combinations from

k=1 to k=N, we have the probability that c is not blocking in case 1.1, which is equal to

1 1

(1) / (1)
j j i

i i
j k j k

N

kN

c c c

k i c comb c comb

p p k p

= =

− + . Taking stack 1 for example, we have

2

2

1 1 1 1

(1) / (1) (1) / (1)
j j i j j i

i i i i
j k j k j k j k

N

k kN

c c c c c c

k i k ic comb c comb c comb c comb

p p k p p p k p

= = = =

− + = − + =(0.3×0.9/2+0.1×0.7/2+0.3×0.1/3)×0.5=0.09.

#1.2. All containers in sM are in the latter sub-batch.

In this case, c is surely not blocking. Then the probability that c is not blocking in case 1.2 is equal to
1

(1)
i

N

c c

i

p p
=

− .

Taking stack 1 for example, we have
2

1 1

(1) (1)
i i

N

c c c c

i i

p p p p
= =

− = − =0.7×0.9×0.5=0.315.

#2. c is in the latter sub-batch.

In this case, there exists only one scenario in which it is possible that c is not blocking, that is, all containers in sM

are in the latter sub-slot. Then the probability that c is not blocking in case 2 is equal to
1

(1) (1) / (1)
i

N

c c

i

p p N
=

− − + .

Taking stack 1 for example, we have
2

1 1

(1) (1) / (1) (1) (1) / 3
i i

N

c c c c

i i

p p N p p
= =

− − + = − − =0.7×0.9×0.5/3=0.105.

The above cases exhaust all the possible scenarios of the sub-batches of the containers labeled M. Therefore, by

summing the above expressions, we have the probability that c is not blocking if relocated to s , i.e., 1 ()BI s− , as

expressed in Eq. (A.1):

1 1 1 1

1 () (1) / (1) (1) (1) (1) / (1)
j j i i i

i i
j k j k

N

k N NN

c c c c c c c

k i i ic comb c comb

BI s p p k p p p p p N

= = = =

− = − + + − + − − +

49

 ()
1 1 1

(1) / (1) (1) (1) / (1)
j j i i

i i
j k j k

N

k NN

c c c c c c

k i ic comb c comb

p p k p p p p N

= = =

= − + + − + − + (A.1)

Finally, we have the probability of c being blocking if relocated to s , i.e., ()BI s , as calculated by Eq. (A.2).

()
1 1 1

() 1 (1) / (1) (1) (1) / (1)
j j i i

i i
j k j k

N

k NN

c c c c c c

k i ic comb c comb

BI s p p k p p p p N

= = =

 = − − + − − + − + (A.2)

For example (see Fig. B.1), in the configuration of step 1, the BI of stack 1 is calculated as

()(1) 1 0.09 0.315 0.105 0.49BI = − + + = . Also, we obtain BI(2)=0.7 by Eq. (A.2). As BI(1)<BI(2), stack 1 is selected as

the relocating stack at step 1 by the EM extension heuristic.

(2) Method of computing DI

If cM l , which means that it is unavoidable that c will be relocated again in the future, EM extension selects the stack

with the minimum ()DI s to delay the next relocation of c. Given a configuration B with M, a stack s where c is located

before being relocated, a stack s that satisfies ()m s M = , ()DI s is computed as follows. Step 3 in Fig. B.1. is used

to illustrate the computing method. Without special instruction, the ‘configuration’ used in this sub-section refers to the

configuration at step 3 in Fig. B.1.

Let 1 1,...,B LM c c += , | | 1BM L= + , be the set of all containers labeled M in configuration B, and sM be the set of

containers labeled M and located in s . For example, in the illustrated configuration, 1 2 8 3, , ,BM u u u u= , L=3,

 1 1 2 8, ,M u u u= , and 2 3M u= . Given a candidate stack s , we first compute the probability of each container

i sc M being the first one to be retrieved among the containers in BM , denoted by ()iDI c . Since the retrieval of any

container i sc M will cause the next relocation of c if c is relocated to s , by definition, we have

() ()
i s

i

c M

DI s DI c

 = .

Now let us consider a container i sc M and compute ()iDI c . Suppose all the containers in \B iM c are located in

a dummy stack and ic is the container to be relocated to this stack. Then ()iDI c is equal to the probability that ic

is not blocking if relocated to this dummy stack. Therefore, using the Eq. (A.1) of calculating 1 ()BI s− , ()iDI c is

computed by Eq. (A.3).

()
, ,

1 1 \ \

() (1) / 1 (1) (1) (1) / (1)
j j i j i j i

n n
j B i j B ij c k j c ki i

L

kL

i c c c c c c c

k n c M c c M cc cmb c cmb

DI c p p k p p p p p L

= =

 = − + + − + − − +

() ()
, ,

1 1 \

(1) / 1 (1) (1) / (1)
j j i j i i

n n
j B ij c k j c ki i

L

kL

c c c c c c

k n c M cc cmb c cmb

p p k p p p p L

= =

= − + + − + − + (A.

3)

wherein, , ,i i

n

c k c kcmb Cmb . 1 2

, , , ,, ,...,
i i i i

L

k

c k c k c k c kCmb cmb cmb cmb

=

 denotes the set of all scenarios represented by the

combinations of the L elements in \B iM c (i sc M) taken k, 1,...,k L= . The size of
,ic kCmb is

L

k

.

50

Therefore, () ()
i s

i

c M

DI s DI c

 = is computed by Eq. (A.4).

() ()
, ,

1 1 \

() (1) / 1 (1) (1) / (1)
j j i j i i

n n
i s j B ij c k j c ki i

L

kL

c c c c c c

c M k n c M cc cmb c cmb

DI s p p k p p p p L

 = =

 = − + + − + − +

 (A.4)

Let us calculate 8()DI u in the illustrated configuration.
8 8 8 8

1 2 3

,1 ,1 ,1 ,1, ,u u u uCmb cmb cmb cmb= , wherein
8

1

,1 1ucmb u= ,

8

2

,1 2ucmb u= , and
8

3

,1 3ucmb u= ;
8 8 8 8

1 2 3

,2 ,2 ,2 ,2, ,u u u uCmb cmb cmb cmb= , wherein
8

1

,2 1 2,ucmb u u= ,
8

2

,2 1 3,ucmb u u= , and

8

3

,2 2 3,ucmb u u= ;
8 8

1

,3 ,3u uCmb cmb= , wherein
8

1

,3 1 2 3, ,ucmb u u u= . For 1,...,3k = , we calculate the first term of Eq.

(A.3):

For k=1, () ()
8

,1 ,18 8

3

1

1

(1) / 1 1 0.1 0.7 0.1 0.3 0.9 0.1 0.9 0.7 0.9 / 2 0.5 0.15025
j j

n n
j u j u

c c u

n c cmb c cmb

p p p

=

 − + = + + =

For k=2, () ()
8

,2 ,28 8

3

2

1

(1) / 2 1 0.1 0.3 0.1 0.1 0.9 0.7 0.3 0.9 0.9 / 3 0.5 0.0515
j j

n n
j u j u

c c u

n c cmb c cmb

p p p

=

 − + = + + =

For k=3, ()
8

,3 ,38 8

3

3

1

(1) / 3 1 0.1 0.3 0.9 / 4 0.5 0.003375
j j

n n
j u j u

c c u

n c cmb c cmb

p p p

=

 − + = =

Summing the above expressions, we have,

()
8

, ,8 8

3

3

1 1

(1) / 1 0.15025 0.0515 0.003375 0.205125
j j

n n
j u k j u k

k

c c u

k n c cmb c cmb

p p k p

= =

 − + = + + =

Then, we calculate the second term of Eq. (A.3):

() ()
8 8

8\

(1) (1) / (1) (0.9 0.7 0.1) 0.5 0.5 / 4 0.039375
j

j B

c u u

c M u

p p p L

− + − + = + =

By Eq. (A.4), we have 8() 0.205125 0.039375 0.2445DI u = + = . In the same way, we obtain 2() 0.1385DI u = ,

1() 0.0485DI u = , and 3() 0.5685DI u = . Therefore, 8 2 1(1) () () ()DI DI u DI u DI u = + + =0.2445+0.1385+0.0485=0.4315,

and 3(2) () 0.5685DI DI u= = . As (1) (2)DI DI , stack 1 is selected as the target relocating stack at step 3 by the EM

extension heuristic.

B.2. An illustrative example for the SEM heuristic

We use Fig. B.2. to illustrate the sequencing decision of the SEM heuristic. In the initial configuration 0X , there are

five batches of containers. The truck arrival information of the first batch is revealed to be that 7u is in the first sub-

batch and 5u and 10u are in the second sub-batch, as shown in bold in Step 1. Now we present the decisions to retrieve

the first batch containers. The container in the shaded slot represents the target container to be retrieved. The container in

the upward diagonal slot represents the blocking container to be relocated. At Step 1, 1lmin = , 7{ }u = , and thus

there is no doubt that 7u is selected as the target container. After retrieving 7u , 2lmin = , 5 10{ , }u u = , and

5 10() () 1r u r u= = . As 5 10() ()r u r u= , the SEM selects 10u as the target container arbitrarily. After Step 4, 3lmin = ,

5{ }u = , and thus 5u is selected as the target container out of question.

51

1

8

10

2

4 2 114

4

4

8

0.5

0.6

0.8

0.4

0.9 0.8 0.20.1

0.3

0.5

0.7

1

8

10

2

4 2 114

4

4

8

0.5

0.6

0.8

0.4

0.9 0.8 0.20.1

0.3

0.5

0.7

8

10

2

4 3 114

4

4

8

0.6

0.8

0.4

0.9 0.8 0.20.1

0.3

0.5

0.7

8

10

2

4 3 114

4

4

8

0.6

0.8

0.4

0.9 0.8 0.20.1

0.3

0.5

0.7

8

10

4 3 114

4

4

8

0.6

0.8

0.9 0.8 0.20.1

0.3

0.5

0.7

8

10

4 3 114

4

4

8

0.6

0.8

0.9 0.8 0.20.1

0.3

0.5

0.7

Priority

matrix

Preference

matrix

4 4 2 4 4 3 4 4 11

M = 4 M = 4 M = 11

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Container ID

1u 5u 9u

10u6u

3u

2u 4u

7u8u 11u

1u 5u 9u

10u6u

3u

2u 4u

8u 11u

1u 5u 9u

10u6u

3u

2u 4u

8u 11u

1u 5u 9u

6u

3u

2u 4u

8u 11u

1u 5u 9u

6u

3u

2u 4u

8u 11u

()m s

1

8

10

1

4 1 114

4

4

8

0.5

0.6

0.8

0.4

0.9 0.8 0.20.1

0.3

0.5

0.7

1u 5u 9u

10u6u

3u

2u 4u

7u

8u

11u

1u u5 9u

u106u

3u

2u 4u

7u

8u

11u

0X

Fig. B.2. Decisions by the SEM heuristic on an example

B.3. Calculating the BIS and DIS of the SEM heuristic

Fig. B.2 is used for illustration.

(1) Method of computing BIS

Given a configuration B with M, a stack s where c is located before being relocated, a stack s that satisfies

()m s M = , the method of computing ()BIS s is introduced here. Let 1,...,s NM c c = , | |sN M = , be the set of

containers labeled M and located in s . Container c being blocking if relocated to s occurs only in the scenario

where c is in the latter sub-batch and there is at least one container i sc M in the former sub-batch. Therefore, we have,

() ()
()

() 1 1 1
i

i

c c

c M s

BIS s p p

 = − − −

 (A.5)

The term ()
()

1
i

i

c

c M s

p

− of Eq. (A.5) is the probability that all the containers in sM are in the latter sub-batch, and

thus ()
()

1 1
i

i

c

c M s

p

− −

 is the probability that at least one of them is in the former sub-batch.

Take the configuration at step 1 (see Fig. B.2) for example. 8c u= , M=4, and thus stack 1 and stack 2 are candidate

stacks. By Eq. (A.5), ()()(1) 1 0.5 1 0.7 0.9 0.185BIS = − − = , ()()(2) 1 0.5 1 0.1 0.45BIS = − − = . As BIS(1)<BIS(2), stack

1 is selected for relocating 8u .

(2) Method of computing DIS

In the sequencing rule introduced above, the one with the lowest number of blocking containers among the containers

with the smallest label is selected as the target container, ties being broken arbitrarily. Therefore, a container ic is surely

being the first one to be retrieved in its batch only in the situation that satisfies the following two conditions: 1) ic is in

the former sub-batch; 2) ic is with the lowest number of blocking containers (i.e.,
icr) among the containers in the

former sub-batch. The second condition means that all the containers above ic labeled M must be in the latter sub-batch

and for each stack s that satisfies ()m s M = , if there are containers labeled M among the top 1
icr + number of

containers (if any) in stack s , these containers must be in the latter sub-batch.

Given a configuration B with M, a stack s where c is located before being relocated, a stack Ms S , wherein MS is

the set of stack that satisfies ()m s M = , the method of computing ()DIS s is introduced here. Let sM be the set of

52

containers labeled M located in s . Given a candidate stack s , we first compute the probability of each container

i sc M surely being the first one to be retrieved in its batch, denoted by ()iDIS c . By definition, we have

() ()
i s

i

c M

DIS s DIS c

 = . Let (,)T n s denote the set of top n number of containers labeled M in stack s. Then, we have

((),) \ (() 1,)

() (1) (1)
i j j

j i M j i

i c c c

c T r c s s S s c T r c s

DIS c p p p
 +

 = − − . By summing the ()iDIS c of all containers i sc M , we

get,

((),) \ (() 1,)

() (1) (1)
i j j

i s j i M j i

c c c

c M c T r c s s S s c T r c s

DIS s p p p
 +

 = − − (A.6)

Taking the configuration at step 3 (see Fig. B.2) for example, where 11c u= , M=4, 1,2MS = , let us compute

2()DIS u . 2() 1r u = , 8(1,1)T u= , 3(2,2)T u= , and thus
((),)

(1)
j

j i

c

c T r c s

p

−
(1,1)

(1)
j

j

c

c T

p

= − 8
(1) 0.5up= − = ,

\ (() 1,)

(1)
j

M j i

c

s S s c T r c s

p
 +

−
{2} (2,)

(1)
j

j

c

s c T s

p

= − 3
(1) 0.1up= − = . Consequently, 2() 0.3 0.5 0.1 0.015DIS u = = .

Similarly, we get 8() 0.5DIS u = , 1() 0.0035DIS u = , and 3() 0.315DIS u = . By Eq. (A.6), we have

2 8 1(1) () () () 0.5 0.015 0.0035 0.5185DIS DIS u DIS u DIS u = + + = + + = and 3(2) () 0.315DIS DIS u= = . As

(2) (1)DIS DIS , stack 2 is selected for relocating 11u .

B.4. An illustrative example for the SEML heuristic

We use Fig. B.3, which continues Step 2 of Fig. B.2, to illustrate the sequencing rule of the SEML heuristic. For brevity,

we only present the priority matrix. After step 2, 2lmin = , and 5 10{ , }u u = . Because 5 10() () 1r u r u= = , both 5u and

10u are potential target containers (H=2). Hence, we evaluate the contribution of the two feasible retrieval sequences

respectively: 5 10u u→ and 10 5u u→ , through step 3 to step 6. The final configurations after implementing the two

sequences are given at step 7. It is obvious that the two final configurations have the same lower bound. And because

both of the sequences cause two realized relocations, their contributions are the same. Therefore, we can choose one

arbitrarily from 5 10u u→ and 10 5u u→ as the determined retrieval sequence for 5u and 10u .

8

10

2

4 3 114

4

4

8 8

10

2

4 3 114

4

4

8 8

10

4 3 114

4

4

8 8

10

4 3 114

4

4

8

Step 3 Step 4 Step 5 Step 6

8

10

3

4 2 114

4

4

8

8 10

3

4 2 114

4

4

8

8 10

4

3

114

4

4

8 3

8

4 10 114

4

4

8

1

8

10

2

4 2 114

4

4

8

Step 2

8

10

4 114

4

4

8

Step 7

8

4 10 114

4

4

8
1u 5u 9u

10u6u

3u

2u 4u

7u8u 11u

10 5u u→

5 10u u→

Fig. B.3. Decisions by the SEML heuristic on an example

53

Appendix C. Performance of the proposed models and exact algorithms

Note that in the tables, the “Opt” column represents the optimal expected number of relocations obtained by the

corresponding exact algorithms; the “Rel” column represents the estimated number of relocations obtained by simulation.

C.1. Results of the extended APBFS algorithm, the SEML heuristic, and the lower bound

Table C.1 Performance of the extended APBFS algorithm, the SEML heuristics and lower bound for instances with

small batches and 67% fill rate

T S C lb

Extended APBFS SEML Gap

lb* Opt Solved CPU(s) Rel
AveWait

(min)
 Rel

AveWait

(min)

Gap

[Rel]

Gap

[AveWait]

3 5 10 2.621 2.621 2.789 √ 0.05 2.786 3.224 2.786 3.222 0.00% -0.06%

 6 12 3.433 3.433 3.621 √ 0.05 3.620 3.524 3.659 3.526 1.08% 0.06%

 7 14 3.708 3.708 3.756 √ 0.06 3.759 3.506 3.786 3.506 0.72% 0.00%

 8 16 4.254 4.254 4.379 √ 0.08 4.382 3.385 4.405 3.389 0.52% 0.12%

 9 18 4.592 4.592 4.815 √ 0.11 4.816 3.408 4.846 3.408 0.62% 0.00%

 10 20 5.021 5.021 5.067 √ 0.11 5.066 3.176 5.073 3.179 0.14% 0.09%

4 5 13 4.433 4.433 5.073 √ 0.14 5.071 3.976 5.241 3.972 3.35% -0.10%

 6 16 6.017 6.017 6.925 √ 1.19 6.931 3.898 7.200 3.936 3.88% 0.97%

 7 19 6.042 6.042 6.927 √ 1.16 6.929 3.465 7.026 3.475 1.40% 0.29%

 8 21 7.375 7.375 7.967 √ 20.25 7.969 3.601 8.016 3.605 0.59% 0.11%

 9 24 8.775 8.775 9.259 √ 11.80 9.257 3.619 9.353 3.619 1.04% 0.00%

 10 27 8.992 8.935 9.618 27 92.17 9.622 3.426 9.709 3.424 0.90% -0.05%

5 5 17 7.358 7.058 8.802 26 24.26 8.802 4.145 9.187 4.172 4.37% 0.66%

 6 20 7.992 7.522 8.465 23 66.56 8.468 3.774 8.679 3.796 2.49% 0.59%

 7 23 9.475 9.091 10.339 22 340.50 10.340 3.934 10.569 3.945 2.21% 0.28%

 8 27 11.354 10.816 11.570 17 803.78 11.568 3.705 11.671 3.714 0.89% 0.24%

 9 30 12.879 12.388 13.436 10 728.19 13.436 3.669 13.555 3.673 0.89% 0.10%

 10 34 14.229 12.5 12.983 11 195.66 12.990 3.549 13.032 3.548 0.32% -0.02%

6 5 20 9.496 8.958 11.183 15 613.80 11.181 4.085 12.006 4.148 7.38% 1.53%

 6 24 11.304 10.894 12.341 13 491.90 12.343 4.102 12.527 4.127 1.49% 0.60%

 7 28 13.258 13.75 15.375 2 253.16 15.357 3.864 15.359 3.918 0.01% 1.39%

 8 32 15.367 13.2 13.869 5 693.38 13.865 3.695 13.865 3.685 0.00% -0.26%

 9 36 16.454 16.5 16.500 2 949.85 16.504 3.646 16.504 3.652 0.00% 0.18%

 10 40 19.375 15.25 15.250 1 232.22 15.259 3.857 15.259 3.880 0.00% 0.61%

Note: customer preference scenario: 50%

54

Table C.2 Performance of the extended APBFS algorithm, the SEML heuristics and lower bound for instances with

large batches and 50% fill rate

T S C lb

Extended APBFS SEML Gap

lb* Opt Solved CPU(s) Rel
AveWait

(min)
 Rel

AveWait

(min)

Gap

[Rel]

Gap

[AveWait]

3 5 8 1.263 1.263 1.278 √ 0.45 1.281 7.206 1.283 7.215 0.16% 0.12%

 6 9 1.317 1.317 1.334 √ 0.32 1.336 7.388 1.336 7.389 0.00% 0.01%

 7 11 2.317 2.317 2.340 √ 0.47 2.339 7.075 2.339 7.078 0.00% 0.04%

 8 12 1.971 1.971 1.973 √ 0.55 1.969 6.499 1.969 6.499 0.00% 0.00%

 9 14 2.617 2.617 2.621 √ 0.72 2.614 6.764 2.615 6.764 0.04% 0.00%

 10 15 2.908 2.908 2.914 √ 0.86 2.915 6.708 2.915 6.710 0.00% 0.03%

4 5 10 2.546 2.546 2.703 √ 0.56 2.702 6.967 2.779 6.991 2.85% 0.34%

 6 12 3.183 3.183 3.315 √ 1.13 3.312 7.122 3.357 7.140 1.36% 0.25%

 7 14 3.550 3.550 3.645 √ 4.50 3.648 7.473 3.662 7.479 0.38% 0.08%

 8 16 4.058 4.058 4.094 √ 6.46 4.090 7.502 4.102 7.507 0.29% 0.07%

 9 18 5.233 5.233 5.274 √ 19.65 5.273 7.408 5.297 7.409 0.46% 0.01%

 10 20 5.746 5.746 5.799 √ 16.80 5.803 6.863 5.844 6.869 0.71% 0.09%

5 5 13 3.952 3.952 4.470 √ 32.02 4.466 8.154 4.633 8.187 3.74% 0.40%

 6 15 4.844 4.821 5.181 29 84.30 5.181 7.586 5.323 7.610 2.74% 0.31%

 7 18 5.704 5.594 5.809 28 75.49 5.809 8.007 5.843 7.988 0.58% -0.24%

 8 20 6.813 6.690 6.971 27 102.75 6.974 7.315 7.055 7.327 1.16% 0.17%

 9 23 7.950 7.894 8.206 26 419.04 8.205 7.691 8.274 7.701 0.84% 0.12%

 10 25 8.671 8.65 8.875 25 183.02 8.870 7.441 8.933 7.446 0.71% 0.07%

6 5 15 5.717 5.714 6.599 28 197.67 6.602 8.074 6.857 8.134 3.86% 0.75%

 6 18 6.404 6.125 6.840 26 273.82 6.842 8.244 7.056 8.257 3.13% 0.16%

 7 21 8.140 7.545 7.975 14 271.02 7.976 8.125 8.074 8.159 1.23% 0.42%

 8 24 8.985 8.351 8.668 13 548.95 8.670 7.690 8.730 7.696 0.70% 0.08%

 9 27 9.913 9.366 9.758 14 589.12 9.763 7.122 9.878 7.173 1.18% 0.72%

 10 30 11.552 10.714 10.884 12 207.75 10.890 7.468 10.891 7.469 0.00% 0.02%

Note: customer preference scenario: 50%

55

Table C.3 Performance of the extended APBFS algorithm, the SEML heuristics and lower bound for instances with

large batches and 67% fill rate

T S C lb

Extended APBFS SEML Gap

lb* Opt Solved CPU(s) Rel
AveWait

(min)
 Rel

AveWait

(min)

Gap

[Rel]

Gap

[AveWait]

3 5 10 2.296 2.296 2.404 √ 0.90 2.403 6.945 2.415 6.953 0.50% 0.12%

 6 12 3.113 3.113 3.239 √ 1.21 3.245 7.468 3.277 7.477 0.99% 0.12%

 7 14 3.463 3.463 3.520 √ 3.58 3.518 7.720 3.527 7.723 0.26% 0.04%

 8 16 4.100 4.100 4.176 √ 3.36 4.179 7.281 4.186 7.282 0.17% 0.01%

 9 18 4.346 4.346 4.483 √ 4.05 4.485 7.349 4.541 7.365 1.25% 0.22%

 10 20 4.717 4.717 4.755 √ 3.40 4.755 6.937 4.760 6.940 0.11% 0.04%

4 5 13 4.127 4.127 4.635 √ 27.60 4.631 8.342 4.829 8.368 4.28% 0.31%

 6 16 5.629 5.594 6.169 28 39.35 6.167 8.091 6.398 8.142 3.74% 0.62%

 7 19 5.754 5.728 6.318 28 175.06 6.307 7.310 6.397 7.320 1.43% 0.14%

 8 21 6.921 6.726 7.025 26 73.15 7.027 7.580 7.171 7.591 2.04% 0.15%

 9 24 8.229 7.859 8.201 24 320.01 8.208 7.655 8.314 7.663 1.30% 0.10%

 10 27 8.888 8.429 8.897 21 441.13 8.898 7.233 8.994 7.246 1.08% 0.18%

5 5 17 7.006 6.679 7.664 22 498.41 7.677 8.612 8.178 8.684 6.52% 0.84%

 6 20 7.677 6.863 7.398 16 151.72 7.402 7.596 7.703 7.644 4.07% 0.64%

 7 23 9.208 7.889 8.566 9 443.50 8.566 7.681 8.755 7.723 2.20% 0.54%

 8 27 10.838 10.271 10.696 6 1091.25 10.678 7.467 10.871 7.477 1.81% 0.13%

 9 30 12.546 10.219 10.914 4 858.35 10.912 7.368 10.955 7.381 0.39% 0.17%

 10 34 13.925 10.979 11.264 6 549.90 11.249 7.162 11.264 7.177 0.13% 0.21%

6 5 20 9.183 8.075 9.527 5 1567 9.529 8.042 10.463 8.162 9.80% 1.49%

 6 24 11.067 9.844 10.531 2 1019.19 10.506 7.841 10.590 7.871 0.80% 0.38%

 7 28 12.967 - - 0 - - - - - - -

 8 32 14.829 11.75 11.781 1 694.38 11.745 8.051 11.740 8.050 -0.04% -0.01%

 9 36 16.196 - - 0 - - - - - - -

 10 40 18.935 - - 0 - - - - - - -

Note: customer preference scenario: 50%

56

C.2. The calibrated results of Table 2 for the comparison between the Sooo model and the Sooo extension model

Table C.4. Comparison between the Sooo model and the Sooo extension model with small batches and 50% fill rate

T S C

 Sooo- APBFS Sooo extension- extended APBFS
Gap

[AveWait]

Solved CPU(s) Rel
AveWait

(min)
 Solved CPU(s) Rel

AveWait

(min)

3 5 8 √ 0.02 1.478 3.319 √ 0.03 1.478 3.207 3.38%

 6 9 √ 0.02 1.581 3.428 √ 0.03 1.581 3.303 3.65%

 7 11 √ 0.02 2.654 3.485 √ 0.03 2.654 3.356 3.70%

 8 12 √ 0.01 2.169 3.091 √ 0.03 2.169 3.014 2.49%

 9 14 √ 0.02 2.885 3.226 √ 0.04 2.885 3.106 3.72%

 10 15 √ 0.03 3.093 3.044 √ 0.06 3.093 2.930 3.77%

4 5 10 √ 0.02 2.855 3.534 √ 0.03 2.855 3.411 3.49%

 6 12 √ 0.03 3.466 3.532 √ 0.05 3.466 3.351 5.12%

 7 14 √ 0.04 3.941 3.485 √ 0.05 3.941 3.324 4.61%

 8 16 √ 0.16 4.559 3.556 √ 0.20 4.559 3.390 4.67%

 9 18 √ 0.29 5.523 3.691 √ 0.34 5.523 3.474 5.87%

 10 20 √ 0.72 6.015 3.334 √ 0.80 6.015 3.181 4.59%

5 5 13 √ 0.16 4.883 4.042 √ 0.19 4.884 3.900 3.53%

 6 15 √ 2.44 5.544 3.708 √ 2.98 5.544 3.553 4.19%

 7 18 √ 0.72 6.573 3.993 √ 0.77 6.573 3.777 5.39%

 8 20 √ 7.57 7.516 3.695 √ 8.16 7.516 3.482 5.77%

 9 23 29 67.35 8.696 3.835 29 68.25 8.696 3.606 5.96%

 10 25 29 39.40 9.238 3.719 29 49.37 9.238 3.517 5.43%

6 5 15 √ 4.56 6.999 4.034 √ 5.06 6.999 3.886 3.66%

 6 18 √ 5.48 7.728 4.162 √ 6.18 7.728 3.959 4.89%

 7 21 23 148.91 8.923 4.006 22 160.87 8.923 3.787 5.46%

 8 24 22 150.07 9.881 3.998 22 164.07 9.882 3.748 6.24%

 9 27 18 100.24 10.538 3.661 18 104.47 10.538 3.419 6.60%

 10 30 19 108.42 11.576 3.804 18 108.52 11.576 3.580 5.90%

*Note: customer preference scenario: 50%

57

Appendix D. Comparisons between the SEM heuristic and the SEML heuristic

(a) Instances of three tiers

(b) Instances of four tiers

(c) Instances of five tiers

-0.3%

0.0%

0.3%

0.6%

0.9%

1.2%

1.5%

1.8%

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6

5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10

P

B

S

Gap(Rel)

Gap(AveWait)

-0.4%

0.6%

1.6%

2.6%

3.6%

4.6%

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6

5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10

P

B

S

Gap(Rel)

Gap(AveWait)

-1.1%

0.0%

1.1%

2.2%

3.3%

4.4%

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6

5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10

P

B

S

Gap(Rel)

Gap(AveWait)

58

(d) Instances of six tiers

Fig. D.1. Comparisons between the SEM heuristic and the SEML heuristic for all the instances with 67% fill rate

Appendix E. Additional results for the effectiveness of the flexible service policy

E.1. Absolute reduction on the total number of relocations

Fig. E.1 (a) Reduction on the total number of relocations by the flexible service policy for instances of 50% fill rate

-0.2%

0.3%

0.8%

1.3%

1.8%

2.3%

2.8%

3.3%

3.8%

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6 2 2 2 4 4 4 6 6 6

5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10

P

B

S

Gap(Rel)

Gap(AveWait)

4 5 6 7 8 9 10 11
0

1

2

3

4
CustPref=0 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4
CustPref=0.5 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4
CustPref=0 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4
CustPref=0.5 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4
CustPref=0 BatchSize=6

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4
CustPref=0.5 BatchSize=6

T = 3

T = 4

T = 5

T = 6

Number of stacks

R
ed

u
ct

io
n
 i

n
 T

o
ta

l
N

u
m

b
er

 o
f

R
el

o
ca

ti
o

n
s

(T
E

U
)

59

Fig. E.1 (b) Reduction on the total number of relocations by the flexible service policy for instances of 67% fill rate

E.2. Absolute reduction on the average relevant truck waiting time

Fig. E.2 (a) Reduction on the average relevant waiting time by the flexible service policy for instances of 50% fill rate

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
CustPref=0 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
CustPref=0.5 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
CustPref=0 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
CustPref=0.5 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
CustPref=0 BatchSize=6

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
CustPref=0.5 BatchSize=6

T = 3

T = 4

T = 5

T = 6

Number of stacks

R
ed

u
ct

io
n
 i

n
 T

o
ta

l
N

u
m

b
er

 o
f

R
el

o
ca

ti
o

n
s

(T
E

U
)

4 5 6 7 8 9 10 11
0

1

2

3

4

5
CustPref=0 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5
CustPref=0.5 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5
CustPref=0 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5
CustPref=0.5 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5
CustPref=0 BatchSize=6

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5
CustPref=0.5 BatchSize=6

T = 3

T = 4

T = 5

T = 6

Number of stacks

R
ed

u
ct

io
n
 i

n
 A

v
er

ag
e

R
el

e
v
an

t
W

ai
ti

n
g
 T

im
e

(m
in

u
te

s)

60

Fig. E.2 (b) Reduction on the average relevant waiting time by the flexible service policy for instances of 67% fill rate

E.3. Relative reduction on the average relevant truck waiting time

Fig. E.3 (a) Effect of the flexible service policy on average relevant waiting time for instances of 50% fill rate

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7
CustPref=0 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7
CustPref=0.5 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7
CustPref=0 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7
CustPref=0.5 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7
CustPref=0 BatchSize=6

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7
CustPref=0.5 BatchSize=6

T = 3

T = 4

T = 5

T = 6

Number of stacks

R
ed

u
ct

io
n
 i

n
 A

v
er

a
g
e

R
el

e
v
an

t
W

ai
ti

n
g
 T

im
e

(m
in

u
te

s)

4 5 6 7 8 9 10 11
3%

8%

13%

18%

23%

28%
CustPref=0 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
3%

8%

13%

18%

23%

28%
CustPref=0.5 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
3%

8%

13%

18%

23%

28%
CustPref=0 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
3%

8%

13%

18%

23%

28%
CustPref=0.5 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
3%

8%

13%

18%

23%

28%
CustPref=0 BatchSize=6

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
3%

8%

13%

18%

23%

28%
CustPref=0.5 BatchSize=6

T = 3

T = 4

T = 5

T = 6

Number of stacks

R
el

at
iv

e
R

ed
u
c
ti

o
n
 i

n
 A

v
er

ag
e
 R

el
ev

a
n
t

W
ai

ti
n

g
 T

im
e

61

Fig. E.3 (b) Effect of the flexible service policy on average relevant waiting time for instances of 67% fill rate

4 5 6 7 8 9 10 11
4%

14%

24%

34%
CustPref=0 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
4%

14%

24%

34%
CustPref=0.5 BatchSize=2

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
4%

14%

24%

34%
CustPref=0 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
4%

14%

24%

34%
CustPref=0.5 BatchSize=4

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
4%

14%

24%

34%
CustPref=0 BatchSize=6

T = 3

T = 4

T = 5

T = 6

4 5 6 7 8 9 10 11
4%

14%

24%

34%
CustPref=0.5 BatchSize=6

T = 3

T = 4

T = 5

T = 6

Number of stacks

R
el

at
iv

e
R

ed
u
c
ti

o
n
 i

n
 A

v
er

ag
e
 R

el
ev

a
n
t

W
ai

ti
n

g
 T

im
e

62

E.4. Average truck turn time

Table E.1 Results of the average truck turn time for all instances under the flexible service policy

 Fill rate = 50% Fill rate = 67%

S B P T=3 T=4 T=5 T=6 T=3 T=4 T=5 T=6

5 2 0 13.995 14.178 14.652 14.590 13.981 14.660 14.894 15.052

 2 0.5 21.709 21.915 22.396 22.393 21.731 22.467 22.764 22.975

 2 1 28.995 29.178 29.631 29.577 28.981 29.660 29.894 30.049

 4 0 17.676 17.402 18.330 18.276 17.370 18.551 18.984 18.983

 4 0.5 25.717 25.492 26.678 26.682 25.452 26.875 27.434 27.629

 4 1 32.676 32.402 33.315 33.276 32.370 33.525 33.956 33.967

 6 0 20.630 20.320 22.102 22.467 20.532 23.169 24.930 24.936

 6 0.5 29.109 28.927 31.329 31.828 29.179 32.577 34.865 35.674

 6 1 35.630 35.320 37.102 37.467 35.532 38.169 39.918 39.906

6 2 0 14.125 14.142 14.296 14.669 14.305 14.667 14.648 14.983

 2 0.5 21.804 21.859 22.055 22.454 22.038 22.437 22.459 22.851

 2 1 29.125 29.142 29.296 29.669 29.305 29.667 29.648 29.983

 4 0 17.944 17.594 18.031 18.821 17.892 18.495 18.653 19.230

 4 0.5 25.899 25.640 26.209 27.128 25.975 26.745 26.998 27.769

 4 1 32.944 32.594 33.031 33.821 32.892 33.495 33.653 34.221

 6 0 20.377 21.716 22.086 24.077 21.880 23.528 24.706 26.605

 6 0.5 28.733 30.411 30.961 33.468 30.576 32.725 34.531 36.959

 6 1 35.377 36.716 37.086 39.077 36.880 38.528 39.706 41.485

7 2 0 14.175 14.160 14.528 14.639 14.331 14.258 14.670 15.027

 2 0.5 21.852 21.829 22.277 22.295 22.003 21.976 22.455 22.861

 2 1 29.175 29.160 29.528 29.626 29.331 29.258 29.670 30.008

 4 0 17.613 17.892 18.410 18.411 18.174 17.818 18.652 19.758

 4 0.5 25.582 25.977 26.580 26.658 26.221 25.893 26.891 28.330

 4 1 32.613 32.892 33.410 33.408 33.174 32.818 33.637 34.751

 6 0 21.210 21.924 23.390 24.223 22.480 22.009 25.351 29.294

 6 0.5 29.559 30.513 32.495 33.544 31.099 30.922 34.755 39.858

 6 1 36.210 36.924 38.390 39.223 37.480 37.009 40.325 44.297

8 2 0 13.881 14.188 14.271 14.625 14.172 14.377 14.612 14.973

 2 0.5 21.514 21.891 21.999 22.247 21.889 22.115 22.374 22.779

 2 1 28.881 29.188 29.271 29.614 29.172 29.377 29.607 29.969

 4 0 17.154 17.964 17.976 18.730 17.706 18.142 18.487 19.407

 4 0.5 24.989 26.001 26.062 26.947 25.777 26.277 26.712 27.788

 4 1 32.154 32.964 32.976 33.730 32.706 33.142 33.478 34.399

 6 0 20.435 22.649 23.074 24.595 22.098 23.526 24.767 29.260

 6 0.5 28.524 31.295 31.759 33.710 30.625 32.603 33.968 39.559

 6 1 35.435 37.649 38.074 39.595 37.098 38.526 39.767 44.264

9 2 0 13.979 14.280 14.413 14.382 14.206 14.415 14.764 14.757

 2 0.5 21.610 21.981 22.111 21.918 21.917 22.125 22.521 22.542

 2 1 28.979 29.280 29.413 29.382 29.206 29.415 29.757 29.751

 4 0 17.411 17.937 18.368 18.120 17.885 18.235 19.012 18.968

 4 0.5 25.265 25.906 26.439 26.213 25.866 26.314 27.258 27.298

 4 1 32.411 32.937 33.368 33.120 32.885 33.235 34.006 33.959

 6 0 21.281 22.632 23.580 23.853 22.558 23.807 26.444 27.431

 6 0.5 29.524 31.075 32.547 32.706 31.083 32.673 36.034 37.316

 6 1 36.281 37.632 38.580 38.853 37.558 38.807 41.430 42.431

10 2 0 13.805 14.016 14.343 14.524 14.026 14.271 14.573 14.751

 2 0.5 21.436 21.686 22.020 22.074 21.692 21.963 22.287 22.502

 2 1 28.805 29.016 29.343 29.518 29.026 29.271 29.571 29.747

 4 0 17.383 17.450 18.151 18.725 17.516 17.854 18.340 19.175

63

 4 0.5 25.208 25.376 26.165 26.799 25.442 25.880 26.421 27.433

 4 1 32.383 32.450 33.151 33.720 32.516 32.854 33.338 34.173

 6 0 20.750 21.174 23.791 25.256 21.192 22.956 25.013 27.868

 6 0.5 28.878 29.498 32.363 34.376 29.493 31.476 34.084 37.408

 6 1 35.750 36.174 38.791 40.256 36.192 37.956 40.005 42.872

Appendix F. Results of three sets of customer preference scenarios

Table F.1 Comparison between three sets of customer preference scenarios for small batches and 50% fill rate

T S C

 ‘100%’ preference scenario ‘50%’ preference scenario Heterogeneous preference scenario

 Solved CPU(s) Rel AveWait Solved CPU(s) Rel AveWait Solved CPU(s) Rel AveWait

3 5 8 √ 0.04 1.267 2.992 √ 0.03 1.478 3.207 √ 0.02 1.475 3.205

 6 9 √ 0.03 1.433 3.126 √ 0.03 1.581 3.303 √ 0.03 1.593 3.306

 7 11 √ 0.03 2.433 3.170 √ 0.03 2.654 3.356 √ 0.04 2.638 3.348

 8 12 √ 0.03 2.033 2.883 √ 0.03 2.169 3.014 √ 0.04 2.158 3.017

 9 14 √ 0.05 2.767 2.976 √ 0.04 2.885 3.106 √ 0.05 2.885 3.111

 10 15 √ 0.06 3.000 2.800 √ 0.06 3.093 2.930 √ 0.07 3.088 2.939

4 5 10 √ 0.04 2.633 3.180 √ 0.03 2.855 3.411 √ 0.04 2.862 3.418

 6 12 √ 0.05 3.267 3.144 √ 0.05 3.466 3.351 √ 0.06 3.475 3.355

 7 14 √ 0.07 3.733 3.148 √ 0.05 3.941 3.324 √ 0.08 3.944 3.340

 8 16 √ 0.15 4.300 3.192 √ 0.20 4.559 3.390 √ 0.31 4.533 3.387

 9 18 √ 0.37 5.333 3.274 √ 0.34 5.523 3.474 √ 0.76 5.531 3.477

 10 20 √ 0.27 5.767 3.010 √ 0.80 6.015 3.181 √ 2.65 6.003 3.187

5 5 13 √ 0.08 4.500 3.621 √ 0.19 4.884 3.900 √ 0.32 4.856 3.884

 6 15 √ 0.20 5.200 3.307 √ 2.98 5.544 3.553 √ 34.94 5.552 3.565

 7 18 √ 0.28 6.200 3.519 √ 0.77 6.573 3.777 √ 2.29 6.562 3.783

 8 20 √ 1.43 7.200 3.267 √ 8.16 7.516 3.482 √ 34.67 7.501 3.484

 9 23 √ 5.00 8.414 3.388 29/30 68.25 8.696 3.606 284/300 151.57 8.700 3.615

 10 25 √ 7.33 8.931 3.321 29/30 49.37 9.238 3.517 285/300 158.48 9.235 3.529

6 5 15 √ 1.25 6.400 3.560 √ 5.06 6.999 3.886 √ 15.69 7.008 3.897

 6 18 √ 0.99 7.233 3.670 √ 6.18 7.728 3.959 299/300 65.82 7.727 3.963

 7 21 27/30 44.46 8.455 3.506 22/30 160.87 8.923 3.787 208/300 260.84 8.843 3.795

 8 24 25/30 23.52 9.333 3.500 22/30 69.554 9.758 3.725 208/300 184.58 9.751 3.734

 9 27 24/30 48.71 10.389 3.235 18/30 104.47 10.538 3.419 173/300 194.41 10.530 3.428

 10 30 23/30 38.75 11.333 3.404 18/30 108.52 11.572 3.580 - - - -

