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A Hybrid Finite Element-Statistical Energy Analysis

Approach to the Dynamic Response of Built-up

Systems with Nonlinear Joints

Fiorenzo A. Fazzolari1,∗, Puxue Tan1

University of Liverpool, School of Engineering, Brownlow Hill, Liverpool, L69 3GH, UK

Abstract

The present article deals with the development and validation of a hybrid finite element-

statistical energy analysis (FE-SEA) formulation employed to obtain the ensemble-average

of the time-averaged vibrational energy response of dynamic systems with nonlinear joints.

The proposed FE-SEA formulation is validated via a nonlinear stochastic benchmark model.

The theoretical formulation related to the latter, is entirely derived by employing a variational

approach. The weak-form of the governing equations, for each of the sample in the ensemble,

is based on Kirchhoff’s thin-plate assumptions and is restricted to the out-of-plane motion

only. The classical Lagrange-Rayleigh-Ritz method (LRRM), combined with the Monte Carlo

simulation (MCS), is used as solution technique. An appropriate degree of uncertainty is

introduced into the model in order to break the system symmetries ensuring transition from

an exponential to a Rayleigh distribution of the modal spacing. Both in the hybrid FE-SEA

and in the LRRM+MCS the localised nonlinearities are linearised by means of the method

of harmonic balance. Various built-up plate systems, consisting of rectangular isotropic,

homogeneous and linear elastic plates, elastically coupled by virtue of nonlinear translational

and/or torsional springs and subjected to harmonic point loads are investigated.

Keywords: Nonlinear analysis, Statistical energy analysis, Lagrange-Rayleigh-Ritz

formulation, Method of harmonic balance, Dynamic systems.

1. Introduction

Manufacturing and material imperfections, which affect significantly the prediction of the

system response, widely exist in the engineering structures. The dynamic response of sys-
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tems at both mid- and high-frequency range is highly sensitive to the structural uncertainties.

Therefore, computational methods for the structural analysis accounting for uncertainties are

required. In order to overcome these shortcomings, the statistical energy analysis (SEA) was

introduced. The SEA aims to model the average vibrational energy flow between an arbi-

trary number of subsystems which are generally part of a complex structures. It also utilizes

loss factor to represent energy dissipation in subsystems, and coupling loss factor (CLF)

is employed in order to describe the dynamic interaction between subsystems. It has been

extensively researched over the last decades, and it turned out to be an extremely powerful

tool when analysing the dynamic behaviour of structures subjected to externally imposed

vibration sources acting from the mid- to high-frequency range. The traditional SEA has

been comprehensively discussed by Lyon [1], who via algebraic equations related the average

energy stored and dissipated in subsystems to the energy input from the external sources or

other subsystems. A comprehensive overview of the topic has been provided by Fahy [2] and

Woodhouse and Hodges [3]. The authors provided physical insights on the SEA and discussed

different approaches that can be used to solve the main problem of the SEA. Langley [4, 5]

derived a general form of the SEA equations and the CLF aiming to analyse the response of

multi-coupled systems under the condition of weak coupling. However, the classical SEA is

essentially limited to the high-frequency range. As regards the low-frequency range classical

deterministic methodologies such as finite element (FE) method can be successfully used.

Problems occur when dealing with the mid-frequency range where SEA is not applicable as

the system is not featured by enough uncertainties, while FE is computationally expensive [6].

In order to overcome this drawback, Langley and Shorter derived a ground-breaking formu-

lation referred to as hybrid finite element-statistical energy analysis (FE-SEA) formulation

[7, 8]. This approach allows to properly determine the response of highly complex dynamic

systems with no loss of accuracy in the mid-frequency range. In this specific range the deter-

ministic components of the system are small if commensurate to a wavelength, then prone to

be modelled using FE, while some others are large when compared with a wavelength, thus

amenable to be treated statistically by SEA. The statistical concepts and methods which lie

behind the SEA are based on the Gaussian Orthogonal Ensemble (GOE). With respect to

the originally adopted Poisson process, mainly used for convenience, and based on the as-

sumption that the system is featured by many symmetries, the GOE statistics turned out to

provide a more realistic description. One important characteristic is that when uncertainty

2
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applies, the distribution of spacings of natural frequency is of Rayleigh-type not exponential,

which conforms to GOE statistics [9]. Based on this assumption the average vibrational

energy flow is determined, however, a second quantity which is of noteworthy interest is

the variance. Lyon [10] has derived the variance by using probability density function (pdf)

of modal spacings. Langley and Cotoni [11, 12] have given a variance prediction method

for general built-up structures along with its simulation and experimental validation. With

respect to the hybrid FE-SEA model, the same authors provided the expressions for both

deterministic and indeterministic components [13]. As shown by several researchers the SEA

can also be used to predict the transient response of complex systems [14–17]. If the struc-

tural system under investigation is with parametric uncertainties, then the SEA method and

the hybrid method can be modified with consideration of the parameters describing uncer-

tainties. A thorough discussion on this topic has been provided by Ciciriello and Langley

[18, 19]. Yin et al [20] considered fuzzy parameters in the deterministic components. The

uncertainty propagation in SEA has been analysed by sensitivity method, vertex method and

Legendre orthogonal polynomial based method, more information can be found in Culla et

al [21] and Xu et al [22]. Christen et al [23] performed sensitive analysis relating parametric

uncertainty in either SEA model coefficients or engineering structural parameters has per-

formed by the Fourier analysis sensitivity test method. For the vibro-acoustic systems with

fuzzy and interval parameters, two formulations, which respectively are named as modified

perturbation SEA and affine interval perturbation SEA, has been proposed to predict the

response and uncertainty propagation by Chen et al [24, 25]. Despite the relevant number of

papers - some of which are above-mentioned - devoted to the SEA-based method, it should

be noted that all of them have been derived under the assumption of linear behaviour of

the subsystems joint components. Several works relating nonlinear systems have been per-

formed in entropy-based SEA models. By introducing the Khinchins entropy, Carcaterra [26]

proved that the thermodynamic temperature could be applied to analyse the energy flow in

Hamiltonian systems with dead-zone and polynomial nonlinearity under assumption of weak

coupling. Then a new description - mixing entropy based on the Khinchins entropy was

proposed considering two-degree-of-freedom systems by Sotoudeh [27]. A comprehensive dis-

cussion on entropy and analysis for various systems including the nonlinearity has been give

by Langley [28]. Contributions to nonlinearity investigation could also be from traditional

perspectives of SEA. To explore the energy scattering between frequency bands in nonlinear

3
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build-up system, Spelman and Langley [29] developed a nonlinear SEA formulation. This

work separates the modes in each frequency band as subsystem and gives the expressions of

the nonlinear CLF as the form of tensor. However, the nonlinear springs considered are set

to connect the plates and ground but do not joint the plates, which means that the nonlinear

joints effect the energy transfer between subsystems is still to be investigated. The main

purpose of the present investigation is to extend the SEA model to systems with nonlinear

joint components and to thoroughly consider the relation between the energy transfer, non-

linearity and multi-type joints. To this aim several objectives are proposed: (i) the localised

cubic nonlinearity, used to model the junctions, is introduced in both translational and/or

torsional springs; and according to the hybrid FE-SEA formulation are considered to be

the deterministic components of the dynamic system; (ii) the linearisation process, which is

an important part in the nonlinear analysis, under the harmonic loading has been carried

out through the method of harmonic balance (MHB); (iii) to validation purpose, a further

benchmark model with similar localised nonlinearities and linearisation, by combining both

the Lagrange-Rayleigh-Ritz method (LRRM) and the Monte Carlo Simulation (MCS) tech-

niques, is developed. Four different case studies, proposing various built-up plate systems

with several set of mixed translational and torsional springs, have been investigates and the

most meaningful results discussed.

2. Lagrange-Rayleigh-Ritz-Method and localised nonlinearities

This section focuses on the derivation of the governing equations of the nonlinear built-up

plate systems using the LRRM. A cubic localised nonlinearity has been taken into account

through the inclusion of both translational and torsional springs into the system. The method

of harmonic balance, which for the sake of conciseness is not reported in the following, is used

for the linearisation of the governing equations. More information can be found in Ref. [30].

2.1. Nonlinear translational spring

Let’s consider the two isotropic, homogeneous and linear elastic rectangular plates coupled

by springs, whose geometry and schematic representations are shown in the Fig. 6. In this

system, the plates are simply supported and the upper plate is subject to a concentrated

harmonic force with a constant direction of vertical downward. Each plate (or subsystem)

of the whole dynamic system is randomised by using lumped masses randomly distributed.

The LRRM based on the weak-form of governing equations of the bare plate is employed

4
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as solution technique [31, 32]. In this context, the transverse displacement w(x, y, t) can be

expansed in a Ritz sense through the following multiplication of eigenfunctions and modal

coordinates

w(x, y, t) =
∑
mn

ψmn(x)qmn(t) (1)

where the modal coordinates qmn are time-dependent functions; ψmn are mass-normalized

shape functions. Generally, these shape functions are selected to satisfy at least the geometric

boundary conditions. In terms of the simply-supported plates in the present analysis, the

shape functions are given as follows

ψmn(x) =
1√
Mn

sin
(mπ
a
x
)

sin
(nπ
b
y
)

(2)

where Mn = ρhab/4 represents the modal mass; a and b are the length of the plates along

the x and y axis, respectively. The shape functions satisfy the orthogonality condition. The

kinetic energy of the system including the randomly distributed masses on the plates in the

Fig. 6 are given as follows

T =
1

2

∑
mn

q̇21,mn +

N1,m∑
k=1

mk

2

∑
mn

∑
ij

q̇21,mnq̇
2
1,ijψ1,mn(xmk

)ψ1,ij(xmk
)

+
1

2

∑
mn

q̇22,mn +

N2,m∑
k=1

mk

2

∑
mn

∑
ij

q̇22,mnq̇
2
2,ijψ2,mn(xmk

)ψ2,ij(xmk
)

(3)

where N1,m and N2,m represent the numbers of random masses on the plates 1 and plate

2, respectively; mk is the magnitude of the k-th mass; xmk
= (xmk

, ymk
) is the randomised

coordinate of the mass mk. The elastic potential energy of the built-up plate system, is given

as follows

Φe =
1

2

∑
mn

ω2
1,mnq

2
1,mn +

1

2

∑
mn

ω2
2,mnq

2
2,mn

+
Ns∑
ns=1

1

2
k1,ns

[∑
mn

ψ1,mn(xks)q1,mn −
∑
ij

ψ2,ij(xks)q2,ij

]2

+
Ns∑
ns=1

1

4
k3,ns

[∑
mn

ψ1,mn(xks)q1,mn −
∑
ij

ψ2,ij(xks)q2,ij

]4 (4)

where ωmn =
√
D/ρh((mπ/a)2 + (nπ/b)2) is the natural frequency of the bare plate; D is

the flexural rigidity; k1,ns and k3,ns correspond to the linear term and the cubic term of ns-th

spring stiffness; xks = (xks , yks) is the coordinates of the joint. The potential energy related

5
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to the application of the external force assumed to be concentrated and perpendicular to the

upper plate, as depicted in the Fig. 6, can be written as

Φext = P̂1 sin (ωt+ φ)

[∑
mn

ψ1,mn(xP1)q1,mn

]
(5)

where P̂1 sin (ωt+ φ) represents the sinusoidal excitation with amplitude P̂1, circular fre-

quency ω and phase angle φ; xP1 denotes the coordinate of the external force. The kinetic

energy, the elastic potential energy and the potential energy due to the external force can be

substituted into the Lagrange’s equation

d

dt

(
∂T

∂q̇mn

)
− ∂T

∂qmn
+

∂Φe

∂qmn
=
∂Φext

∂qmn
(6)

leading to the following equations of motion,

q̈1,mn + ω2
1,mnq1,mn +

N1,m∑
k=1

mk

∑
ij

q̈1,ijψ1,ij(xmk
)ψ1,mn(xmk

)

+
Ns∑
ns=1

k1,ns

[∑
ij

q1,ijψ1,ij(xns)−
∑
ij

q2,ijψ2,ij(xns)

]
ψ1,mn(xns)

+
Ns∑
ns=1

k3,ns

[∑
ij

q1,ijψ1,ij(xns)−
∑
ij

q2,ijψ2,ij(xns)

]3
ψ1,mn(xns)

= P̂1 sin(ωt+ φ)q1,mn

(7)

q̈2,mn + ω2
2,mnq2,mn +

N2,m∑
k=1

mk

∑
ij

q̈2,ijψ2,ij(xmk
)ψ2,mn(xmk

)

+
Ns∑
ns=1

k1,ns

[∑
ij

q2,ijψ2,ij(xns)−
∑
ij

q1,ijψ1,ij(xns)

]
ψ2,mn(xns)

+
Ns∑
ns=1

k3,ns

[∑
ij

q2,ijψ2,ij(xns)−
∑
ij

q1,ijψ1,ij(xns)

]3
ψ2,mn(xns)

= 0

(8)

For convenience the nonlinear response of the system is given in terms of the ensemble-average

of the time-averaged vibrational energy, which assumes the following form

E [Ek] = E

[
1

TP

∫ TP

0

2T (k)dt

]
= E

[
2T̄ (k)

]
(9)

where E [] is the ensemble-average; TP is the period; T (k) is the kinetic energy of the k-th

subsystem; T̄ (k) represents the time-averaged kinetic energy.

6
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2.2. Nonlinear Torsional Spring

Similarly, let’ s consider the two simply-supported plates coupled by a set of torsional

springs depicted in the Fig. 12. Also for this built-up plates system the localised nonlinearity

is considered to be cubic. The elastic potential energy of the system can be written as

Φe =
1

2

∑
mn

ω2
1,mnq

2
1,mn +

1

2

∑
mn

ω2
2,mnq

2
2,mn

+
Nt∑
nt=1

1

2
knt

[∑
mn

∂ψ1,mn

∂y

∣∣∣∣
x=xkt

q1,mn −
∑
ij

∂ψ2,mn

∂y

∣∣∣∣
x=xkt

q2,ij

]2

+
Nt∑
nt=1

1

4
knt

[∑
mn

∂ψ1,mn

∂y

∣∣∣∣
x=xkt

q1,mn −
∑
ij

∂ψ2,mn

∂y

∣∣∣∣
x=xkt

q2,ij

]4 (10)

where ∂ψmn

∂y

∣∣∣∣
x=xkt

is the partial derivative of the eigenfunction with respect to y coordinate

at the junction xkt . Substituting Eq. (10) and Eq. (3) into Eq. (6) leads to the equations of

motions as follows

q̈1,mn + ω2
1,mnq1,mn +

N1,m∑
k=1

mk

∑
ij

q̈1,ijψ1,ij(xmk
)ψ1,mn(xmk

)

+
Nt∑
nt=1

k1,nt

[∑
ij

q1,ij
∂ψ1,ij

∂y

∣∣∣∣
x=xnt

−
∑
ij

q2,ij
∂ψ2,ij

∂y

∣∣∣∣
x=xnt

]
∂ψ1,mn

∂y

∣∣∣∣
x=xnt

+
Nt∑
nt=1

k3,nt

[∑
ij

q1,ij
∂ψ1,ij

∂y

∣∣∣∣
x=xnt

−
∑
ij

q2,ij
∂ψ2,ij

∂y

∣∣∣∣
x=xnt

]3
∂ψ1,mn

∂y

∣∣∣∣
x=xnt

= P̂1 sin(ωt+ φ)q1,mn

(11)

q̈2,mn + ω2
2,mnq2,mn +

N2,m∑
k=1

mk

∑
ij

q̈2,ijψ2,ij(xmk
)ψ2,mn(xmk

)

+
Nt∑
nt=1

k1,nt

[∑
ij

q2,ij
∂ψ2,ij

∂y

∣∣∣∣
x=xnt

−
∑
ij

q1,ij
∂ψ1,ij

∂y

∣∣∣∣
x=xnt

]
∂ψ2,mn

∂y

∣∣∣∣
x=xnt

+
Nt∑
nt=1

k3,nt

[∑
ij

q2,ij
∂ψ2,ij

∂y

∣∣∣∣
x=xnt

−
∑
ij

q1,ij
∂ψ1,ij

∂y

∣∣∣∣
x=xnt

]3
∂ψ2,mn

∂y

∣∣∣∣
x=xnt

= 0

(12)

The equations of motions above have similar forms to those with translational nonlinear

springs of Eq. (7) and Eq. (8). The main difference occurs in the coupling term with k1,nt

and k3,nt as a result of the torsional joints. To solve the nonlinear governing equations in

Eqs. (7) and (8) and Eqs. (11) and (12), a linearisation procedure is needed.

7
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3. Hybrid FE-SEA formulation accounting for localised nonlinearities

In the present section a concise overview of the hybrid FE-SEA formulation accounting for

nonlinearities in the joint components of the dynamic system is provided. The hybrid FE-SEA

formulation firstly requires the identification of those components, within the system, which

are assumed to behave statistically. These component are modelled as SEA subsystems. The

remaining components are deemed to be deterministic and are modelled by using the FE

method. The relationship between the SEA and the FE subsystems, is considered to meet

the following conditions [8],

Dtotq = f +
∑
k

fkrev (13)

Dtot = Dd +
∑
k

Dk
dir (14)

where q is the general displacement of FE parts under the frequency of ω; f represent the ex-

ternal forces exerted to the FE components; fkrev are the forces resulting from the reverberant

field in k-th subsystem; Dd corresponds to the dynamic stiffness matrix of the deterministic

components; Dk
dir is the the dynamic stiffness matrix arising from k-th direct field. Consid-

ering the diffuse field reciprocity relation between direct fields and reverberant fields [33], the

energy equilibrium equation for each subsystem and the cross spectral matrix Sqq is given as

[7]

ω (ηj + ηd,j) +
∑
k

ωηjknj

(
Ej
nj
− Ek
nk

)
= Pin,j + P ext

in,j (15)

Sqq = D−1
tot

[
Sff +

∑
k

(
4Ek
ωπnk

)
Im
{
D

(k)
dir

}] (
D−1
tot

)∗T
(16)

where

P ext
in,j =

(ω
2

)∑
rs

Im
{
Dj
dir,rs

} [
D−1
totSff (D

−1
tot)

∗T ]
rs

(17)

ηjk =
2

ωπnj

∑
rs

Im
{
Dj
dir,rs

} [
D−1
totIm

{
D

(k)
dir

}
(D−1

tot)
∗T
]
rs

(18)

ηd,j =
2

ωπnj

∑
rs

Im {Dd,rs}
[
D−1
totIm

{
D

(j)
dir

}
(D−1

tot)
∗T
]
rs

(19)

In Eq. (15), ηj is the loss factor of j-th subsystem; ηd,j corresponds to the power dissipation

in j-th master system; ηjk is the coupling loss factor; nj is the modal density; Ej is the

ensemble average energy of j-th subsystem; Pin,j and P ext
in,j represent the power input from

the loadings to subsystems and to master systems respectively. In Eq. (16), Sff denotes

8
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the cross spectral matrix of external forces to master systems. Usually, Eq. (15) and Eq.

(16) are used to obtain the response of subsystems and FE components. To solve Eq. (15),

P ext
in,j, ηjk and ηd,j can be calculated by Eqs. (17)-(19). Then the responses of deterministic

components are obtained using Eq. (16). As far as the localised nonlinearity is concerned, it

is treated exactly in the same manner of the LRRM benchmark model. Namely, the MHB

is used for the linearisation of the cubic nonlinearities localised in both translational and/or

torsional springs.

4. Numerical results

This section proposes numerical results for four different configurations of built-up plate

systems, in order to validate and assess the foregoing developed methodology. Both trans-

lational and torsional springs are considered to be joint components of the coupled plates,

and can have both linear and nonlinear mechanical behaviour. In all of the addressed case

studies a cubic nonlinearity is accounted for. The developed hybrid FE-SEA including lo-

calised nonlinearities is employed to obtain the ensemble-average of the time-averaged energy

function; and the benchmark model LRRM plus MCS featured by the same set of nonlinear

springs is employed for comparison purpose. The system is randomised by using distributed

lumped masses. The effectiveness of the randomisation process, through the achievement of

universality in the natural frequency distribution of the dynamic system under investigation,

has been analysed. In all of the addressed case studies the material is homogeneous, isotropic

and linear elastic with Young’s modulus E = 70GPa; Poisson’s ratio ν = 0.3 and density

ρ = 2700kg/m3. The plates’ damping loss factor and their size including a and b (plate’s

sides) as well as h (thickness), are given in the Tab. 1.

4.1. GOE statistics

The GOE statistics is the one underpinning the hybrid FE-SEA formulation, namely, it

describes the statistics of the natural frequency spacing in each SEA subsystem. Early works

on this subject matter, used to consider the modal spacing as a Poisson process leading

to an exponential distribution [34]. This would be correct in systems featured by compo-

nents/subsystems free of imperfections. In real-life structures, components are made up of

materials including voids and defects, and manufacturing imperfections. All of these un-

certainties make the mode spacing conform to the GOE statistics based on the Rayleigh

distribution. This has been proved both numerically and experimentally [9, 11]. When the

9
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GOE statistics occur, the modes of system might mix and veer in high-frequency range. For

purpose of measuring the amount of mixing and veering in the process, a parameter called

statistical overlap factor has been defined as follow [9],

S =
2σ

µ
=

2{var[∆ωn]}1/2

µ
(20)

where σ represents the standard derivation of natural frequency of system with uncertainty;

µ denotes the mean spacing of natural frequency; ωn corresponds to n-th natural frequency.

For a simply-supported plate with lumped mass attachments the statistical overlap factor

S increases, with a linear trend, while increasing the frequency till reaching a plateau in a

well defined frequency range. As this value approaches the unity the GOE statistics occurs.

The mean value of the statistical overlap factor S̄ identifies a level section which helps in the

identification of the correct randomisation scheme to achieve the GOE statistics. The above

discussed parameters are thoroughly investigated by analysing the rectangular plate with

lumped mass attachments shown in Fig. 1. The geometrical parameters used for the plate

are those proposed for plate 1 in Tab. 1. The statistical overlap factor against the circular

frequency, and for different number of small masses, is investigated in Fig. 2. It is visible

form Fig. 2(a) that for a number of 20 small masses the statistical overlap factor S > 1;

this is also confirmed by its mean values plotted in Fig. 2(b). This means that a number of

20 lumped mass attachments is enough to randomise the plate to reach the GOE statistics.

As the lumped masses weight is also a key parameters to achieve GOE statistics, the mean

value of statistical overlap factor is calculated with variation of the masses number and the

mass rate in terms of the total weight of the bare plate. The result is shown in Fig. 3. It can

be noted that for 20 small masses having the 2% of total weight of the bare plate is S̄ > 1

assuring that the GOE applies. This is further confirmed by Fig. 4 where the probability

distribution of the modal spacing is shown for different values of small masses. It should be

noted how the transition form an exponential distribution (1 mass) to a Rayleigh distribution

is almost complete with 20 masses. Fig. 5 shows the comparison of the quantiles of a perfect

Rayleigh distribution and the one achieved with various value of lumped mass attachments.

Once again it can be noted that 20 small masses are sufficient to properly randomise the

subsystem. Being the size of plate 2 and plate 3 smaller than those of plate 1 and plate 4,

the distribution of the lumped masses on their surface is denser. For all these reasons, the

aforementioned values are those that have been selected to simulate the uncertainties within

the dynamic system in the benchmark model.

10
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4.2. Built-up plate systems

The first case study is depicted in Fig. 6. The geometrical parameters used for plate 1 and

plate 2 are given in Tab. 1. The linear and nonlinear translational spring elastic coefficients

are given as: kl = 2 × 105 and knl = 2 × 1015, respectively. The system is subjected to

an harmonic point load of 1000 N acting on plate 1. The results in Fig. 7(a) show the

time-averaged energy response of a linear LRRM plus MCS analysis with 200 samples. The

MCS analysis for the linearised system leads to a similar trend of the linear one; so for

the sake of conciseness only the ensemble-average has been shown. Fig. 7(b) compares the

ensemble-average of the time-averaged energy response of both linear and linearised systems,

computed by using both the LRRM plus MCS and the hybrid FE-SEA formulation. In all of

the mentioned analysis the results show an excellent agreement. As expected the introduction

of the nonlinearity increases the energy level in the ensemble-average energy response of plate

2 due to the stiffening effect induced in the translational springs. In order to validate if the

probability distribution of ensemble energy response of the subsystems is log-normal in terms

of nonlinear LRRM plus MCS formulation, Fig. 8 compares the distribution of linear and

linearised analysis at the circular frequency ω = 4000 (rad/s). It can be observed that

logarithm of the energy responses of the subsystems yielded by both linear and linearised

analysis are consistent with normal distribution, which means the MCS samples conform to

the a log-normal distribution showing and excellent match for the linear analysis and a good

one for the linearised analysis. A similar result can be noted in Fig. 9 where the quantiles of

a log-normal distribution are compared with those of the MSC samples. Moreover, from the

MCS the 99% confidence interval of the ensemble-average energy response is computed. In

regards of that, Fig. 10 shows the ensemble-average energy response predicted by linear and

linearised hybrid FE-SEA formulation is within the interval estimated by the benchmark in

most circular frequency range. In Fig. 11 the effect of the of both linear and nonlinear spring

stiffness coefficients is examined. More specifically, in Fig. 11(a) as expected the ensemble-

average energy response increases uniformly while increasing, by an order of magnitude at

each analysis (kl = 2× 102, 2× 103, 2× 104, 2× 105), the linear spring stiffness coefficient and

keeping constant the nonlinear one knl = 2×1015. In Fig. 11(b) the same analysis is performed

but rising the nonlinear spring stiffness coefficient (knl = 2×109, 2×1011, 2×1013, 2×1015) with

the linear one constant kl = 2× 104. The increase of the nonlinear stiffness coefficients leads

to different increment in high-frequency range and lower-frequency range. Smaller nonlinear

11
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coefficient affect significantly the ensemble-average energy response at lower-frequencies but

have little effects on higher-frequencies. This is related to the fact that the displacement in

lower-frequency range is larger than that in higher-frequency range and the cubic nonlinearity

amplifies it. Moreover, the difference in the ensemble-average energy response with the two

values knl = 2× 1013 and knl = 2× 1015 is slightly noted at higher-frequencies but coincides

at the lower ones. This is due to the fact that the translational springs with those high values

of the nonlinear stiffness coefficients behave like rigid joint components.

The second case study is shown in Fig. 12 it consists of a buid-up plate system made up of

plate 1 and plate 2, as shown in Tab. 1, and torsional springs whose linear and nonlinear

stiffness coefficients are given as kθl = 103 and kθnl = 1012, respectively. The dynamic system

is loaded exactly in the same way of the case study 1. As for the previous case the entire

ensemble is shown in Fig. 13(a) and just for the linear analysis. Once again, as shown in Fig.

13(b), the hybrid FE-SEA formulation turned out to be extremely accurate in the prediction

the correct ensemble-average energy response, for both the linear and the linearised analysis.

It should also be noted that the torsional springs’ connection is more stable and smooth

than the one made up of translational springs; this can be observed in the slightly oscillatory

ensemble response and ensemble-average energy response computer via LRRM plus MCS.

The third case study is schematically shown in Fig. 14. The geometrical parameters of plate

1, 2 and 3 could be found in Tab. 1 and the linear and nonlinear stiffness coefficient of

translational springs and torsional springs are provided in the case studies 1 and 2 before

the parametric analysis. Four different scenarios are considered: i) Both translational and

torsional springs are linear; ii) nonlinearity introduced only in the torsional springs; iii)

nonlinearity introduced only in the translational springs; and iv) nonlinearity introduced in

both sets of springs. It is clear that the ensemble-average energy response yielded by both

linear and linearised hybrid FE-SEA formulation is well-predicted by comparison with that

evaluated by the benchmark model. The interaction of the two different sets of springs does

not affect the results accuracy.

The fourth case study is related to a four-plate built-up system coupled by two sets of

translational springs and two sets of torsional springs (see Fig. 16). The dynamic system is

featured by a closed-loop, which might result in change of energy flow path because of the

existence of nonlinearity. Similarly to the third case study, four different situations are taken

into account and they have been shown in Fig. 17. Compared with the linear analysis shown

12
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in Fig. 17(a), the ensemble-average energy responses given by the linearised hybrid FE-SEA

and LRRM plus MCS formulation are illustrated in Fig. 17(b)(c)(d), respectively, considering

nonlinearity existing in spring sets 1, spring set 4 and both set 1 and 4, respectively. As can

be seen in Fig. 17(b)(c), the nonlinearity narrows the gap of energy response between plate

3 and plate 4, while in Fig. 17(d), at lower frequency, the energy in plate 3 is smaller than

that in plate 4 (energy flow path: plate 1→2→3 and 1→4→3), but the reverse happens in

high-frequency range (energy flow path: plate 1→2→3→4 and 1→4). Also, expectedly, Fig.

17 shows good agreement between both linear and linearised hybrid FE-SEA and LRRM plus

MCS formulations.

5. Conclusion

A hybrid FE-SEA method accounting for nonlinearities in the deterministic components of

the system has been developed. The linearisation of the nonlinear deterministic components

of the investigated built-up plate systems has been carried out by means of the MHB. The

results in terms of ensemble-average of the time-averaged vibrational energy have been com-

pared with those obtained by a linearised LRRM plus MCS method, where the MHB has also

been used for the linearisation. Validation and assessment of the proposed formulation has

been carried out through four dynamic systems increasingly more complex. In order to find

a proper trade-off between computational cost and accuracy within the benchmark formula-

tion, a thorough analysis based on the statistical overlap factor to estimate the right degree

of randomness to add at the dynamic system to achieve GOE statistics has been performed.

In addition, the convergence analysis carried out to evaluate the appropriate dimension of

the computational ensemble led to 50 samples. All of the addressed investigations suggested

that the developed hybrid FE-SEA formulation accounting for nonlinear joints leads to a

high level of accuracy when compared to the benchmark model, while reducing significantly

the computational cost. Since the benchmark model involves solving the integral equations,

with a large number of degrees of freedoms, along with the MCS while the SEA model is

described by algebraic equations as Eq. (15) with just several orders, it follows that the hy-

brid FE-SEA formulation can save a significant amount of computational time. To this aim,

a comparison of the the computational time for the nonlinear analysis from case 1 to case

4 can be found in the Tab. 2. Moreover, as expected the nonlinearity produced a stiffening

effect on the employed sets of springs leading to a higher level of the ensemble-average energy

13
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response in all of the subsystem not driven by the harmonic point load. The MHB turned

out to be an effective as well as efficient technique for the system linearisation. Also, both

linear and nonlinear sets of torsional springs provide a more stable and smooth connection

amongst subsystems; this can be noted by the less oscillatory ensemble and ensemble-average

energy response with respect to the ones obtained by using the translational springs.

6. Acknowledgements

The first author wishes to deeply thank Prof. R. S. Langley for the many fruitful and

inspiring discussions on the hybrid finite element-statical energy analysis formulation.

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Tables

Table. 1. Plate geometrical parameters.

Plate
Edge a

(m)

Edge b

(m)

Thickness

(mm)
Loss factor η

Modal density

(modes/Hz)

1 1.35 1.2 5 0.01 0.0942

2 1.05 1.2 15 0.01 0.0245

3 1.05 1.2 5 0.01 0.0733

4 1.35 1.2 5 0.03 0.0942

Table. 2. Computational time for linearised analysis. Computer specifications: Windows 10; processor:

Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz; memory: 8.00 GB; system type: 64-bit operating system,

x64-based processor; software: MATLAB R2019b.

Case study
Benchmark with

50 MCS samples (s)

Linearised hybrid

model (s)

1 172.27 1.02

2 254.32 0.56

3 865.93 1.50

4 1914.45 15.16
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Figure 1. Simply-supported plate with lumped mass attachments.
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Figure 2. (a) Statistical overlap factor considering 1, 5, 10, 20 and 50 masses; (b) Statistical overlap factor

(blue curve) and its mean value of level section (red dashed line) for plate with 20 small masses
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Figure 3. Mean value of the statistical overlap factor with different small mass numbers and percentage

weight of the bare plate.
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Figure 4. Modal spacing probability distribution. Red curve: exponential distribution; Blue curve:

Rayleigh distribution; Grey bar: simulation results.
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Figure 5. Quantiles of Rayleigh distribution (blue line) versus quantiles from the samples (grey dot) with

lumped mass number of 1, 5, 10 and 20.
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Figure 6. Case study 1: built-up plate system with lumped mass attachments and nonlinear translational

springs.
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(a) LRRM+MCS linear analysis
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(b) Linear and linearised analysis

Figure 7. Vibrational energy response. (a) Light and bold grey cloud: MCS samples of plate 1 and plate 2,

respectively; dotted black curve: response of plate 1; solid black curve: response of plate 2. (b) Dotted lines:

the response of plate 1; solid lines: of plate 2; the black: linear LRRM+MCS analysis; the grey: linearised

LRRM+MCS analysis; the blue: linear FE-SEA analysis; the red: linearised FE-SEA analysis.
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(a) Linear analysis of Plate 1
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(b) Linear analysis of Plate 2
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(c) Linearised analysis of Plate 1
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(d) Linearised analysis of Plate 2

Figure 8. Probability distribution of ensemble vibrational energy response at the frequency of 4000 rad/s.

Blue bar: LRRM+MCS simulation; Red curve: normal distribution.
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Figure 9. Quantiles of log-normal distribution (red line) versus quantiles from the MCS samples (Blue

dot) at 4000 rad/s.
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Figure 10. (a) blue curve: FE-SEA analysis; the dotted black: 99% confidence interval for the plate 1;

the solid black: for the plate 2; (b) red curve: linearised FE-SEA analysis; the dotted grey: 99% confidence

interval for the plate 1; the solid grey: for the plate 2.
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Figure 11. (a) Dotted and solid line: for the ensemble-average vibrational energy response of plate 1 and

plate 2; blue, red, green and orange curves: linearised FE-SEA responses of spring with increasing linear

stiffness coefficient (2 × 102, 2 × 103, 2 × 104 and 2 × 105); from bold curve to the lightest grey: linearised

LRRM+MCS analysis. (b) the blue: linear FE-SEA analysis; the red, green, orange and pink: linearised

FE-SEA analysis with increasing nonlinear stiffness coefficient (2×109, 2×1011, 2×1013 and 2×1015); from

black curve to the lightest grey: linearised LRRM+MCS analysis.
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Figure 12. Case study 2: built-up plate system with random masses and nonlinear torsional springs
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(b) Linear and linearised analysis

Figure 13. Vibrational energy response. (a) Light and bold grey cloud: MCS samples of plate 1 and plate

2; dotted black curve: average energy of plate 1; solid black curve: of plate 2. (b) Dotted lines: the response

of plate 1; solid lines: of plate 2; the black: linear LRRM+MCS analysis; the grey: linearised LRRM+MCS

analysis; the blue: linear FE-SEA analysis; the red: linearised FE-SEA analysis.
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Figure 14. Case study 3: three-plate system with both translational and torsional springs
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Figure 15. Ensemble-average vibrational energy response of linearised FE-SEA and LRRM+MCS analysis

of plate 1 (green and light grey), plate 2 (red and dark grey) and plate 3 (blue and black).
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Figure 16. Case study 4: built-up plate system including two translational spring sets and two torsional

spring sets.
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Figure 17. Ensemble-average vibrational energy response. The orange, green, red and blue lines: linearised

FE-SEA analysis of plate 1, plate 2, plate 4 and plate 3; curves from the lightest grey to the black: linearised

LRRM+MCS analysis of the plates.
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