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Abstract: The present paper proposes a linearised hybrid finite element-statistical energy analysis1

(FE-SEA) formulation for built-up systems with nonlinear joints and excited by random as2

well as harmonic loadings. The new formulation has been validated via an ad-hoc developed3

stochastic benchmark model. The latter has been derived through the combination of the4

Lagrange-Rayleigh-Ritz method (LRRM) and the Monte Carlo simulation (MCS). Within the build-up5

plate systems, each plate component has been modelled by using the classical Kirchhoff’s thin-plate6

theory. The linearisation processes have been carried out according to the loading-type. In the case of7

random loading, the statistical linearisation (SL) has been employed; while in the case of harmonic8

loading the method of harmonic balance (MHB) has been used. To demonstrate the effectiveness of9

the proposed hybrid FE-SEA formulation three different case-studies, made-up of built-up systems10

with localised cubic nonlinearities, have been considered. Both translational and torsional springs,11

as joint components, have been employed. Four different types of loadings have been taken into12

account: harmonic/random point and distributed loadings. The response of the dynamic systems13

has been investigated in terms of ensemble average of the time-averaged energy.14

Keywords: Nonlinear analysis, Statistical energy analysis, Lagrange-Rayleigh-Ritz method, Random15

loading, Statistical linearisation, Dynamic systems.16

1. Introduction17

Manufacture uncertainties are widespread in various industrial applications, e.g. aerospace, civil,18

mechanical and marine engineering. The structural vibrations which arise from these applications,19

are normally investigated by using a variety of computational methods. One of the most used is20

the finite element method (FEM). It relies on a very large number of degrees of freedom (DOFs),21

which makes the determination of the dynamic system response rather complex. In addition to this,22

the uncertainties of the complex systems largely decrease the prediction accuracy of high-frequency23

structural vibration, due to the fact that high-frequency modes are very sensitive to uncertainties. A24

computational technique that can successfully be used to overcome these shortcomings is the statistical25

energy analysis (SEA). It is a powerful tool in the analysis of dynamic systems, and above all when it26

comes to predict the energy transfer within complex system for response in high-frequency range. In27

more than half a century’s development, the SEA has demonstrated its advantages when analysing28

several engineering applications.29

The SEA aims to obtain the average energy level response of an ensemble of dynamic systems30

which are featured by uncertainties. It is based on the energy equilibrium and the assumption that31

the energy power injected in a structural assembly/dynamic systems from the external equals the32
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dissipated energy plus the energy transferred to other components/subsystems. A comprehensive33

discussion on the theoretical fundamentals of the SEA can be found both in Lyon [1,2] and, Hodges34

and Woodhouse [3]. However, the traditional SEA only applies well to high-frequency vibration35

problem while the mid- and low-frequency modes are less influenced by uncertainty; in other words,36

the SEA cannot be successfully applied to low- and mid-frequency range problems. To realize the37

response prediction on the overall frequency range, hybrid finite element-statistical energy analysis38

(FE-SEA) models based on either modal approach or wave approach have been proposed by Langley39

[4,5]. It is noted that in the specific case of the hybrid FE-SEA based on wave approach, the reciprocity40

relationship between the direct field and the reverberant field was a ground-breaking achievement [6].41

In the hybrid FE-SEA models, the deterministic components are modelled by means of FE method42

while the statistical ones, which are referred as subsystems, are modelled by SEA. The hybrid FE-SEA43

model has been validated by both computational simulations and experiments [7]. The SEA assumes44

that the statistical distribution of modes follows either exponential or Rayleigh distribution. These45

are used to model the uncertainties through a non-parametric approach. Some researchers have46

considered cases with parametric uncertainties, which means that the uncertainty is described by47

parameters featured by probability density function (pdf). For the parameter uncertainty exists in48

deterministic components, Cicirello and Langley proposed approaches to consider the parameters of49

the pdf and intervals, within the framework of the hybrid FE-SEA model [8,9]. The mixed fuzzy and50

interval parameters in deterministic components have been introduced by Yin [10]. The uncertainty51

propagation and the sensitive analysis in SEA has been investigated by several authors [11–13]. Chen52

has proposed a modified SEA based on the interval and fuzzy parameters [14,15].53

All of the SEA-based methods mentioned above are assumed to be linear, however, nonlinear54

systems have also been investigated and some relevant contributions are discussed below. The55

entropy-based SEA method for weakly nonlinear vibrating system was proposed by Carcaterra [16]56

and Sotoude [17], but the systems were limited to low degrees of freedom. To investigate the energy57

scattering between different frequency ranges, Spelman and Langley [18] derived the nonlinear SEA58

equation along with the expression for the nonlinear coupling loss factor (CLF). Then, based on the59

method of harmonic balance (MHB), Fazzolari and various co-authors [19–21] derived a linearised60

FE-SEA formulation for system with nonlinear joint and excited by harmonic point loading, and a61

linearised Lagrange-Rayleigh-Ritz method (LRRM) plus Monte Carlo simulation (MCS) was proposed62

for validation.63

However, when one considers the linearisation for vibrating system, the linearised process64

depends on the input loading-type. For instance, the MHB could be applied to dynamic systems65

excited by harmonic loading [22], while for systems forced by random loading other linearisation66

techniques are usually considered, e.g., the statistical linearisation (SL) [23]. Random vibration has67

been a research topic largely investigated for both linear and nonlinear systems. A very thorough68

description on linear random vibration has been given by Peppin and Crandall [24,25]. Regarding69

nonlinear systems with random loading, Roberts and Spanos [26] gave a comprehensive review of70

stochastic averaging method, even for systems with strong nonlinear stiffness. Non-stationary response71

of nonlinear structures subjected to white and non-white noise excitation has been discussed by Toland72

[27] and Kimura [28]. The dynamic response of systems with nonlinear damping, and subjected to73

white noise excitation was obtained by Kirk [29] and Roberts [30]. Langley proposed a FE model for74

random vibration including the geometrical nonlinearity within the analysis [31,32].75

In fact, the traditional SEA assumes that the external input is the rain-on-the-roof type which is a76

both spatial- and tempo-uncorrelated distributed loading. This assumption is consistent with many77

engineering applications, e.g. those which involve fluid-structure interaction loading-type affected by78

randomness. Therefore, actual difficulties occur when the dynamic system, modelled through hybrid79

FE-SEA, includes nonlinearities. The linearised FE-SEA formulation for the harmonic loading has80

already been derived in a previous authors’ work [21]; thus, the present investigations will further81

focus on the energy response of nonlinear dynamic systems subjected to random loading. More82



Version September 9, 2020 submitted to Vibration 3 of 21

specifically, nonlinear dynamic systems with localised cubic nonlinearities introduced by translational83

and torsional springs, as joint components, are taken into account. Both harmonic and random84

loading-types are considered, and both point or distributed loadings are applied. The response of the85

dynamic systems has been examined in terms of ensemble average of the time-averaged energy.86

2. Benchmark model - Lagrange-Rayleigh-Ritz method87

This section is entirely devoted to the derivation of the governing equations (GEs) for the88

benchmark model. The latter is used in all of the proposed case studies for validation purpose.89

The GEs are based on Kirchhoff’s thin-plate theory, the LRRM is performed to solve the linearised GEs.90

Various scenarios accounting for inclined plates, nonlinear translational and rotational springs as well91

as several loading-types, are considered. With respect to the solution of the nonlinear GEs, the MHB92

and the SL are employed as linearisation techniques for systems excited by harmonic and random93

loadings, respectively. Some further information can be found in a previous article [19].94

2.1. Built-up system with inclined plate95

The built-up system, schematically shown in Fig. 1, is excited by an harmonic force P orthogonal
to the inclined plate. The two plate are considered simply-supported and the plate on top is inclined
of an angle α with respect to the plate at the bottom. In the system the out-of-plane motion is only
considered. The stretch/compression of the translational spring can be written as ∆Ls = w1cos(α)−w2;
where w1 and w2 denote the transverse displacement of plate 1 and plate 2. Then, the elastic potential
energy of the built-up plate system, is given as follows

Φe =
1
2 ∑

mn
ω2

1,mnq2
1,mn +

1
2 ∑

mn
ω2

2,mnq2
2,mn

+
Ns
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(1)

The kinetic energy of the system, including the randomly distributed masses on the plates, is given as
follows
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The potential energy related to the application of the external force assumed to be concentrated and
perpendicular to the upper plate can be written as

Φext = P̂1(t)

[
∑
mn

ψ1,mn(xP1)q1,mn

]
(3)

It should be noted that, in addition to the random and harmonic point loadings, both rain-on-the-roof
and harmonically distributed loading-types are taken into account in the present investigation. By
using the Lagrange equations,

d
dt

(
∂T

∂q̇mn

)
− ∂T

∂qmn
+

∂Φe

∂qmn
=

∂Φext

∂qmn
(4)
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the GEs for a built-up plate system with nonlinear springs, inclination angle end harmonic point
loading can be written as

q̈1,mn + ω2
1,mnq1,mn +

N1,m

∑
k=1

mk ∑
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= 0

In Eqs. (5) and (6), qmn are the time-dependent modal coordinates; ψmn are the mass-normalized96

shape functions; m and n represent the Ritz expansion order in the x and y direction, respectively;97

N1, m and N2, m the number of the distributed lumped masses used to randomise plate 1 and plate 2,98

respectively; k1 and k3 are the linear and nonlinear stiffness coefficients of the connection springs; and99

Ns refers to the number of springs introduced as joint elements amongst subsystems.100

2.2. Random loading and statistical linearisation101

Consider the situation schematically shown in Fig. 1 with the random loading acting on the
plate 1 but its inclination angle is equal to zero (α = 0). The external force is vertically downward
and concentrated, assumed to be white noise with mean value µP and standard deviation σP. The
linearised equation of motion can be written as

M0q̈ + C0q̇ + Keqq = P (7)

where M0 and C0 are mass and damping matrix; q is the generalized displacement; P represents102

generalized force; Keq is the equivalent stiffness matrix. To solve the above equation, the calculation of103

the equivalent stiffness is fundamental. In this respect, the SL can be successfully used.104

With respect to the single-degree system, described by the differential equation mẍ + cẋ + k1x +

k3x3 = F, where m, c, k denote the mass, damping and stiffness of this system; x is the displacement;
the external force F follows normal distribution F ∼ N(µ, σ2), statistical linearisation can be performed
and the equation is transformed as mẍ + cẋ + keqx = F, where

keq = k1 + 3k3

〈
x2
〉

(8)

keq is referred as equivalent stiffness;
〈

x2〉 denotes the expectation of x2 [23].105
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For the built-up system in Fig. (1), the stretch or the compression of the translational spring ∆ can
be given as

∆ = ∑
mn

ψ1,mn(xs)q1,mn − ∑
ij

ψ2,ij(xs)q2,ij (9)

thence

〈
∆2
〉
=

〈(
∑
mn

ψ1,mn(xs)q1,mn

)2〉
+

〈(
∑
ij

ψ2,ij(xs)q2,ij

)2〉

− 2

〈(
∑
mn

ψ1,mn(xs)q1,mn

)(
∑
ij

ψ2,ij(xs)q2,ij

)〉
= ∑

mn
∑
ij

ψ1,mn(xs)ψ1,ij(xs)
〈
q1,mnq1,ij

〉
+ ∑

mn
∑
ij

ψ2,mn(xs)ψ2,ij(xs)
〈
q2,mnq2,ij

〉
− 2 ∑

mn
∑
ij

ψ1,mn(xs)ψ2,ij(xs)
〈
q1,mnq2,ij
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It should be born in mind that the linearised stiffness matrix derived by using MHB and SL, and106

considering a cubic nonlinearity, are different. For the former it can be written as keq = k1 +
3
4 k3x2,107

while for the latter is given in Eq. (8). Also, since Eq. (7) is in time domain, it is necessary to obtain the108

energy in a time-averaged form (see Ref. [19]).109

3. The linearised hybrid FE-SEA Formulation110

The present section provides a overview of the hybrid FE-SEA formulation accounting for
nonlinearities in the point joints of dynamic system. The hybrid FE-SEA formulation firstly requires
the identification of those components, within the system, which are assumed to behave statistically.
These components are modelled as SEA subsystems. The remaining components are deemed to
be deterministic and are modelled by FE method. The relationship between the SEA and the FE
subsystems is considered to satisfy the following conditions [5]

Dtotq = f + ∑
k

fk
rev (11)

Dtot = Dd + ∑
k

Dk
dir (12)

where q is the general displacement vector of FE parts under the frequency of ω; f represents the
external forces vector exerted to the FE components; fk

rev is the forces vector resulting from the
reverberant field in k-th subsystem; Dd corresponds to the dynamic stiffness matrix of the deterministic
components; Dk

dir is the the dynamic stiffness matrix arising from k-th direct field. Considering the
diffuse field reciprocity relation between direct fields and reverberant fields [6], the energy equilibrium
equation for each subsystem and the cross spectral matrix Sqq is given as [5]

ω
(

ηj + ηd,j

)
+ ∑

k
ωηjknj
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where111

Pext
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2
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2
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} [

D−1
tot Im
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D(j)

dir

}
(D−1
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In Eq. (13), ηj is the loss factor of j-th subsystem; ηd,j corresponds to the power dissipation in j-th112

master system; ηjk is the coupling loss factor; nj is the modal density; Ej is the ensemble average energy113

of j-th subsystem; Pin,j and Pext
in,j represent the power input from the loadings to subsystems and to114

master systems respectively. In Eq. (14), S f f denotes the cross spectral matrix of external forces to115

master systems. Usually, Eq. (13) and Eq. (14) are used to obtain the response of subsystems and116

FE components. To solve Eq. (13), Pext
in,j, ηjk and ηd,j can be calculated by Eqs. (15)-(17). Then the117

responses of deterministic components are obtained using Eq. (14). As far as the localised nonlinearity118

is concerned, it is treated exactly in the same way of the LRRM benchmark model. In the previous119

authors’ article [19] is illustrated the linearisation of the MHB corresponding to harmonic loading;120

this section similarly apply the SL for the localised cubic nonlinearities (translational and/or torsional121

springs) under random loading.122

4. Numerical results123

This section provides both validation and assessment of the linearised hybrid FE-SEA formulation124

regarding to both harmonic and random excitations. Three case-studies are addressed; the first125

case-study made up of a three-plate build-up system accounts for both harmonic and random point126

loadings, rain-on-the-roof loading-type and inclination angle of the driven plate; the second case-study127

focuses on the harmonically distributed excitation on a four-plate dynamic system; the third case study128

investigate a different four-plate dynamic system loaded by a white noise random point loading. The129

case study is based on the simulation of built-up plate systems with linear and nonlinear translational130

and/or torsional springs. In all of the addressed case studies the thin plate is homogeneous, isotropic131

and linear elastic with Young’s modulus E = 70GPa; Poisson’s ratio ν = 0.3 and density ρ =132

2700kg/m3. The plates’ damping loss factors, modal densities, and sizes, including a and b (plate’s133

sides) as well as h (thickness), are given in the Tab. 1. The linear and nonlinear translational spring134

elastic coefficients are given as kl = 2 × 105 and knl = 2 × 1015, respectively. Those for torsional spring135

are given as kθl = 103 and kθnl = 1012. With regard to the LRRM+MCS, the lumped masses are used to136

break the system symmetries inducing the Gaussian Orthogonal Ensemble (GOE) [21,33]. This paper137

applies 20 masses with 2.0% mass rate to the bare plate according to the authors’ previous paper [21].138

Besides, 50 Monte Carlo samples are utilized to calculate the ensemble average energy response.139

4.1. Case study 1: harmonic and random point-load excitations, as well as rain-on-the-roof loading140

The schematic figure of first case study is shown in Fig. 2. It includes three plates one of which141

is an with inclined angle α and excited by various loading types perpendicular to the plate 1 middle142

surface. We consider several situations for this case studies for the purpose of finding what factors143

could effect the energy response of each subsystem within the built-up system. In the first situation, we144

explore the energy cascade through subsystem by changing the inclination angles. The translational145

springs are set to be nonlinear, while the torsional ones are linear. Different inclination angles, e.g.146

0◦, 30◦, 60◦, 80◦ are applied to plate 1, the external excitation applied to plate 1 is considered to be147

an harmonic point load. Figure 3 depicts the ensemble average energy for both linear and linearised148

FE-SEA and LRRM+MCS analysis with α = 0. In the figure, the average energy of LRRM+MCS149

analysis fluctuates dramatically in lower-frequency range but tends to keep stable and close to the150
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response obtained by using the hybrid FE-SEA formulation in higher-frequency range. This is because151

lower-frequency modes are hard to be randomised by uncertainties, due to the fact that the energy152

response in low-frequency range is mainly influenced by resonant modes. The higher-frequency modes153

are, instead, more affected by the randomisation induced by the lumped masses, which leads to the154

mixing and veering of the modes and then to the Rayleigh distribution. It is noted that the energy155

responses obtained via LRRM+MCS analysis compare well with those computed through the hybrid156

FE-SEA method for both linear and linearised formulation. This can also be seen in Fig. 4 which shows157

the linear and linearised FE-SEA and LRRM+MCS analysis of plate 2 and plate 3 at different inclination158

angles. In this figure, it should be noted that when the angle varies from 0◦ to 30◦ the average energy159

response just slightly decreases; whilst from 60◦ to 80◦ a significant reduction is observed.160

The second scenario of the first case study explores the influence by the spring position. The161

inclination angle is set to be zero, and the translational springs are linear and torsional springs are162

nonlinear. Three conditions in the spring position are considered: (i) the centre of the plate 1 [coordinate163

(0.5a,0.5b)]; (ii) a remote position from the centre [coordinate (0.05a,0.5b)]; and (iii) a random position164

in every MCS sample. The loading is still set as the harmonic point excitation. Results are shown in165

Fig. 5 for both linear and linearised FE-SEA and LRRM+MCS analysis. As expected all the energy166

responses calculated by means of the hybrid FE-SEA approach do not change prominently. This is167

because the FE-SEA method randomises the spring position and estimates the average results, in other168

words, no specific positions of the joints are required. It can also be noted an excellent match between169

the linearised FE-SEA formulation and the benchmark model.170

Next investigation within the case study 1 considers different values of the spirngs stiffness171

coefficients. As the exploration to translational spring stiffness coefficients has been made in the172

previous work [21], this investigation focus on the torsional spring. We separately increase the linear173

and nonlinear stiffness coefficients of the torsional springs, while keeping the harmonic point loading174

as external excitation. Fig. 6(a) is obtained by increasing the linear coefficients from 10 to 102, 103 and175

104, respectively. The energy response by linearised FE-SEA which matches the benchmark model176

increases very smoothly with the rise of linear coefficients. In Fig. 6(b), the increase of the nonlinear177

stiffness coefficient from 108 to 109, 1010 and 1011 generates an energy level rise in different frequency178

range. Smaller nonlinear stiffness coefficient values influence the energy level in lower-frequency179

range, while the larger ones effect the higher-frequency range. A similar trend was obtained in a180

previous work for focused on translational springs [21].181

The built-up system in Fig. 2 is now considered to be excited by a white noise loading on plate182

1. The statistical linearisation is the one used to derive the linearised FE-SEA formulation. For the183

white noise point excitation, Fig. 7 presents both the linear and the linearised results computed by184

using both the hybrid FE-SEA method and the benchmark model. A good match can be seen between185

two different analyses. We also considered another situation: rain-on-the-roof excitation on the plate186

1. The energy responses can be found in Fig. 8. Besides the good agreement between the linearised187

hybrid FE-SEA model and LRRM+MCS formulation, the results yielded by the benchmark model are188

smoother than those with point random loading, and the MCS sample cloud of rain-on-the-roof is189

thinner than those of the point random load, due to that fact that rain-on-the-roof is evenly distributed190

on the surface of the plate and it can help realize better randomisation for the modes.191

In Fig. 9, the system energy responses with both point random load and rain-on-the-roof as192

external excitations for both linear and linearised hybrid FE-SEA formulation are depicted. It can be193

noted that the energy level of plate 2 around 4000 rad/s excited by rain-on-the-roof remains steady,194

while those evaluated by using the point random load show some oscillations.195

4.2. Case study 2: distributed loading196

This case study focuses on the harmonic distributed loading on the built-up plate system. The197

four-plate system with both translational and torsional springs, schematically shown in Fig. 10, with198

localised nonlinearity in the spring set 1, is investigated. The distributed loading is set to excite the199
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plate 1 orthogonally to the middle surface. Different loading areas are applied in order to explore its200

effects on the energy response. The loading area varies from the small value of 0.2 × 0.2 to the larger of201

0.6 × 0.6, 0.8 × 0.8, 1 × 1, where the case 1 × 1 means that the distributed harmonic load area equals202

the plate surface. The average energy responses related to this latest case are depicted in Fig. 11. The203

energy response of the linearised analysis increases comparing to those of linear analysis for the reason204

of cubic harden stiffness. In Fig. 12, energy response of plate 2 and plate 3 for different loading area on205

plate 1 is shown. It can be observed that a larger gap between the energy responses with loading area206

0.2 × 0.2 and 0.6 × 0.6 occurs.207

4.3. Case study 3: four-plate built-up system208

To further test the linearised FE-SEA formulation towards random loading, a more complex case209

study consisting of four-plate built-up system, shown in Fig. 13, is addressed. All the plate parameters210

can be found in Tab. 1. The white noise point load in the figure orthogonally excites the plate 1. Four211

cases are considered: (i) all spring sets are linear; (ii) only the first spring set is nonlinear; (iii) only212

the second spring set contains nonlinearity; (iv) only the third spring set is nonlinear. The energy213

responses from both linear and linearised FE-SEA and LRRM+MCS analysis are shown in Fig. 14.214

Comparing the linear energy response given in Fig. 14(a) with those of the second case shown in215

Fig. 14(b), the energy response of plate 2 significantly increases as the nonlinearity is applied, while216

those of the other plate subsystems are only slightly affected. A very similar result can be observed217

by comparing Fig. 14(a) with Fig. 14(c), where only the energy level of plate 3 ramps up significantly218

due to the nonlinearity in second spring set. However, the nonlinearity existing in third spring set219

changes the enrgy response in a very different manner with respect to the previous two cases. Figure220

14 (d) demonstrates that: (1) the energy level of both plate 3 and 4 steps up remarkably due to the221

nonlinearity; (2) a cross of the curve of energy level of plate 2 and plate 3 can occur. Moreover, an222

excellent match between linear and linearised FE-SEA method and LRRM+MCS analysis is presented223

in all the faced cases.224

5. Conclusion225

The present article proposes a linearised hybrid FE-SEA formulation for the dynamic response of226

build-up systems featured by nonlinear joints and subjected to both harmonic and random excitations.227

The formulation has been validated by developing a benchmark model based on the combination228

of both the Lagrande-Rayleigh-Ritz method and the Monte Carlo Simulation technique. Within the229

framework of the benchmark model each plate subsystem of the dynamic system is modelled by using230

Kirchhoff’s thin plate theory. The two different linearisation procedures are used according to the231

external excitation type. More specifically, in the case of harmonic excitation the method of harmonic232

balance has been employed; in the case of random excitation the statistical linearisation has been233

used. Various case studies have been examined to both validate and assess the new hybrid FE-SEA234

formulation. From all the analyses carried out the following main conclusions can been drawn:235

• The plate inclination angle within the built-up systems, slightly affects the energy response for236

small values, on the contrary its effect tends to be prominent for inclination angle close to 90◦.237

• The springs’ position - acting as joint components -, as expected do not affect the energy response.238

• Larger values of the cubic nonlinear stiffness coefficients of the torsional springs increase the239

energy level in a wider frequency range affecting also the higher frequency.240

• Comparing the random point load with the rain-on-the-roof excitation can realize better241

randomisation from the perspective of the LRRM, namely the energy level of the rain-on-the-roof242

tend to be closer to that of FE-SEA formulation.243
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• The hybrid FE-SEA formulation is enormously less computationally expensive then the244

benchmark model based on MCS technique. 1
245

• In all of the addressed case studies the MHB and the SL, employed in both the hybrid FE-SEA246

formulation and the benchmark model, turned out to be highly effective in the linearisation247

process of built-up systems with localised nonlinearity.248

1 Computer specifications: Windows 10 Home, Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz, 8.00 GB installed memory
(RAM), 64-bit Operating System, x64-based processor
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Tables249

Table 1. Plate parameters.

Plate
Edge a

(m)
Edge b

(m)
Thickness

(mm) Loss factor η
Modal density
(modes/Hz)

1 1.35 1.2 5 0.01 0.0942
2 1.05 1.2 15 0.01 0.0245
3 1.05 1.2 5 0.01 0.0733
4 1.35 1.2 5 0.03 0.0942
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Figures250
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Figure 1. Built-up system with inclined plate and excited by a point load.
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Plate 3

Rain-on-the-roof excitation

Figure 2. Built-up system with an inclined plate and excited by either harmonic or random point load, as well as
rain-on-the-roof.
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(a) Linear LRRM+MCS analysis
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(c) Linearised LRRM+MCS analysis
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Figure 3. Linear and linearised FE-SEA and LRRM+MCS analysis with α = 0◦.
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(a) Linear analysis of plate 2
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Figure 4. Linear and linearised FE-SEA and LRRM+MCS analysis of plate 2 and plate 3 and different values of
plate 1 inclination angle.
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(a) Linear analysis of plate 2
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(b) Linearised analysis of plate 2
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Figure 5. FE-SEA and LRRM+MCS analysis of the system with different springs’ position.
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Figure 6. Energy response with different values of both linear and nonlinear stiffness coefficients of the torsional
springs.
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(a) Linear LRRM+MCS analysis
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(c) Linearised LRRM+MCS analysis
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Figure 7. Energy response of the system excited by a white noise point loading.
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(a) Linear LRRM+MCS analysis
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(c) Linearised LRRM+MCS analysis
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(d) Linearised analysis

Figure 8. Energy response of the system subjected to rain-on-the-roof excitation type.
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Figure 9. Comparison between the ensemble average energy responses of the system for different loading-types.
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Figure 10. Built-up system with 4 plates excited by an harmonic distributed load.
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Figure 11. Built-up systems excited by an harmonic distributed load on all of the plate surface area.
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Figure 12. Linear and linearised FE-SEA and LRRM+MCS analysis for different areas of the distributed harmonic
load.
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Figure 13. Four-plate built-up system excited by random point load.
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(b) Linearised analysis(1st set with nonlinearity)
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(c) Linearised analysis(2nd set with nonlinearity)
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Figure 14. Linear and linearised FE-SEA and LRRM+MCS analysis.
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