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Abstract

Modern tools of Crystal Structure Prediction output thousands of simulated struc-

tures, though only few of them can be really synthesized. This embarrassment of

over-prediction can be resolved only if crystals are compared for similarity by invari-

ants that are independent of crystal representations and preserved by rigid motions.

To continuously quantify a similarity between crystals with the same chemical com-

position, these invariants should be also stable under atomic vibrations, while discrete

invariants such as symmetry groups discontinuously change under perturbations. We

define the infinite sequence of Average Minimum Distances (AMDs) that satisfy the

above conditions and can distinguish homometric crystals, hence are stronger than

powder diffraction patterns. The AMDs can visualize geometric similarities between

any periodic patterns or crystals. The classification power of AMDs is validated on the

dataset of almost 6K simulated T2 crystals reported in Nature 543 (2017), 657-664.
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1. Importance of isometry invariants for Crystal Structure Prediction

A periodic crystal consists of periodically repeated unit cells (possibly non-rectangular

parallelepipeds) containing a finite motif of atoms or molecules, see Fig. 1 and math-

ematical details in Definition 1. The decomposition of a crystal into a sum of a unit

cell and a motif is highly ambiguous, because one choose infinitely many bases or cells

that define with suitable motives an equivalent crystal. Since most crystals are rigid,

the most natural equivalence of crystals is a rigid motion, a composition of transla-

tions and rotations in R
3. Hence a crystal is an equivalence class of infinitely many

decompositions cell+motif modulo all changes of a basis and rigid motions:

a periodic crystal =

{

(a unit cell) + (a motif of atoms or ions)

(a change of a basis)× (a rigid motion)

}

.

The Crystal Structure Prediction (CSP) aims to predict a thermodynamically sta-

ble arrangement of given atoms or molecules. The CSP was pioneered in 1960s when

ball models of atoms were physically shaken in a box until they settle in a stable

configuration (Kitaigorodsky, 2012). Nowadays this physical shaking is simulated by

supercomputers, which start from millions of almost random arrangements and mini-

mize a complicated energy function. This energy has no simple expression and depends

on (theoretically infinite) interactions between atoms within a periodic crystal.

A typical CSP software outputs thousands of approximate local minima of this

energy, i.e. simulated crystals whose local perturbations are unlikely to produce more

stable arrangements. Simulated crystals are visualized by an energy landscape repre-

senting each crystal as a dot with two coordinates (density,energy), see Fig. 1. The

key CSP challenge is the embarrassment of over-prediction when the state-of-the-art

optimization outputs too many approximate local minima (Price, 2018). Materials sci-

entists expect only few stable crystals (metastable polymorphs) at deep local minima

of the energy function on a continuous space of all potential crystals, see Fig. 2.
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Any energy landscape should be post-processed to (1) remove numerous near dupli-

cate crystals not to waste more time on predicting other properties by further simu-

lations; and (2) identify really different crystals separated by high energy barriers. If

all local minima are shallow, there is no chance to synthesize a stable crystal and one

should look for a better chemical composition (Pulido et al., 2017).

Since both problems above remain unresolved, even more supercomputer’s time (12

weeks (Pulido et al., 2017) in the case of Fig. 1) is spent on predicting target properties

of crystals for applications. Since all simulated crystals have the same chemical com-

positions, they can be distinguished only by their geometry. Geometrically different

crystals often have different properties such as solubility, which is vitally important in

the pharmaceutical industry. In 1998 manufacturing the HIV drug ritonavir (branded

as Kaletra) accidentally produced a more stable but much less soluble polymorph,

which has made the drug useless and put many lives at risk (Morissette et al., 2003).

The energy landscape in the last picture of Fig. 1 was lucky due to downward

spikes that hinted at deep local minima. This landscape is only a discrete sample from

a continuous space of all crystals with a fixed composition. To parameterize such a

space as a geographic map of a new planet, we need to uniquely name each crystal so

that different crystals have different names, and similar crystals have similar names.

The above mapping problem is important and hard not only when all crystals

in question have the same chemical composition, but also to study pure geometric

patterns with zero-sized points representing all atoms. Such geometric patterns or

templates can be used for put different atoms at known positions, hence generating

new crystals without starting from scratch. Though the main results in the paper are

stated in mathematical terms, section 7 has an experimental validation on the T2

database of 5799 crystals that were impossible to reliably compare by past tools.
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2. The isometry classification problem for periodic crystals

This section first introduces periodic sets that model all crystals and then states the

algorithmic problems for their stable-under-noise classification modulo isometries.

In the Euclidean space R
n, any point p ∈ R

n can be represented by the vector ~p

from the origin of Rn to the point p. The symbol ~p will also denote the class of all equal

vectors that have equal coordinates. The Euclidean distance between points p, q ∈ R
n

is denoted by |pq| = |~p − ~q| . For a standard orthonormal basis ~e1, . . . , ~en, the lattice

Z
n ⊂ R

n consists of all points with integer coordinates.

Definition 1 below models all atoms in crystals as zero-sized points, which is enough

for their isometry classification. To model real atoms, one can labels for elements such

as C for carbon, O for oxygen etc. Geometrically, atoms can be modeled as weighted

points, i.e. balls of different (usually van der Waals) radii. This paper uses the term

periodic set in any dimension, while periodic crystals refer only to dimension 3.

Definition 1 (a lattice, a periodic set). A lattice Λ in R
n consists of all linear com-

binations
n
∑

i=1
λi~vi with integer coefficients λi ∈ Z. Here the vectors ~v1, . . . , ~vn should

form a basis so that if
n
∑

i=1
λi~vi = ~0 for some real λi, then all λi = 0. A periodic set

(or a crystal) consists of a basis ~v1, . . . , ~vn and a motif M of finitely many points

p1, . . . , pm (representing molecules, atoms or ions) in the unit cell U(~v1, . . . , ~vn) =
{

n
∑

i=1
λi~vi : λi ∈ [0, 1]

}

, which is the parallepiped spanned by ~v1, . . . , ~vn. �

The two pictures in the top left of Fig. 3 show two lattices with a square unit cell

and a single black point in a motif. Though the lattices look different, they are related

by a rotation through π
4 , hence are isometric, see Definition 17. Any periodic set can

be considered as the Minkowski sum of a lattice and a motif, i.e. S = Λ+M = {~u+~v :

u ∈ Λ, v ∈ M}. Any periodic set is a finite union of translates of Λ.

A lattice Λ of a periodic set S = M + Λ ⊂ R
n is not unique in the sense that

IUCr macros version 2.1.10: 2016/01/28
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S can be generated by a sublattice of Λ and a motif larger than M . For example,

if U is any unit cell of Λ, the sublattice 2Λ has the 2n times larger unit cell 2nU

(twice larger along each of n basis vectors of U), hence contains 2n times more points

than M . Such an extended unit cell 2nU is superfluous, because S remains invariant

under translations along not only integer linear combinations
n
∑

i=1
λi~vi with λi ∈ Z,

but also for half-integer coefficients λi ∈ 1
2Z. The two periodic sets in the bottom left

of Fig. 3 look even more different than square lattices above. However, they are also

isometric and actually represent the same hexagonal lattice, because every black point

has exactly 6 nearest neighbors that form a regular hexagon.

The key obstacle to compare crystals modulo isometries is the enormous ambiguity

or non-uniqueness of a crystal representation illustrated in Fig. 3. A standard Crys-

tallographic Information File (CIF) contains parameters of a unit cell spanned by a

linear basis in R
3 and fractional coordinates of atoms from a motif in this basis. If we

change a basis as in the bottom left of Fig. 3, the same hexagonal lattice will have

a new CIF with a different unit cell possibly containing a different number of points

with new fractional coordinates. Hence cell-dependent descriptors of a crystal can not

be justified for comparing crystals modulo isometries. For example, humans should

be not be compared or identified by the average color of their clothes, though such

colors are easily accessible in photos. Justified comparisons should use only invari-

ant features, e.g. biometric data of a human. Any machine learning algorithm can be

confused until this representation problem is properly resolved.

The data representation challenge is stated below as the problem to classify periodic

sets modulo isometries (or rigid motions) in R
n, see details in Definition 17.

Problem 2 (algorithmic classification of periodic sets modulo isometries). Find a

function I on periodic sets in R
n satisfying the following conditions:

(2a) invariance : I is preserved by isometries: I(S) = I(Q) for any isometric S,Q;

IUCr macros version 2.1.10: 2016/01/28
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(2b) completeness : if the invariants coincide I(S) = I(Q), then S,Q are isometric;

(2c) continuity : I(S) continuously changes under perturbations of points in S;

(2d) computability : I(S) is computable in a polynomial time in the size of a motif. �

Though a minimal (by volume) unit cell isn’t invariant under a change of basis, the

volume is invariant. The second set in Fig. 4 is a slight perturbation of the square

lattice, but has a rectangular minimal unit cell, not a square. Hence the volume of a

minimal cell is unstable under atomic vibrations. Condition (2c) is needed to contin-

uously quantifying a similarity between crystals. Algorithmic condition (2d) is added

to guarantee fast time processing for large crystal datasets.

Condition (2b) means that a complete invariant is sufficient to unambiguously iden-

tify a periodic crystal in the same way as a DNA code identifies a human. Many

claimed ‘fingerprints of materials’ distinguish usually about 90% of crystals in certain

datasets. The density of a crystal defined as the molecular weight (or simply the num-

ber of points) within a unit cell divided by the cell volume satisfies conditions (2a,c,d),

but there was no complete invariant that provably satisfies completeness (2b).

3. Closely related past work on comparisons of point sets and crystals

This section discusses the closest work for finite and periodic sets. The excellent book

(Liberti & Lavor, 2017) reviews the wider area of distance geometry. The full dis-

tribution of all pairwise Euclidean distances |ab| between points a, b in a finite set

S ⊂ R
m is a well-known isometry invariant. This invariant is almost complete (Boutin

& Kemper, 2004). The last picture of Fig. 4 shows non-isometric sets that are not

distinguishable by all pairwise distances, i.e. a 4-point set can not be uniquely recon-

structed modulo an isometry of R2 from the distances {
√
2,
√
2, 2,

√
10,

√
10, 4}. This

example can be extended to any number of points, see Fig. 6. Our methods are similar

IUCr macros version 2.1.10: 2016/01/28
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to the work (Lai & Zhao, 2014) for finite point clouds.

For periodic sets such as crystals usually given as a CIF file with a unit cell and

a motif, it is inevitable to start from a unit cell. However, if output descriptors still

depend on a unit cell (Himanen et al., 2020), they are non-invariants modulo isome-

tries. Though the average color can sometimes distinguish all people in a meeting,

non-invariants aren’t reliable for identifying humans.

The past approach was to try to find a unique unit cell of a crystal. The best example

is Niggli’s reduced cell in Hahn et al. (1983, section 9.3), so Niggli’s reduction should

be the first step. In 1980 Niggli’s cell was shown to be unstable in the sense that a

reduced cell of a perturbed lattice can have a basis that substantially differs from that

of a non-perturbed lattice, see (Andrews et al., 1980), (Andrews et al., 2019).

More than 40 years since (Andrews et al., 1980), the difficulty of comparing peri-

odic sets is highlighted at http://ronininstitute.org/research-scholars/larry-andrews:

“...find a measure of the difference between pairs of lattices. Surprisingly, this is not

a mathematical problem with a well-defined solution”. Our recent work (Mosca &

Kurlin, 2020) has resolved this problem for lattices by introducing two distances that

satisfy the metric axioms so that the distance between any isometric lattices is 0.

Though there is still no justified distance that satisfies metric axioms for any periodic

crystals, the COMPACK algorithm (Chisholm & Motherwell, 2005) in the Mercury

software is widely used for a pairwise comparison of crystals as follows. Within given

tolerances (20◦ for angles and 20% for distances), up to a given number (15 by default)

of molecules from two crystals are matched by a rigid motion that minimizes the Root

Mean Square deviation of n matched atoms RMS =

√

1

n

n
∑

i=1
|pi − qi|2. Table 1 shows

how this RMS depends on the maximum number of attempted molecules to match by

a rigid motion. A final number of matched molecules seems rather unpredictable.

IUCr macros version 2.1.10: 2016/01/28
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The newer COMPSTRU algorithm (Flor et al., 2016) like COMPACK predicts a

similarity between a reference crystal S and other available crystals whose unit cell

parameters are close to those of S. The default thresholds are 5◦ for angles and 0.5Å

for distances (1Å = 1010m). The COMPSTRU comparison is restricted to crystals

that have the same space-group type. Crystals are compared by powder diffraction

patterns up to a cut off radius (Oliynyk et al., 2016), which introduces an extra

parameter without resolving the underlying instability under perturbations.

4. A fast algorithm to detect sets with identical diffraction patterns

This section discusses homometric crystals that were hard to distinguish, because they

have identical diffraction patterns depending only on the difference set below.

Definition 3 (difference multi-set Dif(S), distance multi-set Dist(S)). Let S ⊂ R
n be

a finite or a periodic set. The difference multi-set is Dif(S) = {~a−~b for all points a, b ∈

S}. The distance multi-set is Dist(S) = {|~a−~b| for all points a, b ∈ S}. �

If a set of points S ⊂ R
n is finite, then so is the difference set Dif(S), hence the

vector differences ~a−~b can be counted with multiplicities. For any periodic set S, any

vector difference or a distance will be repeated infinitely many times due to periodicity,

hence all values in Dif(S) and Dist(S) have the same infinite (countable) multiplicity.

Example 4 (Patterson’s homometric 1D periodic sets). Patterson in Patterson (1944,

p. 197, Fig. 2) has suggested the 1D periodic sets S = {0, 1, 3, 4} + 8Z and Q =

{0, 3, 4, 5}+8Z, see Fig. 5 and 6. Theorem 10 will justify why S,Q are non-isometric.

The vector differences of the 4-point motives of the periodic sets S,Q in Fig. 5 differ:
S 0 1 3 4

0 0 −1 −3 −4
1 1 0 −2 −3
3 3 2 0 −1
4 4 1 3 0

and

Q 0 3 4 5

0 0 −3 −4 −5
3 3 0 −1 −2
4 4 1 0 −1
5 5 2 1 0

, but they coincide modulo 8 (with

infinite multiplicities): Dif(S) ≡ {0, 1, 2, 3, 4, 5, 6, 7} ≡ Dif(Q) mod 8.

IUCr macros version 2.1.10: 2016/01/28
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The equivalence modulo 8 gives rise to a bijection between all 16 elements of

the distance matrices above, hence to a bijection between the differences multi-sets

D(S) → D(Q), e.g. the difference (8i+ 1)− (8j + 4) = 8(i− j)− 3 ≡ 5 (mod 8) in S

can be bijectively mapped to (8i+ 5)− 8j = 8(i− j) + 5 in Q. Fig. 6 shows a generic

pair from the family of homometric sets S(r), Q(r), where r = 1 is for the sets S,Q

on the left. The mirror image of S(r) = {0, r, r + 2, 4}+ 8Z under t 7→ 4− t coincides

with S(2 − r) = {0, 2 − r, 4 − r, 4} + 8Z, so they are equivalent modulo all isome-

tries including reflections. Similarly, Q(r) and Q(2− r) are isometric by the reflection

t 7→ −t. To distinguish all these sets modulo an isometry in section 5, we can assume

that 0 < r ≤ 1.

Definition 5 (homometric sets). Finite or periodic sets S,Q ⊂ R
n are called homo-

metric if there is a bijection between their multi-sets Dif(S) → Dif(Q) from Defini-

tion 3. So if S,Q ⊂ R
3 are crystals, they have identical diffraction patterns. �

The following result makes the experimental concept of a homometric crystal veri-

fiable in an algorithmic way. Theorem 6 and all others are proved in Appendix B.

Theorem 6 (a fast criterion of homometric sets). Any periodic sets S,Q ⊂ R
n are

homometric in the sense of Definition 5 if and only if S,Q have a common lattice Λ

such that their sets of vector differences are equal modulo this lattice: Dif(S) ≡ Dif(Q)

(mod Λ). Given a common unit cell containing m points of sets S,Q ⊂ R
n, there is

an algorithm of complexity O(m2) to determine whether S,Q are homometric. �

5. Point-wise distributions of distances in finite and periodic sets

This section introduces new invariants of periodic crystals: point-wise distributions of

distances in Definition 7 and their simplified averages (AMDs) in Definition 9.

IUCr macros version 2.1.10: 2016/01/28
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Definition 7 (point-wise distribution of distances PDD). Let a periodic set C =

M+Λ have a motif M of m points p1, . . . , pm. For a fixed integer k ≥ 1, the point-wise

distribution of distances is them×k matrix PDD(C; k), whose i-th row corresponds to

the point pi, i = 1, . . . ,m. The i-th row consists of the ordered distances di1 ≤ · · · ≤ dik

measured from pi to its first k nearest neighbors within C. �

The sets S,Q in Fig. 5 have these point-wise distribution of distances for k = 3.
S 1st distance 2nd distance 3rd

p1 = 0 |0− 1| = 1 |0− 3| = 3 4
p2 = 1 |1− 0| = 1 |1− 3| = 2 3
p3 = 3 |3− 4| = 1 |3− 1| = 2 3
p4 = 4 |4− 3| = 1 |4− 1| = 3 4

Q 1st distance 2nd distance 3rd

p1 = 0 |0− 3| = 3 |0− (−3)| = 3 4
p2 = 3 |3− 4| = 1 |3− 5| = 2 3
p3 = 4 |4− 3| = 1 |4− 5| = 1 4
p4 = 5 |5− 4| = 1 |5− 3| = 2 3

The rows of PDD(C; k) correspond to an arbitrary order of given points p1, . . . , pm ∈

M . There is a suitable convention to order rows by using columns. The columns

of PDD(C) are naturally ordered by increasing distances to neighbors. Then the

rows (hence, the points p1, . . . , pm) can lexicographically ordered as follows. A row

(di1, . . . , dik) is smaller than (dj1, . . . , djk) if the first (possibly none) distances coin-

cide: di1 = dj1, . . . , dil = djl for some l ∈ {1, . . . , k − 1} and the next distances satisfy

di,l+1 < dj,l+1. In this lexicographic order, the periodic sets S,Q from Fig. 5 have

PDD(S; 3) =









1 2 3
1 2 3
1 3 4
1 3 4









and PDD(Q; 3) =









1 1 4
1 2 3
1 2 3
3 3 4









.

Notice that PDD(S; 3) contains two pairs of identical rows, because S = {0, 1, 3, 4}+

8Z is symmetric with respect to the reflection t 7→ 4−t (mod 8). The similar reflection

t 7→ −t (mod 8) explains two identical rows in PDD(Q; 3) of Q = {0, 3, 4, 5} + 8Z.

The point-wise distribution of distances (PDD) in Definition 7 depends on a number

m of points in a given cell U . If we make one of its edges twice longer, the resulting

non-primitive unit cell contains 2m points and PDD will be twice larger. However, a

translated copy of any point pi ∈ U will have exactly the same ordered distances to

IUCr macros version 2.1.10: 2016/01/28
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its neighbors as pi due to periodicity. After doubling U as above, every row appears

twice in PDD. These repetitions can be reduced by using the weights of rows below.

Definition 8 (weighted point-wise distribution WPD). For a periodic set S with m

points in a motif, the weight of a row in PDD(S; k) is the number of times the row

appears in PDD(S; k) divided by m so that all weights sum up to 1. The weighted

point-wise distribution WPD(S; k) is obtained from PDD(S; k) by keeping only one of

identical rows and putting the weight of this row into the extra (k + 1)-st column. �

The rows of WPD(C; k) are lexicographically ordered as in PDD(C; k). Then S,Q in

Fig. 5 have WPD(S; 3) =

(

1 2 3 1/2
1 3 4 1/2

)

and WPD(Q; 3) =





1 1 4 1/4
1 2 3 1/2
3 3 4 1/4



.

Any isometric crystals have the same lattice, the same Niggli’s reduced cell, the

same number m of points in a motif, hence the same number of rows in PDD and

WPD. However, this isometry invariant (the number of points within a primitive cell)

is unstable under perturbations by the following reasons. If we perturb one point

within a motif, hence all its periodic copies of this point in a crystal, the perturbed

crystal can have a different number of rows in WPD. The weights of rows will help

continuously quantify perturbations by using a distance between distributions.

Definition 9 (average minimum distance AMDk). For k ≥ 1, the average minimum

distance of a periodic set S with m points p1, . . . , pm in a motif is AMDk(S) =

1

m

m
∑

i=1
PDDik(S; k), the average of the last k-th column in PDD(S; k). Alternatively, if

WPD(S; k) has l rows with weights w1, . . . , wl such that
l
∑

i=1
wi = 1, then AMDk(S) =

l
∑

i=1
wiWPDik is the weighted average of the k-th column in WPD(S; k). �

Any lattice L ⊂ R
n has a unit cell with only one point in a motif. After a suitable

translation, this point can be assumed to be at the origin 0 ∈ R
n. Then AMDk(L) is

the k-th minimum distance from 0 to another point of L, see Fig. 11 in appendix A.

IUCr macros version 2.1.10: 2016/01/28
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6. Invariance of distance distributions and their stability under noise

This section proves that the WPDs and AMDs from section 5 are stable isometry

invariants (Theorems 10, 12, 14), complete for generic sets (Theorem 15).

Since the periodic sets S(r) = {0, r, r + 2, 4} + 8Z and S(2 − r) are isometric

by the reflection t 7→ 4 − t, their WPDs are identical. The similar conclusion holds

for Q(r) = {0, r + 2, 4, r + 4} + 8Z and Q(2 − r) isometric by the reflection t 7→ −t.

Theorem 10 will justify that all S(r), Q(r) are not isometric to each other for 0 < r ≤ 1.

Theorem 10 (isometry invariance of WPDs and AMDs). For any finite or periodic

set S ⊂ R
n, the weighted point-wise distribution WPD(S; k) and average minimum

distance AMDk(S) are isometry invariants for any number k ≥ 1 of neighbors. �

The power of WPDs is illustrated by classifying the homometric sets that are impos-

sible to distinguish by diffraction patterns. Table 2 in appendix A shows the detailed

computations of PDD(S(r); 5) and PDD(Q(r); 5) for the homometric sets S(r), Q(r)

in Fig. 6, where the rows are ordered by the given points. The lexicographic re-ordering

of the rows of PDDs gives the weighted point-wise distributions:

WPD(S(r); 5) =









r 2 4− r 4 + r 6 1/4
r 2 + r 4 4 6− r 1/4
2− r 2 2 + r 6− r 6 1/4
2− r 4− r 4 4 4 + r 1/4









,

WPD(Q(r); 5) =









r 2− r 4 4 6− r 1/4
r 2 4− r 4 + r 6 1/4
2− r 2 2 + r 6− r 6 1/4
2 + r 4− r 4 4 4 + r 1/4









.

The first columns of WPDs for k = 1 distinguish all S(r), Q(r) for any 0 < r ≤ 1.

AMDk(S(r)) are independent of r, hence don’t distinguish S(r) modulo isometries.

However, for 0 < r ≤ 1, the first minimum distance between any points in S(r) equals

r and implies that S(r) are not isometric to each other for different r.

Since all atoms vibrate above the absolute zero temperature, the bottleneck distance

between crystals in Definition 11 naturally quantifies crystal similarities.

IUCr macros version 2.1.10: 2016/01/28
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Definition 11 (bottleneck distance BND). For a fixed bijection g : S → Q between

finite or periodic sets S,Q ⊂ R
n, themaximum deviation is the supremum sup

a∈S

|a−g(a)|

of Euclidean distances. The bottleneck distance is BND(S,Q) = inf
g:S→Q

sup
a∈S

|a − g(a)|

is the infimum of maximum deviations over all bijections g : S → Q. �

The key obstacle in applying the bottleneck distance to real crystals is the minimiza-

tion over bijections between infinite sets. Any reduction to a finite set is hard to justify

because of the instability of a unit cell under perturbations (Andrews et al., 1980).

Theorem 12 (stability of AMD under noise). For any number k ≥ 1 of neighbors,

all finite or periodic sets S,Q satisfy |AMDk(S)−AMDk(Q)| ≤ 2BND(S,Q). �

Weighted point-wide distributions are matrices that can have different sizes, hence

are harder to compare than AMD vectors of a fixed length k. Definition 13 (Rubner

et al., 2000) introduces a suitable distance between distributions of different sizes.

Definition 13 (earth mover’s distance EMD). Fix two finite or periodic sets S,Q ⊂

R
n and a number k of nearest neighbors for each point. Let WPD(S; k) consist of

mS rows Ri(S) ∈ R
k. Each row Ri(S) has a weight wi(S), i = 1, . . . ,m(S) so that

m(S)
∑

i=1
wi(S) = 1. Using the similar notations for the set Q, we quantify by a parameter

0 ≤ fij ≤ 1 a move from each row Ri(S) ∈ R
k to another row Rj(Q) ∈ R

k of a

weight wj(Q), where j = 1, . . . ,m(Q). The distance between such rows (vectors in

R
k) is Euclidean. The earth mover’s distance is defined as the minimum value of the

cost flow EMD(S,Q) =
m(S)
∑

i=1

m(Q)
∑

j=1
fij|Ri(S) − Rj(Q)| over all 0 ≤ fij ≤ 1 subject to

m(Q)
∑

j=1
fij = wi(S) for i = 1, . . . ,m(S), and

m(S)
∑

i=1
fij = wj(Q) for j = 1, . . . ,m(Q). �

The first condition
m(Q)
∑

j=1
fij = wi(S) means that the full weight wi(S) of the row

Ri(S) ‘flows’ into the rows Rj(Q), each via a ‘flow’ fij, j = 1, . . . ,m(Q). Similarly,
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the second condition
m(S)
∑

i=1
fij = wj(Q) means that all ‘flows’ fij from rows Ri(S) for

i = 1, . . . ,m(S) ‘flow’ into the row Rj(Q) and sum up to the full weight wj(Q).

The earth mover’s distance (EMD) has more than one advantage over the bottleneck

distance (BND) for periodic sets. First, the EMD uses the isometry invariant WPD,

whose stability in the EMD is proved in Theorem 14. The BND between infinite sets

can be computed only on finite subsets, e.g. on points in an extended cell, which is

unstable (Andrews et al., 1980). Second, even for finite subsets, the fastest algorithm

in Kerber et al. (2017, Theorem 3.1) computes the BND (for 2D set of m points) in

time O(m1.5 logm). The EMD can be approximated (Pele & Werman, 2008) in a time

linear in the size of any k-dimensional distributions.

Theorem 14 (stability of weighted point-wise distribution WPD). For any number

k ≥ 1 of neighbors, any finite or periodic sets S,Q satisfy EMD(S,Q) ≤ 2
√
kBND(S,Q).

So any small perturbation of positions in the bottleneck distance (BND) yields a small

change of the weighted point-wise distribution in the earth mover’s distance. �

After satisfying the invariance and stability conditions in Problem 2, Theorem 15

proves a generic completeness of the weighted point-wise distributions (WPDs).

Theorem 15 (unique reconstruction of a finite set fromWPD). Let a finite set S ⊂ R
n

have m points such that all pairwise distances between points of S are distinct. Then

S can be uniquely reconstructed modulo an isometry of Rn from WPD(S;m− 1). �

We conjecture that WPD(S; k) are complete isometry invariants for sufficiently large

k depending on a complexity of S ⊂ R
n. If S is a finite set of m points, then k = m−1

should be enough. The sets A,B ⊂ R
2 in the last picture of Fig. 4 have WPD(A; 3) =

( √
2 2

√
10 1/2√

2
√
10 4 1/2

)

and WPD(B; 3) =





√
2

√
2 4 1/4√

2 2
√
10 1/2√

10
√
10 4 1/4



, which

distinguish A,B ⊂ R
2 modulo isometries. Actually, k = 1 is enough in this case.
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If m = 1, any set S ⊂ R
n is a lattice and k needs to be at least n(n + 1). For

example, any lattice in R
2 can be reconstructed from the distribution of 6 minimum

distances from the origin 0 to 3 pairs of 6 neighbors symmetric with respect to 0.

7. Computations, applications to crystal comparisons and a discussion

Theorem 16 covers final computability condition in Isometry Classification Problem 2.

Theorem 16 (algorithm for computing new invariants WPDs and AMDs). Let a

periodic crystal S ⊂ R
n have m points in a unit cell whose extension by a factor

µ covers all k of neighbors of the given points. Then the matrix WPD(S; k) and all

AMDi(S) for i = 1, . . . , k can be computed in time O(m(nµn + k) log(µnm)). �

Though we have no exact value of the factor µ, our experiments show that µ = O(n).

So in the practical case of m = 3 the time is near linear in the number m of points.

The only input for computing the new invariants is a crystal itself (a unit cell with

a finite set of points) without parameters. The number of neighbors k is independent

of a crystal and reflects our desire to extra more distance information. For example,

vectors of 1000 AMDs will better differentiate crystals than vectors of 100 AMDs.

The Nature paper (Pulido et al., 2017) has reported 4 experimental crystals T2-α,

T2-β, T2-γ, T2-δ (one more T2-ε was synthesized after the publication), see Fig. 10 in

Appendix A. The synthesis in a lab started only after an energy landscape in Fig. 1 of

5679 simulated crystals produced by 12-week simulations on a supercomputer hinted

at potential stable crystals in downward spikes (imaginable deep minima). To validate

this approach, the synthesized crystals should be matched with closest crystals from

the simulated dataset of 5679. If there was no close match, the expensive simulations

missed a real crystal, which is always possible, because the continuous space of all

potential crystals in Fig. 2 is randomly and discretely sampled.

IUCr macros version 2.1.10: 2016/01/28



16

Until now the density was practically used as a stable isometry invariant of crystals.

The density in the horizontal axis in Fig. 1 can separate nano-porous organic crystals,

while inorganic crystals are much denser and can not be well-separated by densities.

Using the density ∆ of an experimental crystal, chemists look for a corresponding

simulated crystal in a vertical strip of the energy landscape in Fig. 1 over a small

interval around ∆ to allow for errors. From this strip one takes the crystal with the

lowest energy as the best guess, which depends on a strip. A final match is confirmed

by the RMS deviation between finite portions, which is also uncertain, see Table 1.

For the experimental crystal T2-δ, the past method above found crystal 14 in the

simulated dataset of 5679. However, another crystal 15 has a much closer AMD curve

in Fig. 7. Though both crystals have almost identical energy and density in Fig. 1 in

Table 3. They are separated by their AMD curves (red: dotted vs dashed) in Fig. 7.

Fig. 8 shows that that most stable 100 simulated crystals split into two clusters,

which merge at about 17Å. The 1st large cluster on the left contains two simulated

matches of the experimental crystals T2-ε and T2-δ, though the past match 14 is in

another subcluster than the new match 15. The 2nd small cluster has all matches of

T2-α, T2-β, T2-γ. The thresholds between the largest subclusters are about 3Å.

Fig. 7 and 8 show that the new invariants from Definitions 8 and 9 continuously

quantify similarities between periodic crystals, which was impossible by past non-

invariant descriptors or unstable discrete invariants such as symmetry groups.

We have resolved the following challenges in the geometry for periodic sets.

• The criterion in Theorem 6 detects crystals with identical diffraction patterns.

• Theorems 10, 12, 14 have proved that the weighted point-wise distributions WPD(S; k)

and average minimum distances AMDk(S) are stable isometry invariants of a finite or

a periodic set S ⊂ R
n and are computable fast enough by algorithmic Theorem 16.
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• Completeness Theorem 15 proves that any set S ⊂ R
n of m points with distinct

distances can be uniquely reconstructed from its WPD(S;m− 1) modulo isometries.

Appendix A

Background on isometries and isometry invariants

We first remind key facts about isometries in R
n and then give the proofs of all

results from sections 4 and 6. The strongest possible equivalence on rigid materials is

defined by isometries (or rigid motions) that preserve interpoint distances.

Definition 17 (isometries). An isometry of Rn is any map f : Rn → R
n that preserves

the Euclidean distance, i.e. |pq| = |f(p)f(q)| for any points p, q ∈ R
n. If f also preserves

the orientation, i.e. the matrix whose columns are images under f of the standard basis

vectors ~e1, . . . , ~en has a positive determinant, then f can be called a rigid motion,

because f is included into a continuous family of isometries fλ : Rn → R
n, λ ∈ [0, 1],

where f1 = f and f0 is the identity map f0(p) = p for any p ∈ R
n. �

Any isometry of Rn can be decomposed into at most n + 1 reflections over hyper-

spaces, hence is bijective and can be inverted. A composition of isometries is also an

isometry, which defines the operation in the group Iso(Rn) of all isometries in R
n.

Rigid motions are orientation-preserving isometries and form the smaller subgroup

Iso+(Rn) ⊂ Iso(Rn). Materials are compared modulo rigid motions or the isometries

from Iso(Rn), because mirror images of materials can have different properties. Exam-

ples in R
3 are translations by vectors and rotations around straight lines.

For any n×n matrix A, recall that AT denotes the transpose matrix with elements

AT
ij = Aji, i, j = 1, . . . , n. A matrix A is orthogonal if the inverse matrix A−1 equals the
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transpose AT . Orthogonality of a matrix A means that ~v 7→ A~v maps any orthonormal

basis to another orthonormal basis. All orthogonal matrices A have the determinant

detA = ±1. If detA = 1, then the map ~v 7→ A~v preserves an orientation of Rn.

All orthogonal matrices A with detA = 1 form the special orthogonal group SO(Rn),

where the operation is the matrix multiplication. The group SO(R2) consists of rota-

tions about the origin in the plane. The group SO(R3) consists of rotations about

axes passing through the origin in R
3. In general, SO(Rn) consists of all isometries

from Iso+(Rn) that preserve the origin. Any objects should be classified by invariants

that are independent of a given representation of an object. Many machine learning

algorithms struggle when features or descriptors include non-invariants of crystals,

e.g. parameters of an ambiguous unit cell or atomic coordinates in an arbitrary basis.

Definition 18 (isometry invariant). An isometry class is a set of all materials that

are isometric to each other, i.e. any materials S,Q from the same class are related by

an isometry S → Q. An isometry invariant is a function I that maps all materials

from a certain class, e.g. all periodic crystals, to a simpler set (e.g. numbers, matrices)

so that I(S) = I(Q) for any isometric materials S,Q. An invariant I is called complete

if the converse is also true: if I(S) = I(Q), then the materials S,Q are isometric. �

The original definition (Patterson, 1939) said that homometric crystals should be

non-isometric. Definition 5 does not have this restriction and defines an equivalence

relation on sets satisfying the three axioms:

reflexivity : any set S is equivalent to itself;

symmetry : if a set S is equivalent to Q, then Q is equivalent to S;

transitivity : if S is equivalent to Q that is equivalent to T , then S is equivalent to T .

The three axioms above guarantee that all sets can split (or classified) into disjoint

equivalence classes (consisting of all sets equivalent to each other) and a classification
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modulo an equivalence relation makes sense. The even better equivalence relation is

the isometry combined with the homometry saying that one set S is equivalent to a

set Q if Dif(f(S)) = Dif(Q) for a suitable isometry f .

Fig. 11 shows the AMD graphs for six 2D lattices specified by their basis vectors

and also shown in Fig. 11 in the same order. Though the orange and red AMD graphs

clearly differ Fig. 11 up to k = 50, their asymptotic behaviors are very similar for k

close to 1000, also for the black and blue graphs, which is interesting to study further.

Appendix B

Proofs of all theorems from the main paper

Proof of Theorem 6. For the ‘only if’ part, assume that Dif(S) = Dif(Q) as infinite

sets. Let S = M +Λ be any representation of the crystal S in terms of its arbitrarily

unit cell. If the motif M consists of m points p1, . . . , pm within the unit cell with a

basis ~v1, . . . , ~vn, then

Dif(S) = {pi − pj +

n
∑

k=1

λk~vk : 1 ≤ i, j ≤ m, λ1, . . . , λn ∈ Z}.

Hence Dif(S) is also a periodic set with the same unit cell. The similar conclusion for

Dif(Q) implies that Dif(Q) = Dif(S), hence S and Q, have the same lattice Λ. Then

the difference sets should be equal modulo this lattice: Dif(S) ≡ Dif(Q) (mod Λ).

For the ‘if’ part, we start from a common lattice Λ of S,Q. Any lattice has a unique

Niggli’s reduced cell, so we assume that given crystals S,Q has a common unit cell

Uwith a basis ~v1, . . . , ~vn. The equality Dif(S) ≡ Dif(Q) (mod Λ) means that for any

pair of points qi, qj ∈ Q, there is a unique pair pi, pj ∈ S and unique coefficients

λ1, . . . , λn ∈ Z such that qi − qj = pi − pj +
n
∑

k=1

λk~vk and vice versa. We extend this
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1-1 correspondence to the infinite set Dif(Q). For any qi − qj +
n
∑

k=1

µk~vk ∈ Dif(Q),

the corresponding difference in Dif(S) is pi − pj +
n
∑

k=1

(λk + µk)~vk, which extends the

bijection Dif(S) → Dif(Q) to full crystals.

To determine if S,Q are homometric, one can start with a common cell U containing

m points of S,Q, which is needed by the above criterion. First compute all O(m2)

pairwise differences (translated to U if necessary) for both S,Q. To check if these

vector sets coincide, we could lexicographically order them using coordinates in the

basis of the cell U . Then a single pass over O(m2) vector differences is enough to

decide if Dif(S) ≡ Dif(Q) (mod Λ).

Proof of Theorem 10. Any isometry f : S → Q between sets S,Q ⊂ R
n establishes

a 1-1 correspondence between points of S and Q. If S,Q are periodic, f bijectively

maps a unit cell U of S to a unit cell U(Q) of Q. Hence f allows us to order points

p1, . . . , pm ∈ U(S) according to the order of their images f(p1), . . . f(pm) ∈ U(Q).

Since the isometry f preserves distances between points, every i-th row of PDD(S; k),

which contains the ordered distances from pi to its first k nearest neighbors, coincides

the i-th row of PDD(Q; k), i = 1, . . . ,m. These coincidence of rows gives rise to the

equality of the matrices WPD(S; k) = WPD(Q; k) of Weighted Point-wise Distribu-

tions, which are independent of of point ordering.

Lemma 19 is needed to prove Stability Theorem 12.

Lemma 19 (perturbed distances). For some ε > 0, let g : S → Q be a bijection

between finite or periodic sets such that |a − g(a)| ≤ ε for all a ∈ S. Then, for

any i ≥ 1, let ai ∈ S and bi ∈ Q be the i-nearest neighbors of points a ∈ S and

b = g(a) ∈ Q, respectively. Then the Euclidean distances from the points a, b to their

i-th neighbors ai, bi are 2ε-close to each other, i.e. ||a− ai| − |b− bi|| ≤ 2ε.
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Proof. Shifting the point g(a) back to a, assume that a = g(a) is fixed and all other

points change their positions by at most 2ε. Assume by contradiction that the distance

from a to its new i-th neighbor bi is less than |a−ai|−2ε. Then all first new i neighbors

b1, . . . , bi of a within Q belong to the open ball with the center a and the radius

|a − ai| − 2ε. Since the bijection g shifted every point b1, . . . , bi by at most 2ε, their

preimages g−1(b1), . . . , g
−1(bi) belong to the open ball with the center a and the radius

|a − ai|. Then the i-th neighbor of a within S should be among these i preimages,

i.e. the distance from a to its i-th nearest neighbor should be strictly less than the

assumed value |a− ai|. A similar contradiction is obtained from the assumption that

the distance from a to its new i-th neighbor bi is more than |a− ai|+ 2ε.

Proof of Theorem 12. By Lemma 19 each element of PDD(S; k) changes by at most

2ε. Then the average of the k-th column changes by at most 2ε as required.

Lemma 20 is needed to prove Stability Theorem 14.

Lemma 20 (perturbed rows). For some ε > 0, let g : S → Q be a bijection between

finite or periodic sets such that |a − g(a)| ≤ ε for all a ∈ S. Then, for any k ≥ 1,

the bijection g changes the vector ~Ra(S) = (|a− a1|, . . . , |a− ak|) ∈ R
k of the first k

minimum distances from any point a ∈ S to its k nearest neighbors a1, . . . , ak ∈ S by

a Euclidean distance at most 2ε
√
k. So if b1, . . . , bk ∈ Q are the k nearest neighbors

of b = g(a) within Q and ~Rb(S) = (|b− b1|, . . . , |b− bk|) ∈ R
k is the vector of the first

k minimum distances from the point b = g(a), then |~Ra(S)− ~Rb(Q)| ≤ 2ε
√
k.

Proof. By Lemma 19 every coordinate of ~Ra(S) ∈ R
k changes by at most 2ε. Hence

the Euclidean distance from ~Ra(S) to the perturbed ~Rb(Q) is at most 2ε
√
k.
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Proof of Theorem 14. BND(S,Q) = inf
g:S→Q

sup
a∈S

|a− g(a)| by Definition 11 means, for

any δ > 0, there is a bijection g : S → Q such that sup
a∈S

|a− g(a)| ≤ BND(S,Q) + δ. If

the sets S,Q are finite, one can set δ = 0. Indeed, there are finitely many bijections

S → Q, hence the infimum in Definition 11 will be achieved for one of them.

If S,Q are periodic, the chosen bijection g restricts to a bijection between all points

in corresponding unit cells of S,Q, so set m = m(S) = m(Q). For any fixed k ≥ 1,

we will design a flow from the rows of WPD(S; k) to the rows of WPD(Q; k) with fij

satisfying Definition 13. We start from a 1-1 flow with fij = 0 for i 6= j.

If not all rows Ri(S) in PDD(S; k) are distinct, we make them symbolically distinct

so that WPD(S; k) is obtained from PDD(S; k) by adding the column of equal weights

1
m
, similarly for WPD(Q; k). Identifying equal rows later will mean that flows to (or

from) equal (symbolically different) rows are combined into a many-to-one (or one-to-

many, respectively) flow. Since we have the same number m of rows in both matrices

WPD(S; k) and WPD(Q; k), we set fij = 0 for i 6= j and fii =
1
m
, i = 1, . . . ,m.

Then EMD(S,Q) ≤ 1
m

m
∑

i=1
|~Ri(S)− ~Ri(Q)|, because EMD minimizes the cost over all

flows in Definition 13. Since each |~Ri(S)− ~Ri(Q)| ≤ 2
√
k(BND(S,Q)+δ) by Lemma 20,

we conclude that EMD(S,Q) ≤ 1
m

m
∑

i=1
2
√
k(BND(S,Q) + δ) = 2

√
k(BND(S,Q) + δ).

Since the last inequality holds for any small δ > 0, we get the Lipschitz continuity

EMD(S,Q) ≤ 2
√
kBND(S,Q).

The following proof will convert a weighted point-wise distribution (in a generic

case when all distances are distinct) into a distance matrix on ordered points.

Proof of Theorem 15. Since all pairwise distances between m points of S are distinct,

every distance appears in the matrix WPD(S;m−1) exactly twice, once as the distance

from a point pi to its neighbor pj, and once more as the distance from pj to pi, though

these equal entries are not symmetric. We will convert WPD(S;m−1) into the distance

IUCr macros version 2.1.10: 2016/01/28



23

matrix D(S) as follows. Let d1 < d2 < · · · < dm−1 be all strictly increasing distances

from a (say) first point p1 of S to the m− 1 others.

Each distance di from the first row appears exactly once more in another (say, i′-th)

row of WPD(S;m−1). Then di is the distance between the points p1 and pi′ numbered

as the i′-th row. The map of indices i 7→ i′ is a permutation of {2, . . . ,m}. We set

D11 = 0 and D1,i′ = di for each i = 2, . . . ,m. Then we similarly permute indices in

the 2nd row of WPD(S;m − 1), starting from the 3rd index due to the symmetry

of D(S), and so on. The full distance matrix D(S) uniquely determines a set with

ordered points S ⊂ R
n modulo isometries by the classical multi-dimensional scaling

in Liberti & Lavor (2017, Section 8.5.1).

Proof of Theorem 16. We build a k-d tree (Brown, 2015) on µnm points in the extended

unit cell in time O(n(µnm) log(µnm)). Then all k neighbors of m initial points can

be found in time for each O(km log(µnm)). After completing the m× k matrix PDD,

we lexicographically sort its m rows. Each row comparison needs O(k) time. The

matrix WPD(S; k) can be obtained in time O(km logm). All AMDi(S) are computed

as column averages in time O(km). The total time is O(m(nµn + k) log(µnm)).

To guarantee that all k neighbors are correctly found, we incrementally increase µ

and check if a new layer of cells leads to any updates in the current m × k matrix

containing distances from m initial points to their k nearest neighbors. If no updates

happen for a point p, all k minimum distances from p are correctly found.
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Table 1. The Root Mean Square (RMS) deviation between the experimental T2-δ crystal and

its closest simulated version with ID 14 from the T2 dataset in (Pulido et al., 2017). The

irregular dependence of RMS on a number of matched molecules makes this comparison

unreliable. The computation over 35 molecules was about 1000 times longer than for 15.

matched molecules 5 of 5 8 of 10 10 of 15 11 of 20 16 of 25 18 of 30 21 of 35
RMS in Angstroms 0.603 0.681 0.812 0.825 0.99 1.027 1.079

Table 2. The point-wise distributions of distances (PDDs) and average minimum distances

(AMDs) from Definitions 7 and 9 for S(r) = {0, r, r + 2, 4}+ 8Z,

Q(r) = {0, r + 2, 4, r + 4}+ 8Z, 0 < r ≤ 1.

PDD(S(r)) 1st distance 2nd distance 3rd distance
p1 = 0 |0− r| = r |0− (2 + r)| = 2 + r |0− 4| = 4
p2 = r |r − 0| = r |r − (2 + r)| = 2 |r − 4| = 4− r
p3 = 2 + r |(2 + r) − 4| = 2− r |(2 + r) − r| = 2 |(2 + r) − 0| = 2 + r
p4 = 4 |4− (2 + r)| = 2− r |4− r| = 4− r |4− 0| = 4
AMDk(S(r)) AMD1 = 1 AMD2 = 2.5 AMD3 = 3.5

PDD(Q(r)) 1st distance 2nd distance 3rd distance
p1 = 0 |0− (2 + r)| = 2 + r |0− (r + 4− 8)| = 4− r |0− 4| = 4
p2 = 2 + r |(2 + r) − 4| = 2− r |(2 + r) − (4 + r)| = 2 |(2 + r) − 0| = 2 + r
p3 = 4 |4− (4 + r)| = r |4− (2 + r)| = 2− r |4− 0| = 4
p4 = 4 + r |(4 + r) − 4| = r |(4 + r) − (2 + r)| = 2 |(4 + r) − 8| = 4− r
AMDk(Q(r)) AMD1 = 1 + 0.5r AMD2 = 2.5− 0.5r AMD3 = 3.5

Table 3. The AMD distance below is the Euclidean distance between the vectors

(AMD1, . . . ,AMD100). Crystal 15 from the dataset of 5679 T2 crystals (Pulido et al., 2017)

has a smaller AMD distance to the experimental T2-δ in Fig. 7 than the crystal 14, which

was manually found by using Mercury calculating the RMS deviations of up to 15 molecules.

properties of crystals experimental T2-δ past matched crystal 14 new matched crystal 15
energy (kJ/mol) unknown -190.534 -190.509
density (g/cm3) 1.215 1.23606 1.23602
RMS distance to T2-δ 0 0.806 0.81
AMD distance to T2-δ 0 2.358 0.347
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Fig. 1. 1st: T2 molecule (triptycenetrisbenzimidazolon). 2nd: millions of initial almost
random arrangements are iteratively perturbed to minimize an energy. 3rd: a CSP
software can output thousands of simulated crystals often visualized as an energy
landscape in Pulido et al. (2017, Fig. 2d), where every crystal has two coordinates
(density,energy). This landscape ‘hints’ at deep minima in downward spikes. The
past manual matching of five synthesized crystals to simulated predictions is now
automated by the new invariant-based algorithm in section 7.
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Fig. 2. Left: a current energy landscape is a list of simulated crystals. Middle: isome-
try invariants will ‘join the dots’ and sample a crystal space to find energy barriers.
Right: a ‘mapped’ energy landscape (the energy function over a space of crystals)
with highlighted deep minima (most stable crystals in red), energy barriers (blue)
and other approximations to local minima (black).
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Fig. 3. Isometry classes of crystals can be distinguished only by isometry invariants.
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Fig. 4. First two: the square lattice and its perturbation with a rectangular primitive
cell, so the volume of a primitive cell is unstable. Third: the experimental crystal
T2-δ overlaid with its closest simulated version was deposited in the CSD with id
SEMDIA only new invariants have shown big differences with deposited crystals.
Fourth: these non-isometric sets can not be distinguished by pairwise distances.
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8Z. Bottom: Q(r) = {0, r+2, 4, r+4}+8Z, 0 < r ≤ 1 is a parameter. The simpler
versions on the left correspond to r = 1. The circular versions are in Fig. 6.
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Fig. 6. First two: circular versions of the homometric sets S,Q in Fig. 5. Each circle
splits into 8 equal arcs. The distances between points (shown outside the disk) are
arc lengths (shown inside the disk). Last two: homometric sets S(r) = {0, r, r +
2, 4}+8Z, Q(r) = {0, r+2, 4, r+4}+8Z, 0 < r < 2. The distances between points
(shown outside the disk) are arc lengths (inside the disk).
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Fig. 7. The average minimum distances AMDk in Angstroms with k = 10, . . . , 100.
Solid curves are for experimental crystals. Dashed curves are for the past simulated
matches reported in (Pulido et al., 2017). Dotted curves are for new matches found
by smallest Euclidean distances between AMD vectors with k = 100. From top to
bottom: purple T2-γ, green T2-α, black T2-β, red T2-δ (new match 15 is much
closer by AMDs to the experimental crystal than the old match 14), blue T2-ε.

Fig. 8. Complete-linkage clustering by (AMD1, . . . ,AMD100) of 100 crystals with low-
est energies from the dataset of 5679 simulated crystals (Pulido et al., 2017). The
inset image shows how the number of clusters decreases when a threshold grows.
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Fig. 9. The number of clusters by complete-linkage clustering is continuously decreas-
ing when a threshold grows. Such continuity was impossible by past tools.

Fig. 10. The crystals T2-α, T2-β, T2-γ, T2-δ, T2-ε based on the T2 molecule were
synthesized for methane capture following the CSP (Pulido et al., 2017) in Fig. 1.
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Fig. 11. 2D lattices whose AMD curves are in Fig. 12. 1st: a generic black lattice with
the basis (1.25, 0.25), (0.25, 0.75). 2nd: the blue hexagonal lattice with the basis
(1, 0), (1/2,

√
3/2). 3rd: the orange rhombic lattice with the basis (1, 0.5), (1,−0.5).

4th: the purple rhombic lattice with the basis (1, 1.5), (1,−1.5). 5th: the red square
lattice. 6th: the green rectangular lattice with the basis (2, 0), (0, 1).

Fig. 12. Left: AMDk, k ∈ [0, 50], for the 2D lattices with given bases. Right: extended
AMDk up to k = 1000. The orange and red graphs are very close as well as the
blue and black graphs, see clearer differences for smaller k on the left.
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Synopsis

The Average Minimum Distances form an infinite sequence of real-valued crystal descriptors
that are invariant under rigid motions and are provably stable under atomic vibrations.
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