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Abstract: Sensitivity analysis plays an important role in reliability evaluation, structural 24 

optimization and structural design, etc. The local sensitivity, i.e., the partial derivative of the 25 

quantity of interest in terms of parameters or basic variables, is inadequate when the basic 26 

variables are random in nature. Therefore, global sensitivity such as the Sobol’ indices based 27 

on the decomposition of variance and the moment-independent importance measure, among 28 

others, have been extensively studied. However, these indices are usually computationally 29 

expensive, and the information provided by them has some limitations for decision making. 30 

Specifically, all these indices are positive, and therefore they cannot reveal whether the effects 31 

of a basic variable on the quantity of interest are positive or adverse. In the present paper, a 32 

novel global sensitivity index is proposed when randomness is involved in structural parameters. 33 

Specifically, a functional perspective is firstly advocated, where the probability density function 34 

(PDF) of the output quantity of interest is regarded as the output of an operator on the PDF of 35 

the source basic random variables. The Fréchet derivative is then naturally taken as a measure 36 

for the global sensitivity. In some sense such functional perspective provides a unified 37 

perspective on the concepts of global sensitivity and local sensitivity. In the case the change of 38 

the PDF of a basic random variable is due to the change of parameters of the PDF of the basic 39 

random variable, the computation of the Fréchet-derivative-based global sensitivity index can 40 

be implemented with high efficiency by incorporating the probability density evolution method 41 

(PDEM) and change of probability measure (COM). The numerical algorithms are elaborated. 42 

Several examples are illustrated, demonstrating the effectiveness of the proposed method. 43 

 44 

Keywords: uncertainty quantification; global sensitivity index; probability density 45 

evolution method; change of probability measure; Fréchet derivative 46 
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 Introduction 47 

A sensitivity index measures, qualitatively or quantitatively, how strong the property of 48 

an output quantity of interest (QoI) will change against the change of property of input basic 49 

variable(s). Naturally, as the input basic variable(s) are deterministic, the partial derivative of 50 

the output QoI in terms of the input basic variable(s) can be naturally adopted as the sensitivity 51 

index [1,2], which plays an important role in, e.g., the reliability evaluation [3-8], structural 52 

optimization and structural design [9-12], etc. Such sensitivity index, however, is essentially a 53 

local sensitivity index and is inadequate if the basic random parameters are random in nature 54 

rather than deterministic. In this scenario, some local sensitivity indices may still work well, 55 

but a global sensitivity index (GSI) that characterizes global information is also needed, and 56 

considerably more informative. In particular, the effects of probability distributions of the input 57 

random basic variables should be taken into account.  58 

To this end, extensive efforts have been devoted in the past two decades, yielding different 59 

formulations for GSI, including the Sobol’ index [2,13,14] and the moment-independent 60 

importance measure [15-17], among others. The Sobol’ index is based on the contribution of a 61 

basic variable or basic variable sets to the variance of the output QoI. An orthogonal 62 

decomposition of the response surface involving different input basic variables leads to the 63 

elegant definition of the Sobol’ index [13]. In the past decade, great improvements in the 64 

computational efficiency of Sobol’ index have been made [18,19]. However, in the Sobol’ index, 65 

only the variance, i.e., the second-order statistics of the output QoI are involved. This is not 66 

sufficiently sensitive, and may even result in a misleading judgment in some cases, e.g., when 67 

the probability density function (PDF) of the output QoI has multiple modes [17]. Therefore, it 68 

is necessary to develop some kind of GSIs involving the PDF of output QoI. To this kind of 69 

GSI belongs the moment-independent importance measure [16], which is defined according to 70 
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the absolute value of the difference between two different PDFs. Again, computational 71 

efficiency becomes an important issue and has been studied in amounts of researches [20]. 72 

Both the Sobol’ type index and the moment-independent index produce positive values. 73 

Different from the local sensitivity, they cannot identify the positive or adverse direction, which 74 

is an important feature for the selection of direction in structural optimization and decision-75 

making. Actually, an ideal and informative GSI can provide insights or information for the 76 

following issues: (1) The order of the importance of source random variables, which can be 77 

used to determine whether the uncertainty of some source random variables can be ignored in 78 

the detailed model so that the problem can be reduced or simplified; (2) The understanding of 79 

global properties of a complex system involving randomness; and (3) The information for the 80 

direction and step of iteration in structural design or optimization involving uncertainties. For 81 

these purposes, the global sensitivity should provide the magnitude as well as the direction (sign) 82 

in a distributed area in the space of the QoI. From the above point of view, the Sobol’ index 83 

and moment-independent index satisfy the above Issue (1) and partly Issue (2), but not Issue 84 

(3). On the other hand, the partial derivative-based sensitivity, i.e., the one related to failure 85 

probability in terms of parameters of input random variables, satisfies Issue (3) but does not 86 

well satisfy Issues (1) and (2). 87 

For this purpose, a novel global sensitivity index is proposed in the present paper. For 88 

clarity, a functional perspective to uncertainty propagation is firstly introduced. Then the 89 

Fréchet derivative, as a measure of the change of the PDF of the output QoI in terms of the 90 

change of the PDF of the input basic variables, is proposed and justified to be an appropriate 91 

GSI. Such a functional perspective provides a unified perspective for global and local sensitivity. 92 

In the scenario when the change of the PDF of the input source random variables is due to the 93 

change of parameters of the distribution, e.g., the mean value or standard deviation, the 94 

computational algorithm of GSI is elaborated. In this case, the probability density evolution 95 
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method (PDEM) is incorporated with the change of probability measure (COM) to provide a 96 

highly efficient approach. Several examples are illustrated, demonstrating the effectiveness of 97 

the proposed method. 98 

 99 

 Global Sensitivity Index Based on Fréchet Derivative 100 

2.1. A Functional Perspective to Uncertainty Propagation in Stochastic System 101 

Analysis 102 

Without loss of generality, consider a system, of which the output QoI is denoted by X , 103 

and the input basic variables are denoted by Θ  of dimension n . Generally, solving the 104 

underlying physical equation will yield the solution, which means that X  is a function of Θ , 105 

and can be denoted by the following general form 106 

( )X g= Θ .  (1) 107 

In the present paper, the input basic parameters Θ  are regarded as random variables. 108 

Denote the known joint PDF of Θ  by ( )pΘ θ . The question arises that how we can capture 109 

the sensitivity of the QoI in terms of the input basic random variable(s).  110 

To this end, a functional perspective is firstly advocated. In probability theory, it is well 111 

known that if the PDF of Θ  is given, and a function (change of random variable) is determined 112 

by Eq. (1), then the PDF of X  can be determined by the rule of change of random variable(s) 113 

[21]. This fact can be expressed in an operator formula 114 

( )( ) ( ); ( )Xp x p x pψ ψ= =Θ Θθ θ   (2) 115 

where ψ  is an operator determined by ( )g ⋅ , and   means the action of an operator on a 116 

function. 117 

Note that ψ  is essentially the Frobenius-Perron operator [22]. In fact, the operator 118 

between the output and input PDFs is essentially determined by the underlying physics via the 119 
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function ( )g ⋅ . In other words, the operator can be regarded as a reflection of the underlying 120 

physics in the ensemble sense. 121 

 122 

2.2. Fréchet-Derivative-Based Global Sensitivity Index 123 

It is instructive to compare Eqs. (1) and (2). In Eq. (1), a transformation relation is 124 

established via a function between the input variables and the output QoI, whereas in Eq. (2), 125 

a transformation relation is established via an operator between the PDF of the input variable(s) 126 

and the PDF of the output QoI(s). A natural sensitivity index defined in the context of Eq. (1) 127 

(in particular when the input variable(s) are deterministic) is the partial derivative of the output 128 

QoI in terms of the input basic variable(s). Similarly, in the context of Eq. (2), the sensitivity 129 

index can be defined as an extension of the “partial derivative” of a function in the context of 130 

an operator. The Fréchet derivative provides such an opportunity. In this sense, the functional 131 

perspective provides a unified perspective on the concepts of global sensitivity and local 132 

sensitivity.  133 

Consider a small perturbation on the joint PDF of input variables, i.e., 134 

( ) ( )p p pδ+Θ Θ Θθ θ , where pδ Θ  is an arbitrary function but satisfying ( )d 0pδ =∫ Θ θ θ  135 

and ( )p pδ > −Θ Θ θ  for ∀θ  to ensure the consistency and non-negativity of PDF . If a linear 136 

bounded operator ( ),V Wψ ∈F L  exists such that [23] 137 

( ) ( )
0

( ) ; ( );
lim 0

V

W

p
V

p p x p x p

p
ψ

δ

ψ δ ψ δ

δ→

+ − −
=

Θ

Θ Θ Θ Θ

Θ

Fθ θ
 (3) 138 

or equivalently such that 139 

( ) ( ) ( )( ) ; = ( ); + + ,  0
V V

p p x p x p o p pψψ δ ψ δ δ δ+ →Θ Θ Θ Θ Θ ΘFθ θ  (4) 140 

where W
⋅  and V

⋅  are the appropriately equipped norms with respect to Xp  and pΘ  that 141 

are on the Banach spaces W  and V , respectively, then ψF  is the so-called Fréchet 142 
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derivative of ψ . In the remaining content, all norms are simplified by ⋅  without inducing 143 

confusion. 144 

The Fréchet derivative of ψ  has a straightforward meaning: when the joint PDF of input 145 

random variables has a tiny perturbation, the PDF of the output QoI will be affected 146 

correspondingly with a certain quantity and direction specified by the Fréchet derivative. 147 

Obviously, this is exactly the natural “sensitivity” of the output QoI in terms of the input 148 

variable(s). 149 

Remark 1.1: Further, let the probability of failure fP  be 150 

0
Pr{ 0} ( )d ( )f X XP X p x x p xϕ

−∞
= < = =∫  ,  (5) 151 

then it is seen that fP  can be regarded as a functional of ( )Xp x  with the integral operator ϕ . 152 

Similarly, following the rule of change of random variable(s) and Eq. (2), there is 153 

( ) ( )( ) ( ); ( ) ( )f XP p x p x p pϕ ϕ ψ φ φ= = = =Θ Θ Θ  θ θ θ  (6) 154 

and the Fréchet derivative is correspondingly given by 155 

( ) ( )
0

( ) ( )
lim 0
p

p p p p
p

φ

δ

φ δ φ δ
δ→

+ − −
=

Θ

Θ Θ Θ Θ

Θ

Fθ θ
 (7) 156 

where φF  is a linear operator. It is indicated that the sensitivity of the failure probability can 157 

also be characterized by φF , i.e., the Fréchet derivative with respect to basic distributions of 158 

input variables. 159 

Remark 1.2: Aside from Eq. (7), we can also define the sensitivity of statistical moments 160 

of QoI. For instance, define the second-order moment of QoI by 161 

( )2 ( )d ( ) ( ) ( )X X XD x p x x p x p D pψ
∞

−∞

+
= = = =∫ Θ Θ  D D θ θ  (8) 162 

then the Fréchet derivative is defined by the linear operator DF  if there exists  163 
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( ) ( )
0

( ) ( )
lim 0
p

DD p p D p p
pδ

δ δ
δ→

+ − −
=

Θ

Θ Θ Θ Θ

Θ

Fθ θ
. (9) 164 

Remark 1.3: In the context of Eq. (1), the sensitivity is defined as the partial derivative 165 

of output QoI in terms of the input basic variable(s). Clearly, the PDF of input basic variables 166 

is not involved, and the sensitivity is defined at a specified value. In this sense, it is essentially 167 

a local sensitivity index. In contrast, in the context of Eq. (2), the sensitivity is defined as the 168 

Fréchet derivative, which is the “ratio” of the perturbation of PDF or the perturbation of 169 

functional of PDF of the output QoI in terms of the perturbation of PDF of the input variables. 170 

Thus, it is defined not on a specified value, but on the whole support of the input variables in 171 

terms of the distribution. In this sense, it is a global sensitivity index. The counterparts of local 172 

and global sensitivity can be exposed in Table 1.  173 

 174 

Table 1 175 

Corresponding relationships between the local and global sensitivity 176 

Quantities in the context of local sensitivity Quantities in the context of global sensitivity 

Input deterministic variable(s) PDF of input random variable(s) 

Output QoI PDF of output QoI as a random variable 

Output QoI = function of Input 

deterministic variable(s) 

PDF of output QoI = Operator on/functional of PDF of input 

random variable(s) 

Local sensitivity = the perturbation of 

output QoI divided by the perturbation 

of input variable(s) 

Global sensitivity = the perturbation of PDF or 

statistics/failure probability of output QoI divided by the 

perturbation of PDF of input random variable(s) 

Local sensitivity = partial derivative of the 

function 

Global sensitivity = Fréchet derivative of the operator or 

functional 

 177 

In this sense, the global sensitivity index based on the Fréchet derivative can be regarded 178 

as the extension of the local sensitivity. In other words, the above functional perspectives 179 

provide in a sense a unified perspective on the concept of global sensitivity and local sensitivity. 180 
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 181 

 The Underlying Meaning and Mathematical Expression of the 182 

Fréchet-Derivative-based GSI for Stochastic Systems 183 

3.1. The Expressions of GSI based on the Fréchet Derivative and Gâteaux Derivative 184 

The Fréchet derivative can be related to the Gâteaux derivative, which is a generalization 185 

of the classical directional derivative, defined by [24] 186 

( ) ( )
0

)
l

( ) ; ( ;
,  im

p p x p x
p p Vψε

ψ εδ ψ
δ δ

ε→

+ −
= ∀ ∈Θ Θ Θ

Θ ΘG
θ θ

, (10) 187 

if there exists such an operator ( ),V Wψ ∈G L , where the operator : K V Wψ ⊂ →  is defined 188 

between two Banach spaces. Specifically, the Gâteaux derivative at ( )pΘ θ  is identical to the 189 

Fréchet derivative, if the limit in Eq. (10) is uniform with respect to pδ Θ  with =1pδ Θ  or 190 

if the Gâteaux derivative is continuous at ( )pΘ θ . This property makes it possible to compute 191 

the Fréchet derivative according to the definition of the Gâteaux derivative [24,25]. Thus, the 192 

proposed GSI in Eqs. (3) and (4) can be redefined by Eq. (10) with a well-defined norm, e.g.,  193 

( )1

1
2V

p p
ΘΩ

= L   (11) 194 

where the norm V
⋅  is defined by the half of 1L -norm, i.e., 195 

1
2

d
V

p p
Ω

= ∫ θ
Θ

  (12) 196 

which is exactly the so-called total variation distance [28]. 197 

To provide more insight into the physical/geometrical meaning and to provide a pragmatic 198 

computational approach, the expression of the Fréchet-derivative-based GSI will then be 199 

elaborated in the following subsections for different cases. 200 

 201 
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3.2. Case of Discrete Distributions 202 

The meaning of Fréchet-derivative-based GSI can be seen much more clearly when the 203 

input distributions are of the discrete type. For clarity, let us first consider the case when the 204 

input variable in Eq. (1) is a random variable Θ , i.e.,  205 

( )X g= Θ .  (13) 206 

Let the sample space be a finite and countable set { } 1

N
i i
θ

=
 on  , such that 207 

{ } ( ) ( )

1
0 and 1

N
i i

i
i

θ Θ Θ
=

Θ = = ≥ =∑P P P   (14) 208 

where ( )⋅P  denotes the probability of an random event. 209 

The physical relation in Eq. (13) gives the following mapping  210 

{ }( ) { } { }1,2, ,  with 1, 2, ,,  
k kk i M i Nx g kθ = ⊆=    (15) 211 

where { } { }p q
i i∩ =∅   for p q∀ ≠   and { } { }1 1 ,, 2,M

k k
Ni=∪ =   . This means that for all 212 

{ }k
j i∈ , there is ( )jkx g θ=  yielding the same value kx . In other words, for all the input 213 

values in the subset { }
{ }k

j j i
θ

∈
, the output values are identical. Denote the cardinal number of 214 

the subset { }k
i  by kn , i.e., { }( )card 1k k

n i= ≥ . Obviously, there is M N≤  and 
1

M

k
k

n N
=

=∑  215 

due to the many-to-one mapping. 216 

Denote the probability mass function of output by 217 

{ }( ){ } ( ) { } { }= 0 1,2,, ,   with 1,2, ,
k

k
k Xi k

x g Mkx i Nθ= = ≥ = ⊆ P P . (16) 218 

Then according to Eq. (15) we have 219 

( ) ( )

{ }
1, 2, ,,  

k

k j
X

j i
MkΘ

∈

= =∑ P P .  (17) 220 
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For convenience, denote the probability measure of Θ  be a vector 221 

( ) ( ) ( )( )1 2, , , N
Θ Θ Θ Θ= 

•
P P P P  and that of X  by a vector ( ) ( ) ( )( )1 2= , , , M

X X X XP P P P
•

. Then, Eq. 222 

(17) can be rewritten in a matrix form by 223 

X M N× Θ= FP P   (18) 224 

where the matrix M N×F  is a Boolean matrix whose element is either 1 or 0. According to Eq. 225 

(16), it is easy to determine the value of the components kjF  of the matrix M N×F , 226 

( ){ }kj kF I j i= ∈   (19) 227 

for 1, 2, , ; 1, 2, ,k M j N= =  , where ( )I ⋅  is the indicator with the value being one if the 228 

event is true and otherwise zero. It is seen clearly that, for the case of many-to-one mapping, in 229 

each column only one element is valued 1 and all the other elements are valued zero, but in 230 

each row, there are at least one and possibly more elements valued 1. Actually, in the k-th row 231 

of M N×F , the number of elements valued 1 is { }( )card 1k k
n i= ≥ . 232 

By doing so, Eq. (18) can be rewritten in a component form more explicitly 233 

( ) ( ) ( ) ( )

1 1
{ } 1,  , 2, ,

N N
k j j

X kj k
j j

F I j i MkΘ Θ
= =

= = ∈ =∑ ∑ P P P . (20) 234 

Further, denoting ( )=X M N× Θ Θ= FP P PG , it is easy to find that 235 

( ) ( ) ( )M N M N M N M Nδ δ δ δΘ Θ × Θ Θ × Θ × Θ Θ × Θ+ = + = + = +F F F FP P P P P P P PG G  (21) 236 

where δ ΘP  is a variation of the vector ΘP , or alternatively 237 

( ) ( ) ( )
0 0

lim lim M N M N
M Nε ε

εδ εδ
δ

ε ε
Θ Θ Θ × Θ Θ × Θ

× Θ→ →

+ − +
= =

−F F
F

P P P P P P
P

G G
 (22) 238 

which means that according to the definition in Eqs. (4) or (10), the Boolean matrix M N×F  is 239 

nothing but the Fréchet derivative in the case of discrete distributions.  240 

Further, by denoting the variation of the vector XP  by 241 
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( ) ( ) ( )Xδ δ δΘ Θ Θ Θ= = + −P P P P PG G G , then there is 242 

X M Nδ δ× Θ= FP P .  (23) 243 

This means that once the Fréchet derivative is known, then the variation of the output 244 

probability mass function can be obtained directly from the variation of input probability mass 245 

function. Actually, this is consistent with the discussion of global sensitivity in Table 1. Also, 246 

from this expression, it is clear to see that the Fréchet derivative for the case of discrete 247 

distribution is a linear operator. 248 

Now the underlying meaning of the Fréchet-derivative-based GSI becomes apparent: 249 

every element of value 1 in the Boolean matrix M N×F  means the physical relation in Eq. (15) 250 

holds, and thus the probability measure can be propagated from the input distribution ΘP  to 251 

the distribution XP  of output QoI X . The sensitivity of the stochastic system strictly follows 252 

the physical pathway! Also, it is seen clearly that Eq. (23) is an extended version of the 253 

differentiation of a function. 254 

To be more intuitive, consider a simple example. Let 2X = Θ  and { }1,0,1Θ∈ −  with 255 

( )1 6,  1 3,  1 2Θ =P •
. It is easy to know that { }0,1X ∈  with ( )1 3,  2 3X =P •

 by 256 

admitting 2 3X × Θ= FP P  where 257 

2 3

0 1 0
1 0 1×

 
=  
 

F   (24) 258 

is the Fréchet derivative. Clearly, it is a Boolean matrix that follows Eq. (19). Further, if there 259 

is a variation in ΘP , e.g., ( )1 12,  1 12,  1 6δ Θ = − −P •
, by substituting Eq. (24) in Eq. (23) 260 

we have ( )2 3 1 12,  1 12Xδ δ× Θ= = −FP P •
, and therefore the updated probability mass vector 261 
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is ( )1 4,  3 4X X Xδ′ = + =P= P= P •
. This result is, of course, consistent with the result of Eqs. (18) 262 

and (21) such that 2 3X × Θ′ ′= FP= P  where ( )1 12,  1 4,  2 3δΘ Θ Θ′ = + =P P P •
. 263 

In the case the input in Eq. (1) is a random vector 1 2( , , , )n= Θ Θ Θ •Θ , if the sampling 264 

space is still a discrete set, e.g., { }1 2
1 11,2, , ; , 1,2, ,

( , , , )
n

n n
i i i i N i N
θ θ θ

= =  
 • , where jN  denotes the 265 

number of realizable values of jΘ , then a one-dimensional array can be adopted to store the 266 

values in the sampling space. For instance, we may denote 
1 2

( , , , )
nk i i iθ θ θ=  •θ , where a one 267 

to one map between k  and the array 1 2( , , , )ni i i  can be established, e.g., by 268 

1

1 2 2 3 1
1 1

( 1) ( 1) ( 1) ( 1)
nn

n n s n n j m n
j m j

k i N N i N N i N i i N i
−

−
= = +

= − + − + − + = − +∑ ∏  . (25) 269 

Then a vector can be used to denote the probability mass function, and thus the ideas in 270 

the present section for a random variable input can be adopted and similar deductions can be 271 

carried out. This will not be detailed here to avoid lengthiness of the paper. 272 

 273 

3.3. Case of Continuous Distributions 274 

3.3.1. General Expression 275 

When the input distributions of discrete type tend to be continuous, things are getting much 276 

more interesting but also much more involved. Denote the input PDF of Θ  by ( )pΘ θ  and 277 

the output PDF of X  by ( )Xp x , then Eq. (18) should be extended to 278 

( ) ( )( ) ( )D dX xp gx pδ
Ω

−= ∫
Θ

Θθ θ θ   (26) 279 

where D ( )δ ⋅  denotes the Dirac function to avoid possible confusion between the variation of 280 

a function and the Dirac function. By the definition of Fréchet derivative, if there is a variation 281 

in the input PDF pδ Θ , one can easily notice that 282 
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( ) ( )( )( )

( )( ) ( )( )
( )

D

D D

d

d d

p p x g p p

x g p x g p

p pψ

ψ δ δ δ

δ δ

ψ

δ

δ

Ω

Ω Ω

+ − +

− −

=

= +

= +

∫
∫ ∫

F

Θ

Θ Θ

Θ Θ Θ Θ

Θ Θ

Θ Θ

θ θ

θ θ θ θ  (27) 283 

where ψ  is the integral operator defined in Eq. (26) and ψF  is the Fréchet derivative of ψ . 284 

Since ψ  is a linear operator, the Fréchet derivative of ψ  is nothing but itself [24]. This is 285 

consistent with the case involving discrete distributions.  286 

Moreover, by the definition of Gâteaux derivative, it can be easily proved that 287 

( ) ( )

( )( )( ) ( )( )

( )( )

0

D D

0

D

d

lim

lim

  fo  

d

d r

x g p p x g p

x g p p V

p p p
ε

ε

εδ
ε

δ εδ δ

ε
δ δ δ

ψ ψ
→

Ω Ω

→

Ω

+ −

−
=

=

− + −

− ∀ ∈

∫ ∫

∫

Θ Θ

Θ

Θ Θ Θ

Θ Θ Θ

Θ Θ

θ θ θ θ

θ θ

 (28) 288 

where one can see that the Boolean matrix in Eq . (21) or (22), i.e., the Fréchet derivative for 289 

the discrete case, turns to be the integral operator in terms of the Dirac function ( )Dδ ⋅  as 290 

presented in Eq. (27) or (28), which is apparently reasonable: the selection property of the 291 

Dirac function works exactly the same as the logic calculation of the Boolean element (1 or 0), 292 

and the summation calculation evolves into the integral calculation when the system becomes 293 

continuous. 294 

Further, if we denote ( ) ( ) ( )Xp p p p pδ δ δψ ψ ψ= −= +Θ Θ Θ Θ , then from Eq. (26) there 295 

is 296 

( )( )D dX x g pp pψδ δ δ δ
Ω

= − =∫ F
Θ

Θ Θθ θ .  (29) 297 

Similar to the cases involving discrete distributions, this expression means that once the Fréchet 298 

derivative is known, then the variation of the output PDF can be obtained directly from the 299 

variation of the input PDF. Again, this justifies the appropriation of taking the Fréchet 300 

derivative as a global sensitivity index, as shown in Table 1. 301 
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A more explicit expression for Eq. (28) by integrating in terms of the Dirac function yields 302 

( )( )

1
1

1 1

1

1 1
1

1 1
( ; )

D

(

d

; d)

j

X

R

j
g x

p

g

x g p

p

pψ

θ

δ

θ
θ

δ δ

δ

δ

−

−

=

Ω

Ω

=

=

 ∂ =
 ∂

−


 

=

∫

∑∫







F

Θ

Θ

Θ

Θ

Θ

θ

θ θ

θθ
 (30) 303 

where 1 2 3( , , , )nθ θ θ= θ , 1
1 1( ; )jg xθ −= θ  is the j-th inverse function of g for fixed 1θ , R is 304 

the number of inverse function when the function of g for fixed 1θ  is non-monotonic. This 305 

expression, though usually unfeasible for practical computation, is theoretically important. It 306 

again shows that the Fréchet derivative is a linear operator, connects the variation of input PDF 307 

and the variation of output PDF, and can thus be in principle an appropriate global sensitivity 308 

index. 309 

 310 

3.3.2. Parametric Expression 311 

Generally, in many practical engineering cases, the distribution type is determined while 312 

the distribution parameters, e.g., the mean value µ  and standard deviation σ  in Gaussian 313 

or lognormal distributions, or the shape and shift parameters in Weibull distribution, may vary 314 

due to data sparsity, information updating, etc. For simplicity of writing, denote the distribution 315 

parameters by a vector ( )1, , mξ ξ=ξ 
• , where m is the total number of distribution parameters, 316 

then the Fréchet derivative defined by Eq. (3) becomes 317 

( ) ( ) ( ) ( )1

1

; ; ;
= , ,

( ) ( ) ( )
X X m

mV V

F x p ξ p ξx x
x

p p pψ ξ ξ

 ∂ ∂ ∂ ∂ ∂ ∂
=   ∂ ; ∂ ∂ ; ∂ ∂ ; ∂ Θ Θ Θ

ξ ξ ξ ξ
ξ ξ ξ ξ



•

F
θ θ θ

 (31) 318 

where 319 

( )( ; ) ( ; ) ( ; )F x p pψ ψ= =Θ Θξ ξ ξθ θ .  (32) 320 

According to the consistency between the Fréchet derivative and the Gâteaux derivative in 321 
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Eq. (10), we have 322 

( ) ( )
0

lim
p pp

pψ ε

ψ δε ψ

ε
δ

→

+ −
=


F Θ Θ Θ

Θ   (33) 323 

where =1
V

pδ Θ , =p pδ δ ε
Θ Θ  is a standardized variation for 0ε > , and pδ Θ  is the 324 

variation of input PDF satisfying d 0pδ θΘ =∫   and ( )p pδ θΘ Θ> − . Noticing that the 325 

variation of input PDF is  326 

( ) ( ) ( ) ( )
1

1

1; ,
; , ; ;

,
,

m

j
j

m

j
m pp p

p
δ δ δξ

ξ ξ
ξ ξ

ξ=

∂
= + =

∂
− ∑


 Θ

Θ Θ Θ

θ
θ θ ξ ξ θ ξ . (34) 327 

There is  328 

( ) ( )( ); ; 1
VV

p p pδ δ ε= − =+ξ ξ ξ
Θ Θ Θθ θ ,  (35) 329 

or alternatively, 330 

( ) ( ); ;
V

p pε δ= + −ξ ξ ξΘ Θθ θ .  (36) 331 

Therefore,  332 

( ) ( )

( )( ) ( )
( ) ( )

( ) ( )

0

1 1

lim

l

( ) ; ( );

; ; ( );
; ;

;

im

lim ;= .
m m

X
j j

j jj j

V

V

p p x p x

x p x

p x

p

p

p
p

ε

δ

δ

ψ εδ ψ

ε
ψ δ ψ

δ

δξ δξ
ξ ξ

→

→

→
= =

−

+ −

+ −
=

+

   ∂ ∂
      ∂ ∂   

∑ ∑

Θ Θ Θ

Θ Θ

0
Θ Θ

Θ

0

ξ ξ
ξ ξ ξ

ξ ξ



ξ

ξ

θ θ

θ θ
θ θ

θ

 (37) 333 

Notice that if, without loss of generality, we further consider the situation jδξ ’s are 334 

independent variation, and any component of the Fréchet derivative can be obtain from the 335 

above equation by letting 0jδξ ≠  whereas all the other variations are zero, i.e., 336 

( )
( ),

;
,   1, 2, ,

;
X j

j V

j

p x
j m

pψ

ξ
ξ

∂ ∂
=

∂
=

∂Θ

ξ
ξ

F
θ

  (38) 337 

which is nothing but the result in Eq. (31). 338 
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It is interesting that the difference between the Fréchet derivative and the usual partial 339 

derivative in the parametric case is that there is a normalization factor. This is important, 340 

because this naturally occurred normalization factor eliminates the effect of dimensionality of 341 

different parameters. 342 

In this case, the propagation of uncertainty as exhibited by the effects of variation of input 343 

probabilistic information on the output probabilistic information becomes 344 

( ) ( ) ( ); ; ;X X Xp p px x x

ψ

δ

δ

δ= −

=

ξ ξ ξ ξ

ξF

+
  (39) 345 

where δξ  is the normalized or dimensionless variation of parametric vector 346 

( ) ( ) ( )
1 2

1 2

, , ,
; ; ;

T

m

mV V V
p p p

δξδξ δξδ
ξ ξ ξ

 
  ∂ ∂ ∂ ∂ ∂ ∂ Θ Θ Θ

ξ =
ξ ξ ξ

 
θ θ θ

. (40) 347 

It is easy to prove Eq. (39) as follows 348 

( ) ( ) ( )

( )( ) ( )

( )( ) ( )

( )
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D
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1

1

1
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p x
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δ

δ δξ
ξ

δ δξξ

ξ

ξ

ξ
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ξ
ξ

ξ

δ

Ω
=

Ω
=

=
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 ∂
= −   ∂ 

 ∂
−  ∂ 

 ∂ ∂
 =


=

∂ ∂ 
=

∑

∑

∫

∫

∑
Θ

ξ ξ ξ ξ

ξ

ξ





 

F

Θ

Θ

Θ

Θ

+

θ
θ θ

θ θ θ

θ

 (41) 349 

On this condition, the Fréchet derivative reduces to a normalized version of “ordinary 350 

derivative”. For instance, if the change of PDF of input basic random variables is due to change 351 

of the mean of input basic random variables, then Eq. (31) further reduces to 352 

( ) ( );
( )

V

F x
x

pψ

∂ ∂
=

∂ ; ∂Θ

μ μ
μ μ

F
θ

  (42) 353 
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where µ  is the vector of mean value of the input random variables, and it is easy to verify 354 

that  355 

d 0( )x xψ

∞

−∞
=∫ F   (43) 356 

which means that, if the Fréchet derivative in Eq. (42) is not always be zero at all x, then it 357 

cannot be always positive nor always negative, but must be positive in some areas and negative 358 

in the rest areas in terms of x. In other words, the curve of the Fréchet derivative must have at 359 

least one additional point crossing the abscissa besides the left and right end points. This 360 

property can be adopted as a qualitative property for the verification of analytical or numerical 361 

results. 362 

Note that the sensitivity index in Eq. (42) is computed for the whole PDF of X , even 363 

for a specified value of µ . In this sense, even the sensitivity in Eq. (42) reduces to a normalized 364 

“usual” partial derivative, it is a global sensitivity index. 365 

Generally, the calculation of the norm term in Eqs. (31) and (42) is quite simple, since 366 

there exist analytical results (available in Appendix B for some common distributions), but the 367 

computation of the partial term defined in Eq. (31) or (42)  requires multiple rounds of 368 

stochastic response analysis (or reliability evaluation), and in each round of stochastic analysis 369 

multiple, say, for different problems in the order of magnitude of 103 to 108 in Monte Carlo 370 

simulation, deterministic function evaluations are needed. This leads to prohibitively large 371 

computational efforts. Incorporating the probability density evolution method (PDEM) and the 372 

change of probability measure (COM) [26], a highly efficient algorithm can be implemented 373 

and will be elaborated in the following sections. 374 

 375 

 Numerical Algorithm for Fréchet-Derivative-based GSI 376 

In order to evaluate the proposed GSI in Eq. (31), the numerical algorithm is discussed in 377 

terms of Gâteaux derivative presented in Section 4.1. Besides, the probability density evolution 378 
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method (PDEM) and the change of probability measure (COM) are incorporated. To be clear, 379 

the pivotal theories and numerical algorithms for PDEM and COM are firstly summarized in 380 

Section 4.2 and 4.3, respectively. Then, the complete numerical algorithm for the Fréchet-381 

derivative-based GSI is elaborated in Section 4.4. 382 

 383 

4.1. The Basic Idea of Numerical Algorithm in terms of Gâteaux Derivative 384 

In numerical implementation, the Gâteaux derivative usually takes advantage in 385 

computation over the Fréchet derivative. Therefore, the basic idea of numerical algorithm to 386 

generate the Fréchet derivative is to take advantage of the evaluation of Gâteaux derivative, 387 

which requires the following two assumptions [25]: (1) the Gâteaux derivative is continuous at 388 

( )p θΘ , and (2) the variation of input PDF is unit, i.e., 1
V

pδ =
Θ .  389 

Moreover, by denoting the variation of input PDF as 390 

( ) ( )p p pεδ= + Θ Θ Θθ θ ,  (44) 391 

we immediately have 392 

( ) ( )
V V

p pp ε εδ− = = 
Θ Θ Θθ θ   (45) 393 

where ε  is an infinitesimal number defined in Eq. (10). In practical computation, ε  can be 394 

taken as a small value, e.g., 0.01ε = , and then the Gâteaux derivative can be approximated by 395 

( ) ( )( ); ( );p x p x
ψ ε

ψ ψ−
≈ Θ Θ θ θ

G   (46) 396 

where ( )p θΘ  is an arbitrary PDF satisfying Eq. (45). The basic idea of numerical algorithm 397 

for the evaluation of Gâteaux derivative is then summarized as below: 398 

Step 0.1. Set ε  to be a small value, e.g., 0.01ε = ; 399 

Step 0.2. Find one proper PDF ( )p θΘ  satisfying Eq. (45). 400 

Step 0.3. Calculate Eq. (46). 401 
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In Step 0.3 required is the evaluation of ( )( );p xψ Θ θ  and ( )( );p xψ Θ θ , which is 402 

usually time-consuming. To efficiently and accurately compute these two quantities, the 403 

probability density evolution method (PDEM) combined with the change of probability 404 

measure (COM) [26] (PDEM-COM) is adopted hereafter, where PDEM (introduced in Sections 405 

4.2) is utilized to evaluate ( )( );p xψ Θ θ  while COM (summarized in Sections 4.3) is adopted 406 

to compute ( )( );p xψ Θ θ . The PDF found in Step 0.2 is not numerically unique, therefore the 407 

parametric form in Section 3.3.2 is taken into account. It should be emphasized that introducing 408 

parametric distributions will not change the properties of the proposed Fréchet-derivative-based 409 

GSI, according to the Proposition in Appendix A. 410 

 411 

4.2. Uncertainty Propagation via Probability Density Evolution Method (PDEM) 412 

For clarity, consider a one-dimensional stochastic dynamical system: 413 

( )0 0( , , ),  X G X t X t X= =Θ   (47) 414 

where Θ  is a random vector with joint PDF ( )pΘ θ  characterizing the source of randomness 415 

involved in the system, and 0X  is the initial value. Obviously, for a well-posed system, the 416 

solution of Eq. (47) uniquely exists, and is continuously dependent on Θ  and 0X . Without 417 

loss of generality, the solution is assumed to take the form 418 

( )0 , ,X H X t= Θ .  (48) 419 

Moreover, the derivative of X  with respect to time t  can be written as 420 

( )0 , ,X h X t= Θ   (49) 421 

where ( ) ( ) /h H t⋅ = ∂ ⋅ ∂ , and X  is the generalized velocity. In [27], it is elaborated that, if 422 

there is no existent random factors disappear, nor new random factors arise, the system will be 423 
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probability preserved. Accordingly, a generalized density evolution equation (GDEE) can be 424 

derived as [28] 425 

( , , ) ( , , )( , ) 0X Xp x t p x th t
t x

∂ ∂
+ =

∂ ∂
Θ Θθ θθ   (50) 426 

where the initial value 0X  in Eq. (50) is omitted without inducing confusion. The 427 

corresponding initial condition is 428 

( ) ( )( )0 D 0, , , ( )Xp x t x H t pδ= − ⋅Θ Θθ θ θ   (51) 429 

where D ( )δ ⋅  is the Dirac function. 430 

The PDEM is adopted herein due to its efficiency and flexibility in the analysis of 431 

uncertainty propagation, which has been validated in [29]. In general, the solution procedure of 432 

PDEM includes the following four steps: 433 

Step 1.1. Partition the probability space by a set of optimally selected points, of which the 434 

GF-discrepancy of point set is minimized [30,31]. Denote the optimal point set by 435 

{ } sel

1
,

n

q q q
M P

=
= θ , where qθ  is the q-th representative points with corresponding assigned 436 

probability ( )d
q

qP p
Ω

= ∫ Θ θ θ , nsel is the total number of the representative points. Here qΩ  437 

stands for the representative domain specified by the Voronoi cell [32]. Note that if Θ  is a 438 

high-dimensional vector, some appropriate dimension-reduction strategies should be utilized, 439 

e.g., the mapping method [33] and the active subspace method [34], etc. 440 

Step 1.2. For each q=Θ θ , solve Eq. (47) to yield the corresponding qX  or ( ),qh tθ . 441 

Step 1.3. For each q=Θ θ , solve Eq. (50) and get ( )q
Xp Θ  for sel1, ,q n=  . Notice that the 442 

initial condition of Eq. (51) now becomes ( ) ( )( )
0 D 0, ,q

X qp x t x x Pδ= −Θ θ . Since Eq. (50) is a 443 

typical hyperbolic partial differential equation, the finite difference method (FDM) is adopted. 444 
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Moreover, in order to tradeoff the dissipation and dispersion in numerical computation, the 445 

TVD (Total Variation Diminishing) scheme is suggested [35]. 446 

Step 1.4. Assemble all the solutions in Step 1.3 to yield the PDF of X , i.e., 447 

( ) ( )
sel

( )

1
( , , )d , ,,

n
q

X X X q
q

p p x t p x tx t
Ω

=

= ∑∫
Θ

Θ θ θ θΘ  where  sel 
1

n
q q=Ω = ∪ ΩΘ . 448 

 449 

4.3. Change of Probability Measure (COM) and Radon-Nikodym Derivative 450 

After performing one round of PDEM analysis for a specified joint PDF of source basic 451 

random variables, if it is found that the joint PDF of source basic random variables should be 452 

changed to some other joint PDF, say, due to the epistemic uncertainty [26], then a completely 453 

new round of PDEM analysis is needed. The new round of PDEM analysis will of course make 454 

the previous round of PDEM analysis totally invalid. Most recently, the change of probability 455 

measure (COM) by the Radon-Nikodym derivative was incorporated with PDEM to expedite 456 

the procedure of uncertainty propagation in the case the joint PDF of source basic random 457 

variables is changed. In the PDEM-COM, the most time-consumed underlying deterministic 458 

analyses in PDEM in Step 1.2 [26] are re-used. The basic idea is as follows: 459 

Consider two close but different distributions of Θ , denoted as (1) ( )pΘ θ  and (2) ( )pΘ θ , 460 

respectively. If Eq. (47) holds, the corresponding PDF for the response X  can be firstly 461 

calculated by one round of PDEM analysis in terms of (1) ( )pΘ θ , and thus (1) ( )Xp x  is obtained. 462 

For the case of (2) ( )Xp x  with respect to (2) ( )pΘ θ , instead of doing another complete round of 463 

PDEM analysis, the Radon-Nikodym operator [21], denoted as 2,1T , is advocated such that 464 

(2) (1)
2,1( ) ( )X Xp x p x= T .  (52) 465 

The approach presented in [26] is then summarized as the following three steps: 466 
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Step 2.1. For a certain (1) ( )pΘ θ , accomplish one round of PDEM analysis, as shown in 467 

Section 4.2. Denote the point set as { } sel(1) (1) (1)

1
,

n

q q q
M P

=
= θ , where the superscript “(1)” is 468 

corresponding to (1) ( )pΘ θ . Besides, the values of ( )(1) ,qh tθ  and (1) ( )Xp x  for sel1, ,q n=   are 469 

stored. 470 

Step 2.2. If a perturbation of the source PDF is introduced, then (1) ( )pΘ θ  will be 471 

correspondingly changed to (2) ( )pΘ θ . Instead of conducting another complete round of PDEM 472 

analysis, the procedure of change of probability measure is implemented [26]. Accordingly, the 473 

new point set { } sel(2) (1) (2)

1
,

n

q q q
M P

=
= θ  is generated, where the point ( )1

qθ  is unchanged, but the 474 

assigned probability is updated by 
(1)

(2) (2) ( )d
q

qP p
Ω

= ∫ Θ θ θ , in which (1)
qΩ ’s are the Voronoi cells. 475 

Step 2.3. With the stored ( )(1) ,qh tθ  and the updated assigned probability (2)
qP , re-476 

conduct Steps 1.3 and 1.4 to obtain the updated PDF of output, (2) ( )Xp x . 477 

Notice that the efficiency is improved by a factor of ( ) ( )2 510 ~ 10O O  [26], which is 478 

mainly due to the reuse of the underlying deterministic analysis results in Step 1.2. It is 479 

noteworthy that, some similar but implied ideas can also be found, e.g., in [36] in the context 480 

of Bayesian updated PDEM, and in [37,38] in the context of Monte Carlo simulation, etc. 481 

 482 

4.4. Approximation of Fréchet-Derivative-based GSI via PDEM-COM 483 

By combining the PDEM and COM, the Fréchet-derivative-based GSI in Eq. (31) in a 484 

parametric form, can be evaluated by the following three steps: 485 

Step 3.1. Estimate the original PDF ( )Xp x . Notice that ( )Xp x  is corresponding to 486 

( )pΘ θ , where the embedded physical mechanism ( )X g= Θ  holds. From ( )pΘ θ  to ( )Xp x , 487 

an uncertainty quantification method is needed. Traditionally, this part can be completed by, 488 
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e.g., the analytical method (for some simple cases) [35,39], the kernel density estimation (KDE) 489 

[40], or PDEM [28], etc. In the present paper, the PDEM outlined in Section 4.2 is adopted for 490 

its high accuracy and efficiency. 491 

Step 3.2. Estimate the perturbed PDF ( ) ( )i
Xp x  for 1, ,i n=  . For the i-the input variable 492 

iΘ , let a small perturbation be added on the PDF of iΘ , i.e., 
i

pΘ  is changed to 
i

p′
Θ , and then 493 

the joint PDF becomes ( ) ( )
1,

( )
j ij i

j j i

n

p p pθ θ′ ′
Θ Θ Θ

= ≠

= ⋅∏θ . Here the independence of basic 494 

random variables is assumed just for the sake of simplicity. If the input PDFs do not follow a 495 

specific model, but rather given by estimated histograms (data), the fourth-moment method 496 

could be an alternative, see Ref. [41] for details. 497 

Further, assume this perturbation is only due to the change of distribution parameters of 498 

the input variables. For instance, if 
i

pΘ  can be uniquely determined by its first two moments, 499 

i.e., the mean value and standard deviation, denoted as ( )| ,
i i i ip θ µ σΘ , then this perturbation 500 

can be divided into two parts, namely, small variations of iµ  and iσ , respectively. Then we 501 

have 502 

( )
( )|

| ,

| .
i i

i

i i

i i i

i i i

p
p

p
µ

σ

θ µ µ

θ σ σ

′
Θ′

Θ ′
Θ

 + ∆= 
+ ∆

  (53) 503 

More generally, Eq. (53) can be written as [42] 504 

( )( ) ( )
| , ,| ,  1, , ;  1, ,

ii

l l
i l i l ip p i n l nξΘΘ = + ∆ = =ΘΘ ξ  θ e  (54) 505 

where ,i le  is a selection vector whose entries are zeros except its l-th location for the i-th 506 

variable being equal to one. The distribution parameters, denoted as ξ , are perturbed by ,i lξ∆  507 

and in  is the total number of distribution parameters for the i-th random variable. 508 
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With the perturbed PDF ( )
i

lp ΘΘ  in hand, the corresponding PDF of the response, see 509 

( ) ( ),i l
Xp x , should be computed. As discussed in Section 4.3, in a recent paper by Chen & Wan 510 

[26], this time-consuming procedure can be greatly expedited by advocating the change of 511 

probability measure. 512 

Step 3.3. Approximate the Fréchet derivative by the numerical difference scheme. From 513 

Eq. (31), the Fréchet derivative can be approximated by a forward difference scheme: 514 

( , )
( , )

,
,

( ) ( ) , 1, , ; 1, ,
i l

i l X X
i l iV

i l

p x p x p i n l nψ ξ
ξ
−

≈ ∂ ∂ = =
∆

 F Θ  (55) 515 

where the norm term is analytically calculated, see Appendix B in details. 516 

Here the central difference scheme is suggested. To this end, a pair of perturbed PDF is in 517 

need, i.e., Eq. (54) is revised to 518 

( )
( )

( ) ( )
| , ,

( ) ( )
| , ,

| ,

| ,  1, , ,  1, , .
ii

ii

l l
i l i l

l l
i l i l i

p p

p p i n l n

ξ

ξ

+ +
ΘΘ

− −
ΘΘ

 = + ∆


= − ∆ = =

ΘΘ

ΘΘ

ξ

ξ  

θ e

eθ
 (56) 519 

Besides, ( , )i l
Xp +  and ( , )i l

Xp −  are simultaneously generated by the PDEM-COM algorithm, 520 

respectively. Hence, Eq. (55) is modified by 521 

( , ) ( , )
( , )

,
,

1 ( ) ( ) ,  1, , ,  1 ,
2

.,
i l i l

i l X X
i l iV

i l

p x p x p i n l nψ ξ
ξ

+ −−
≈ ∂ ∂ = =

∆
 F Θ  (57) 522 

Now we discuss the efficiency of the above algorithm. Denote the computational cost of 523 

evaluation of Xp  for a certain pΘ  be 0C . Let the total number of distribution parameters be 524 

1

n
ii

m n
=

=∑  where in  stands for the number of distribution parameters of the i -th random 525 

variable, then it is clear to see that, by the double-loop scheme, the total computational cost of 526 

sensitivity analysis would be D-L 02C mC=  where the number 2 is due to the utilization of the 527 

central difference scheme. However, by the PDEM-COM algorithm the computational cost is 528 

PDEM-COM 0 COM2C mC C= + , where COMC  is the computational cost for the calculation of 529 
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change of probability measure in Step 2.2. Since COM 0C C , we have PDEM-COM 0C C≈ . 530 

Therefore, D-L

PDEM-COM

2C m
C

≈ , which indicates the high efficiency of the proposed PDEM-COM 531 

scheme on evaluating the Fréchet-derivative-based GSI compared to the direct PDEM. Note 532 

that compared to MCS and other methods, the efficiency of PDEM is again much higher by a 533 

factor of 10～100 or more. Therefore, the efficiency of evaluating the Fréchet-derivative-based 534 

GSI by the PDEM-COM is higher than that of MCS by a factor of 20m～200m or more. 535 

 536 

 Numerical Applications 537 

To illustrate the Fréchet-derivative-based GSI and its numerical algorithm, five cases are 538 

studied. Firstly, two analytical cases are investigated as benchmark tests. Then, three 539 

engineering applications are exemplified. 540 

 541 

5.1. Example 1: The Riccati Equation 542 

We start with a simple case where only one random parameter is involved. A Riccati 543 

equation with a random parameter is written as 544 

2( ) ( ) ( ) 0,  d / d ,  (0) 1X t X t X t X X t X+Θ − = = =   (58) 545 

where Θ  is a random variable with the following log-normal PDF 546 

2

2
1 (ln )( ) exp

22
p θ µθ

σπσθΘ

 −
= − 

 
  (59) 547 

where µ  and σ  are the distribution parameters. The analytical solution of Eq. (58) is [39] 548 

( , )
1

t

t
eX g t

e
= Θ =

Θ −Θ+
.  (60) 549 

Combining Eqs. (59) and (60), and according to the rule of change of random variable, 550 

it is easy to obtain the PDF of X 551 
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( )1( , ) ( )Xp x t p g xθ −
Θ= ⋅ =J   (61) 552 

where ( )2/ 1t te x e= −J  is the Jacobian. Expanding Eq. (61) yields 553 

( )
2

2
1 1( , ) exp ln

22

t

X tt

e xp x t t
xe xx e x

µ
σπ σ

   −   = − −    −−      
. (62) 554 

Notice that, all the known information characterizing the uncertainty, i.e., the PDF of Θ  555 

in Eq. (59), driven by the physical evolution mechanism by Eq. (60), is completely propagated 556 

into the PDF of QoI X , ( , )Xp x t  in Eq. (62). Obviously, ( , )Xp x t  is a functional of ( )p θΘ , 557 

as explained in Eq. (2). Because ( )p θΘ  is uniquely determined by µ  and σ ; ( , )Xp x t  558 

becomes a function of µ  and σ , which is clearly exhibited in Eq. (62). 559 

 560 

5.1.1. Analytical Solutions 561 

Then, the Fréchet-derivative-based GSI can be obtained analytically by 562 

( )
2

23

1 1exp ln ln
22

t t
X

t tt

p e x e xt
xe x xe xe x x

µ µ
µ σπ σ

       ∂ − −  = − − −       ∂ − −−          
 (63) 563 

and 564 

( )

( )

2 2

24

2

22

1 1exp ln ln
22

1 1exp ln
22

t t
X

t tt

t

tt

p e x e xt
xe x xe xe x x

e xt
xe xe x x

µ µ
σ σπ σ

µ
σπ σ

       ∂ − −  = − − −       ∂ − −−          
   − − − −     −−     

. (64) 565 

Here the norm terms with respect to the mean parameter is 0.3989 and the standard deviation 566 

parameter is 0.4839 (see Appendix B), and they are both omitted for simplicity without inducing 567 

confusion in Section 5.1. 568 

For clarity, we firstly study some properties of the Fréchet-derivative-based GSI from the 569 

analytical solutions. The numerical solutions by the PDEM-COM algorithm will be illustrated 570 
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later in Section 5.1.2. At a certain time instant 1t = , the conditional Fréchet derivative of Eq. 571 

(63) in terms of µ  with fixed 1σ =  is shown in Fig. 1, while the conditional Fréchet 572 

derivative of Eq. (64) in terms of σ  when µ  is fixed to 0 is shown in Fig. 2. Several 573 

observations can be made from these figures: (1) The Fréchet-derivative-based GSIs in terms 574 

of the distribution parameters of basic random variables are curves rather than a single value, 575 

which characterize the effects of change of the distribution parameters on the global, rather than 576 

local properties of output QoI. (2) The Fréchet-derivative-based GSIs in terms of the 577 

distribution parameters of basic random variables at different nominal values of the parameters 578 

are quite different. For instance, from Fig. 2 it is seen that the Fréchet-derivative-based GSI at 579 

1.4σ =  is much flatter than that at 0.6σ = , which implies that if the standard deviation of 580 

source random variable is relatively small, then a slight perturbation of the input standard 581 

deviation will induce relatively large perturbation on the PDF of output QoI. This is intuitively 582 

reasonable; and (3) The surface of the Fréchet-derivative-based GSI in terms of σ  looks more 583 

complex than that in terms of µ . This means that generally the rule of influence of the standard 584 

deviation of the basic random variable on QoI is more complex than that of the mean of the 585 

basic random variable. Note that the change of mean of the basic random variable with fixed 586 

standard deviation will make the source PDF shifted without shape changed, whereas the 587 

change of standard deviation of the basic random variable with fixed mean value will make the 588 

shape of source PDF changed. In other words, the complexity of change of source PDF induced 589 

by the change of standard deviation is greater than that induced by the change of mean value of 590 

the basic random variable. Therefore, the surface in Fig. 2 being more complex than that in Fig. 591 

1 implies that if the change of source PDF is more complex, then the change of output PDF is 592 

also more complex.  593 
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 594 

Fig. 1. Conditional Fréchet-derivative-based GSI with the change of µ  ( 1σ = ). 595 

 596 

Fig. 2. Conditional Fréchet-derivative-based GSI with the change of σ  ( 0µ = ). 597 

 598 

To be clearer, consider the PDF of response ( , )Xp x t  at 1t =  and its Fréchet-derivative-599 

based GSIs at 0µ =  and 1σ = . Then, the three curves by Eqs. (62) to (64) can be plotted 600 

in Fig. 3, respectively. A more vivid description of Fig. 3 is present in Fig. 4 in a vector form, 601 

where both the direction and rate of change of the value of PDF of output QoI due to the 602 

perturbation of input distribution parameters are shown. From these figures, it can be observed 603 

that: 604 

Firstly, it is noticed from Fig. 3 that the curves of Fréchet-derivative-based GSIs are not 605 

always positive or negative, nor are they monotonic functions. Actually, by inspection it is seen 606 

that there is at least one intermediate point crossing the abscissa besides the left and right ends 607 

of the curve, and the area between the curves of Fréchet-derivative-based GSIs and the abscissa 608 
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is zero, which is consistent with Eq. (43). It is seen that at the left and right tails of PDF of the 609 

output QoI, the values of Fréchet-derivative-based GSIs are close to zero. Besides, there is one 610 

single intermediate point at the curve of Fréchet-derivative-based GSI in terms of the mean of 611 

source random variable crossing the abscissa, whereas there are two intermediate points at the 612 

curve of Fréchet-derivative-based GSI in terms of the standard deviation of source random 613 

variable crossing the abscissa. This is also noticed in the preceding paragraph that the surface 614 

in Fig. 2 is more complex than that in Fig. 1. 615 

Secondly, in Fig. 4 it is shown how the PDF of the output QoI will change if there is 616 

perturbation in the distribution parameters of the source random variable. It is seen that, if the 617 

mean of the source random variable increases, then the left part of PDF of the output QoI will 618 

increase (according to the direction of the arrows) and the right part will decrease, resulting in 619 

a PDF of the output QoI with centroid (the mean value of output QoI) shifted to left. On the 620 

other hand, if the standard deviation of the source random variable increases, then the left and 621 

right part of the PDF of output QoI will increase and the middle part will decrease, which means 622 

that the PDF of output QoI will become flatter. This also implies that the standard deviation of 623 

the output QoI will increase. Quantitatively, the change of PDF of the output QoI due to the 624 

perturbation of mean of the source random variable in the neighborhoods of 0.4 and 1.6 (in the 625 

response space) is much greater than that in other areas (see Fig. 3), whereas the change of PDF 626 

of the output QoI due to the perturbation of standard deviation of the source random variable 627 

in the neighborhoods of 0.2, 0.9 and 2.2 (the extrema of the curve in Fig. 3) is much greater 628 

than that in other areas. This information is of course useful for decision-making for practical 629 

engineering problems, because the quantitative effects on the possible subset in the response 630 

space due to perturbation of mean and standard deviation of source random variable are 631 

captured. 632 
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The above discussions demonstrate that, different from most existent GSI indices, the 633 

Fréchet-derivative-based GSI can not only reflect how much the sensitivity is in a global sense 634 

via the change of PDF of output QoI, but also point out the certain direction of such change. 635 

 636 

 637 

Fig. 3. PDF of QoI at 1t =  and its Fréchet-derivative-based GSI ( 0µ =  and 1σ = ). 638 

 639 

 640 

Fig. 4. PDF of QoI at 1t =  and its Fréchet-derivative-based GSI in vector form ( 0µ =  and 1σ = ). 641 

 642 

Remark 2.1: Specifically, if the failure domain is defined as lim:f X xΩ < , by integrating 643 

Eqs. (63) and (64) we have 644 
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lim lim

d ,  d
f f

f fX X

x x x x

P Pp px x
µ µ σ σΩ Ω

= =

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂∫ ∫ .  (65) 645 

Eq. (65) is exactly the sensitivity of failure probability with respect to the distribution 646 

parameters of input random variables, see also related researches in [4,42-43]. 647 

The analytical expressions of Eq. (65) is 648 

lim

2

2
1 1exp ln

22

t
f

t

x x

P e x
xe x

µ
µ σπσ

=

  ∂  − = − − −     ∂ −    
 (66) 649 

and 650 

lim

2

22

1 1exp ln ln
22

t t
f

t t

x x

P e x e x
xe x xe x

µ µ
σ σπσ

=

    ∂    − − = − − − ⋅ −           ∂ − −        
. (67) 651 

Meanwhile, the analytical expression of failure probability fP  is given by 652 

lim

lim 1 1d 1 erf ln
2 2

x
tx

f X t
e xP p x
xe x

µ
σ−∞

−∞

   − = = − −     −    
∫  (68) 653 

where erf( )⋅  is the Gaussian error function. 654 

It should be emphasized that, similar but unlike the researches in [4,42], the present paper 655 

aims to propose a new GSI with respect to the PDF of output QoI, rather than the failure 656 

probability of QoI. But the sensitivity of failure probability of QoI can be a byproduct of the 657 

proposed GSI, as shown in Eqs. (6) and (65). Moreover, the proposed GSI in the present paper 658 

can be evaluated efficiently by the PDEM-COM method, which makes it more applicable for 659 

practical applications. 660 

Remark 2.2: Similarly, Eqs. (66) to (68) are plotted in Figs. 5 and 6 to gain a more 661 

straightforward and intuitive understanding on how fP  is sensitive to the input variable. At 662 

first glance it is noticed that the sensitivity of fP  at the end points of limx  is zero. This is 663 

reasonable because 
lim

lim 1fx
P

→−∞
=  and 

lim

lim 0fx
P

→∞
= , i.e., the failure probability will not change 664 
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against the change of mean and standard deviation of source random variable at these two 665 

extreme points. In addition, different from the sensitivity curves in Fig. 3, the sensitivity curves 666 

in Fig. 5 can be always positive or always negative, or partly positive but partly negative. 667 

Interestingly, it is shown that a positive perturbation of µ  will always reduce fP  of QoI, see 668 

the direction of the arrows in Fig. 6, and compare the curves with and without perturbation of 669 

the mean of source random variable in Fig. 7. On the other hand, as σ  increases, there are 670 

different situations in two intervals: for lim ( ,1)x ∈ −∞ , fP  will decrease; while for 671 

lim (1, )x ∈ +∞ , fP  will increase, see the direction of the arrows in Fig. 6, and compare the 672 

curves with and without perturbation of the standard deviation of source random variable in Fig. 673 

8. Therefore, there is a crucial point, i.e., lim 1x = , which makes fP  of QoI stays insensitive 674 

to the input variable, at least for the distribution parameter of σ . Again, here it is noticed that 675 

the effect of perturbation of the standard deviation of source random variable on the failure 676 

probability is more complex than that of the mean of source random variable. Evidently, for 677 

engineering purposes, the above analytical results will provide valuably qualitative and 678 

quantitative information for designers and decision-makers. 679 

 680 

Fig. 5. Failure probability of QoI and its Fréchet-derivative-based GSI ( 0µ = , 1σ =  and 1t = ). 681 
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 682 

Fig. 6. Failure probability of QoI and its Fréchet-derivative-based GSI in vector form ( 0µ = , 1σ =  683 

and 1t = ). 684 

 685 

Fig. 7. The influence of 𝜇𝜇 on failure probability ( 1σ =  and 1t = ). 686 

 687 

Fig. 8. The influence of 𝜎𝜎 on failure probability ( 0µ =  and 1t = ). 688 

 689 

Remark 2.3: The proposed Fréchet-derivative-based GSI can be naturally utilized to 690 

observe the variation of the output PDF of QoI, when the input PDF gives some variations. In 691 
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Fig.9, assume the input PDF is perturbed in three ways: (1) the parameter µ  is changed from 692 

0 to 0.1, (2) the parameter σ  is set from 1 to 1.1 and (3) the parameters ( ),µ σ  are chosen 693 

from (0,1) to (0.1,1.1), i.e., to be changed simultaneously. Then the proposed GSI presented in 694 

Eqs. (63) and (64) are taken into calculation, where one can see that a good linear 695 

approximation is achieved, compared with analytical results. It should be emphasized again that 696 

though the proposed GSI is under a framework of parametric distributions, it serves well to 697 

observe the variation of output PDF when the input PDF is changed, see the third case in Fig. 698 

9 when both parameters are perturbed.  699 

  700 

(a) The variation of input PDF (b) The variation of output PDF via analysis and proposed 701 

GSI 702 

Fig. 9. A direct function of the proposed Fréchet-derivative-based GSI. 703 

 704 

5.1.2. Numerical Solutions by the PDEM-COM Method 705 

To numerically evaluate the Fréchet-derivative-based GSIs, one round of PDEM analysis 706 

is firstly required. To this end, 100 representative points are firstly generated by the GF-707 

discrepancy minimized strategy [31], and then an ensemble evolution scheme of PDEM [44] is 708 

adopted to evaluate the PDF of output QoI, ( ; , )Xp x µ σ . Next, without additional evaluations 709 

of the Riccati equation, the COM is implemented to estimate the four perturbed PDFs of QoI 710 

[26], namely ( ; , )Xp x µ µ σ+ ∆ , ( ; , )Xp x µ µ σ−∆ , ( ; , )Xp x µ σ σ+ ∆  and 711 
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( ; , )Xp x µ σ σ−∆ , respectively. By the central difference scheme, the Fréchet-derivative-based 712 

GSI are then approximated by 713 

( ; , ) ( ; , )1
2

X X X Xp p p x p xµ µ σ µ µ σ
µ µ µ

∂ ∆ + ∆ − −∆
≈ =

∂ ∆ ∆
 (69) 714 

and 715 

( ; , ) ( ; , )1
2

X X X Xp p p x p xµ σ σ µ σ σ
σ σ σ

∂ ∆ + ∆ − −∆
≈ =

∂ ∆ ∆
 (70) 716 

respectively, where µ∆  and σ∆  take small values, say 0.1 in this case. 717 

Shown in Fig. 10 is the comparison between the analytical solutions and the numerical 718 

solutions by PDEM-COM, which demonstrates a good accuracy of the proposed method. In 719 

spite of some errors between analytical solutions and numerical ones in Fig. 10(a), the major 720 

shape and magnitude are consistent. Meanwhile, as for the sensitivity of failure probability of 721 

QoI in Fig. 10(b), the error is relatively small. 722 

  723 

          (a) Sensitivity of PDF of QoI          (b) Sensitivity of CDF (failure probability) of QoI 724 

Fig. 10. Comparison between analytical solutions and numerical solutions via PDEM-COM. 725 

 726 

5.2. Example 2: Sum of Gaussian Random Variables 727 

5.2.1. Subcase 1 728 

Consider two independent random variables 1Θ  and 2Θ , and the QoI X  is given by 729 

the following function: 730 
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1 22X = Θ + Θ .  (71) 731 

Assume both 1Θ  and 2Θ  are normally distributed random variables with mean values 732 

1µ  and 2µ , and standard deviations 1σ  and 2σ , respectively. To avoid lengthiness here, the 733 

analytical expressions of the Fréchet-derivative-based GSI in terms of 1µ , 2µ , 1σ  and 2σ  734 

are provided in Appendix C. 735 

Without loss of generality, assume 1 2 0µ µ= =  and 1 2 1σ σ= = . The numerical results 736 

are shown in Figs. 11 and 12, compared with the analytical solutions in Appendix C. In this 737 

case, a fairly good approximation is achieved in Fig. 11, while a perfect agreement is observed 738 

in Fig. 12 as well. With all these informative results at hand, some valuable conclusions can be 739 

drawn here: (1) Obviously, it is easy to find that in this system the PDF of output QoI is more 740 

sensitive to 2Θ  than to 1Θ  because the maximum value of the GSIs in terms of parameters 741 

of 2Θ  in Fig. 11(b) are greater by twice than the corresponding ones of 1Θ  in Fig. 11(a), 742 

which is intuitively reasonable from Eq. (71); (2) Similar to Example 1, in each sensitivity 743 

curve in terms of the mean of source random variables only one single intermediate point 744 

crossing the abscissa exists in Fig. 11(a), whereas in each sensitivity curve in terms of the 745 

standard deviation of source random variables there are two intermediate points crossing the 746 

abscissa in Fig. 11(b); and (3) The failure probability will certainly always increase due to a 747 

small increment of the mean values as shown in Fig. 12, while for the standard deviations, the 748 

influence of increasing or reducing the failure probability is dependent on the threshold. 749 

Interestingly, similar to Example 1, there also exists a fixed point at lim 0x = . 750 
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    751 

(a) Sensitivity of PDF of QoI for 1Θ        (b) Sensitivity of PDF of QoI for 2Θ  752 

Fig. 11. Fréchet-derivative-based GSIs of PDF in terms of 1Θ  and 2Θ . 753 

    754 

  (a) Sensitivity of failure probability of QoI for 1Θ   (b) Sensitivity of failure probability of QoI for 2Θ  755 

Fig. 12. Fréchet-derivative-based GSI of failure probability in terms of 1Θ  and 2Θ . 756 

 757 

5.2.2. Subcase 2 758 

Now we consider two similar but not identical functions: 759 

(a) 1 2aX = Θ +Θ  and (b) 1 2bX = Θ −Θ   (72) 760 

where the subscripts “𝑎𝑎” and “𝑏𝑏” denote the QoIs that generated by Eqs. (72)a and (72)b, or 761 

Subcase 2a and Subcase 2b, respectively. The information of 1Θ  and 2Θ  is identical to that 762 

in Subcase 1. Therefore, aX  and bX  are normally distributed as well. To avoid lengthiness 763 

here, the analytical expressions of Fréchet-derivative-based GSI of aX  and bX  are available 764 
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in Appendix C. Again, let 1 2 0µ µ= =  and 1 2 1σ σ= = . The Fréchet-derivative-based GSIs 765 

for Subcase 2a and Subcase 2b are shown in Fig. 13. 766 

 767 

    768 

(a) Fréchet-derivative-based GSIs for Subcase 2a (b) Fréchet-derivative-based GSIs for Subcase 2b 769 

Fig. 13. Fréchet-derivative-based GSIs for two Subcases. 770 

 771 

From Fig. 13, it is easy to observe how each input variable affects the QoI in terms of both 772 

magnitude and direction. It is clearly seen that the proposed GSIs in Subcase 2a are apparently 773 

different from those in Subcase 2b. Actually, from Fig. 13(a) it is seen that the sensitivity curves 774 

in terms of the means of both source variables are identical. Simultaneously, the sensitivity 775 

curves in terms of the standard deviations of both source variables are also identical. This is 776 

intuitively reasonable because from Eq. (72)a it is noticed that the QoI is symmetric in terms of 777 

1Θ  and 2Θ . However, from Fig. 13(b) it is noticed that, though the sensitivity curves in terms 778 

of the standard deviations of both source variables are still identical, the sensitivity curves in 779 

terms of the means of the two source random variables are not identical any more. Actually, in 780 

this case, the amplitudes are still identical but the signs are opposite. Considering the QoI in Eq. 781 

(72)b is anti-symmetric in terms of 1Θ  and 2Θ , again the properties shown in Fig. 13(b) are 782 

intuitively understandable.  783 
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Unfortunately, the existent sensitivity indices, including the Sobol’ indices [13] or 784 

moment-independent importance measures [16] as listed in Table 2, cannot distinguish the 785 

sensitivity of 1Θ  and 2Θ  in Eq. (72)b. It is seen from Table 2 that there is no difference 786 

between the sensitivity indices of Subcase 2a and Subcase 2b, which is somewhat misleading 787 

[17]. 788 

 789 

Table 2 790 

Analytical results of Subcase 2a and Subcase 2b [17]. 791 

Subcases Subcase 2a Subcase 2b 

Input variables 1Θ
 

2Θ  
1Θ
 

2Θ  

Sobol’ indices:  0.5 0.5 0.5 0.5 

Moment-independent IMs:  0.306 0.306 0.306 0.306 

 792 

5.3. Example 3: A Cantilever Beam 793 

In this case, a cantilever beam subjected to two concentrated forces is studied [45], as 794 

shown in Fig. 14. The responses of the beam, i.e., the maximum displacement and stress, can 795 

be analytically obtained, thus we have the following two performance functions: 796 

(a) displacement performance function 797 

2 23

0 2 2
4

D
L Y Xg d

Ewh h w
   = − +   
   

,  (73) 798 

(b) stress performance function 799 

2
6 ( )S

Lg R X Y
wh

= − +   (74) 800 

where all the parameters in Eqs. (73) and (74) are listed in Table 3. 801 

 802 
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 803 

Fig. 14. A cantilever beam structure [45]. 804 

 805 

These two performance functions are obviously functions of the source random variables 806 

X , Y , E  and R . Assume these four basic random variables are independent and normally 807 

distributed, while the corresponding distribution parameters of , ,  and  are 808 

denoted as ( ),X Xµ σ , ( ),Y Yµ σ , ( ),E Eµ σ  and ( ),R Rµ σ , respectively, and listed in Table 3 809 

for details. 810 

 811 

Table 3 812 

Model parameters in the cantilever beam structure. 813 

Parameters Value/Distribution Mean Std.D Physical senses 

L  (in) 100 - - Beam length 

w  (in) 4 - - Beam width 

h  (in) 2 - - Beam thickness 

0d  (in) 5 - - Displacement threshold 

X  (lbf) Normal 500 100 Horizontal force 

Y  (lbf) Normal 1000 100 Vertical force 

E  (psi) Normal 2.9×107 1.45×106 Modulus of elasticity 

R  (psi) Normal 6.4×104 3.2×104 Yield stress 

 814 

X Y E R
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In this practical case, it is emphasized that since the unit of each parameter is different, 815 

thus the digital values of realizations of different random variables may differ for several orders 816 

of magnitude. For instance, the order of magnitude of vertical force is about ( )310O  while 817 

the order of magnitude of the modulus of elasticity is around ( )710O . This of course may 818 

induce numerical singularity. Therefore, in this aspect, the norm term in the proposed Fréchet-819 

derivative-based GSI in Eq. (31) can be regarded as a non-dimensional-normalization factor, 820 

which is naturally defined in the definition of the Fréchet derivative, i.e.,  821 

,  ,  ,  ,

,  ,  ,  .

X Y E R

X

X Y E R

Y E R

Y E RX

p p p p
p p p p
p p p p

p p p p

µ µ µ µ
µ µ µ µ

σ σ σ σ
σ σ σ σ

Θ Θ Θ Θ

Θ Θ Θ Θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (75) 822 

where p  stands for the PDF of QoI, i.e., the displacement performance function Dg , or the 823 

stress performance function Sg , while pΘ  denotes the PDF of inputs. 824 

 825 

5.3.1. The GSI of the Displacement Performance Function 826 

Let the QoI firstly be Dg . Numerical results of the GSI by the PDEM-COM method are 827 

plotted in Fig. 15. By inspection some instructive properties are clear: (1) For the mean values 828 

of distribution parameters of the source random variables, Yµ  is of most influence, while the 829 

effect of Xµ  is comparatively very small. Noting from Table 3 that w is twice h from Eq. (73) 830 

so it can be estimated roughly that the effect of Y should be at least greater than that of X by a 831 

factor of around (2)2 = 4. This is consistent with the above observation. (2) Moreover, it is noted 832 

that the GSIs of QoI in terms of Yµ  and Eµ  are almost completely opposite in Fig. 15(a), 833 

which is also reasonable since Y  is related to the external load effect, while E  stands for the 834 

intrinsic structural resistance. From a physical perspective, the effects of these two variables 835 

must be opposite. And (3) it is seen that, in terms of Y and E, the mean values of source random 836 
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variables have greater effects on QoI than the standard deviations of source random variables 837 

by comparing Figs. 15(a) and 15(b). 838 

 839 

 840 

(a) GSI with respect to the mean value (b) GSI with respect to the standard deviation 841 

Fig. 15. PDF of Dg  and its Fréchet-derivative-based GSIs. 842 

 843 

5.3.2. Stress Performance Function 844 

Now we consider Sg . The GSIs are plotted in Fig. 16. It is clear to see that: (1) Xµ , Yµ  845 

and Rµ  are all of remarkable effect on QoI, in an order of Y X Rµ µ µ≈ >  in terms of 846 

sensitivity, which is easily understandable from Eq. (74). In particular, in this case because X 847 

has the same factor -1 as that of Y from Eq. (74), it is roughly estimated that the sensitivity of 848 

X is close to that of Y, which is verified from Fig. 16(a). This is also true for the Rµ  but 849 

because the factor of R becomes to 1 so the direction of GSI based on Rµ  is opposite to those 850 

of Xµ  and Yµ . (2) Besides, Xσ , Yσ  and Rσ  are of less and close effect, which is due to 851 

the coincidence that 3200psiRσ =  while 2 2
6 6 3750psiX Y

L L
wh wh

σ σ= =  from Eq. (74), but 852 

one can still see that the effects of Xσ , Yσ  and Rσ  are in an order of Y X Rσ σ σ≈ > . 853 

 854 
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 855 

(a) GSI with respect to the mean value (b) GSI with respect to the standard deviation 856 

Fig. 16. PDF of Sg  and its Fréchet-derivative-based GSIs. 857 

 858 

5.3.3. Discussion and Verification 859 

Actually, since it is not always easy to obtain the analytical expressions of Example 3, the 860 

results by the Monte Carlo Simulation (MCS) are adopted as a reference. The kernel density 861 

estimation (KDE) [40], as an important method in sensitivity analysis, is employed to estimate 862 

the probability density function. One million times of evaluations are completed for one single 863 

loop of sensitivity analysis, and the results are shown in Fig. 17. Compared with the numerical 864 

results plotted in Fig. 15(a), the accuracy of the GSIs by PDEM-COM is again verified, but the 865 

efficiency of PDEM-COM is much higher since only 500 function evaluations are needed for 866 

the whole analysis. 867 

 868 

Fig. 17. Comparison between PDEM-COM and MCS-KDE. 869 
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 870 

5.4. Example 4: The Short Column Function 871 

The short column function is commonly utilized as a benchmark in reliability-based 872 

structural optimization [45-47]. The limit state function is explicitly defined as 873 

( )
2

1 2
1 2 2 2

4 41, , , M M Pg M M P Y
bh Y b hY bhY

 = − − − 
 

  (76) 874 

where Y  stands for the yield stress, b  and h  are the width and depth of the rectangular 875 

cross section of the short column, which is subjected to bi-axial bending moments 1M  and 876 

2M . According to [46], the geometrical parameters b  and h  are all set to the optimal values, 877 

e.g., 300mm and 600mm, respectively. The uncertainty is considered to be originated from 1M , 878 

2M , P  and Y  with the probability distributions listed in Table 4. Here the statistically 879 

independency of 1M , 2M , P  and Y  is assumed for simplicity. 880 

 881 

Table 4 882 

Model parameters in the short column function [46]. 883 

Parameters Distribution Mean C.O.V. Physical senses 

1M  (kN·m) Lognormal 250 0.30 Bending moment 

2M  (kN·m) Lognormal 125 0.30 Bending moment 

P  (kN) Weibull 2500 0.20 Axial force 

Y  (MPa) Gamma 40 0.10 Yield stress 

Note: C.O.V. is the abbreviation of coefficient of variation. 884 

 885 

The first and second distribution parameters of 1M , 2M , P  and Y   are analytically 886 

calculated by the mean value and the standard deviation listed in Table 4, and are denoted by 887 
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( )1 1
,M Ma b , ( )2 2

,M Ma b , ( ),P Pa b  and ( ),Y Ya b , respectively. Specifically, the PDFs of 1M , 888 

2M , P  and Y  are correspondingly written by 889 

( ) ( )
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 (77) 890 

where ( )Γ ⋅  is the Gamma function. 891 

The Fréchet-derivative-based GSIs evaluated by the PDEM-COM method are plotted in 892 

Fig. 18. It is seen from Fig. 18 that the GSIs in terms of the first and second parameters of M1 893 

are almost identical to those in terms of M2, respectively. This is actually the reflection of the 894 

fact from Eq. (76) that the function is symmetric in terms of M1 and M2. Moreover, it can be 895 

seen clearly that the influence of the first parameter of Y  on PDF of g  is in an opposite way 896 

compared to the effects of the means of 1M , 2M  and P . This can be easily interpreted: 897 

according to Eq. (76), Y  is in the dominator while 1M , 2M  and P  are all in the numerator. 898 

In the reliability-based structural optimization, the direction (sign) of sensitivity in terms of 899 

basic input variables is of paramount significance [48]. A verification of the proposed PDEM-900 

COM is also completed in Fig. 19 via the MCS-KDE as illustrated in Example 3. Here we 901 

arbitrarily verify some of the indices in Fig. 18, and the verified results in Fig. 19 indicate a 902 

high accuracy of the proposed method of calculating the proposed GSI. 903 

In a sense, this kind of opposite or positive influences (direction) on the PDF of QoI, are 904 

natural sensitivities with certain directions due to the embedded physical mechanisms, which 905 
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can be captured by the proposed Fréchet-derivative-based GSIs.  906 

 907 

(a) GSI with respect to the first parameter (b) GSI with respect to the second parameter 908 

Fig. 18. Fréchet-derivative-based GSIs in terms of the first and second parameters in Example 4. 909 

  910 

Fig. 19. Fréchet-derivative-based GSIs in terms of the first and second parameters in Example 4 via 911 

PDEM-COM and MCS-KDE. 912 

 913 

5.5. Example 5: A Roof Truss Structure 914 

A more complex case involving a roof truss structure [6] is studied hereinafter (Fig. 20). 915 

The structure is subjected to uniformly distributed load q , which could be equivalent to three 916 

nodal loads / 4F ql= . The top four components and the two compressive bars are made from 917 

concrete materials, while the inner two elements and the bottom three tension bars are of steel 918 

materials. The displacement of point O can be analytically constructed by 919 
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2 3.81 1.13
2o

c c s s

qld
A E A E

 
= + 

 
  (78) 920 

where the model parameters in Eq. (78) are listed in Table 5. 921 

 922 

 923 

Fig. 20. A roof truss structure [6]. 924 

 925 

Table 5 926 

Model parameters of the roof truss structure [6]. 927 

Parameters Distribution Mean C.O.V. Physical meanings 

q  (N/m) Normal 20,000 0.07 Uniform load 

l  (m) Normal 12 0.01 Length of component 

cA  (m2) Normal 0.04 0.12 Sectional area of concrete 

sA  (m2) Normal 9.82×10-4 0.06 Sectional area of steel 

cE  (N/m2) Normal 2×1010 0.06 Modulus of elasticity of concrete 

sE  (N/m2) Normal 1×1011 0.06 Modulus of elasticity of steel 

Note: C.O.V. is the abbreviation of coefficient of variation. 928 

 929 

Though the normal distribution is not perfectly physically consistent with the above 930 

parameters, in the present case it is still appropriate because the standard deviation (calculated 931 

by C.O.V.) is relatively small, therefore it is almost impossible to generate negative values that 932 

have no physical sense. 933 
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Numerical results of the GSIs in terms of the mean values of source random variables are 934 

shown in Fig. 21 while pictured in Fig. 22 are the GSIs in terms of the standard deviations of 935 

source random variables. It is seen that in terms of the mean values of source random variables, 936 

the order of importance is ( ) ( ) ( ) ( ) ( ) ( )
c s sq c E A E lAµ µ µ µ µ> ≈ ≈ ≈ >F F F F F F , where 937 

( )qµF  is the GSI in terms of qµ  and similar symbols apply to other GSIs. In terms of the 938 

standard deviations of source random variables, it is found that the rule of GSIs in terms of the 939 

standard deviations of source random variables are more complex compared to those in terms 940 

of the means of source random variables. This is consistent with the discussions in Example 1. 941 

It should be emphasized that these orders are qualitative, while the quantitative information 942 

shown in Figs. 21 and 22 can be adopted for more rational decision-making or employed in 943 

reliability-based structural optimization. For instance, it is seen from Fig. 22 that the GSIs in 944 

terms of  and  are much smaller compared to the GSIs in terms of the standard 945 

deviations of the other source random variables. This means that, if a decision-making is needed 946 

whether the epistemic uncertainty in the standard deviations of source random variables are 947 

needed, then it can be such decided that the effects of epistemic uncertainty in the standard 948 

deviations of  and  can be ignored, and thus the involved factors in terms of epistemic 949 

uncertainty in the problem can be reduced.  950 
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  951 

Fig. 21. Fréchet-derivative-based GSIs in terms of mean values for Example 5. 952 

  953 

Fig. 22. Fréchet-derivative-based GSIs with respect to standard deviations for Example 5. 954 

 955 

 Concluding Remarks 956 

In the present paper, for the systems involving random parameters, starting from a 957 

functional perspective, a Fréchet-derivative-based global sensitivity index is proposed. Highly 958 
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efficient numerical algorithms are elaborated by incorporating the probability density evolution 959 

method and the change of probability measure (PDEM-COM algorithm). The main findings 960 

and conclusions are: 961 

(1) The proposed sensitivity defined by the Fréchet derivative, i.e., the change of the PDF 962 

of the output QoI in terms of the change of the PDF of the input basic random variables is 963 

essentially a global sensitivity index. Compared to the traditional sensitivity indices, e.g., the 964 

Sobol’ indices and the moment-independent IMs, the proposed GSI is more informative and 965 

flexible by providing not only the magnitude of change at the level of the PDF, but also the 966 

direction of effects being positive or adverse.  967 

(2) The PDEM-COM algorithm by incorporating the probability density evolution method 968 

(PDEM) and the change of probability measure (COM) provides a highly efficient and fairly 969 

accurate tool for the evaluation of the proposed GSI in terms of the distribution parameters of 970 

input random variables.  971 

(3) Numerical examples, including two analytical and three engineering cases, are 972 

extensively studied, demonstrating the accuracy and effectiveness of the proposed GSI as well 973 

as the PDEM-COM algorithm.  974 

Some important and interesting issues for extension shall be studied further, including, 975 

e.g., how to apply the present GSI for dependent source random variables and subsets of 976 

variables, etc. 977 
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 984 

Appendix A. A Proposition on Fréchet-Derivative-based GSI 985 

The following proposition in terms of the Fréchet-derivative-based GSI is stated and 986 

proved. 987 

Proposition. The definition in Eq. (31) in a parametric form allows that 988 

( )( )
0 1
sup 1

VX X
t

p p p p p t p t pψδ δ δ δ δ δΘ Θ Θ Θ Θ
≤ ≤

⋅− − +≤ + −  F  (79) 989 

holds, where Xpδ   is the variation of Xp  due to an arbitrary variation of pΘ  by pδ Θ , 990 

while Xpδ  is the variation of Xp  due to a parametric variation of pΘ  by pδ Θ . It 991 

indicates that the variation of the output PDF is a.e. the same no matter the input PDF is 992 

parametric or not, as long as the variation of the input PDF is sufficiently small. 993 

Proof. Denote 994 

( ) ( )
( ) ( )

= ,

= ,
X

X

p p p p

p p p p

δ ψ δ ψ

δ ψ δ ψ
Θ Θ Θ

Θ Θ Θ
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  (80) 995 

and  996 

( ) ( )=X Xp p p p p pδ δ ψ δ ψ δΘ Θ Θ Θ− + − +  .  (81) 997 

According to the mean value theorem [24], we have 998 

( ) ( )
( )( )

0 1
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X X
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p p p t p t pψ
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 

 F
 (82) 999 

where ψF  is the Fréchet derivative of ψ .            ■ 1000 

 1001 

Appendix B. Analytical Expressions of the Norm Term of GSI for 1002 

Some Common Distributions 1003 

The norm term in the proposed Fréchet-derivative-based GSI in Eq. (31) is defined as 1004 
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( ) ( )1 d ,  1, 2,
2

; ;
,

Vj j

p p
mj

θ θ
θ

Θ

Θ Θ

Ω
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= =
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ξ ξ

ξ ξ
 (83) 1005 

where ξ  is the distribution parameter of the input PDF ( );p θΘ ξ . This defined norm can be 1006 

exactly evaluated for some common distributions, and the results are summarized as follows. 1007 

(1) Normal distribution ( )
( )
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p e
θ µ
σθ µ σ
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−
−
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A normal distribution with the mean value µ  and the standard deviation σ  has the 1009 

explicitly defined norms by 1010 
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 (84) 1011 

(2) Log-normal distribution ( )
( )2
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Θ =  for 0θ > . 1012 

The derivatives of the function ( ); ,p θ α βΘ  in terms of the parameters α  and β  have 1013 

explicit forms, therefore the norms are computed by 1014 

( ) ( )

( ) ( ) ( )

2

2

2

2

ln

2

ln2 2

2

0

1/2

0 3
2

1 1 1d ,
2 2

1 1

; , l

2d .

n
2

; , l
22 2

n

V

V

p
e

p
e e

θ α
β

θ α
β

θ α β θ α θ
α β π βθ π β

θ α β θ α β
θ

β β π βθ π β

−+Θ

−+Θ −

−
∞

−
∞

 ∂ = =
 ∂


 ∂

= =

−

−


∂

−

∫

∫

 (85) 1015 

For the norm of some other distributions, the numerical computation on the derivative as 1016 

well as the integral is recommended. 1017 

 1018 
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Appendix C. Analytical Expressions of GSI in Example 2 1019 

(1) Subcase 1 1020 

Theoretically, X  is also normally distributed with the mean value 1 22µ µ µ= +  and the 1021 

standard deviation 2 2
1 24σ σ σ= + , therefore the PDF of X is 1022 

( )
( )
( )

2
1 2

2 22 2
1 21 2
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x
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µ µ
σ σπ σ σ
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. (86) 1023 

Then, taking derivatives of Eq. (86) with respect to 1µ , 2µ , 1σ  and 2σ , we have 1024 
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and 1028 
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. (90) 1029 

Integrating Eqs. (87) to (90) in the failure domain lim:f X xΩ <  leads to 1030 
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and 1034 
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. (94) 1035 

Eqs. (91) to (94) are exactly the Fréchet derivatives of failure probability in terms of the 1036 

distribution parameters of input basic random variables, where the norm terms are omitted for 1037 

simplicity but all are available in Appendix B. 1038 

(2) Subcase 2 1039 

For 1µ  and 2µ , there is: 1040 

(a) ( )
( )

( )
( )

2
1 2 1 2

3/2 2 22 2
1 2 1 21 2

exp
22

a aX Xp p x xµ µ µ µ
µ µ σ σπ σ σ

 ∂ ∂ − − − − = = − ∂ ∂ ++   
, 1041 

(b) 
( )

( )
( )
( )

2
1 2 1 2

3/2 2 22 2
1 2 1 21 2

exp
22

b bX Xp p x xµ µ µ µ
µ µ σ σπ σ σ

 ∂ ∂ − + − + = − = − ∂ ∂ ++   
. (95) 1042 

For 1σ  and 2σ , there is: 1043 

(a) ( )
( )

( ) ( )
( )

22 2 2
1 2 1 21,2 1 2

5/22 2 2 2
1,2 1 2 1 2

exp
2 2

aX xp x µ µ σ σσ µ µ
σ π σ σ σ σ

  − − − +∂ − − = − ⋅ ∂ + +  
, 1044 

(b) 
( )
( )

( ) ( )
( )

22 2 2
1 2 1 21,2 1 2

5/22 2 2 2
1,2 1 2 1 2

exp
2 2

bX xp x µ µ σ σσ µ µ
σ π σ σ σ σ

  − + − +∂ − + = − ⋅ ∂ + +  
. (96) 1045 
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