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Abstract20

Purpose: Tortuosity of corneal nerve fibers acquired by in vivo Confocal Microscopy21

(IVCM) are closely correlated to numerous diseases. While tortuosity assessment has22

conventionally been conducted through labor-intensive manual evaluation, this war-23

rants an automated and objective tortuosity assessment of curvilinear structures. This24

paper proposes a method that extracts image-level features for corneal nerve tortuosity25

grading.26

Methods: For an IVCM image, all corneal nerve fibers are first segmented and then27

their tortuosity are calculated by morphological measures. The Ordered Weighted28

Averaging (OWA) approach, and the k-Nearest-Neighbor guided Dependent Ordered29

Weighted Averaging (kNNDOWA) approach are proposed to aggregate the tortuosity30

values and form a set of extracted features. This is followed by running the wrapper31

method, a supervised feature selection, with an aim to identify the most informative32

attributes for tortuosity grading.33

Results: Validated on a public and an in-house benchmark data sets, experimental re-34

sults demonstrate superiority of the proposed method over the conventional averaging35

and length-weighted averaging methods with performance gain in accuracy (15.44%36

and 14.34%, respectively).37

Conclusions: The simultaneous use of multiple aggregation operators could extract38

i



image-level features that lead to more stable and robust results compared with that39

using average and length-weighted average. The OWA method could facilitate the ex-40

planation of derived aggregation behavior through stress functions. The kNNDOWA41

method could mitigate the effects of outliers in the image-level feature extraction.42
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I. Introduction65

The in vivo Confocal Microscopy (IVCM) is a non-invasive technique to imaging the corneal66

nerves, particularly, for the examination of the subbasal nerve plexus1. Since the IVCM was67

successfully applied to corneal nerve imaging in 20012, a number of studies3,4,5 have shown68

that numerous properties of corneal nerve, such as nerve fiber branching, density, length,69

and tortuosity, are related to both eye conditions and systemic diseases. As the tortuosity70

can be used to interpret the degeneration and subsequent regeneration of nerves, which71

leads to active neural growth5, substantial attention has been paid to tortuosity among72

other morphological properties of nerve fiber. For example, important correlation has been73

identified between the tortuosity of nerve and severity of diabetic neuropathy6, which is one74

of the most common and serious long-term complications of diabetes7. In addition, tortuosity75

has also been associated with various ocular diseases, such as retinopathy of prematurity8,76

herpes simplex keratitis9, and fungal keratitis10. In order to reveal the correlation between77

the degrees of fiber tortuosity and associated medical conditions, the tortuosity levels of nerve78

fibers could be labeled in a rough band of 3-5 grades,1,3,11 and could also be labeled using an79

interval of real numbers with refined resolution of 0.1 or even 0.0112. However, such empirical80

assessment is subjective. It may lead to substantial inter and intra-observer variability, and81

also making it susceptible to human errors3,12. With the ever increasing collection of high82

resolution IVCM images, the inefficient labor-intensive approach necessities an automated83

tortuosity assessment method.84

Once the corneal nerves are traced in IVCM images, each nerve fiber can be represented85

as pixels which form a curvilinear structure and its tortuosity can then be measured. The86

definition and measurement of tortuosity has been extensively studied on medical13,14 and87

other forms of images in the literature15,16. A number of measures have been defined with88

respect to different criteria, such as the length-based17,18,19, the angle-based12,13,15,20, and the89

curvature-based measures14,21. It is worth noting that most of these existing measures are90

designed for quantifying specific anatomical structures (such as retinal vessel17, intracerebral91

vasculature18, and corneal nerve22). As such, there is no universal agreement as to which92

standard or measure to apply for when quantifying the tortuosity of nerve fibers.93

Many of the existing methods in the literature focus on defining and calculating the94

tortuosity of individual curvilinear structures, i.e., the fiber-level tortuosity. However, in95
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working towards the automated grading of IVCM images with respect to the tortuosity of96

corneal nerve fibers, a step that has substantial influence on the quality of grading is ex-97

tracting image-level tortuosity from fiber-level tortuosity. In the literature, this is conducted98

through the simple average of fiber-level tortuosity degrees or the weighted average by fiber99

lengths in many existing automated methods11,23,24. However, as the nerve fibers of varying100

lengths could exhibit considerably different tortuosity characteristics, this approach could101

lead to misclassification of nerve fibers, particularly those that consist of only a handful102

of highly twisted nerves among many other flat ones, which are empirically labeled highly103

tortuous by ophthalmologists1. Furthermore, when multiple measures are simultaneously104

utilized, the averaging methods for extracting image-level features can be different for d-105

ifferent fiber-level tortuosity measures25. Although a number of researches have pointed106

out the importance of image-level feature extraction to tortuosity assessment1,3,25, to our107

best knowledge, so far there is no such a pipeline that can choose the aggregation methods108

automatically rather than empirically calibrated.109

In order to address the issues that may result from existing approaches, a module which110

enables automated aggregation of tortuosity on individual fibers is proposed and added111

to the conventional pipeline in this paper, whereby both experts-defined and data-driven112

weighting vectors are employed in the aggregation. To be more specific, an image-level113

feature extraction method based on the Ordered Weighted Averaging (OWA) and k-Nearest-114

Neighbor guided Dependent OWA (kNNDOWA) is proposed. For each fiber-level tortuosity115

measure, the tortuosity degrees of all nerve fibers in an image are aggregated by the OWA116

with a set of stress functions that aims to enhance the diversity and interpretability of117

extracted image-level features. Furthermore, the kNNDOWA is also employed to learn the118

weight of each nerve fiber by using an unsupervised approach. These initially generated119

features are refined by supervised feature selection techniques and the selected features are120

then fed into classifiers to perform the corneal nerve tortuosity grading. The proposed121

method (named as Mixed OWA and Feature Selection, MOWAFS) is verified on both a122

public and an in-house data sets. The in-house collection includes 300 images of the corneal123

subbasal nerve plexus obtained through a scanning laser confocal microscope in normal124

and pathologic subjects. Experimental results demonstrate the superior performance of the125

proposed methods over conventional approaches with aggregation operators including the126

averaging, maximum, and length-weighted averaging. It is worth noticing that there exists127
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end-to-end models such as the use of convolutional neural network, which enables to directly128

generate predictions from images through a “black-box” model26. However, its application129

in grading the tortuosity of nerve fibers is not preferred so far, owing to the very limited130

labeled data available as well as the requirement for the extraction of meaningful knowledge131

to clinicians.132

II. Materials and Methods133

II.A. Materials134

Two IVCM image data sets are employed in this paper. Apart from being tested on the135

public1 Corneal Nerve Tortuosity data set27 (indicated as PUB hereinafter), which consists136

of 30 images labeled into 3 grades as low, mid, and high, the proposed approach is also137

applied to a recently collected in-house data set with a larger collection. In order to validate138

the effectiveness of MOWAFS in clinical practice, the in-house data set (indicated as OWN139

hereinafter) comprises 300 images which are randomly selected from the IVCM library of140

Peking University Third Hospital. All images were taken in normal and pathological subjects141

with a Heidelberg Retina Tomograph HRT-III combined with Rostock Cornea Module. No142

preference on disease, age, or corneal location was set over the selection of images. However,143

images containing abnormal structures such as noticeable langerhans cells and obvious neu-144

romas, were excluded to avoid biases in the automated segmentation of fiber nerves. The145

images are acquired in the view field of 400× 400µm2 and are stored with the resolution of146

384× 384 pixels.147

The images are graded into 4 levels of tortuosity based on the Laura protocol2 by an148

experienced ophthalmologist. The original protocol categorizes the IVCM images into 5149

grades with respect to their tortuosity: Grade 0, the nerve fibers appear almost straight;150

Grade 1, the nerve fibers are slightly tortuous; Grade 2, the nerve fibers appear moderately151

tortuous; there are frequent changes in the direction of the fiber, although these are of small152

amplitude; Grade 3, the nerve fibers are quite tortuous and the amplitude changes in the153

fiber direction can be quite severe; Grade 4, the nerve fibers appear very tortuous, showing154

abrupt and frequent changes in the nerve fiber direction. Since it is practically difficult155

1Available at: http://bioimlab.dei.unipd.it/
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for the clinician to discriminate the images of Grade 0 over those of Grade 1, the original156

Laura protocols of Grade 0 and 1 are merged. Therefore, the employed grading scales of157

the in-house data set are from Grade 1 to Grade 4 with images distributed in corresponding158

grades being 41, 173, 66, and 20, respectively.159

As the first step of the automated tortuosity grading pipeline, segmentation is required160

to locate the nerves in IVCM images. The nerve fibers shown on IVCM images from both the161

PUB and OWN data sets are segmented by a recently proposed deep learning based algorithm162

named CS-NET28. In addition, for the PUB data set, the nerve fibers were also manually163

segmented by an ophthalmologist who traced the centerlines of all visible nerves. Depending164

on whether the images are segmented automatically or manually (indicated as -auto and -165

man, respectively), these result in three data sets (PUB-auto, OWN-auto, and PUB-man) in166

total for subsequent validation. Figure 1 shows examples of original in-house images as well167

as corresponding images segmented automatically. It can be seen from Figure 1F and 1G168

that artifacts such as small dendritic cells exist in some IVCM images. These artifacts may169

be regarded as dots or very short curves by the selected segmentation method. Therefore,170

a simple post-process is employed to delete the segments which are shorter than 10 pixels171

following the running of CS-NET.172

II.B. Framework of Automated Tortuosity Grading173

The conventional pipeline of automated corneal nerve tortuosity grading consists of n-174

erve fiber segmentation, fiber-level and image-level feature extraction, and tortuosity clas-175

sification (as shown in Figure 2). Given an IVCM image Imgp ∈ U, the nerve fibers176

Seg1, Seg2, · · · , Segm on Imgp are first located by image segmentation techniques, which177

can be performed either through manual annotations or an automated algorithm. Then,178

M measures F 1, F 2, · · · , FM , which follow different criteria and standards, are calculated179

on each nerve segment Segi, i = 1, 2, · · · ,m to characterize its degrees of tortuosity by re-180

al numbers. The collected tortuosity degrees of Segi with regard to the M measures are181

represented by (f 1
i , f

2
i , · · · , fMi ), where large values indicate high tortuosity.182

An aggregation operator Agg : Rm → R is then applied on the tortuosity degrees183

of all nerve fibers with respect to a certain measure, which generates image-level feature184

(a1p, a
2
p, · · · , aMp ) for image Imgp. As mentioned before, the averaging and length-weighted185
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averaging of all or selected segmented nerve fibers are commonly employed as the Agg.186

Formally, given the length of Segi denoted as li and the tortuosity degree of Segi with187

respect to measure F I is f Ii , I = 1, 2, · · · ,M , the image-level tortuosity can be calculated188

as length-weighted average3:189

Agglength(f I1 , f
I
2 , · · · , f Im) =

∑m
i=1 lif

I
i∑m

i=1 li
(1)190

or simply as arithmetic average:191

Aggaverage(f I1 , f
I
2 , · · · , f Im) =

∑m
i=1 f

I
i

m
. (2)192

In doing so, the M fiber-level tortuosity measures F 1, F 2, · · · , FM are transformed into M193

image-level features A1, A2, · · · , AM , respectively. Finally, a classifier is trained to assign each194

image with one of N tortuosity grade labels g1, g2, · · · , gN . A feature selection algorithm195

can be applied on the image-level features to select the most discriminative ones for the196

tortuosity classification optionally22,29.197

II.C. Fiber-level Feature Extraction198

The tortuosity has been estimated using various criteria, which are derived from correspond-199

ing geometric measurements such as length, angle, and curvature. Since there is no universal200

measure that can capture the characteristics of all types of tortuosity, multiple measures are201

employed simultaneously to evaluate the fiber-level tortuosity. The following introduces how202

various measures are calculated and utilized in this paper.203

As the IVCM images are stored as pixels, the discrete approximation of geometric204

quantities is employed to measure the degree of tortuosity of a nerve fiber. Formally, given the205

centreline of nerve fiber Segi described by the ordered set of pixels [(xj, yj)|j = 1, 2, · · · , n],206

amongst which (x1, y1) and (xn, yn) represent the two ends of the centreline, the chord length207

Lx and curve length Lc, are defined as208

Lx =
√

(x1 − xn)2 + (y1 − yn)2209

and210

Lc =
n∑
j=2

√
∆x2j + ∆y2j ,211
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respectively, where ∆xj = xj − xj−1, j = 2, 3, · · · , n. A simple and widely used measure212

of curvilinear structure tortuosity, i.e., the Arc Length over Chord Length Ratio, is then213

defined as the ratio between curve length and the chord length of Segi
30:214

τL(Segi) = Lc/Lx. (3)215

A number of tortuosity measures are defined base on the concept of curvature K, which216

is a metric for indicating directional change of investigated curve. For each point (xj, yj) in217

Segi, the curvature K(j) is defined as218

K(j) =
∆2xj∆yj −∆xj∆

2yj
(∆x2j + ∆y2j )

3/2
,219

where ∆2xj = ∆xj − ∆xj−1, j = 3, 4, · · · , n. In14, τC : the sum of absolute K(j) and τSC :220

the sum of squared K(j) over the whole segment Segi are employed as measures of the221

nerve directional variability. In23, the maximum of absolute K(j) over a corneal nerve fiber222

(indicated as τMC) is also used as a measure of tortuosity. The τC , τSC , and τMC are defined223

as follows:224

τC(Segi) =
n∑
j=3

|K(j)|, (4)225

τSC(Segi) =
n∑
j=3

K(j)2, (5)226

τMC(Segi) = max
{j=3,··· ,n}

|K(j)|. (6)227

An alternative curvature-based tortuosity measure has been proposed in31, where the deriva-228

tive of the curvature is used to quantify the directional change of a line. Similar to the τSC ,229

the tortuosity level can be defined as the sum of the squared derivative of curvature:230

τDCI(Segi) =
1

Lc

n∑
j=4

(K(j)−K(j − 1))2, (7)231

where the Lc is the curve length and K(j) is the curvature of point (xj, yj) in Segi as232

described in the previous text.233

It may be assumed that the greater the number of curvature sign is changed along a234

curve, the more tortuous the curve is. Therefore, several tortuosity measures are defined235
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base on the concept of inflection points (also known as twists). The number of inflection236

points n′ equals to the number of changes in sign of the curvature K(j) for planar curves237

17. Since the tortuosity measure τL may not distinguish between smoothly curved structures238

and structures that make abrupt changes in direction, a new tortuosity based on τL, i.e., the239

Inflection Count Metric (ICM) is proposed in18:240

τICM(Segi) = (n′ + 1) · τL(Segi). (8)241

Moreover, if a turn curve sj′ , j
′ = 1, 2, · · · , n′+1 is defined as the portion of a nerve segment242

Segi located between two consecutive twists (or the portion between one end of Segi to its243

nearest twist), it can be assumed that the greater the amplitude (maximum distance of the244

curve from the underlying chord) of a turn curve, the greater the tortuosity associated with245

it1. Then, the tortuosity of the nerve segment Segi is calculated as:246

τ(Segi) =
n′

n′ + 1

1

Lc

n′+1∑
j′=1

(τL(sj′)− 1). (9)247

An angle-based tortuosity measure termed Slope Chain Code (SCC) is proposed in15,248

where a curve is traced by a chain, which is essentially a sequence of fixed-length straight249

lines placed along the curve. The corresponding slope angle between such two adjacent250

straight line segments is employed to estimate the curvature of the point at which the end251

of a line segment and the original curve intersect. As the original curve is approximated by252

a sequence of constant-length segments in SCC, the selection of length will not only decide253

the number of sampling points in SCC calculation, but also affect the resultant tortuosity254

degrees. Therefore, since it is difficult to decide the length of line segments in SCC for255

corneal nerve fibers in this paper, the constant-length line segments in SCC are replaced256

by straight line segments between two points which achieve the local maximum and local257

minimum of K adjacently. Figure 3 illustrates the calculation of slope angle α at the local258

maximum point.259

Given that the total number of points which achieve local maximal K and adjacent to260

two local minimal K points is n′′, the slope angles at such points are αj′′ , j
′′ = 1, 2, · · · , n′′,261

the tortuosity measure τMS is defined as262

τMS(Segi) =
1

n′′

n′′∑
j′′=1

αj′′ . (10)263
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As summarized in Table ??, eight geometric measures designed for tortuosity evaluation264

of curvilinear structures are employed for fiber-level feature extraction on IVCM images.265

Since there is no universal agreement as to which measure to apply for when quantifying the266

tortuosity of nerve fibers, this paper empirically uses a comprehensive range of measures,267

which are defined following different geometric standards. It is worth noticing that other268

fiber-level tortuosity measures can also be employed in the MOWAFS framework.269

Each measure is deemed to be a mapping from nerve fibers to real-valued numbers270

where high values represent high tortuosity. Once the tortuosity of m traced nerve fibers271

in an IVCM image are obtained via such a fiber-level measure (the value of m may vary in272

different IVCM images), the next step aims to aggregate the tortuosity values of the m fiber273

segments to form an image-level tortuosity value. This is nontrivial as IVCM images usually274

contain a variable number of corneal nerve fibers which could show considerably different275

tortuosity characteristics3. The following subsections present the proposed method which276

can effectively extract image-level features for the tortuosity grading.277

II.D. Image-level Feature Extraction278

It turns out that1 the averaged fiber-level tortuosity could be rather crude and cannot provide279

an accurate estimation of image-level tortuosity, particularly those images that consist of280

only a handful of highly twisted nerves among many other flat ones, but are empirically281

labeled highly tortuous by ophthalmologists. With the existing averaging method, high282

tortuosity values from a small amount of nerves are averaged out in comparison with low283

tortuosity values from the majority, which leads to low estimation of tortuosity at the image284

level. In order to solve this problem, the OWA based image-level feature extraction method285

is proposed, which aims to flexibly adjust the contributions made by different nerve fibers286

through tuning weights. As an alternative to OWA, in order to promote nerve fibers that are287

deemed more reliable and demote ones that are likely to be outliers, the kNNDOWA is also288

employed in the image-level feature extraction, by considering the similarity of individual289

fibers with regard to its nearest neighbors. The flowchart of the proposed method named as290

Mixed OWA and Feature Selection (MOWAFS) is shown in Figure 4.291

Last edited Date : II.D. Image-level Feature Extraction
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II.D.1. OWA-based Feature Extraction292

In case where multiple arguments are required to aggregate in order to produce a more robust293

outcome32,33, the simple average, maximum, and minimum are among the popular aggrega-294

tion operators. Apart from these conventional operators, the family of OWA operators is an295

alternative and more general type of operator for aggregation. The distinguishing aspect of296

OWA is the reordering step in which the input values are rearranged in descending/ascending297

order before they are integrated into a single aggregated one34.298

Formally, a mapping Aggowa : Rm → R is called an OWA operator if299

Aggowa(f1, f2, · · · , fm) =
m∑
i=1

wifπ(i) (11)300

where fπ(i) is a permutation of fi, which satisfies that fπ(i) is the i-th largest of the fi, and301

wi ∈ [0, 1] is a collection of weights that satisfies
∑m

i=1wi = 1, i = 1, 2, · · · ,m.302

The weights of an OWA operator are hereafter denoted as a weighting vector W =303

(w1, w2, · · · , wm), in which wi is associated with the i-th largest input values. Different304

from weighted averaging, the ordering of inputs gives OWA a nonlinear feature. Different305

choices of the weighting vector W can lead to different aggregation results. For example,306

the classical averaging is an special case of OWA by setting wi = 1/m. The maximum307

operator can be formed by OWA with w1 = 1 and wi = 0 for i 6= 1, and the minimum308

can be formed by wm = 1 and wi = 0 for i 6= m. An important feature of the OWA309

operator is that it provides an output value between the maximum and the minimum of the310

arguments. A straightforward way of applying OWA to the image-level feature extraction is311

by defining a feature AI based on the fiber-level tortuosity measure F I , as its value of Imgp312

is aIp = Aggowa(f I1 , f
I
2 , · · · , f Im), I = 1, 2, · · · ,M .313

The conventional aggregation operators are inflexible in the utilization of expert per-314

ceptions to control the aggregation behavior. In OWA, a simple mechanism named stress315

function has been introduced for deriving weights with explicit andness/orness and attaining316

interpretability. Let the stress function35 h : [0, 1]→ R+ be a non-negative function on the317

unit interval. The OWA weighting vector W = (w1, · · · , wi, · · · , wm) can then be defined as318

319

wi =
h( i

m
)∑m

i=1 h( i
m

)
, (12)320
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such a function h is termed a stress function for OWA35.321

Since the number of segmented nerve fibers m varies in different IVCM images, the322

number of input values and the number of weights are different when OWA is applied to323

aggregate the fiber-level features on different images. Therefore, in the OWA-based image-324

level feature extraction, a stress function can be predefined with the corresponding weighting325

vector derived based on the number of nerve fibers on each IVCM image. The OWA weighting326

vector obtained with the associated stress function can be directly used to explain the overall327

aggregation behavior. That is, the values from a stress function h(z) on the left side of [0, 1]328

reflect weights associated with the larger inputs, i.e., nerve fibers with higher tortuosity329

degrees, whereas the values associated with the right side of the unit interval reflect the330

weights associated with smaller inputs, i.e., nerve fibers with lower tortuosity degrees.331

Stress functions of different shapes can be used to impose constraints over the distribu-332

tion of weights in OWA and hence resulting in different andness/orneess of the aggregation.333

Andness suggests that the aggregated result is influenced by smaller input values and the334

aggregation operator behaves similarly to conjunction, while orness indicates that the ag-335

gregated result is influenced by greater input values and the aggregation operator behaves336

similarly to disjunction. Figure 5 shows the examples of stress functions which define the337

behavior of OWA operators.338

An indicator which can be adopted to quantify the andness/orness of an OWA aggrega-339

tion operator is the Attitudinal Character (A-C)35. In particular, the attitudinal character340

of an OWA operator can be calculated from the stress function h as341

A-C(h) =

∫ 1

0

∫ t
0
h(z)dz∫ 1

0
h(z)dz

dt. (13)342

The value of attitudinal character gives an idea that an aggregation operator behaves simi-343

larly to conjunction/andness (influenced by smaller argument values) if A-C is closer to 0 or344

disjunction/orness (influenced by larger values) if A-C is closed to 1. It can easily be shown345

that the attitudinal character of the minimum, average, and maximum are 0, 0.5, and 1,346

respectively.347

It is worth noticing that the attitudinal character can also be calculated from the weights348
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by349

A-C(W ) =
1

m− 1

m∑
i=1

((m− i)wi) (14)350

and A-C(W ) → A-C(h) as m → ∞. Since the number of nerve fibers m varies with351

different IVCM images and a stress function is used to derive weighting vectors for all352

images in a data set, the most accurate way to calculate A-C(h) is using Eqn. (13) directly.353

However, in practical experimentations and applications, it is more convenient to calculate354

an approximation of A-C(h) by using A-C(W ) and Eqn. (12) while setting the value of m355

to a very large integer.356

Instead of using the conventional minimum, average, and maximum, the OWA oper-357

ator is able to generate aggregated results in between the minimum and maximum. More358

specifically in this paper, each of the M(M = 8) tortuosity measures will form an input359

to twenty-one OWA operators whose A-C values are distributed in [0, 1]. The linear stress360

function h(z) = 1 + u(z − 1) is employed to derive the weighting vectors for OWA-based361

image-level feature extraction. By setting u = 0.2, 0.4, · · · , 1.0, 1
0.8
, 1
0.6
· · · , 1

0.2
, nine weight-362

ing vectors are generated. For each of the generated weighting vector W , 1 − W is also363

employed. Including the features extracted by using minimum, average and maximum, a364

total number of M by 21 image-level features can be generated based on the M tortuosity365

measures for each IVCM image.366

II.D.2. kNNDOWA-based Feature Extraction367

While aggregating the tortuosity at nerve fiber level, instead of simply adopting a fixed368

set of weighting vectors, whose generation is independent of the specific input values, this369

paper also explores a data-driven generation of weights by considering the reliability of each370

individual inputs with respect to its neighbors. When automated segmentation algorithms371

are employed in the pipeline of tortuosity grading, inaccurate segmentation may generate372

outlier values in the tortuosity measurement. A typical weighting vector given by a certain373

OWA operator may suffer from assigning largest weights to outlier arguments (e.g., maximum374

and minimum), resulting in biased or even false results. Therefore, an unsupervised learning375

mechanism is also adopted to differentiate between nerve fibers that are deemed more reliable376

and those that are likely to be outliers by considering the interplay between their tortuosity377

values.378

Last edited Date : II.D. Image-level Feature Extraction



Running title here: Printed September 28, 2020 page 12

A type of OWA operator named Dependent OWA has been introduced in the litera-379

ture36, in which the values of inputs are used to determine the weights in the aggregation380

in order to produce reliable aggregated outcomes. In particular, the k-Nearest-Neighbor381

guided Dependent OWA (kNNDOWA)37 determines the reliability of input values (i.e., the382

tortuosity degrees) by its nearest neighbors. This modeling of reliability helps differentiate383

amongst a set of nerve fibers in an IVCM image such that a certain tortuosity degree of384

a nerve fiber which is similar to those of other nerve fibers is deemed reliable and can be385

assigned a higher weight. In contrast, a tortuosity degree that is different from its neighbors386

is assigned a lower weight. Formally, the reliability of an input value fi, i = 1, 2, · · · ,m in387

kNNDOWA is defined as388

Rk
i = 1−

k∑
t=1

|fi − nfit |/k

max
i′,i′′∈{1,2,··· ,m}

|fi′ − fi′′|
, (15)389

where nfit is the value of t-th nearest neighbor (t = 1, 2, · · · , k) of the input tortuosity fi, and390

the absolute difference between two tortuosity degrees is used to perform neighbor-searching.391

In this paper, the k in kNNDOWA is set to the round number of m/3 for each image, which392

accounts one third of nerve fibers in an IVCM image while calculating the reliability and393

subsequently the weight for the tortuosity of each nerve fiber.394

Having obtained the reliability degrees of all tortuosity values as per Eqn. (15), they can395

then be normalized to generate the weighing vector for nerve fibers. Given the reliability Rk
i396

of each tortuosity degree fi, the corresponding kNNDOWA operator Aggknn-dowa : Rm → R397

can be defined by398

Aggknn-dowa(f1, f2, · · · , fm) =

∑m
i=1R

k
i fi∑m

i=1R
k
i

. (16)399

For each fiber-level tortuosity measure F I , an image-level feature AI can be defined as the400

feature value of Imgp, i.e., aIp = Aggknn-dowa(f I1 , f
I
2 , · · · , f Im), I = 1, 2, · · · ,M . It is worth401

noticing that by using the kNNDOWA based feature extraction, the number of extracted402

feature remains the same as the number of selected tortuosity measures.403

II.D.3. Supervised Feature Selection based on Wrapper404

Once the tortuosity measurements of multiple nerve fibers are aggregated by OWA and405

kNNDOWA with respect to all predefined measures as per the above procedure, a supervised406
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feature selection is performed to identify the most informative features utilizing the manual407

grading as ground truth. This also comes with two more advantages: First, the removal of408

redundant features improves computational efficiency for the subsequent operations. Second,409

it simplifies the resultant model, making it easier to interpret by clinicians.410

Although a wide range of methods have been established for feature selection, the Wrap-411

per feature selection38 is employed for its being highly effective at retaining or improving412

the accuracy of classification. Moreover, combing with a forward stepwise searching scheme,413

the Wrapper feature selection also retains original feature semantics and enables to explore414

the feature selected at each iteration, which can be helpful for clinicians to decompose the415

rationale against domain expertise. In particular, the feature selection algorithm employed416

here uses classification accuracy to select a subset of features through a process which starts417

off with an empty feature subset. In each iteration, a most influential feature that obtains418

the biggest gain in the classification accuracy is added to the feature subset. This is iterated419

until the accuracy does not increase by adding remaining features. It is worth noticing that420

other feature selection algorithms39 can also be employed in this MOWAFS to select an421

effective subset of the extracted image-level features.422
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Figure 1: A-H are examples of corneal nerve images with different
tortuosity levels of the OWN dataset (columns from left to right:
Grades 1 to 4) and I-L result from the automated fiber tracing of
E-H, respectively.
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Figure 2: The framework of automated corneal nerve tortuosity
grading with an explicit feature extraction

Figure 3: An example for the calculation of straight line segments
(solid red lines) and the slope angle α. The dots and circles indicate
the points of local maximal and minimal K, respectively.

Figure 4: The flowchart of the MOWAFS method, in which the
input is IVCM images with segmented nerve fibers and output is
a set of image-level features for tortuosity analysis. Two types of
aggregations, the OWA and kNNDOWA, are jointly used in this
method.
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Figure 5: Examples of linear stress functions. The higher values
from a stress function on the right/left side of [0, 1] reflect higher
weights associated with nerve fibers with lower/higher tortuosity
degrees in the OWA aggregation.
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III. Results423

Once the nerve fibers are segmented in IVCM images by the deep learning-based algorithm424

CS-NET28, tortuosity values of each single nerve fiber can be calculated using those measures425

which are summarized in Table ?? and detailed in Section II.C.. For each of the eight426

tortuosity measures, the OWA based image-level features defined by Eqn. (11) with twenty-427

one weighting vectors (see Section II.D.1. for details), and the kNNDOWA based image-level428

feature defined by Eqn. (16) are extracted.429

Three classic classification algorithms are employed to evaluate the performance of fea-430

ture subsets in Wrapper, i.e., the Support Vector Machines with radical basic function kernels431

40, k Nearest Neighbors41, and C.45 Decision Tree42 (denoted in the following as SVM, NN,432

and DT, respectively). The Weka43 implementations of the three classification models are433

employed in the experiment. In addition to the proposed MOWAFS, the features extracted434

by using kNNDOWA independently and the OWA extracted features with Wrapper feature435

selection (OWA-FS) are also tested. Since the number of extracted image-level features436

equals the number of employed fiber-level tortuosity measures by using conventional aggre-437

gation methods, the maximum size of selected feature subsets in Wrapper is set to M , (i.e.,438

8) in this experiment for fair comparison.439

Extracted image-level features now form input to the classification models for the overall440

tortuosity grading. The classification accuracy results across the PUB-man, PUB-auto, and441

OWA-auto data sets are summarized in Table 1, where the row represents the conventional442

methods: (Average, Maximum, LenA: length-weighted averaging) and the new methods443

(OWA-FS, kNNDOWA, MOWAFS) used for extracting features. For the PUB data set,444

the original labels of “High, Medium, and Low” are employed as the ground truth of the445

classification task, and for the OWN data set, the manual labels of “Grade1-4” are employed446

as the ground truth. The accuracy is calculated as the ratio of correctly classified images447

over all images in the data set. Following the standard performance assessment protocol448

employed in3, the weighted accuracy (wAcc), the sensitivity (wSe), the specificity (wSp),449

positive predicted value (wPpv) and negative predictive value (wNpv), which are defined as450

follows, are also employed to evaluate the performance based on the SVM and the results451
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are reported in Table 2.452

wAcc =
N∑
c=1

rc
TPc + TNc

TPc + TNc + FPc + FNc

, (17)453

454

wSe =
N∑
c=1

rc
TPc

TPc + FNc

, (18)455

456

wSp =
N∑
c=1

rc
TNc

TNc + FPc

, (19)457

458

wPpv =
N∑
c=1

rc
TP

TPc + FPc

, (20)459

460

wNpv =
N∑
c=1

rc
TNc

TNc + FNc

, (21)461

where TPc, TNc, FPc, and FNc are the true positives, true negatives, false positives, and462

false negatives, respectively, for the c-th grade (c = 1, 2, · · · , N). N denotes the number of463

total tortuosity grades, i.e., N = 3 for PUB and 4 for OWN. rc represents the percentage of464

images whose grade is gc in a data set.465

Each value in Tables 1 and 2 is calculated by averaging 10 random runs of 10-fold466

cross validation, with the best performance for each performance criterion highlighted in467

boldface. To validate the statistical significance of the experimental results, the paired t-test468

is carried out between the LenA and MOWAFS. The differences of all such paired results469

are statistically significant with p-values are smaller than 0.05.470

Table 1: Summary of classification accuracy (%)
PUB-man PUB-auto OWN-auto

SVM NN DT SVM NN DT SVM NN DT
Average 73.00 75.00 75.00 64.33 64.00 55.00 60.57 64.60 64.57

Maximum 66.34 57.33 67.00 43.66 44.33 58.67 51.69 55.57 55.60
LenA 71.01 73.33 51.67 75.67 76.67 75.00 59.31 61.37 61.97

OWA-FS 88.66 90.73 90.00 78.67 83.79 84.32 66.25 69.22 69.02
kNNDOWA 73.00 75.33 65.33 75.00 69.67 66.00 66.12 64.80 62.97
MOWAFS 89.01 91.19 90.00 82.33 85.54 86.32 69.87 69.86 70.94

As clearly reflected in Table 1, performances computed on top of features extracted471

by the proposed method dominate those calculated using the conventional averaging and472
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Table 2: SVM classification performance on image-level
features (%)

wAcc wSe wSp wPpv wNpv

P
U

B
-m

an

Average 82.00 73.00 86.50 74.69 87.02
Maximum 77.56 66.33 83.17 70.48 83.45

LenA 80.67 71.00 85.50 69.43 86.61
OWA-FS 92.44 88.67 94.33 88.60 94.49
kNNDOWA 82.00 73.00 86.50 72.75 86.78
MOWAFS 92.67 89.00 94.50 88.98 94.67

P
U

B
-a

u
to

Average 76.22 64.33 82.17 63.97 82.67
Maximum 62.44 43.67 71.83 43.02 72.17

LenA 83.78 75.67 87.83 75.19 88.61
OWA-FS 85.78 78.67 89.33 85.30 91.93
kNNDOWA 83.33 75.00 87.50 77.70 88.76
MOWAFS 88.22 82.33 91.17 84.91 92.50

O
W

N
-a

u
to

Average 73.71 62.08 58.13 51.05 80.79
Maximum 67.79 56.93 42.99 36.48 59.51

LenA 72.87 61.47 57.61 50.27 78.74
OWA-FS 77.50 68.72 62.76 63.57 87.10
kNNDOWA 77.41 66.64 65.32 56.12 84.20
MOWAFS 79.91 72.28 67.54 62.90 87.24
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length-weighted averaging methods, regardless of the selection of classifier and testing data.473

Notably, the averaged performance using the proposed MOWAFS has significantly improved474

upon the Average and LenA methods by 15.44% and 14.34%, respectively.475

Table 2 shows that the OWA based method (OWA-FS) outperforms the conventional476

methods (Average, Maximum, and LenA) over all performance criteria, which indicates477

that weighting nerve fibers with respect to tortuosity measures instead of nerve length can478

extract image-level features of higher quality, while the independent use of kNNDOWA479

based method is not as good as the OWA based ones. However, the joint use of OWA480

based and kNNDOWA based features, i.e., the MOWAFS, also outperforms the conventional481

aggregations and the OWA-FS over most of the performance criteria for the tested data sets.482

This also demonstrates it is beneficial to utilize the reliability of each fiber’s tortuosity degree,483

which leads the generation of data-driven weights in extracting image-level features.484

Although the experimental results show high accuracy for the proposed methods, the485

difference between results of the PUB data set and OWN data set is apparent. One pos-486

sible explanation is that the OWN data set is labeled by only one clinician, thus making487

it potentially suffer from high intra-observer variability. Since the MOWAFS is based on a488

supervised feature selection mechanism, the quality of training data is crucial to the perfor-489

mance of the resultant model. The subjectivity embedded in the protocols of manual corneal490

nerves tortuosity analysis directly influences the accuracy of labeled data, which forms a big491

challenge to building an accurate automated system for corneal nerve tortuosity grading.492

The proposed MOWAFS provides a computational way to characterize the clinicians’ per-493

ception of how the tortuosity of multiple nerve fibers in an IVCM image is aggregated. By494

using the proposed method, accuracy improvement on both the PUB and OWN data sets495

validates that the modeling and optimization of the fiber-level tortuosity aggregation is a496

significant step in building an effective automated corneal nerve tortuosity grading system497

based on IVCM images.498
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IV. Discussion499

IV.A. Analysis on Correlations of Image-level Features500

To evaluate the correlation between the extracted features and the ground truth provided by501

ophthalmologists, the Spearman’s rank correlation coefficient rs is employed, which falls in502

the range of [−1,+1] with the +/− sign indicating the positive/negtive correlation between503

the two ranks. The resultant values of rs between image-level features extracted by different504

approaches and the ground truth are shown in Figure 6, where the Y-axis is rs and the505

X-axis represents the attitudinal character of a weighting vector generated by OWA, which506

indicates the aggregation behavior. The results of OWA-based features are represented as507

curves marked by circles. The results of kNNDOWA-based and length-weighted features508

(LenA) are represented as solid and dash straight lines, respectively.509

From an overall perspective, regardless of the data sets or the fiber-level tortuosity mea-510

sures used, significantly different correlations between the ground truth and the extracted511

image-level features may be obtained depending on the choice of a particular aggregation512

method. This clearly demonstrates the significance of image-level feature extraction to the513

overall automated evaluation of corneal nerve tortuosity. To examine more closely, all the514

highest rs values are achieved using features generated by OWA and kNNDOWA based515

methods for the OWN-auto data set. For the PUB-auto data set, the OWA and kNNDOWA516

based features also result in higher or at least comparable correlation values that are ob-517

tainable by the conventional length-weighted features with only one exception at F 5. With518

two exceptions at F 2 and F 7 out of all eight metrics, similar results are achieved on the519

PUB-man scenario. Instead of favoring any particular choice of aggregation, the proposed520

methods are able to generate a variety of features, some of which are clearly more correlated521

with the ground truth than the conventional length-weighted method.522

The OWA operator can generally be characterized by the attitudinal character A-C523

with the overall aggregation showing more andness if A-C is closer to 0 or more orness if524

A-C is closer to 1. With regard to Figure 6, the correlations resulted from using extreme525

A-C values (i.e., close to 1 or 0), are generally not as high as those using mid-range values.526

Another observation is that the highest values of rs do not result from using aggregator with527

A-C(W ) = 0.5 (i.e., the conventional average operator), which generally lie in the range of528
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[0.2, 0.4] or [0.6, 0.8]. As such this demonstrates OWA operators with appropriately selected529

attitudinal character can be more effective than the classical aggregation operators such as530

minimum, maximum, and average for extracting image-level features.531

Another interesting point to note is that correlations on the in-house data set are gen-532

erally lower that those achieved on the public one. The gap is possibly attributed to a533

significantly higher number of instances embedded in the in-house collection. For manual534

grading involving subjective bias, it is naturally more difficult for experts to reach higher535

consensus on a data set with more instances, hence more challenging to model the manual536

grading process. This in turn calls for data-driven methods to select features of the most537

indicative, which then forms input to powerful and interpretable classifiers44 to advance the538

tortuosity evaluation.539

IV.B. Analysis on Selected Features540

The proposed method generates a set of aggregation operators whose weighting vectors541

are predefined or learned from the input values, thereby possibly resulting in image-level542

features being redundant or even misleading in the classification. The Wrapper based feature543

selection is employed to select a subset of those features of the most informative to the544

tortuosity evaluation. Figure 7 demonstrates the iterative generations of the algorithm on545

three data sets, where the X-axis indicates the number of iterations and the Y-axis indicates546

the classification accuracy. Each data point is labeled with the choice of fiber-level tortuosity547

measure and the underlying attitudinal character with respect to the OWA based image-level548

feature. It is worth noticing that, as more instances and higher complexity are contained549

in the OWN-auto than those in the PUB-auto and OWN-auto data sets, both the SVM550

and DT classifiers select more than eight features before the accuracy stop increasing in the551

Wrapper.552

By using a greedy searching scheme initialized with an empty feature subset, it is not553

surprising that the accuracy increases with the increment of features selected for inclusion.554

While iteratively adding features with the Wrapper algorithm, the choice of classifier may af-555

fect the evaluation of feature subsets. Nevertheless, all the three classifiers select the features556

generated by kNNDOWA on the PUB-auto and OWA-auto data sets in the first iteration,557

which indicates that the weighting vector learned from data can be more informative than558
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those pre-defined ones in this experiment. The main reason is that the automated segmen-559

tation of nerve fibers is not as accurate as the manual tracing and the resultant tortuosity560

values of nerve fibers in an image may contain noises. By using the kNNDOWA with k561

set to a high number (e.g. in this experiment, k is one third of the number of segmented562

nerve fibers in an image), the noises in the tortuosity values are less weighted. For different563

classification algorithms, the selected features in the subsequent iterations do not remain as564

similar as the initial iteration. As the accuracy is evaluated on the feature subset, individual565

features with high rs coefficient does not necessarily indicate a better choice for the feature566

subset as a whole. Instead, individual features with small correlations (e.g., the F 1(0.00)567

in the PUB-man data set) may be selected, as their inclusion may contribute more to the568

increase of classification accuracy for the underlying feature subset.569

It can be seen from Figure 7 that all three tested classification algorithms tend to570

select fewer features on the PUB-man data set. The faster convergence and higher resul-571

tant accuracy of the Wapper algorithm on the PUB-man data set reveal the potential flaw572

of conventional tortuosity grading pipeline whereby the quality of tortuosity evaluation is573

dependent on the quality of segmentation of nerve fibers.574

What is reflected in the experiment is that despite the tortuosity degrees of individual575

nerve fibers are known, the aggregation over all nerve fibers is crucial to the final performance576

of the automated tortuosity grading pipeline. The experimental results demonstrate the577

effectiveness of the proposed MOWAFS to perform image-level feature extraction based578

on both the pre-defined and data-driven weighting vectors. This also suggests that the579

simultaneous use of multiple and diverse aggregation operators could lead to more stable580

and robust results compared with those using individual feature extraction method.581

IV.C. Limitations of MOWAFS582

Although the MOWAFS can substantially increase the accuracy using geometric measures to583

predict subjective tortuosity grading, the limitations of the proposed method are also worth584

discussing. First of all, the limited availability of corneal nerve images, particularly the lack585

of universally accepted tortuosity grading labels, restricts the experimental validation of586

any automated method including the MOWAFS. It also limits the development of machine587

learning models which requires large training examples, such as the deep learning models.588
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To our best knowledge, the MOWAFS is the first one which focuses on the formal com-589

putational modeling of clinicians’ perception in fiber-level tortuosity aggregation amongst590

the state-of-the-art automated pipelines of corneal nerve tortuosity analysis. However, it can591

be expected that the joint use of MOWAFS with other techniques such as the ensemble of592

multiple scaled images, multiple tortuosity measures, and multiple segmentation algorithms593

may produce a more robust automated system for corneal nerve analysis than the individual594

use of MOWAFS.595

From the perspective of machine learning models, the hypothesis space of MOWAFS can596

be further extended. The proposed method assumes pre-defined stress functions or aggrega-597

tion weights in OWA. A complete data-driven modeling of clinicians’ perception in fiber-level598

tortuosity aggregation should also include the learning of stress functions from labeled da-599

ta. The implementation of such a model requires experts from both machine learning and600

ophthalmology to takes efforts to investigate the types and parameters of learnable stress601

functions, and also develop proper learning algorithms for optimizing their values.602
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Figure 6: rs coefficients between ground truth and extracted image-
level features based on each tortuosity measure. The circles or
solid lines above the dot line indicate the rs values of OWA or
kNNDOWA based features are higher than those based on the
length-weighted averaging.
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Figure 7: Results of the wrapper-based feature selection. The labels
of data points indicate fiber-level tortuosity measure and the under-
lying attitudinal character value (features generated by kNNDOWA
are indicated as ’D’). For example, F 1(0.00) indicates the feature
generated from the tortuosity measure F 1 with an OWA operator
whose attitudinal character value is zero.
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V. Conclusions603

Owing to the significance of the corneal nerve in support of the examination and diagnosis604

for a number of diseases, this paper presents a transparent framework with novel image-level605

feature extraction for the tortuosity grading of corneal nerve fibers, whereby an image-level606

feature extraction approach is proposed based on two types of aggregation methods and607

feature selection. Supported with statistical tests, experimental studies on two real-world608

data sets demonstrate the effectiveness of the proposed method, in comparison with the609

conventional length-weighted averaging approach.610

Whist promising, this research also opens up an avenue for significant further investi-611

gation of applying OWA and alternative fuzzy methods45,46 for interpretable medical image612

processing. For instance, it would be potentially more effective to develop a method which613

supports the aggregation of fiber-level tortuosity with adaptive stress functions or weighting614

vectors in a supervised manner. With the present work focusing on the reliability of each615

corneal nerve fiber, it would be interesting to alternatively investigate the reliability of tor-616

tuosity measures and regions of IVCM images for tortuosity grading. Finally, the proposed617

feature extraction methods could be naturally extended to cope with a broader range of618

medical imaging tasks47.619
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Ortega. Retinal vascular tortuosity assessment: inter-intra expert analysis and corre-700

lation with computational measurements. BMC medical research methodology, 18(1):701

1–11, 2018.702

25 Neil Lagali, Enea Poletti, Dipika V Patel, Charles NJ McGhee, Pedram Hamrah, Ah-703

mad Kheirkhah, Mitra Tavakoli, Ioannis N Petropoulos, Rayaz A Malik, Tor Paaske704

Utheim, et al. Focused tortuosity definitions based on expert clinical assessment of705

corneal subbasal nerves. Investigative ophthalmology & visual science, 56(9):5102–5109,706

2015.707

26 Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,708

Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Gin-709

neken, and Clara I Sánchez. A survey on deep learning in medical image analysis.710

Medical image analysis, 42:60–88, 2017.711

Last edited Date :



Running title here: Printed September 28, 2020 page 31

27 Scarpa Fabio, Zheng Xiaodong, Ohashi Yuichi, and Ruggeri Alfredo. Automatic evalua-712

tion of corneal nerve tortuosity in images from in vivo confocal microscopy. Investigative713

Ophthalmology & Visual Science, 52(9):6404, 2011.714

28 Lei Mou, Yitian Zhao, Li Chen, Jun Cheng, Zaiwang Gu, Huaying Hao, Hong Qi, Yalin715

Zheng, Alejandro Frangi, and Jiang Liu. Cs-net: Channel and spatial attention network716

for curvilinear structure segmentation. In Medical Image Computing and Computer717

Assisted Intervention – MICCAI 2019, Proceedings, pages 721–730, 2019. ISBN 978-3-718

030-32239-7.719

29 K Narasimhan and K Vijayarekha. Automatic grading of images based on retinal vessel720

tortuosity analysis. Indian Journal of Science and Technology, 8(29):1, 2015.721

30 W. Lotmar, A. Freiburghaus, and D. Bracher. Measurement of vessel tortuosity on722

fundus photographs. Albrecht Von Graefes Archiv Fr Klinische Und Experimentelle723

Ophthalmologie, 211(1):49–57, 1979.724

31 M. Patasius, V. Marozas, A. Lukosevicius, and D. Jegelevicius. Evaluation of tortuosity725

of eye blood vessels using the integral of square of derivative of curvature. In Proceedings726

Eur. Med. Biol. Eng. Conf. (EMBEC05), page 1589, 2005.727

32 Pan Su, Changjing Shang, Tianhua Chen, and Qiang Shen. Exploiting data reliability728

and fuzzy clustering for journal ranking. IEEE Transactions on Fuzzy Systems, 25(5):729

1306–1319, 2017.730

33 Pan Su, Qiang Shen, Tianhua Chen, and Changjing Shang. Ordered weighted aggrega-731

tion of fuzzy similarity relations and its application to detecting water treatment plant732

malfunction. Engineering Applications of Artificial Intelligence, 66:17–29, 2017.733

34 R.R. Yager. On ordered weighted averaging aggregation operators in multicriteria de-734

cisionmaking. Systems, Man and Cybernetics, IEEE Transactions on, 18(1):183–190,735

1988.736

35 R.R. Yager. Using stress functions to obtain owa operators. Fuzzy Systems, IEEE737

Transactions on, 15(6):1122–1129, 2007.738

Last edited Date :



Running title here: Printed September 28, 2020 page 32

36 Zeshui Xu. Dependent owa operators. In Modeling Decisions for Artificial Intelligence,739

pages 172–178. Springer, 2006.740

37 T. Boongoen and Q. Shen. Nearest-neighbor guided evaluation of data reliability and its741

applications. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions742

on, 40(6):1622–1633, 2010.743

38 Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial744

Intelligence, 97(1-2):273–324, 1997.745

39 Qiang Shen, Ren Diao, and Pan Su. Feature selection ensemble. In Andrei Voronkov,746

editor, Alan Turing Centenary, pages 289–306, 2012.747

40 Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines.748

ACM Trans. Intell. Syst. Technol., 2(3), May 2011. ISSN 2157-6904. doi: 10.1145/749

1961189.1961199. URL https://doi.org/10.1145/1961189.1961199.750

41 David W. Aha, Dennis F. Kibler, and Marc K. Albert. Instance-based learning algo-751

rithms. Machine Learning, 6(1):37–66, 1991.752

42 J Ross Quinlan. C4.5 : programs for machine learning. Morgan Kaufmann Publishers753

Inc., 1992.754

43 Mark A. Hall Eibe Frank and Ian H. Witten. The WEKA Workbench. Online Appendix755

for ”Data Mining: Practical Machine Learning Tools and Techniques”, Fourth Edition.756

Morgan Kaufmann, 2016.757

44 Tianhua Chen, Changjing Shang, Pan Su, and Qiang Shen. Induction of accurate758

and interpretable fuzzy rules from preliminary crisp representation. Knowledge-Based759

Systems, 146:152–166, 2018. doi: 10.1016/j.knosys.2018.02.003. URL https://doi.760

org/10.1016/j.knosys.2018.02.003.761

45 Tianhua Chen, Qiang Shen, Pan Su, and Changjing Shang. Fuzzy rule weight modifi-762

cation with particle swarm optimisation. Soft Computing, 20(8):2923–2937, 2016. doi:763

10.1007/s00500-015-1922-z. URL https://doi.org/10.1007/s00500-015-1922-z.764

Last edited Date :

https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.knosys.2018.02.003
https://doi.org/10.1016/j.knosys.2018.02.003
https://doi.org/10.1016/j.knosys.2018.02.003
https://doi.org/10.1007/s00500-015-1922-z


Running title here: Printed September 28, 2020 page 33

46 T. Chen, C. Shang, J. Yang, F. Li, and Q. Shen. A new approach for transformation-765

based fuzzy rule interpolation. IEEE Transactions on Fuzzy Systems, pages 1–1, 2019.766

doi: 10.1109/TFUZZ.2019.2949767.767

47 Y. Zhao, J. Xie, H. Zhang, Y. Zheng, Y. Zhao, H. Qi, Y. Zhao, P. Su, J. Liu, and768

Y. Liu. Retinal vascular network topology reconstruction and artery/vein classification769

via dominant set clustering. IEEE Transactions on Medical Imaging, 39(2):341–356,770

2020.771

Last edited Date :


	Introduction
	Materials and Methods
	Materials
	Framework of Automated Tortuosity Grading
	Fiber-level Feature Extraction
	Image-level Feature Extraction
	OWA-based Feature Extraction
	kNNDOWA-based Feature Extraction
	Supervised Feature Selection based on Wrapper


	Results
	Discussion
	Analysis on Correlations of Image-level Features
	Analysis on Selected Features
	Limitations of MOWAFS

	Conclusions
	Acknowledgment
	References

