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Abstract 

Computing the charge mobility of molecular semiconductors requires a balanced set of approximations 
covering both the electronic structure of the Hamiltonian parameters and the modelling of the charge 
dynamics. For problems of such complexity, it is hard to make progress without validating independently 
each layer of approximation. In this perspective paper, we survey how all terms of the model Hamiltonian 
can be computed and validated by independent experiments and discuss whether some common 
approximations made to build the model Hamiltonian are valid. We then consider the range of quantum 
dynamics approaches used to model the charge carrier dynamics stressing the strong and weak points of 
each method on the basis of the available computational results. Finally, we discuss non-trivial aspects 
and novel opportunities related to the comparison of theoretical predictions with recent experimental 
data. 
 

1. Introduction 

Molecular semiconductors have been one of the most consistently investigated topics in chemistry and 

physics across the past few decades.1–6 The early fundamental studies on charge transport7,8 or excited 

states9 were only speculatively linked to potential applications in electronics. The situation changed 

rapidly in the early 2000s due to critical advances in the fabrication of organic electronic devices that 

enabled the reproducible measurements of intrinsic charge mobilities in single-crystal devices for a range 

of molecules in thin-film transistor configurations.10,11 These experiments had a major impact on the 

development of technology based organic thin-film transistors6 and became one of the pillars of modern 

organic electronics.12 The same experiments had a fairly unanticipated effect on the theory of molecular 

semiconductors that, by that time, seemed fairly established. It became immediately clear that the 

measured charge mobility of high purity crystals of the order of 1 cm2/Vs was too high to be fully 

consistent with a simple charge hopping mechanism and too low to be fully consistent with a band 

transport mechanism.13 While many early theories dealing with the transition regime between hopping 

and band transport existed,14 an additional complication soon became evident for molecular 

semiconductors. The thermal motion of molecules at room temperature is sufficient to cause a fluctuation 

of the transfer integrals between neighboring molecules of amplitude comparable to that of the average 

transfer integral.15 This dynamic disorder appeared to be one of the limiting factors to charge mobility,16 
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a specific feature of molecular semiconductors. It originates from the softness of the inter-molecular 

interactions and the sensitivity of the transfer integral to the small relative displacements of the 

molecules, a fact, the latter, that has been rediscovered many times in the chemical literature.17–19 

The problem of predicting the charge mobility in molecular semiconductors has since then remained in 

the spotlight of chemical physics because it combines all the desirable elements of benchmark theoretical 

problems: (i) continuous experimental interests fueled by potential applications, (ii) easy formulation of 

the problem, and (iii) failure of the traditional approaches. In essence, the problem consists in the 

prediction of the quantum dynamics in a system with strong coupling between electronic and nuclear 

degrees of freedom where it is not easy to introduce the standard approximations because all the relevant 

time/energy scales coincide. It is therefore not surprising that virtually all the tools of quantum dynamics 

simulations have been considered for this problem and a review of the proposed methodologies maps 

very well into the broad set of quantum simulation methods currently in use. 

With the proliferation of the theoretical approaches and experimental mobility data to compare with, a 

different problem soon became apparent. Most transport models, even when based on opposite 

assumptions, could reproduce the experimental data with a suitable choice of parameters. To avoid this 

situation, electronic structure calculations of the realistic parameters for the system under study are 

coupled with a theory of charge transport producing theoretical mobility to be compared with the 

experimental one without an adjustable parameter. All works that compare computed and experimental 

mobility are necessarily based on three separate sets of approximations: (i) those required by the 

electronic structure calculation, (ii) those needed to extract the parameters for the mobility calculations, 

and (iii) those included in the approximated quantum dynamics. Very frequently, each team of 

theoreticians makes different choices for all these approximations and the comparison of the final result 

against the experiment (itself subject to non-negligible uncertainly) does not help identifying the best 

choices and making rapid progress.  

The goal of this perspective is to unpick the many layers of approximation present (and sometimes hidden) 

in the computation of the mobility and evaluate such approximations independently rather than from the 

final computed mobility. More specifically, we first analyze how the specific terms of the Hamiltonian can 

be computed, how independent experiments can help validating them, and whether some common 

approximations made to build the model Hamiltonian are valid (Section 2). We then consider separately 

the range of quantum dynamics approximations used to model the charge carrier dynamics in high 

mobility materials stressing strong and weak points of each method, often on the basis of the available 

computational results (Section 3). In Section 4, before the concluding outlook, we highlight some non-
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trivial problems and novel opportunities in comparison with experimental data. We tried to keep this work 

focused within the scope just described and we refer the readers more interested in a comprehensive 

review of this topic to the excellent articles in refs.6,20–23. 

2. The model Hamiltonian and the computation and validation of its parameters 

Model Hamiltonian. The starting point for all the methods developed for evaluating charge transport in 

the intermediate regime is the following Hamiltonian,  

              

(1)

 

where the first two terms denote the electronic part of the Hamiltonian, the third term stands for the 

lattice phonons, and the last two terms are associated with local and nonlocal electron-phonon couplings; 

	
e
i
 represents the on-site electronic energy of the hole; 

		
J
ij

0  are the transfer integral elements between 

adjacent molecules at the equilibrium geometry; 
		
ĉ
i

+(ĉ
i
) are the creation (annihilation) operator for a hole 

at site i (there is one state per site); <ij> nearest-neighbor pairs of occupied sites;  is the reduced Planck 

constant; 
	
w

M
 is the phonon frequency of mode M; 

		
g
i ,M

 and 
		
g
ij ,M

 are the local and nonlocal electron-

phonon couplings measuring the strength of interaction between charge carriers and intra-molecular and 

inter-molecular vibrations; 
		
â
M

+ (â
M
) are the phonon creation (annihilation) operators. What makes the 

study of high-mobility molecular semiconductors challenging is the fact that the Hamiltonian parameters, 

i.e. electronic coupling between the molecules J often in the interval [10 - 200] meV, vibrational energies 

in the range of [5 - 200] meV, local electron-phonon coupling (reorganization energy) in the interval [20 - 

500] meV, nonlocal electron-phonon coupling (dynamic disorder) in the range of [10 - 100] meV, and 

thermal energy at room temperature (kBT ~ 25 meV) generally differ by not more than an order of 

magnitude meaning that most approximations relying on energy scale separation cannot be applied. In 

the remainder of this section, we outline the computational methods used to evaluate the Hamiltonian 

parameters from first principle and their validation. Equation (1) also implies a linear coupling between 

fermions and phonons and the validity of the harmonic approximation for the phonons. Below we also 

discuss the validity of both approximations alongside methods that do not rely on them.  
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Transfer integrals. A variety of methods such as Kohn-Sham equation based approaches,24–27 density 

functional theory,18,28–32 pseudopotentials,33–35 and localized orbital methods36 are developed to compute 

the transfer integrals J. The difference between computed transfer integrals within different methods can 

be very small (e.g. less than 15%) as reported for rubrene,37,38 pentacene,39,40 for ~70% and ~80% of the 

samples studied respectively in Ref.41 and Ref.42, although there are counterexamples where the 

difference can be larger.41,43,44 It is also important to note that the band-structure calculations obtained 

from DFT-based methods are not very sensitive to the size of the basis set with small basis sets already 

providing quantitatively correct results.45 A summary of available methods for computing the transfer 

integrals can be found e.g. in Refs.5,46,47 with a critical investigation of the methods’ speed and accuracy 

provided in Ref.48. Computed band structures can be validated for example by angle-resolved 

photoemission experiments (ARPES) of crystalline organic semiconductors,49–51 and the level of agreement 

supports a very high degree of confidence in the evaluation of this component of the Hamiltonian. It is 

repeatedly mentioned that the eq. (1) is valid for narrow-band semiconductors. The validity of this 

assumption can be easily verified by considering the set of 40,000 molecular semiconductors extracted 

from the Cambridge Structural Database (CSD),52 as identified in a recent work from our group.53 The 

results indicate that the median energy separation between HOMO and HOMO-1 energy levels is 0.66 eV. 

We found that in this dataset the largest transfer integral is never greater than 0.4 eV (with the median 

being 0.14 eV).54 Therefore, one can conclude that the band energies do not overlap effectively and the 

approximation that the valence band originates from the HOMO orbital is broadly valid, with the obvious 

exception of molecules with degenerate HOMO and HOMO-1 (~0.08% of the sample considered).  

Phonon calculations. An accurate calculation of high-frequency vibrational modes of organic 

semiconductors is easily achievable based on routine DFT methods. Most of the theoretical studies 

compute the phonons of an isolated single molecule (rather than on a periodic crystal) and utilize it to 

interpret the crystal phonons.55,56 This approach is valid because, when the full phonon band is 

computed,57–59 the high-frequency modes are shown to be essentially dispersion-less, i.e. very localized. 

There are also other studies that consider a molecule embedded in the shell of neighboring rigid molecules 

within a nonperiodic Quantum Mechanics/Molecular Mechanics (QM/MM) method60,61 or with the entire 

cluster studied quantum mechanically (employing the DFTB method62) but keeping the embedding 

molecules rigid.63 In essence, the calculations of high-frequency modes are in excellent agreement with 

each other’s and with experimental data obtained from FTIR and Raman spectroscopy.58,64,65 

In contrast, computational methods for low-frequency vibrations have been developed and validated only 

more recently. Many researchers adopt empirical force fields which can be inaccurate because of not 
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being parameterized to reproduce low-frequency phonons.66,67 On the other hand, accurate density 

functional calculations of molecular crystals vibrations are very demanding in particular in cases dealing 

with materials containing hundreds of atoms in their unit cell (a common case for organic crystals) and 

are typically reserved only for benchmark systems.68,69 In addition, they are very sensitive to DFT level 

and, specifically, to the dispersion correction,70 which is introduced differently in various methods.58,71  

Specialized Raman spectroscopy setup61,64 or terahertz(THZ) time-domain spectroscopy72 are commonly 

used for extracting information on low-energy phonons. These measurements provide gamma phonon 

energy which can be used to partially validate the computed phonon spectra61,72 but do not allow the 

validation of the acoustic phonons dispersion, which is expected to be important for transport.59,73,74 

Information on the large amplitude (mostly acoustic) modes is provided by the diffuse electron scattering 

methods,75,76 which are based on the analysis of electron diffraction pattern: they are useful to quantify 

the displacement from the equilibrium position but do not give the frequency dependent information 

required for charge transport models.76 Recent high-resolution inelastic neutron scattering (INS) 

measurements on molecular crystals, which give access to the low-energy phonons without being subject 

to the afore-mentioned constraints, have enabled the validation of low-frequency phonon calculations 

with great accuracy.69,72 For example, calculations using plane-wave density functional theory employing 

the Vienna Ab initio Software Package (VASP)77 with projector augmented-wave pseudopotentials78 and 

the optPBE van der Waals density functional method,79 proved able to reproduce the INS spectra across 

all frequency range.69 Overall, state-of-the-art methods are capable of evaluating phonon modes of 

molecular crystals with the drawback that the most reliable methods are extremely expensive because of 

the large unit cell of molecular crystals. These methods are suitable for validating the more approximated 

strategies described above. 

In principle, the full phonon dispersion curve could be obtained from inelastic neutron scattering 

techniques but the method is extremely challenging, as it requires single crystals, which are hard to grow. 

Moreover, it is important to have crystals composed of deuterated molecules as they lead to higher 

coherent and lower incoherent scattering cross-sections for neutrons.80,81 To the best of our knowledge, 

experimental phonon band structure data are available only for very few organic crystals of small 

molecules like naphthalene or anthracene.82,83  

Local electron phonon couplings. The reorganization energy  is a global measure of the local-electron 

phonon coupling that can be defined as, 

		l =E( ¢Q )-E(Q)+ ¢E (Q)- ¢E ( ¢Q )                  (2) 



 6 

where 	E  and 	 ¢E  represent the energy of neutral and charged molecules. These energies are computed at 

two different geometries indicated by 	Q  and 	 ¢Q  referring respectively to the optimized geometry of the 

neutral and charged states.84,85 It is normally computed for isolated molecules in vacuum as several studies 

have found the effect of the environment to be negligible.86,87 If the potential energies of neutral and 

charged state are harmonic and the coupling with the phonons is linear (as implied in eq. 1), the 

reorganization energy can be decomposed as a sum of contributions over the normal modes and related 

to the electron-phonon coupling terms as,  

                   (3) 

In this limit each contribution to the reorganization energy M  can be computed as, 

                   (4) 

where 
	
DQ

M
 represents the displacement along the normal mode M between the equilibrium geometries 

of the neutral and charged molecules.88–90 Comparing the reorganization energy computed from the four 

points formula (eq. (2)) or from the normal modes projection method (eqs. (3) and (4)) provides an 

indication of the validity of the harmonic approximation and the linearity of the local electron-phonon 

coupling. To investigate the level of correlation between the results of the two methods, we have 

calculated the reorganization energies from both methods for a set of 500 molecular semiconductors 

extracted from the CSD53 (all the calculations are performed at B3LYP/3-21G* level of the theory as 

implemented in Gaussian 1691). As shown in Figure (1), the similarity between the results obtained via the 

two methods indicates that a linear local electron-phonon coupling and the harmonic approximation are 

essentially valid approximations.  
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Figure 1. Comparison between the values of reorganization energy obtained based on the adiabatic potential energy 
surfaces method (4p) and the normal mode (NM) projection at the B3LYP/3-21G* level of the theory. 
 

In literature, it is often stressed that the local electron-phonon couplings are dominated by high-frequency 

modes in the 900-1600 cm-1 range.92 To validate this statement more quantitatively we analyzed the local 

electron-phonon coupling and frequencies of a set of 5,000 molecular semiconductors extracted from the 

CSD.54 Figure 2 illustrates the spectral density – defined as 
		
B(w )= l

M
M

å d (w -w
M
)– for this global set. In 

the numerical analysis, the Dirac delta function is replaced by a Gaussian distribution with standard 

deviation of 5 cm−1. One can observe that there is a non-negligible contribution to the reorganization 

energy from low-frequency modes. Considering for each molecule in the dataset the fraction of the 

reorganization energy originating from high-energy modes (defined as such that ), we find that 

the median of high-energy modes contribution to the reorganization energy is 84%. This broad range of 

phonon energies contributing to the local electron-phonon coupling is usually neglected in developing 

theoretical models for charge transport. For example, semiclassical quantum dynamics methods assume 

that all the nuclear modes are classical23 whereas renormalization theories are accurate only in the limit 

of high-frequency (quantum) phonons.7,93 
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Figure 2. The averaged spectral density B for local electron-phonon coupling considering a database of 5k molecular 
semiconductors extracted from the CSD. 

 
From the experimental point of view, the electron-phonon coupling is directly accessible via high 

resolution ultraviolet photoelectron spectroscopy (UPS) spectra of gas-phase molecules.94,95 Malagoli and 

collaborators have shown that there is a remarkable agreement between the computed reorganization 

energies on a series of oligoacene molecules and the results of experimental studies utilizing the UPS 

spectra.89  

Nonlocal electron-phonon coupling. The nonlocal electron-phonon couplings (
		
g
ij ,M

) are generally less 

investigated than their local counterparts,96 as they rely on two computationally intensive tasks requiring 

the transfer integrals’ derivative and the phonons calculations.57,59,63 In the presence of nonlocal electron-

phonon coupling, the transfer integral between two electronic states denoted by i and j in the linear 

approximation can be written as, 

		
J
ij

= J
ij

0 + g
ij ,M

M

å Q
M

                                                                                                                                               (5) 

where 
	
J
ij

 indicates the modulated transfer integral. QM denotes dimensionless coordinate of the 

associated normal mode.57 Therefore, the nonlocal electron-phonon coupling for a given molecular pair ij 

due to mode M is, 

		

g
ij ,M

=
¶J

ij

¶Q
M

                                                                                                                                                                  (6) 
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where the Cartesian gradient of the transfer integrals can be computed as,

 

		

ÑJ
ij
= {

¶J
ij

¶x
k

}                                                                                                                                                                 (7) 

The modes can also be represented as a vector of Cartesian displacements 
		
Q

M

C = {x
k

M}  
and consequently 

the nonlocal electron-phonon coupling can be computed as, 

		
g
ij ,M

=ÑJ
ij
.Q

M

C                                                                                                                                                               (8) 

This coupling gives access to the nonlocal dynamic disorder
 	
s

ij
,
 
a global measure of the fluctuations of 

the transfer integrals 
	
J
ij
,57 

                                                                                                             (9) 

Because of their computational cost, nonlocal electron-phonon couplings and 
	
s

ij
 have been evaluated 

only for a limited number of molecules24,59,68,97 and there is no direct experimental counterpart to validate 

the theoretical results. As one can see from eq. 8 their accuracy depends on the accuracy of the transfer 

integral and the normal modes for which independent experimental validation is possible.  

While it is desirable to have materials with small dynamic disorder 
	
s

ij
, this quantity depends on the 

electronic and vibrational structure of the materials in such a complex way that it may seem impossible 

to develop an intuitive understanding of why some materials have smaller or larger dynamic disorder. A 

recent analysis of 12 materials has suggested that the magnitude of 
	
s

ij
 is largely dependent on the 

magnitude of 		|ÑJ| (see Figure 3).63 One practical implication of this observation is that one can attempt 

the design of materials with small electron phonon coupling by focusing on the identification of materials 

with small 		|ÑJ|, neglecting the phonon calculations in the first instance or employing more approximated 

methods for the calculation of the phonons. 
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Figure 3. The correlation between dynamic disorder s  and gradient of the transfer integral 		|ÑJ| for 12 materials. 

Figure adapted from Ref.63.  
 

In eqs. (1) and (5) it is assumed that the nonlocal electron-phonon coupling is linear, an assumption more 

likely to fail for low-frequency modes (more an-harmonic and characterized by larger amplitudes). 

Because of these concerns, the early evaluations of dynamic disorder employed classical Molecular 

Dynamics to study the fluctuation of the transfer integral in the time domain, ignoring the decomposition 

into normal modes and implicitly accounting for non-linearity of electron-phonon coupling and 

anharmonicity.15,98,99 The approximation in eqs. (1) and (5) is however extremely convenient especially 

because parametrization of classical simulations can be very tedious if one wants to consider a large set 

of chemically different molecules. To check the validity of the linear approximation, we have studied the 

deviation from linearity for the largest transfer integral of rubrene and 3,6-bis(3-

Chlorophenyl)pyrrolo(3,4-c)pyrrole-1,4-dione (identified as “WEBKAP” in the Cambridge Structural 

Database). The largest transfer integral of these two crystals are of similar magnitude while they present 

a significantly different dynamic disorder, as such, the transfer integral J (dynamic disorder 𝜎) of WEBKAP 

and rubrene are respectively 0.146 (0.081) and 0.139 (0.043) eV. The transfer integrals are computed 

based on the method explained in ref.18 at the B3LYP/3-21G* level of the theory and the dynamic disorders 

based on the method developed in ref.54. These structurally different materials provide a reasonable 

starting point for preliminary investigation of linear coupling assumption. In the considered structures, for 

each mode, the deviation from linearity can be defined as 0| ( ( 1) )|M M M MD g J Q J g     and expressed as 

a percentage. The median MD  for rubrene and WEBKAP is just 3.6% and 2.8%, respectively; the 
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distribution of this quantity is shown in Figure 4(a and e) with an illustration of the type of non-linearity 

that one can expect to find in their right hand side panels (b-d) and (f-h) corresponding to MD = 0, 5 and 

14%. 

 

Figure 4. (a) Distribution of deviation from linear electron-phonon coupling approximation for the highest transfer 
integral of rubrene with the associated molecular pair. (b-d) Comparison between linear approximation and real 
electron-phonon couplings. The light grey line indicates the transfer integral at equilibrium geometry (in the absence 
of nonlocal electron-phonon coupling). The corresponding values of deviation from top to bottom are 0, 5 and 14%. 
The same set of analysis is reported in panels (e-h) for WEBKAP. The small nonlocal electron-phonon couplings 
(|gM|<10-5 eV) are neglected in our analysis.  
 

These results suggest that considering only a liner nonlocal electron-phonon coupling should be 

sufficiently accurate at least for the considered structures but more importantly, this analysis 
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demonstrates that the linearity of the nonlocal electron-phonon coupling can be easily verified. The 

advantages of the linear approximation are so significant that it is worth resorting to them with additional 

checks if deemed necessary. 

Another common approximation is that all the phonons contributing to nonlocal electron-phonon 

couplings are classical (i.e. ) and explicit calculations allow a direct validation of this assumption. 

Indeed, the contribution of high frequency modes to the nonlocal electron-phonon coupling is not 

completely negligible.16,59,69 An example of such calculation is shown in Figure (5) for the highest transfer 

integral of rubrene,59 where the contribution of high-frequency modes to the fluctuation of the transfer 

integral at room temperature is 9%. The percentage appears to be small despite strong coupling with high-

frequency modes because these modes are not populated at room temperature. The presence of high-

frequency modes contributing to the nonlocal electron-phonon coupling is usually neglected in all 

semiclassical simulation methods.16,100–102  

 

Figure 5. The spectral density  for the largest transfer integral of rubrene crystal. Figure 

adapted from Ref.59. 
 

3. Models for charge transport 

In this section, we give an overview of the various theoretical approaches developed for evaluating charge 

transport in molecular semiconductors, their theoretical principles, the physical insight provided by each 

one of them and an estimation of their validity range. The focus of this work is on high-mobility materials 
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(e.g. >0.5 cm2/Vs) and therefore mechanisms of transport that retain some degree of quantum 

coherence of the carrier. A totally incoherent mechanism, where the carrier hops from molecule to 

molecule with a characteristic rate constant, can be ruled out for high-mobility materials on the basis of 

elementary arguments. Simply observing that incoherent hopping cannot be faster than vibrational 

relaxation, the maximum mobility that could be described by hopping was estimated in ref.103 as 

, where c is the speed of light, L the shortest distance between the molecules, and  the 

low temperature width in wavenumbers of Raman vibrational peaks in the solid state. Such relation, which 

only contains experimental parameters, suggests that room temperature mobility exceeding ~0.1 cm2/Vs 

cannot be due to a completely incoherent transport mechanism. Incoherent transport models are still 

important in many interesting cases (very narrow bands, trap-limited transport) and are extremely useful 

as limiting theories also for high-mobility transport. For this reason, they will be briefly outlined here with 

more extensive discussion available from other recent reviews.20,23,38,104 

Incoherent hopping mechanisms. One of the simplest and still widely used approaches for the evaluation 

of the mobility is based on the calculation of the hopping rate of a charge between neighboring molecules 

	
kHOP . For molecules in a perfect crystal, one can use the network of rate constants to evaluate the charge 

diffusion coefficients analytically105 or using a Kinetic Monte Carlo scheme56 (more useful if one wishes to 

include additional effects of disorder106,107). One should instead be wary of expressions of the mobility 

which appear to be weighted averages of the hopping rates as,37,108  

		

m =
e

k
B
T

1

2d
r
n

2

n=1

N

å k
n

HOPP
n
                                                                                                                                              (10) 

where the sum is over all neighboring molecules N, with d being the spatial dimensionality, n a specific 

hopping pathway with the intermolecular center-to-center distances 
	
r
n
, and 

	
P
n
 the hopping probability 

determined as 
		
P
n
= k

n

HOP k
m

HOP

m=1

N

å .  These contradict the principle that the overall rate of a process is 

determined by the slower rates (not an average of all rates) and fail when some rate constants are set to 

zero giving a finite mobility whereas the correct mobility would be zero.  

One of the most used expressions of the hopping rate is that proposed by Marcus109 (or in a slightly 

different form by Holstein110):  
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                                                                                                                        (11) 

The conditions for the validity of eq. (11) are that: (i) 		|J|<< l , (ii) all nuclear modes coupled with the 

charge transfer can be treated classically, and (iii) the vibrational relaxation is faster than the hopping 

rate. The violation of the last condition makes the concept of rate constant undefined and makes the 

transport coherent to some extent, as discussed above. A hopping rate can be still defined for J as large 

as 	~l /2(beyond this value there is no stable state with a charge localized on a molecule) and high-

frequency modes. In the simplest case of harmonic one-dimensional potential energy surfaces with 

frequency ω the rate can be expressed as,111 

 kHOP = 
ω

2π
kLZ Γ exp (−

(∆G + λ)2

4λkB T
)                                                                                                                                                   (12) 

with ∆G being the exothermicity of the reaction, Γ the nuclear tunneling factor often taken equal to one 

as it is expected to be important only in low temperatures and kLZ the thermally averaged Landau-Zener 

coefficient corresponding to the “electronic tunneling”.112–114 The adiabatic and nonadiabatic (i.e. the 

Marcus formula) limits are then recovered by kLZ =1 and kLZ = 
2|J|2

ℏω
√

π3

λkBT
 , respectively.115,116 The idea of 

introducing a single effective high-frequency mode117 was adopted by several authors, for example, to try 

to reproduce isotopic effects.118 To include the effect of multiple modes, Landi et al. have utilized second-

order cumulant (SOC) expansion of the time-dependent reduced density matrix highlighting the 

importance of multiple modes to describe the temperature dependence of the rate.119 Yan et al. have 

calculated the exact memory kernels of the Nakajima-Zwanzig-Mori GME for a one dimensional Holstein 

type model by employing the Dyson relation for the exact memory kernel, combined with the hierarchical 

equations of motion method.120  

Band transport. Band transport theory relies on the solution of the electronic problem in a perfect 

unperturbed lattice. According to this theory, the electrons form Bloch waves which can be identified by 

a well-defined momentum k and the energy band dispersion E(k). In a perfect lattice, a charge carrier with 

an effective mass  propagates at the group velocity  without any 

scattering.121–123 Molecules are held together in a solid by weak Van der Waals forces causing large thermal 

molecular motions at the room temperature and increased electron scattering.16 Consequently, band 

transport theory breaks down in the presence of crystal’s inherent large scatterings leading to mean-free-

path smaller than intermolecular spacing, i.e. below the Mott-Ioffe-Regel (MIR) limit.124,125  
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It is expected that at higher temperatures the fluctuations and therefore scatterings become more 

profound. To estimate what is the maximum temperature for which the band theory can be applied, 

Bredas and co-workers compared the thermal-averaged velocity-velocity tensors and the experimental 

mobility data and reached the conclusion that the band model can be applied for temperatures only up 

to about 150 K, i.e. the band transport theory is inadequate for room temperature.126 To determine the 

value of the mobility corresponding to the MIR condition (i.e. the lower limit of band theory), in Ref.21, 

starting from the semiclassical Drude expression 
		
m =

et

m*
 (with t  being the time interval between two 

successive scattering events), the authors evaluated the mobility for a one-dimensional model of rubrene 

by taking J = 143 meV and T = 300 K. They attained MIR corresponding mobility of 23 cm2/Vs and a similar 

estimation was also made in ref.126. Therefore, one can conclude that high-mobility molecular 

semiconductors at room temperature have mobilities above the (maximum) hopping limit and below the 

(minimum) MIR limit requiring new methods to deal with their charge transport properties (at low 

temperatures they may have higher mobility consistent with band transport). 

The scattering of the Bloch states by the molecular vibrations can be included as a perturbation in the 

band transport model127 and methods combining band theory and many-body perturbation theory are 

expected to accurately capture electron-phonon scattering. However, due to high computational cost, 

these calculations have been only applied to inorganic materials128,129 with small unit cells but not to 

organic semiconductors with relatively large unit cells. There have been also other attempts to the 

generalization of the band transport theory e.g. by considering acoustic deformation potential model in 

the calculation of relaxation times of charge carriers130–132 where the basic assumption is that the 

scattering originates from the acoustic phonons and their impact can be considered by a uniform lattice 

dilation or deformation.133 In ref.68, N.-E. Lee and co-workers, in the framework of ab initio band theory, 

have carried out DFT calculations employing a plane-wave basis set by considering the Grimme van der 

Waals (vdW) correction134 in structural relaxation. Phonon dispersions are computed with density 

functional perturbation theory (DFPT)135 and the electron-phonon coupling matrix elements using the 

EPW code.136 It should be remembered that all these methods are expected to provide reliable results 

only in the limit of a relatively weak dynamic disorder, e.g. at low temperature. Moreover, the ab-initio 

based band models such as ref.68 are quite computationally demanding (the work was carried out for 

naphthalene), well suited for benchmark studies rather than materials discovery work.  

Small polaron theory. Small polaron theory describes the charge carriers alongside a dressing cloud of 

phonons and was introduced by Holstein to describe the impact of local electron-phonon coupling on the 
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charge dynamics.78 The theory predicts that, in response to electron-phonon couplings, the charge carrier 

becomes increasingly more localized leading to narrower bands at increasing temperature,93 and 

experiments such as ARPES which have demonstrated this effect.137,138 The band narrowing factor can be 

obtained by Lang-Firsov canonical transformation of the Hamiltonian followed by thermal averaging over 

the phonon modes as,139  

                                                                                                                        (13) 

with  being the occupation number. In principle, band narrowing is equivalent 

to assuming that the transfer integrals can be replaced by “thermally averaged” transfer integrals. As the 

band narrowing is larger at high temperatures, the consequence of this theory is that the transport is 

band-like at low temperatures with the charge-carrier mobility decreasing with temperature in a power-

law form140 and a hopping like behavior at high temperatures when the bandwidth became too small to 

sustain delocalized states.7,141,142  

An attempt to extend the transport theory to incorporate the impact of both local and nonlocal electron-

phonon couplings was initiated by Munn and Silbey considering a Holstein-Peierls type Hamiltonian.143,144 

Unlike in the original Holstein model, which always yields a narrower band, it was found that the presence 

of nonlocal coupling changes the shape of the band and depending on the system’s parameters may lead 

to band broadening. In another study, Bobbert and co-workers93,145 fitted microscopic parameters 

extracted from ab initio calculations into the same type of Hamiltonian and were able to reproduce the 

experimental data of naphthalene crystal, even when neglecting the coupling with acoustic modes.145 

Polaron theory has the same shortcomings of the band theory, i.e. short mean free path and mobility 

falling below the MIR limit.  

Polaronic theories still play an important role in treating the coupling between the carrier and high-

frequency modes. The thermal averaging required to derive equations like (13) is justified for vibrational 

modes, which are faster than the carriers (larger than ). However, as shown in Figure (2), the 

vibrational frequencies coupled with the carrier are spread out over a large window meaning that the 

band-narrowing picture can only be “partially” justified. Moreover, the fluctuations of the transfer 

integrals take place at the same timescale as the carrier and are extremely large in amplitude. This 

suggests that an ideal feature of any theory is the ability to describe the coupling of the electron with 

phonons of a broad range of energies.  
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Mixed quantum-classical approaches. The main motivation in developing mixed quantum-classical 

approaches is to provide an optimal combination of satisfactory accuracy and reasonable computational 

cost for the study of electron-phonon interactions.23,146–148 These approaches assume that due to the 

different nature of electrons and nuclei involved in charge transport, only the former should be evaluated 

quantum mechanically, while the latter can be treated classically. These semi-classical approaches are 

usually classified into two main categories: the Mean-Field Ehrenfest (MFE) and trajectory surface hopping 

(TSH) which are both non-perturbative methods differing in the way they describe the classical equations 

of motion for the nuclei.  

Mean-Field Ehrenfest model. In the MFE method, the system propagates on a potential energy surface 

obtained based on weighted averaging over all adiabatic states.149,150 The implementation of the MFE in 

the field of charge transport was initiated by introducing the context of polaron and soliton in conductive 

polymers utilizing Su-Schrieffer-Heeger (SSH) model Hamiltonian.151,152 The method was applied to 

molecular crystals to propose for the first time that the transport is limited by dynamic disorder and to 

explain the coexistence of localized states and coherent transport with band-like dependence of the 

mobility from the temperature.16,153 It has sufficiently efficient scaling that could be extended to two-

dimensions.154–156 A recent work proposes an even more approximated MFE, where the charge evolves 

under the field of classical oscillations of the lattice unperturbed by the carrier.157 

Due to its simplicity and straightforward implementation, MFE is widely used in different contexts,16,102,158 

but a number of weaknesses are also well documented. In particular, (i) the mean-field approximation of 

the back-reaction of electrons on nuclear motion can lead to the overheating of the electronic system and 

consequently breaks balance condition,159 (ii) the net adiabatic character of the wavefunction cannot be 

recovered even in the asymptotic regions of configuration space.160 Many of the weaknesses of MFE are 

particularly evident and broadly discussed in the context of chemical dynamics, with problems involving 

very few adiabatic states and with well-defined bonding character.161,162 However, in solid-state problems 

with a continuum of electronic delocalized states it is perfectly acceptable for the wavefunction to be a 

superposition of electronic eigenstates (e.g. it is implicitly accepted in band transport).  

Despite the great advantages of the MFE, its validity for charge transport simulations is debated. In the 

year 2013, Wang and Beljonne suggested that the Ehrenfest theory leads to correct diffusion tensor 

elements but an inaccurate temperature dependence of the carrier mobility.146 The authors determined 

that the problem occurs because the theory relies on only a single potential energy surface. This 

assumption leads to an infinite decoherence time of the charge carrier state which does not seem to be 

reasonable in the localized limit of the transport mechanism. In spite of the important shortcomings of 
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the MFE,163 it is still being utilized by different groups and different methods being proposed in recent 

years to address the problem of over-coherence. For instance, by introducing a coherence penalty 

functional that accounts for decoherence effects,164,165 or by utilizing an instantaneous decoherence 

correction approach with energy-dependent reweighing factors to account for the decoherence and 

energy relaxation processes.166,167  

Trajectory Surface Hopping method. According to the TSH method, the nuclear dynamics of the system 

can be described by an ensemble of non-interacting trajectories.23,168,169 As such, each individual trajectory 

evolves based on the Newtonian dynamics under the influence of a single electronic state’s potential 

energy surface. Electronic transitions are allowed and are incorporated into the nuclear dynamics by a 

series of hopping events. The most popular form of the TSH is the fewest switches surface hopping (FSSH) 

method,170 which minimizes the number of transitions between different potential energy surfaces (PESs). 

According to the FSSH, only in case of non-negligible coupling between the electronic states, a transition 

takes place. Considering the system’s wave function 

	
y = c

n
n

å j
n

 (
	
j

n
 are basis sets), one can derive 

the non-adiabatic coupling matrix with elements as 

	

V
ij
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. The probability of transition 

between any two adiabatic PESs (i and j) can be estimated as,170 
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                                                                                                                                                (14) 

where 
		
d
ij

* = c
i

*c
j
 denotes the charge carrier’s density matrix and 	Dt  the molecular dynamics time step. 

As a result of its simple formalism and relatively acceptable balance between reliability and efficiency, the 

FSSH method has been widely used in non-adiabatic chemical dynamics.171–174 However, in the original 

formulation, some shortcomings hinder particularly the simulation of charge transport: (i) the decay of 

the electronic coherences between adiabatic states is not correctly described,170 (ii) “unavoided” crossings 

between potential energy surfaces are not treated properly which may lead to unphysical long-range 

charge transfers,175 (iii) the decoherence correction methods are speculated to lead to un-physical long-

range charge transfers,176,177 (iv) some nuclear quantum effects such as zero-point energy and tunneling 

that play an important role particularly at low temperatures are not considered.178 In the last few years 

effective and successful solutions to problems (i)-(iii) have been developed and applied in the context of 

charge transport in organic semiconductors. For instance, in Ref.179, Blumberger and co-workers have 

investigated the impacts of the first three aforementioned issues on the FSSH simulation of charge 
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transport in organic materials. To this aim, they utilized a fragment-orbital based surface hopping (FOB-

SH),180,181 a semi-empirical approach that is developed to quantify the electronic Hamiltonian and nuclear 

derivatives in organic crystals. In this method, the charge carrier wavefunction is expanded on the basis 

of singly occupied molecular orbitals of the constituting molecules, which are computed using DFT. The 

on-site energies of the electronic Hamiltonian are approximated with a classical force field182 and the 

electronic couplings are calculated using analytic overlap method.33 This method is similar to 

semiempirical approaches such as self-consistent charge density-functional tight-binding method 

developed by Kubar and Elstner,183,184 with slight differences in computation of the Hamiltonian matrix 

elements and nuclear forces. Beljonne and co-workers, in an attempt to address the unavoided crossing 

problem in the FSSH method, suggested eliminating the interaction between the states which represent 

weak coupling in an approach named flexible surface hopping.101 Consequently, all adiabatic states are 

physically close which significantly diminish the possibility of unphysical long-range charge transfer. This 

method can potentially resolve this issue, but the fact that critical parameters are required to ensure 

stability and accuracy of the simulations makes its usage challenging and implies that parameter-free 

techniques would be desirable. Wang et al. classified surface crossings into four general types and 

presented a parameter-free crossing corrected FSSH (CC-FSSH) algorithm, which is expected to deal 

properly with multiple surface crossings in a given time interval. They were able to investigate electron 

dynamics in a series of one-dimensional Holstein models.185–187 To investigate point (iv), ref.178 by 

considering a dimer of ethylene-like molecules embedded in a bath of neon atoms and through combining 

the surface hopping with a path-integral simulation of nuclear dynamics, suggests that the impacts of 

tunneling and zero-point motion are not significant for organic materials in particular at room 

temperature. Moreover, it has to be noted that the tunneling is not expected to be crucial for high-

mobility organic semiconductors as in this case, there are no barriers to tunnel through between 

equilibrium geometries of neutral and charged states. On the contrary, obviously, in the low-mobility 

organic materials tunneling becomes important in particular at low temperature.  

Other approaches have been also developed to address one or more of the original FSSH shortcomings, 

although they have yet to be applied in the context of charge transport. For instance, a global flux surface 

hopping, which is used to compute the hopping probabilities using quantum populations instead of 

nonadiabatic couplings.188,189 The local diabatization approach of FSSH (LD-FSSH) proposed by Granucci 

and co-workers190,191 is developed to deal with trivial crossings. In a recent review, Wang et al. have 

provided a comprehensive overview of the trivial crossing problem in extended systems (e.g. many-
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dimensional and many-state systems).192 The reader is also referred to refs.23,193 for a summary of the 

recent progresses in the field.  

Surface hopping and mean-field methods share the problem that one of their main assumptions, namely 

that the phonon can be treated classically, is not strictly valid because of the non-negligible role of high-

frequency modes for both local and non-local coupling as detailed in section 2. In the case of surface 

hopping an additional common criticism is that the method cannot be derived through a rigorous set of 

approximations194 and therefore it is not easy to establish when it breaks down. The two approaches 

behave very differently in the limits of pure hopping or pure band transport. Surface hopping methods 

can deal more easily with the limit of pure hopping transport (although corrections are required195) and 

becomes increasingly problematic in the case of pure band transport (because of the high-degeneracy of 

the electronic states). Mean-field approaches, on the contrary, can interpolate between the intermediate 

regime and band transport but are unable to describe hopping transport as assume an infinite 

decoherence time. For reasons related to the historical development of FSSH for the study of 

photochemical reactions, these methods are commonly implemented with molecular Hamiltonian 

including all nuclear degrees of freedom and potentially able to deal with non-linearity of the coupling 

and the anharmonicity.196,197 Mean-field methods are more commonly used on model Hamiltonian with a 

reduced number of nuclear degrees of freedom (harmonic and linearly coupled with the electrons). These 

reduced models, thanks to the validation of the linear coupling and harmonic approximations presented 

in the previous section, are more accurate than originally thought and form the basis for alternative 

approaches to the study of quantum dynamics in molecular crystals.   

Open quantum systems. Open quantum system approaches partition the electronic-vibronic dynamics 

into a given set of degrees of freedom namely the “system” (in this case the electronic degrees of freedom 

that are of interest) and a “bath” (in this case the vibrational degrees of freedom that one does not wish 

to consider in detail).198,199 The state of the system is described by its reduced density matrix that allows 

the evaluation of all the observable within the system, 

		
r
red
(t)=Tr

bath
[y (t) y (t) ]                                                                                                                                      (15) 

The time evolution of ( )red t  can be written as a generalized master equation as,198,200 
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with ( , )t j
 
being the super-operator of “memory time’’ describing the impact of the bath on the system. 

The main obstacle in using this equation is the fact that there is no explicit method to evaluate ( , )t j  and 

several approximations have been introduced to resolve this problem.201–204  

In the context of charge transport, due to a large number of vibrational modes in molecular 

semiconductors (often in the order of a few hundred), the computational cost of time-evolutions is an 

important obstacle toward applications of these methods. As such, they are often limited to 1D models 

as density matrix spaces grow quadratically with the Hilbert space dimension. In addition, these methods 

are often applied to model reduced Hamiltonian,205,206 although not exclusively.203,207 Often the spectral 

densities utilized in these studies, which manifest the electron-phonon interaction, do not rely on precise 

calculations of the phonons but rather on the parametrized baths, e.g. sub-ohmic, ohmic or super-ohmic 

spectral density functions.202,208,209 For instance, Yao studied the quantum dynamics utilizing the time-

dependent density matrix renormalization group algorithm considering a sub-Ohmic phonon bath which 

gives rise to a strong non-Markovian effect.209 Zhao and co-workers developed a non-Markovian 

stochastic Schrodinger equation210 and extended it to the reciprocal (k-) space to calculate the carrier 

dynamics in organic semiconductors considering an Ohmic spectral density function to account for both 

local and nonlocal carrier-phonon interactions.208 The mobilities computed within the framework of open 

quantum system methods often present power-law behavior with temperature 
	m µT -a . The values of 

a  parameter are modulated by the strength of nonlocal electron-phonon couplings: in the absence of 

nonlocal interactions, the behavior is bandlike power-law with 	a =2.4  which drops down to values 

roughly around 1 upon increasing the interactions.208 

Quantum Monte Carlo (QMC). Quantum Monte Carlo techniques have been recently applied to the 

charge transport problem in organic materials.211–213 In this method, explicit quantum dynamics of both 

carrier and phonon are evaluated; therefore, they are in principle at present the most exact methods to 

treat the charge transport. In Ref.212, De Filippis and co-workers have considered a one-dimensional tight-

binding model with nonlocal electron-phonon coupling with a single optical phonon mode (the so-called 

Su-Schrieffer-Heeger (SSH) method 214) to study the charge transport properties. The idea was to provide 

a description of w -dependent optical conductivity 		s (w ,T ) and mobility of an organic crystal. To this end, 

they computed the current-current correlation function as, 

		
P(z)= -i dt

0

¥

ò eizt [ j(t ), j(0)]
                                                                                                                            (17) 

where 		j(t ) denotes the real-time Heisenberg representation of the current operator and 	z=w + ie  with 
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	e >0 . The real part of the optical conductivity (and therefore the mobility as 
		m =Res (w ®0+ )/e) is 

related to the imaginary-time current-current correlation function, which can be recast as,  

		
P(w )= dt

-¥

¥

ò
1

p

we-ws

1-ew T
Res (w )

                                                                                                                            (18) 

and is solved by employing diagrammatic215 and worldline211 Monte Carlo methods, both yielding the 

same results. The optical conductivity is obtained using a small lattice of 20 sites with periodic boundary 

conditions. In conformity with experimental studies, this method was able to monitor a crossover from 

super- to sub- diffusive motion for the rubrene crystal, which takes place in the temperature interval 150-

200 K. It has to be noted that, in this work, the results are fitted to a Drude-Lorentz model depicting the 

presence of an electronic bound state with a small radius. This has been possible because the authors 

assume that there is a local deformation of the crystal lattice around the charge. Accordingly, the finite 

frequency absorption can be related to internal degrees of freedom of such polaron rather than to thermal 

molecular fluctuations. Moreover, the Quantum Monte Carlo techniques for this problem are 

computationally demanding and they have been restricted to one-dimensional models with one phonon 

mode per site so far. Therefore, they may not be practical to be extended to higher-dimensions or to be 

used for high throughput screenings. Other similar methods, e.g. those based on the scattering theory216 

or dynamical mean-field theory217 are expected to produce similar results but, at present, they are also 

developed only for one-dimensional systems.  

Transient Localization Theory (TLT). The TLT is based on the observation that the dynamic disorder leads 

to a “transient localization” of the wavefunctions over a characteristic timescale of the fluctuation 	t .
218 

One can derive a quantitative model based on this observation and the Kubo formula relating the 

particle’s mean-squared displacements (		DX
2 ,		DY

2) and the retarded current-current anticommutator 

correlation function 
		
C

+ x(y )
(t)  of the current operator 

		
ĵ
x(y )

:218,219 
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                                                                                                                    (19)
 

where 		Q(t) is the Heaviside step function and the equation is written for a two-dimensional (2D) system. 

This function is directly related to the mean-square displacement of the total position operator along the 

chosen direction, 
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with e being the elementary charge. The function C+(t) can be evaluated introducing the Relaxation Time 

Approximation (RTA), i.e. the assumption that the function can be expressed in terms of a reference 

system (
		
C

+

ref (t)) from which it decays over time. The simplest possible form of RTA is 
		
C

+
(t)=C

+

ref (t)e-t t , 

where the relaxation is determined by a single characteristic time capturing the timescale of the 

fluctuation of the electronic Hamiltonian. The reference system usually is defined as an idealized version 

of the organic semiconductor with only static disorder, i.e. where all the molecular displacements are 

frozen. This reference ensures that, in the limit of large t , the system recovers the dynamics of a statically 

disordered system subject to Anderson localization.220 It has to be noted that the correlator C+(t) is not 

limited to the mentioned simple expression and a generalized expression like C+(t)= C+
ref(t) f(t) would still 

be fully rigorous. All quantum dynamical methods described up to that point can be used to determine a 

more accurate C+(t), so that TLT can be seen as the first order approximation for any quantum dynamics 

with a single parameter collectively representing nuclear dynamics. Also one should note that the 

parameter t , despite being not very critical for the results,221 is not necessarily identical for all molecules 

and in the original theory is associated with the timescale of the transfer integral fluctuations.  

A practical implementation of this model, described in Ref.222, entails the repeated diagonalization of 

electronic Hamiltonian with static disorder giving the squared transient localization L2 and the mobility 

(proportional to it). When the method is fed with realistic Hamiltonian parameters it produces computed 

mobility in excellent agreement with the experiments69,221 and, because of its rapidity, it can be used to 

study a larger set of hypothetical materials.  

In ref.221, a generic 2D material was defined such that each molecule is surrounded by 6 neighbors with 

three distinct transfer integrals 
		
J
a
, J

b
, J

c
 as illustrated in Figure 6(a). The mobility was computed for all 

possible combinations of transfer integrals with 
		
J = J

a

2 + J
b

2 + J
c

2  and constant nonlocal dynamic disorder. 

The resulting map of mobility (a cross-section is shown in Figure 6(b); with L2 being the average of the 

squared transient localization length over x and y directions) showed some expected features (e.g. one-

dimensional materials have considerably lower charge mobility with a similar level of disorder) but also 

more unexpected characteristics. The relative sign of the transfer integrals is important such that a system 

with 
	
J
a
= J

b
= J

c
 has much larger hole mobility than a system with transfer integrals 

	
-J

a
= J

b
= J

c
. This is a 

manifestation of a high degree of coherence in the transport and interference effects in the charge 

dynamics that are not seen in pure hopping models. Another interesting feature is that the temperature 

dependence of the mobility, which is normally considered a good guide for the identification of the 
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transport mechanism, depends on the electronic structure, i.e. it cannot be used to discriminate between 

models or regimes of transport. 

Because of the much richer and complex phenomenology in 2D, it is interesting to consider what fraction 

of molecular semiconductors are expected to have bands delocalized in 1, 2, or 3 dimensions. Considering 

the same set of molecular semiconductors of ref.54 and evaluating only materials with at least one transfer 

integral larger than 0.1 eV, one finds that about 12% of the structures are 2D, that is displaying a ratio 

between second and first highest (non parallel) transfer integrals larger than 0.05. The set is even more 

limited for 3D materials which are only 0.015% of the considered database. Therefore, one can conclude 

that developing charge transport models working in two dimensions is both necessary and sufficient for 

the family of molecular semiconductors. 

Figure 6. (a) Scheme of an idealized molecular semiconductor with electronic structure in 2D determined by the 
coupling with 3 neighbors (illustrated for Rubrene). (b) The squared transient localization length (proportional to the 

mobility) calculated at room temperature for 
		
J
a
= Jcos(q) and 

		
J
b
= J

c
= Jsin(q) 2  with 		J =0.1 eV, 𝜏=0.13 ps and 

dynamic disorder 

		

s
a

J
a

=
s

b

J
b

=
s

c

J
c

= 0.5 (blue curve). 
	
q = 0,p  corresponds to a one-dimensional system with non-zero 

coupling only in one direction. The other curves are obtained by introducing a band renormalization factor f.  
 

 
More recently Fratini and Ciuchi have noticed that TLT may fail for materials with reduced disorder (or at 

low temperature) giving way to a more straightforward band-transport mechanism with greater 

delocalization and rarer scattering events.223 In the same work they have developed a unified theoretical 

framework which employs a correlator of the form C(t)=CSC(t)+ [C+
ref(t) − CSC(t)]e-t τ⁄  where CSC(t) 

denotes the correlation function in the semiclassical Boltzmann limit and the relaxation is applied only to 
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the correction term. The new formalism incorporates transient localization theory as a limiting case which 

delicately connects with the standard band transport theory.223 The same TLT theory can also be pushed 

in the direction of more localized transport introducing the effect of an increasingly stronger local 

electron-phonon coupling. Such polaronic effects can be introduced easily in TLT if one assumes they are 

solely due to high-frequency modes independent from those influencing the transfer integral. In such 

case, their role is to scale both the transfer integral and their fluctuation by a common renormalization 

factor f (defined in eq. (13)). Figure 6(b), shows that, in the presence of polaronic effects, the mobility 

decreases (as expected) and the interference effects that made the relative sign of the coupling relevant 

gradually becomes less significant as one expects for pure hopping transport. It is important to note that 

in the case of very large reorganization energy/small band renormalization factor, the carrier becomes 

localized on a single molecule. In this case, the squared transient localization length L2 is equal to the 

lattice spacing constant d and therefore, the theory would predict a constant (temperature and f 

independent) mobility of μ=(e/kBT)d2/2τ. It has to be noted that the theory is not strictly speaking 

breaking down, only the additional assumption that the characteristic time τ is a temperature 

independent constant would be now incorrect (the RTA would still be able to reproduce a correct mobility 

if fed with the correct temperature and f dependent τ); however, the advantages of the method would be 

completely lost. 

4. Comparison with thin-film transistor measurements  

As discussed in the introduction, reliable measurements of charge mobility reproducible across research 

groups and applicable to a broad range of materials have started appearing fairly recently.6 An important 

milestone is the realization that measuring thin-film transistor mobility comparable with Hall effect 

mobility provides a critical proof that the observed mobility is intrinsic of the materials and not dominated 

by traps.224–226 More indirect evidence of intrinsic transport is the measurement of band-like temperature 

dependence, i.e. mobility decreasing with increasing temperature, a phenomenology that is completely 

hidden if there is a considerable number of trapped charges.227 Reference experimental data are typically 

obtained in single-crystals since the effect of polycrystallinity on the results is harder to quantify.228 As a 

consequence of these complications, there are probably less than 20 “reference” measurements of 

demonstrably intrinsic mobilities in thin-film transistors that still constitute a very robust sample for the 

validation of the theory.6 

Comparison of any theoretical result with a single material is useful to validate the plausibility of the 

theory and virtually all the theories presented in this section are able to provide mobility of the correct 
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order of magnitude when fed with appropriate parameters for a specific material. The comparison of the 

absolute value of mobility can be misleading not only because of many possible cancellations of errors in 

the theory but also because the experimental mobility is subject to some inaccuracy229 and the effect of 

residual defects. The comparison with the temperature dependence of the mobility is less stringent than 

previously thought because crystal structure deformation with temperature is large enough to change the 

parameters of the Hamiltonian,230 and such temperature dependence is not universal of the material 

class.208,221  

Probably the best strategy to refine the current theoretical models is to compare their results for a range 

of materials whose mobility has been determined accurately and between different theoretical methods. 

This is something that several authors have started doing using surface hopping methods,179,181 transient 

localization theory69,221 and Ehrenfest propagation231 with comparison normally extended to 5-12 

materials. All these works have considered transport in two dimensions, which is essential as discussed 

above. Very reassuringly, these methods produce results in good agreement with each other and with the 

experiments41,221 despite following different paths from the setting up of the system Hamiltonian to the 

computation of the mobility. A possible reason for the agreement is that the mobility is determined in all 

cases by the ratio between the transfer integrals and the dynamic fluctuations, which are computed with 

similar high accuracy in all cases.  

A consequence for materials discovery is that, if one is interested in finding the “best” materials or 

rationalize why some materials are better, this can be done “simply” by computing the Hamiltonian 

parameters and a broadly similar ranking of computed mobilities can be obtained from different methods. 

On the other hand, if one is interested in improved transport theories, possibly covering different 

transport regimes, it is essential to consider more complicated experiments where the materials are 

perturbed in very controlled ways. Important challenges for the theory are given by the study of transport 

in isotopically substituted semiconductors229,232 or materials under mechanical strain.233–235 A recent 

“benchmark” experiment was proposed by the Podzorov group where Hall (intrinsic) mobility was 

measured while the sample was mechanically deformed.236 Even the simple study of the temperature 

dependence of the mobility can be instructive, but the model should include the effect of lattice expansion 

which has been shown to change all parameters of the Hamiltonian in non-trivial ways.237 
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5. Conclusion  

Our understanding of the theory of charge transport in molecular semiconductors underwent a very rapid 

acceleration in the past few years because of the contemporary improvement of the experiments (more 

reliable measurements on a larger set of materials), electronic structure calculations (more accessible and 

accurate calculations of large systems) and transport theory (a broader range of methods available). Up 

to very recently, it was not possible to derive any meaningful structure-property relation because the 

degree of confidence of the measurement, computation and theory was not sufficiently high to improve 

each of them independently and systematically. We showed in this perspective that each term of the 

Hamiltonian contributing to the mobility can be computed from first principles with a great level of 

confidence given by comparison with a range of more direct experimental evaluations of such terms. For 

the first time, it has become possible to use the comparison between computed and experimental 

mobility to discuss the relative merit of different theories. We have now a range of approximated theories 

that predict correctly the relative mobility of a set of materials and there are many opportunities to 

overcome the limitations of such theories by combining different aspects of each of them. For example, 

band renormalization can be used to account for the quantum nature of the high-frequency vibrations in 

all models where vibrations are treated classically and interpolation schemes can be devised to cover the 

parameter range between different regimes. Ideas from open quantum systems physics can be used to 

include the effect of low-frequency modes without explicitly describing them. Quasi exact methods on 

model systems provide a natural way to test more approximated theories suitable for realistic systems. 

The consolidation of electronic structure method and experimental measurements have created new 

opportunities to test novel theoretical approaches in solid-state and chemical physics. 
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