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ABSTRACT: 

Charge dissociation in active layer is one of the key factors for the power conversion efficiency of bulk 

heterojunction organic solar cells (OSCs). Numerous charge-transfer mechanisms have been proposed 

based on one of few microscopic models. Here, we would explore possible charge-transfer 

mechanisms for 155 models of donor/acceptor (D/A) interfaces, built via materials Dcv-1 and C60 as 

donor and acceptor, respectively. After the calculations of the key parameters related to the charge 

dissociation and a statistical analysis for the correlation between these parameters were carried out, we 

can obtain a more robust description of the charge dissociation in practical OSCs. The complicated 

relationship among the key parameters not only illustrates the important correlation between D/A 

stacking pattern and charge-transfer mechanism, but also suggests that different charge-transfer 

mechanisms become more likely depending on the specific arrangements of donor and acceptor. 

Furthermore, the effects of excess energy on the charge-transfer mechanism were preliminarily probed 

by quantum dynamics simulation, which helps clarifying the much debated role of excess energy on 

the efficiency of charge generation.  
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Bulk heterojunction (BHJ) organic solar cells (OSCs) have been developed with continuous 

breakthrough of efficiency record in OSCs since the initial report in 1995.1 In recent years, OSCs have 

obtained considerable attention by virtue of their distinctive superiorities.2, 3 As the fundamental 

component of OSC device, the construction of active layer and selection of donor and acceptor 

materials have been considered to make central contribution to the enhancement of the power 

conversion efficiency (PCE),4-14 as they control the microstructure of morphology and even the whole 

efficiency of device. 15-19 

In fact, based on different active layer materials and morphology of donor/acceptor (D/A) 

interface, the different charge-transfer mechanisms mediated by “hot” exciton,20, 21 “direct” 

excitation,22-24 built-in and external electric field,25-28 entropy and disorder,29 rebound negative 

charge,30 etc. have been proposed,31-35 some of which presented contradictory conclusions and 

fragmentary information. For instance, just for the role of excess energy, there have been some 

contradictory conclusions. Tamura et al. proposed a charge-transfer mechanism promoted by 

vibronically hot CT states in 2013, which shows the free carrier yield ascended with the increment of 

excess energy but a too large excess energy is unfavorable.21 In 2014, Sun et al. used the Ehrenfest 

dynamics to emphasize that a larger excess energy is more conducive to charge separation.36 Recently, 

there are several reports of OSCs with high internal quantum efficiencies for charge generation with 

negligible excess energies.37-39 Many of such proposals are based on highly idealized geometries of 

model Hamiltonian and it is not very clear if the results depend on the specific choice of the model. So 

what if the contradictory conclusions are sourced from different interface models built? In recent years, 

many researchers have devoted themselves to the study of D/A stacking effect both in experiment and 

theory.40, 41 The stacking patterns of donor and acceptor have been explored from the initial distance 

of 3.5 Å to molecular dynamics (MD) simulation in theory.42-44 However, as we all know, it is difficult 

to measure the stacking pattern at molecular level in experiment and most of the selected theoretical 

D/A stacking models are over-idealized. By comparison, the D/A stacking patterns obtained by MD 

simulations seem closer to the actual condition,45, 46 and this technique is widely adopted to 

characterize the local interface morphologies of D/A blends and to understand the charge-transfer 

process with the analysis of electronic couplings.44, 47-52 Meanwhile, the effect of domain size on 

charge-transfer mechanism of OSCs was investigated based on a large model with PCBM supercell 

and large polymer domains (a model constructing by 2360 and 2048 atoms for acceptor and donor, 



respectively) obtained by MD simulations.53  

The goal of this work is to obtain charge-transfer mechanisms of different stacking patterns of a 

specific D/A model. For an active layer model simulated by MD, a statistical analysis was adopted to 

explore charge-transfer mechanism. And the bulk system is constructed with well-studied active layer 

materials dicyanovinylene (DCV)-substituted S,N-heterohexacenes-based54-58 molecule (DCV-1) and 

C60  shown in Figure 1(a). Through statistical analysis on 155 D/A interfaces, we proposed a 

workflow visualized in Figure 1(b) to search for promising region of characteristic values for more 

effective D/A stacking patterns according with different charge-transfer mechanisms.  

 

 
Figure 1. (a) Investigated donor molecule DCV-1 and acceptor molecule C60; (Molecule DCV-1 constructed from A-

D-A type including one core unit and two terminal units.) (b) Flowchart of the multi-scale simulations. 

 

 As described in Figure 2(a), the DCV-1/C60 interface stacking was firstly obtained by MD 

simulation, which is performed in Gromacs-5.1.1 software package.59 The simulation began with a 

three-dimensional cubic box of sides 8 × 8 × 8 nm3 with the numbers of D/A molecules being 144/65 

according to the experimental proportion.54 The methods and details of simulation process which can 

give an intuitive description on the formation of DCV-1/C60 morphologies are exhibited in the 

Supporting Information (SI). Then 155 DCV-1/C60 stacking patterns with the centroid-to-centroid 

distance less than 10 Å referred to center-of mass (COM) radial distribution functions (RDFs) plotted 

in the SI were extracted from the final equilibration morphologies. They were further classified 

manually into three groups shown in Figure 2(b), namely group 1 (C60 prefers to face on the center of 

backbone of DCV-1), group 2 (C60 tends to face on the terminal backbone of DCV-1) and group 3 (C60 

locates at the edge of DCV-1) with the assistance of configurational characteristic parameters DC and d 

defined in Figure 2(c). The three groups are represented in nearly equal proportions among the 155 

configurations with 50, 46, 59 instances for group 1, 2, 3 respectively.  



 

 

Figure 2. (a)Diagram of simulated process. (Input and output are shown in the purple frame. Manual categories are 

listed in the green frame); (b)Representative configurations extracted from the MD simulations for DCV-1 and C60 

molecules; (c)Schematic representation of the configurational characteristics for DCV-1/C60 dimer. (DC represents the 

distance between centroid of donor and acceptor and d is the perpendicular distance between the centroid of acceptor 

and the plane of the conjugated backbone of donor. )  

 

In order to identify the charge-transfer mechanism, we computed a number of relevant properties. 

Here, the counterpoised-corrected total interaction energies (Eint) between DCV-1 and C60 were firstly 

calculated to characterize the interaction strength between donor and acceptor. The excited energies of 

Frenkel exciton (FE) state for donor (EFED) and the lowest charge-transfer (CT) state (ECT) with their 

respective oscillator strength fCT and fFED were calculated to identify their relative positions and photo-

absorption strengths. Meanwhile, the energy difference between FE and CT states, namely the excess 

energy EFE-CT was also estimated for every stacking pattern aiming at distinguishing which charge-

transfer mechanism it belongs to. Moreover, the electronic couplings between DCV-1 and C60 (VDA-CS 

for charge-separation process and VDA-CR for charge-recombination process) were calculated 

considering their importance in promoting the charge-transfer ability at D/A interface using the 

generalized Mulliken-Hush (GMH) method60 as described in the SI. All the calculations mentioned 

above were carried out at the ωb97xd/6-31G (d, p) level, which is not only suitable for the system with 

weak intermolecular interaction but also for the obvious charge-transfer state.61, 62 

As a first step to analyze the large set of results, we report some interesting properties such as Eint, 



EFED, ECT and EFE-CT, in a scatter plot as a function of structural characteristic DC in Figure 3 for 155 

patterns and exhibit them in three groups. (scatter plot matrix for all computed parameters are shown 

in the SI.) Considering the distribution of excited state energy in Figure 3, one can notice that the 

stacking patterns have a relatively weak effect on the EFED and a stronger effect on ECT. As a 

consequence the excess energy EFE-CT varies in the region of -0.9 ~ 0.7 eV largely dictated by the 

variation of ECT. It deviates from our traditional knowledge that a fixed EFE-CT is definite when the pair 

of donor and acceptor is given whether in experiment or theory, which will be focused on in this work. 

Moreover, making a comparison among the three groups, group 1 has lower Eint while group 3 seems 

to have higher Eint, which implies more stable and favorable stacking configurations for group 1. 

Besides, ECT values of group 1 tend to be in the lower excited-energy region and those of group 3 seem 

to occupy in the higher excited-energy region. And higher EFE-CT of group 1 than those of other two 

groups is proved by the fact that most EFE-CT values are positive for group 1 while only three values 

are positive for group 2 and only two values for group 3. Hence, we infer that most of stacking patterns 

in group 1 are assigned to the hot mechanism (exciton dissociation via excited (“hot”) electronic or 

vibrational levels, namely EFE-CT > 0)20 while rare case occurs for group 2 and group 3. From the analysis 

above, we can find that EFED does not depend too much on the packing because it is an excitation 

localized on the donor, while ECT is influenced by the packing because greater distance between donor 

and acceptor increase the energy for the CT process. 

 

 



 
Figure 3. Scatter plot of some calculated properties as a function of DC (Eint/kcal·mol-1, EFED/eV, ECT/eV, EFE-CT/eV) 

of 155 dimers in different groups corresponding with average standard deviation σ. 

 

The correlations for all calculated physical parameters are collected in Figure 4a, which shows 

the correlation degrees directly. From Figure 4a, largest correlation degree is easily observable between 

ECT and EFE-CT in light of their correlation coefficient (-0.90), which is in accordance with their linear 

relationship presented in scatter plot matrix in the SI. Meanwhile, the correlation coefficient between 

Eint and ECT is 0.71, whose values are larger among these correlations, implying the correspondence 

between Eint and ECT. Now we can infer the correlations among them, i.e., the Eint between donor and 

acceptor, which is sensitive to the stacking pattern, influences the ECT and further EFE-CT. In other 

words, the excess energy strongly depends on the molecular stacking pattern at the interface. This is 

mostly influenced by the intermolecular conformation of the donor, which explains the weak 

correlation with other parameter. By comparison, the two parameters EFED and VDA-CS have weaker 

correlation with other parameters, suggesting that they are less influenced by the interface stacking 

pattern and may be mainly determined by our selection of active layer materials. This is weakly 

correlated because it is well established that the coupling is very sensitive to very small geometry 



change.63 

In Figure 4b-4d, we show correlation diagrams for different groups. The relatively stronger 

correlation between EFED and EFE-CT for group 1 than group 2 and group 3 may be originated from the 

fluctuated EFED for group 1. For group 2, the electronic coupling for charge separation shows larger 

correlation with ECT, EFE-CT and Eint, while the one for charge recombination exhibits larger correlation 

coefficients with fFED (0.68) and fCT (-0.66). These phenomena are different from the cases in group 1 

and group 3, and it indicates that for the stacking patterns with C60 facing on the terminal backbone of 

DCV-1, stronger interaction (more negative Eint) is associated, as expected, with (i) lower ECT (ii) higher 

fCT and (iii) lower coupling VDA-CS. This relation creates indirect correlations, e.g. between fCT and VDA-

CS.  

 

 

Figure 4. (a) Statistic analysis for all calculated properties (Eint/kcal·mol-1, EFED/eV, fFED, ECT/eV, fCT, EFE-CT/eV, VDA-

CS/eV and VDA-CR/eV) of 155 dimers (a) and of group 1 (b), group 2 (c) and group 3 (d).  (Blue and red cells indicate 

a positive and negative correlation, respectively, between the two variables. The darker color indicates that the 

variable correlation is greater. The triangular cell shows the same information with a pie chart. Correlation 



coefficients between two properties larger than 0.5 are presented in the SI.) 

 

Figure 5a plots the variation of EFE-CT along with characteristic values, trying to show the 

correlation between the energy and the structural characteristics. Combined with Figure 5b, we can see 

that different group tends to have distinguished region of EFE-CT values. A preliminary test shown in 

the SI was conducted to explore the effect of the excess energy EFE-CT on the charge-transfer 

mechanism by the method adopted in our previous work.30 We can find that when the EFE-CT is less 

than zero, as the EFE-CT increases, the maximum time-averaged outgoing charge 𝑃̅out increases slowly 

at first and then rises substantially. When EFE-CT values are approaching zero, more and more charges 

in bound-CT states are separated into outgoing charges. When EFE-CT is greater than zero, 

𝑃̅out decreases drastically as EFE-CT increases. This is because the systems adopt hot mechanism, and 

the generated charges in bound-CT state are small. Considering that 𝑃̅out can reach its peak when EFE-

CT is close to zero, we can imagine that the appearance of Frenkel exciton state and CT state as a hybrid 

state will facilitate charge separation. It is in accordance with our another work64 that the hybrid state 

is favorable to improve charge dissociation. 

In order to provide a specific distinction between charge-transfer mechanisms for the three groups, 

the position distributions along with the corresponding charge-transfer mechanisms, namely hot 

mechanism and direct mechanism (charge dissociation can take place directly into charge), are detailed 

in Figure 5c-5d. It can be seen from Figure 5b that both DC and d for group 1 are mostly located in the 

range of (5.0 Å, 7.5 Å), while for group 2, DC are relatively larger with the same range of d with group 

1, and for group 3, DC are also large with d varying widely (0~9 Å). Overall, when DC is smaller than 

8 Å, most configurations belong to group 1, and more stacking patterns of group 1 are assigned to the 

hot mechanism with reference to Figure 5c, which only considers lower Eint, larger VDA-CS and smaller 

VDA-CR (The relative lower or larger value are selected on the basis of the distribution of data. According 

to the distance between two adjacent points, the data is arranged in order from small to large. If the 

distance between two adjacent points is relatively large, the middle of these two points is the split 

point.) for hot mechanism. We know that effective charge dissociation needs larger VDA-CS and smaller 

VDA-CR. The corresponding promising region (DC = (5.5, 7.8) and d = (6.2, 6.6)) for hot mechanism in 

group 1 are presented in the SI. While for group 2 and group 3, hot mechanism is not considered 

because the majority of negative EFE-CT values are in both groups. In comparison, the stacking patterns 



assigned to direct mechanism show a larger proportion according to the dense distribution in Figure 

5d, whereas, the position distributions with effective charge dissociations are still concentrated at 

smaller intermolecular distance. The promising regions for direct mechanism of group 1 (DC = (5.5, 

7.4) and d = (6.0, 6.7)) and group 2 (DC = (7.0, 9.0) and d = (6.0, 7.0)) are shown in the SI. Therefore, 

we get the conclusion that the hot mechanism mainly appears in group 1, while direct mechanism 

mainly appears in group 1 and group 2, and more stacking patterns in group 3 behave ineffective charge 

dissociations considering their smaller VDA-CS and nearly zero fCT.  

 

 

Figure 5. (a) Distribution of  EFE-CT along with DC and d for the dimers；(b) Distributions of DC and d for all of 

155 dimers; (c) Distributions of DC and d for the dimers with hot mechanism (only consider EFE-CT > 0). Region DC 

= (5.5, 8.0) (Å）and d = (5.5, 6.5) (Å) is promising; (d) Distributions of DC and d for the dimers with direct mechanism. 

Region DC = (5.0, 8.0)  (Å) and d = (5.0, 7.0) (Å) is promising.  



 

In conclusion, we performed a statistical analysis on the key parameters related to the charge 

dissociation in an active layer model trying to search possible charge-transfer mechanisms. We find 

that different charge dissociation mechanisms become more likely depending on the packing of the 

D/A pair. A hot exciton mechanism is the most likely to occur when the acceptor and donor are the 

closest with acceptor lying on the central of donor (in about one third of configurations). While the 

packings for acceptor faced on the donor molecule could have a strong propensity to have direct 

excitation of the charge-transfer state. As for those acceptor edged on the donor are hardly satisfied 

with either hot or direct mechanism. In addition, the quantum dynamics simulation suggests that when 

the excess energies come close to zero, the separation charge yield is approaching the peak. This work 

demonstrates the importance of considering large sample of intermolecular geometries to draw useful 

conclusions on the actual charge dissociation mechanism. 
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