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Abstract
Earth System Models project that global climate change will reduce ocean net pri-
mary production (NPP), upper trophic level biota biomass and potential fisheries 
catches in the future, especially in the eastern equatorial Pacific. However, projec-
tions from Earth System Models are undermined by poorly constrained assumptions 
regarding the biological cycling of iron, which is the main limiting resource for NPP 
over large parts of the ocean. In this study, we show that the climate change trends 
in NPP and the biomass of upper trophic levels are strongly affected by modifying 
assumptions associated with phytoplankton iron uptake. Using a suite of model ex-
periments, we find 21st century climate change impacts on regional NPP range from 
−12.3% to +2.4% under a high emissions climate change scenario. This wide range 
arises from variations in the efficiency of iron retention in the upper ocean in the 
eastern equatorial Pacific across different scenarios of biological iron uptake, which 
affect the strength of regional iron limitation. Those scenarios where nitrogen limita-
tion replaced iron limitation showed the largest projected NPP declines, while those 
where iron limitation was more resilient displayed little future change. All model sce-
narios have similar skill in reproducing past inter-annual variations in regional ocean 
NPP, largely due to limited change in the historical period. Ultimately, projections of 
end of century upper trophic level biomass change are altered by 50%–80% across all 
plausible scenarios. Overall, we find that uncertainties in the biological iron cycle cas-
cade through open ocean pelagic ecosystems, from plankton to fish, affecting their 
evolution under climate change. This highlights additional challenges to developing 
effective conservation and fisheries management policies under climate change.
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1  | INTRODUC TION

Ocean net primary production (NPP) by marine phytoplankton is a 
primary catalyst for ocean ecosystem services. By removing inor-
ganic carbon from surface waters, NPP primes the biological carbon 
pump, which contributes to the ability of the ocean to regulate atmo-
spheric carbon dioxide levels (Falkowski, Barber, & Smetacek, 1998). 
NPP also introduces energy into the base of the food chain and there-
fore plays a key role in supporting pelagic marine ecosystems and 
provisioning services, such as fisheries (Lotze et al., 2019). The mag-
nitude of NPP and its variability is driven by a range of environmen-
tal factors, all sensitive to future climate change. In the presence of 
sufficient light, nutrient resources regulate the specific rates of NPP, 
while the size of the phytoplankton standing stock is also governed 
by losses due to grazing and mortality. The eastern equatorial Pacific 
region is a particular hotspot for NPP (Behrenfeld & Falkowski, 1997; 
Silsbe, Behrenfeld, Halsey, Milligan, & Westberry, 2016; Westberry, 
Behrenfeld, Siegel, & Boss, 2008), the biomass of upper trophic lev-
els and fish catch (Watson, 2017). The high productivity of this region 
supports livelihoods and directly benefits coastal communities (Boyce, 
Lotze, Tittensor, Carozza, & Worm, 2020; FAO, 2018). The key re-
source regulating phytoplankton activity in this region is iron (Moore 
et al., 2013), a trace micronutrient that is essential to major cellular pro-
cesses such as photosynthesis, respiration and assimilation of nitrate 
(Morel & Price, 2003). The links between the ocean iron cycle and NPP 
in iron-limited regions are complex (Tagliabue et al., 2017), with many 
potential interactions with climate change (Hutchins & Boyd, 2016).

Climate change is projected to have a negative impact on NPP 
and pelagic ecosystems in the tropical oceans in general and in 
the eastern equatorial Pacific in particular (Bindoff et al., 2019). 
The equatorial upwelling strength, which supplies nutrients from 
deeper waters, is projected to decline in magnitude and extent in 
experiments performed with Earth System Models using the high 
emissions RCP8.5 scenario (Terada, Minobe, & Deutsch, 2020). A 
reduction in the equatorial upwelling, coupled with greater den-
sity stratification of the upper ocean, tends to result in an end of 
21st century reduction in depth integrated NPP by 4%–11% glob-
ally under climate change (Bindoff et al., 2019) or by around 20% 
(over 10 mol C m−2 year−1) in the eastern tropical Pacific, with strong 
inter-model disagreement (Bopp et al., 2013). The combination of 
reduced NPP and ocean warming is also projected to reduce marine 
animal biomass and maximum catch potential in the eastern tropical 
Pacific significantly (Lotze et al., 2019).

The ocean iron cycle components of Earth System Models are 
known to display substantial disagreement between models and 
between models and observations (Tagliabue et al., 2016), which, 
as iron is the main limiting nutrient in this region, raises new ques-
tions regarding the robustness of NPP and animal biomass future 
projections. A key area of uncertainty that is fundamental to the re-
sponse of NPP to climate change is the strength of biological iron 
uptake (Tagliabue et al., 2017), which is known to display substantial 
variability (Boyd, Ellwood, Tagliabue, & Twining, 2017; Marchetti & 
Maldonado, 2016). State-of-the-art biogeochemical models used in 

climate change experiments account for variability in phytoplankton 
iron uptake in a simple manner (Tagliabue et al., 2016). However, re-
cent field observations and laboratory experiments find a wide va-
riety in the strength of biological iron uptake that results from the 
ability of algae to both remove and store iron (Cohen et al., 2018; 
Lampe et al., 2018), suggesting this important process is poorly con-
strained in ocean models. Moreover, unlike macronutrients like ni-
trogen and phosphorus, a significant amount of dissolved iron is also 
removed by particle aggregation and scavenging, which operates 
alongside biological removal to deplete upper ocean iron levels and 
contribute to surface ocean iron limitation in the eastern equato-
rial Pacific, north Pacific, north Atlantic and Southern Oceans (Boyd 
et al., 2017; Tagliabue et al., 2017). Earth System Models also repre-
sent resource limitation of NPP in a simple manner, diagnosing the 
most limiting resource in a given space and time, which then controls 
the growth rate.

In this work, we take one single complex ocean general cir-
culation and biogeochemistry model—PISCES (Aumont, Ethé, 
Tagliabue, Bopp, & Gehlen, 2015), routinely used for IPCC-type 
climate change simulations, and conduct a range of parallel cli-
mate change experiments using output from the IPSL Earth System 
Model to address how varying assumptions regarding the strength 
of biological iron removal affect future projections of NPP and an-
imal biomass under the RCP8.5 scenario. We then used the results 
from our ocean model to conduct additional scenarios with two 
upper trophic level models, APECOSM (Maury, 2010) and EcoTroph 
(Gascuel, Guénette, & Pauly, 2011), to quantify the impact on upper 
trophic levels. Typically, inter-model comparisons of NPP changes 
in response to climate change compare different physical and bio-
geochemical models, which makes it difficult to disentangle the 
role of differences in the physical and biogeochemical parame-
terizations. Here, we focus specifically on the biological iron cycle 
within one model with a common ocean physical configuration and 
identify an iron cycle cascade, whereby uncertainties in biological 
iron removal by phytoplankton cascade up the food chain to impact 
upper trophic levels and their response to climate change in the 
eastern equatorial Pacific.

2  | MATERIAL S AND METHODS

2.1 | Biogeochemical and ecosystem models

The PISCES biogeochemical model is a core component of the IPSL 
coupled climate model and has been used in the past CMIP5 and 
ongoing CMIP6 exercises. The version of PISCES used in this study 
includes five nutrients (nitrate, phosphate, ammonium, silicate and 
iron), two phytoplankton (nanophytoplankton and diatoms), two  
zooplankton (micro- and meso-zooplankton), two particle size classes, 
dissolved inorganic carbon, dissolved organic carbon, oxygen, alkalin-
ity, calcium carbonate, biogenic silica, calcite and represents the pro-
cesses of nitrogen fixation, denitrification, calcification and ammonia 
oxidation, as well as a dynamic representation of iron-binding ligands  
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(Aumont et al., 2015). The overall biological removal in the model is 
a combination of a maximum uptake rate (Vmax), modulated by iron 
availability and the degree of iron accumulation (Aumont et al., 2015; 
Buitenhuis & Geider, 2010), with the assumption that iron uptake is 
slowed as cells get closer to their prescribed maximum iron quota 
(QFeCMax). The magnitude of Vmax and QFeCMax is controlled by the 
BioFeMax parameter, which is assigned a value of 80 μmol Fe/mol C 
in the control model. Vmax is set by the maximum rate of carbon pro-
duction multiplied by BioFeMax to produce a maximum rate of iron 
uptake, while QFeCMax is set at the value of the BioFeMax parameter 
(Aumont et al., 2015). PISCES has a relatively complicated iron cycle 
and also accounts for iron loss via scavenging, due to both adsorp-
tion and colloidal pumping processes, with variable iron-binding  
ligand concentrations. The model also includes variable recycling of 
dissolved iron by zooplankton that is driven by food quality (Richon, 
Aumont, & Tagliabue, 2020) and implicit bacterial iron cycling. The 
model includes sources from dust, sediments, rivers and hydrother-
mal vents and iron is lost from the ocean as particulate iron sinks  
out of the bottommost model grid cell. At present, the PISCES model 
is one of the better performing global ocean models (Tagliabue 
et al., 2016) and thus an ideal platform to assess how uncertain-
ties around total biological iron removal, connected via the BioFeMax 
 parameter, affects climate change projections.

We conducted simulations with PISCES embedded into the 
NEMO framework in the ORCA2 configuration, which has mean 
horizontal resolution is approximately 2° by 2° cos(latitude) and 
the meridional resolution is enhanced to 0.5° at the equator. The 
model has 30 vertical levels that have a resolution that increases 
from 10 m at the surface, with 12 levels located in the first 125 m, 
to 500 m at depth. Each experiment was spun up using typical phys-
ical forcing (Aumont et al., 2015) for 250 years before we began our 
climate change experiments. Our climate runs were forced with of-
fline output from the IPSL-CM5A model at monthly resolution, using 
a preindustrial control simulation from 1801 to 2100 and an addi-
tional historical simulation from 1851 to 2005 initialized by the pre-
industrial control output for year 1851 that then followed the high 
emission RCP8.5 scenario from 2005 to 2100. Results presented for 
the ‘present day’ are averaged between 1986 and 2005 and those 
at ‘end of century’ are 2091–2100 averages. We conducted exper-
iments where BioFeMax was set to 40 and 20 μmol Fe/mol C (com-
pared to 80 μmol Fe/mol C in the control model). A additional set 
of experiments were conducted where adjustments to BioFeMax to 
40 and 20 μmol Fe/mol C only affected maximum uptake rates and 
QFeCMax was retained at 80 μmol Fe/mol C, labelled as Vmax = 40 and 
20 respectively. Each experiment was spun up under climatologi-
cal forcing for 250 years before running preindustrial control and 
historical-RCP8.5 scenarios from 1801 to 2100 and 1852 to 2100 
respectively.

APECOSM (Maury, 2010) is a global ecosystem model that mech-
anistically represents the 3D dynamics of three size-structured ge-
neric pelagic communities (epipelagic, mesopelagic and migratory). It 
integrates individual, population and community levels and includes 
the effects of life-history diversity using a trait-based approach 

(Maury & Poggiale, 2013). APECOSM scales dynamic energy bud-
get (DEB)-based individual bioenergetics (Kooijman, 2000) up to the 
species and community level via a trait-based approach (Maury & 
Poggiale, 2013). The uptake and use of energy for individual growth, 
maintenance and reproduction are modelled according to the DEB 
theory (Kooijman, 2000). The model considers important ecologi-
cal processes such as opportunistic size-structured trophic inter-
actions and competition for food, key physiological aspects such as 
vision and respiration, as well as essential behaviours such as 3D 
habitat-based movements, schooling and swarming. In APECOCM, 
physical drivers from NEMO (3D fields of temperature and horizon-
tal currents, vertical mixing) as well as biogeochemical drivers from 
PISCES (3D fields of primary and secondary production—small and 
large phytoplankton, small and large zooplankton—detritus, light and 
oxygen) control the biological and ecological dynamics at various 
levels. One of the main characteristics of APECOSM is that the par-
ticular structure of regional ecosystems is not prescribed a priori. On 
the contrary, the ecosystem structure emerges dynamically from the 
interactions between the global generic structure and set of rules of 
the model and the regional environmental drivers.

EcoTroph (Gascuel et al., 2011) is a simplified ecosystem model, 
where the structure of the ecosystem is summarized by biomass or 
production trophic spectra, which is the distribution of the biomass 
or production according to trophic levels, with all species combined. 
The trophic functioning of the marine food web is represented by 
the flow of biomass, with biomass entering the system at trophic 
level 1 due to NPP. Then, the biomass flow reaching each trophic 
level is defined by the trophic transfer efficiency which connects 
the flow from a given trophic level to the next. Here, we used a pa-
rameterization (du Pontavice, Gascuel, Reygondeau, Maureaud, & 
Cheung, 2020), where the trophic transfer efficiency at lower tro-
phic levels is derived from the plankton food web model COBALT 
(Stock, Dunne, & John, 2014), while for higher trophic levels, it is 
based on a semi-empirical model depending on the sea surface tem-
perature (SST). The biomass residence time at every level of the food 
web depends on the species life expectancy and determines the 
productivity of the ecosystem. This is a key parameter in EcoTroph, 
linking the production of a given trophic level to its biomass, and 
which is also forced by SST (Gascuel, Morissette, Palomares, & 
Christensen, 2008).

2.2 | Evaluation of NPP and the emergent constraint 
from past ENSO events

Across Earth System Model ensembles, the sensitivity of NPP to 
El Niño-Southern Oscillation (ENSO) climate variability has been 
shown to be related to the projected climate impact on future 
NPP (Kwiatkowski et al., 2017). The tropical NPP-ENSO sensitiv-
ity of all PISCES parameterizations was calculated in the respec-
tive preindustrial control simulations, following the approach 
of Kwiatkowski et al. (2017). In the 249 years of preindustrial 
simulation for each model experiment, we diagnosed the linear 
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regression coefficient between annual Niño 3.4 region (5°N–5°S, 
120°–170°W) SST anomalies and tropical (30°N–30°S) NPP anom-
alies. Observationally derived tropical NPP-ENSO sensitivities 
were calculated using the Hadley Centre Sea Ice and Sea Surface 
Temperature data set (HadISST1; Rayner, 2003) and two NPP 
products, the Vertically Generalised Production Model (VGPM; 
Behrenfeld & Falkowski, 1997) and the Marra model (Marra, Ho, & 
Trees, 2003) over the SeaWIFS satellite record (1998–2007). The 
observationally derived sensitivities range from −1.50%/°C (Marra 
model) to −3.16%/°C (VGPM). We chose to use the SeaWIFS sat-
ellite period for this analysis rather than the MODIS era as the 
SeaWIFS era encompassed a period with strong ENSO dynamics, 
making this the time period most suitable for this analysis. For that 
same reason, MODIS data are used to evaluate the modelled rates 
of NPP as they are not subject to strong interannual variations not 
reproduced in the model.

3  | RESULTS

3.1 | Response of NPP to climate change

The evolution of global NPP during our experiments is not signifi-
cantly altered across our model experiments and NPP reduces by 
around 8% from a value of around 48 Pg C/year during the period 
1852–2005 (Figure S1), similar to prior work with CMIP5 mod-
els (Bopp et al., 2013; Frölicher, Rodgers, Stock, & Cheung, 2016; 

Laufkötter et al., 2015). The spread in global NPP among our model 
experiments is much smaller than that across the CMIP5 suite 
(Figure S1). Spatially, the control model produces a change in NPP 
averaged over 2091–2100, relative to 1986–2005, that shows gen-
eral decreases in the low latitudes and increases in the polar seas 
(Figure 1a; Figure S2) typical of Earth System Model projections 
under the RCP8.5 scenario (Bindoff et al., 2019; Bopp et al., 2013). 
In the equatorial Pacific in particular, NPP is projected to show de-
clines that exceed 5 mol C m−2 year−1 (Figure 1a), similar to previous 
modelling exercises (Bopp et al., 2013).

The broad coherence between our experiments at the global 
scale masks substantial inter-experiment differences in the eastern 
equatorial Pacific. Differences in the climate change impact on NPP 
between our experiments can be difficult to visualize (Figure S2), 
but emerge more clearly when we calculate the anomaly in the cli-
mate impact on NPP, relative to the control model signal (Figure 1; 
Figure S3). This shows that when overall phytoplankton iron uptake 
rate declines, either by lowering both uptake and storage or uptake 
alone, the trend in NPP due to climate change in the control model 
(Figure 1a) is either strongly compensated for (Figure 1b) or even 
reversed (Figure 1c). The impact of these signals is strongly localized 
in the Pacific EQuatorial Divergence province (PEQD; Longhurst, 
Sathyendranath, Platt, & Caverhill, 1995; black outline in Figure 1a), 
which brackets the region of the eastern equatorial Pacific offshore 
of the South American coastline. When trends in NPP are extracted 
from the PEQD province and compared to their 1986–2005 value, 
the 12.1 ± 7.3% decline in NPP during 2091–2100 (standard deviation 

F I G U R E  1   Impact of climate change on 
net primary production (NPP). (a) Impact 
of climate change on annual NPP in the 
control simulation (mol C m−2 year−1) 
and the outline of the Pacific EQuatorial 
Divergence (PEQD) Longhurst province 
in black, anomaly in the impact of climate 
change on annual NPP (mol C m−2 year−1) 
when BioFeMax is (b) 40 μmol/mol, (c) 
20 μmol/mol and (d) a time series of the 
percentage change in annual NPP for 
the PEQD province for all experiments. 
Absolute and percentage changes are 
calculated for the period 2091–2100, 
relative to the period 1986–2005. The 
control model uses a BioFeMax value of 
80 μmol/mol
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of regionally integrated annual values between 2091 and 2100) for 
the control model is reduced to a 4.3 ± 5.7% decline (BioFeMax = 40, 
solid blue line in Figure 1d) or even switched to a slight increase of 
2.4 ± 3.3% (BioFeMax = 20, solid red line in Figure 1d). Interestingly, 
the general trend of the results is retained when only the maximum 
uptake rate (Vmax) is modified and the maximum storage quota is left 
at the control value of 80 (dashed blue and red lines in Figure 1d 
and Figure S3 respectively) with NPP declines of 5.0 ± 5.2% and 
0.3 ± 3.0% for Vmax = 40 and Vmax = 20 respectively. This suggests 
that the rate of iron uptake dominates the impact on NPP from the 
overall change in biological iron uptake (BioFeMax) with changes to 
the maximum iron storage potential playing little role in this low iron 
region.

Altering the strength of biological iron uptake leads to opposite 
responses in the magnitude of iron removal by scavenging over the 
1986–2005 period. When the magnitude of BioFeMax is reduced to 40 
and 20 μmol/mol, relative to the control value of 80 μmol/mol, we 
find that total biological iron uptake in the PEQD declines as expected 
by 25% and 45% respectively. In parallel, the total rate of iron loss 
via scavenging increased by 16% and 31% for the BioFeMax = 40 and 
BioFeMax = 20 experiments, respectively, dominated by colloidal coagu-
lation. The experiments where BioFeMax only affects the maximum rate 
of iron uptake and not the iron storage (the Vmax = 40 and Vmax = 20 
experiments) showed similar parallel changes in removal of iron by bi-
ology and scavenging in the PEQD province. For the Vmax = 40 exper-
iment, biological iron uptake by phytoplankton declined by 17% and 
scavenging increased by 6%, while for the Vmax = 20 experiment, bio-
logical iron uptake by phytoplankton declined by 35% and scavenging 
increased by 14%.

3.2 | Drivers of NPP trends and their evaluation

The resilience of upper ocean iron limitation in the PEQD drives 
the response of NPP to climate across our experiments. In the con-
trol model, the biogeochemical impact of climate change on NPP 
in the PEQD province is a progressive shift from iron to nitrogen 
limitation. In the historical era (1850–2005), both diatoms and na-
nophytoplankton are limited by iron across over 85% of the prov-
ince area, but from 2005 onwards, the fraction of the province 
limited by iron declines, with nitrogen limitation rising (Figure 2a). 
Nitrogen limitation is enhanced due to two factors. Firstly, the up-
welling supply of nitrate declines progressively during the RCP8.5 
scenario, reducing nitrogen availability to phytoplankton. Secondly, 
reduced biomass due to reduced nitrogen supply allows increased 
light penetration and a deeper euphotic zone. This deepens the 
subsurface chlorophyll maximum and increases nitrate consump-
tion in the equatorial undercurrent waters that fuel the upwelling. 
Taking the BioFeMax = 40 and 20 experiments as examples, we can 
see that the iron-limited area of the PEQD province is much more 
resilient to climate change when phytoplankton iron removal is low-
ered (Figure 2b,c). Indeed, there is a strong quasi-linear relation-
ship between the fraction of the PEQD province that is iron limited 

and the impact of climate change on NPP for the control and the 
BioFeMax = 40 experiment (Figure 2d). In the scenario with the low-
est phytoplankton iron removal (BioFeMax = 20, Figure 2c), there is 
hardly any change in the iron-limited area over the entire experi-
ment and NPP even slightly increases as unused iron from adjacent 
gyre provinces is advected laterally into the region. This collapses 
the strongly linear link between iron-limited area and NPP seen for 
the control and BioFeMax = 40 experiments within the PEQD region 
(Figure 2d). The differences in the future evolution of the iron- and 
nitrogen-limited areas across the experiments contrasts with their 
relative stability over the 1850–2005 period, which shows only 
very limited change (Figure 2). Iron responds differently to nitrate 
in this region as although both nitrate and iron are supplied from 
upwelling, significant iron can also be supplied from the continen-
tal margin in this region (John et al., 2018) buffering the sensitiv-
ity of NPP if iron remains the limiting nutrient. It is only where the 
most limiting resource changes (from iron to nitrogen in this case) 
in response to climate change where we see this strong sensitivity 
to biological iron uptake assumptions. This explains why areas of 
pervasive iron limitation, such as the Southern Ocean are much less 
sensitive to assumptions regarding biological iron uptake (Figure 1).

The performance of all our experiments over the historical 
period remained consistent with available data sets for NPP and 
dissolved iron. Specifically, we examined the magnitude of NPP, 
its variability and available surface ocean observations of dis-
solved iron across the tropics to assess whether any experiments 
were inconsistent. Turning first to the overall magnitude of NPP 
in the PEQD province, we can see that while there are slight dif-
ferences in total NPP across the experiments in the present-day 
period, they range from 3.2 to 3.6 Pg C/year (Figure 3a) and are 
much smaller than the differences derived from the three available 
global satellite NPP algorithms (Behrenfeld & Falkowski, 1997; 
Silsbe et al., 2016; Westberry et al., 2008) applied to MODIS data 
between 2002 and 2019 (Figure 3a). A more direct method of eval-
uating the model NPP dynamics is to assess whether variations 
in NPP have the correct sensitivity to ENSO-driven SST changes 
within the Niño 3.4 region, which has been used previously to as-
sess tropical NPP trends and reduce uncertainty across climate 
models (Kwiatkowski et al., 2017). Analysis of remote sensing data 
from past strong El Niño/La Nina transitions has found an ENSO 
sensitivity of tropical NPP of between −1.50% and −3.16%/°C 
(Kwiatkowski et al., 2017). Similarly, all our model experiments 
exhibit a negative relationship (p < .001) between SST anoma-
lies in the ENSO-driven Niño 3.4 region and anomalies in tropi-
cal NPP, with sensitivities ranging from −1.69%/°C (BioFeMax = 20) 
to −2.80%/°C (control model). Although our experiments with 
reduced iron uptake are slightly less sensitive to changes in SST, 
differences are small and all remain well within the observa-
tional bracket and the range from other CMIP5 climate models 
across their preindustrial control simulations (slopes in Figure 3b; 
Table 1). A final means to assess the viability of our different iron 
uptake experiments is to compare against available iron concen-
tration observations. However, in this iron-limited region, iron is 



6  |     TAGLIABUE ET AL.

depleted to low levels in both the observations and our model ex-
periments and is unable to discriminate strongly between exper-
iments (Figure S4). Overall, the range of projected NPP changes 
of –12.1% to +2.4% remains plausible future projections for the 
PEQD province. This implies that the sensitivity of NPP to cli-
mate oscillations such as ENSO are not always good constraints 
on divergent future NPP projections, at least for the PEQD under 
different iron limitation regimes. Overall, our model experiments 
did not show large differences in their NPP or nutrient limitation 
dynamics within the PEQD until after ~2030 (Figures 1d, 2a–c and 
3a), which limits our ability to constrain their likelihood further 
with existing observational data.

3.3 | Impact of NPP changes on upper trophic levels

To quantify the implications of the uncertainty in the impact of climate 
change on NPP in the PEQD province driven by the strength of bio-
logical iron uptake on upper trophic levels, we conducted a set of spe-
cific additional experiments. We chose to use two upper trophic level 
models that span the typical differentiation between semi-empirical 
and mechanistic trait-based approaches. EcoTroph is a simplified semi-
empirical model of the flow of biomass through the food web, from 
primary producers to top predators (Gascuel et al., 2011), using SST 
and NPP as model inputs. APECOSM (Maury, 2010) is a more com-
plex and mechanistic model that considers size-structured trophic 

F I G U R E  2   Response of resource limitation in the eastern equatorial Pacific. The change in the fraction of the total area of the Pacific 
EQuatorial Divergence province limited by either iron (red) or nitrogen (black) for diatoms (solid line) and nanophytoplankton (dashed line) 
for (a) the control model and when BioFeMax is (b) 40 μmol/mol, (c) 20 μmol/mol and (d) the relationship between the change in net primary 
production and the change in iron-limited area (diatoms) for the control (black), BioFeMax = 40 μmol/mol (blue) and BioFeMax = 20 μmol/mol 
(red). The control model uses a BioFeMax value of 80 μmol/mol



     |  7TAGLIABUE ET AL.

interactions and 3D passive and active movements (both vertical and 
horizontal) for epipelagic, non-migratory meso-pelagic and migratory 
meso-pelagic communities. It uses a wide range of model inputs, in-
cluding three-dimensional velocity fields, temperature, light, oxygen, 
phytoplankton and zooplankton biomass.

The response of upper trophic level biomass to climate change 
is highly sensitive to assumptions regarding the strength of phy-
toplankton iron removal. When forced by output from our control 

model, both EcoTroph and APECOSM display declines in total bio-
mass for the PEQD province (Figure 4). The total biomass decline 
in 2091–2100, relative to 1986–2005, of 29.8 ± 9.1% in EcoTroph is 
around double the decline of 12.7 ± 5.9% projected by APECOSM, 
similar to those from the Fisheries and Marine Ecosystems Impact 
Models Inter-comparison Project (FishMIP; Lotze et al., 2019) ex-
tracted for the same region (Figure 4). In both models, the impact 
of climate change on total animal biomass is clearly reduced when 
results from the lowered phytoplankton iron removal experiment 
(BioFeMax = 20) are used as inputs, with projected reductions during 
2091–2100, relative to 1986–2005, of 12.7 ± 5.2% and 2.3 ± 2.8% 
for EcoTroph and APECOSM respectively (Figure 4). Overall, the 
modifications to the model projections under the lower iron re-
moval experiment translate into a reduction in the climate change 
impact on animal biomass of between 57% and 82% for EcoTroph 
and APECOSM respectively (Figure 4). The reduction in the cli-
mate change impact on animal biomass is lower for EcoTroph due 
to the strong direct role for SST changes within this simpler model. 
Significantly, the range of outcomes for upper trophic levels biota 
in this region is increased beyond the differences between the 
projections across seven different fisheries and marine ecosys-
tems models from FishMIP (Lotze et al., 2019) extracted from the 
same region (grey lines in Figure 4). This suggests that accounting 
for poorly known iron cycle-driven variations in NPP and their as-
sociated components increases the level of uncertainty for policy-
makers in this region.

F I G U R E  3   Evaluating modelled net primary production (NPP) rates and variability. (a) Absolute rates of annual NPP from the Pacific 
EQuatorial Divergence Province across our model experiments compared with three NPP algorithms (VPGM, CBPM and CAFE) applied to 
the MODIS data. (b) The annual mean anomaly in tropical primary production against the annual mean Niño 3.4 region SST anomaly across 
our simulations (CMIP5 models are presented in grey and observational constraints from remote sensing are dotted and dashed black lines)

TA B L E  1   Variability in net primary production (NPP) and sea 
surface temperature (SST). The ratio of the percentage change 
in NPP to the change in SST within the Nino 3.4 box across the 
experiments, compared to two satellite algorithms for NPP applied 
to SeaWIFS data and 13 CMIP5 models

Change in NPP/change 
in SST (%/°C)

Control −2.80

BioFeMax = 40 −2.18

BioFeMax = 20 −1.69

BioFeMax = 40, 20 −2.03

Vmax = 40 −2.24

Vmax = 40 −1.72

Satellite (VPGM) −3.16

Satellite (Marra) −1.50

CMIP5 models −0.30 to −11.24
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4  | DISCUSSION

The balance between iron removal by phytoplankton uptake and 
scavenging controls the response of NPP to climate change in the 
eastern equatorial Pacific. Consistent with observations, iron is 
fully depleted in this region across all our experiments (Figure S4) 
due to the combination of biological uptake and abiotic scaveng-
ing removal. In our model, any iron removed by phytoplankton 
can be retained efficiently in the upper ocean by a suite of re-
cycling processes linked to grazer and bacterial activity (Aumont 
et al., 2015), consistent with the available process observations 
(Boyd et al., 2017). However, any iron that is removed by scav-
enging is inefficiently retained in the upper ocean and sinks 
into the ocean interior as particulate iron. Thus, in experiments 
where phytoplankton uptake is lowered, scavenging is increased. 
This increase in scavenging increases the removal of iron from 
the upper ocean and iron limitation is intensified (Figure 3). As 
assumptions regarding the strength of phytoplankton uptake 
control the balance between biotic and abiotic iron removal, the 
degree of iron limitation in the historical period is altered, which 
then drives the ecosystem response to climate change. It is plau-
sible that additional processes not considered here, linked to pho-
tochemical transformation of scavenged iron, altered recycling 
efficiencies and bacterial dynamics, may also prove to be impor-
tant in governing the strength of iron limitation and its resilience 
to climate change. However, more process-orientated studies 
will be necessary to illuminate the major iron cycle fluxes in this 
region, which would provide critical constraints on the model  
scenarios.

The role played by the strength of iron limitation in the historical 
period drives the future impact of climate change on marine ecosys-
tems more broadly than the eastern equatorial Pacific province. This 
is clearly seen when we expand our analysis to the tropical Pacific 
between 30S and 30N as a whole, where there is a tight relationship  
between the changing extent of iron limitation and the climate change 
impact on NPP (Figure 5). The largest reductions in NPP are found in 
regions where limitation by iron lessens to be replaced by increasing 
nitrogen limitation. Our results suggest that if iron remains the most 
deficient resource, then the sensitivity to changes in nitrogen supply 
linked to modifications to upwelling and stratification will be less-
ened. This points to the need to consider how the iron supplied to the 
ocean by other means, including continental margins, rivers and an-
thropogenic deposition linked to fossil fuel burning or fire, may alter 
in the future alongside physical mixing pathways to regulate regional 
NPP changes in response to climate change. Overall, our results high-
light that shifts in resource limitation and its sensitivity to a changing 
climate have significant impacts on projections of how climate change 
impacts NPP and upper trophic levels.

Greater insight into the mechanisms of iron uptake is being 
provided by a combination of physiological and genomic methods. 
Genomic data have shown that marine phytoplankton exploit a range 
of cross membrane transport pathways to maximize their ability to 
internalize iron (Coale et al., 2019; McQuaid et al., 2018). Limited 
information on iron quotas (which result from overall iron uptake) 
from the region is available from synchrotron x-ray fluorescence 
methods that specifically target phytoplankton cellular quotas, 
which find values ranging between around 10 and 40 μmol Fe/mol C 
(Twining et al., 2011). Across all model experiments, phytoplankton 

F I G U R E  4   Quantifying the impact on upper trophic levels. The per cent change in total consumer biomass within the Pacific EQuatorial 
Divergence province for the control (solid line) and the BioFeMax = 20 experiment (dashed line) within the EcoTroph (black) and APECOSM 
(red) upper trophic level models. The multi-model mean ± the standard deviation from the FishMIP exercise for the same region forced 
by IPSL-CM5A output is shown in a thin blue solid and dashed line. All changes are relative to 1986–2005



     |  9TAGLIABUE ET AL.

iron quotas plateau to broadly similar values of around 5–15 μmol  
Fe/mol C in the low iron offshore waters and only approach their 
prescribed maximum very close to the coastline (Figure S5). The pre-
scribed maximum quota, which reflects the overall storage capacity 
of the cells, does not appear to be reached in the model in the low 
iron waters of the equatorial Pacific region. This highlights the im-
portance of the maximum iron uptake rate as the key component 
of overall iron uptake in the model for this iron deplete region. The 
maximum iron uptake rate is controlled by the number of iron trans-
porters on the cell surface, which themselves can vary in response 
to the cellular iron demand (Marchetti & Maldonado, 2016). As the 
maximum uptake rate itself is a function of the number of transport-
ers divided by the handling time (Aksnes & Egge, 1991), this opens 
up the possibility to use field or laboratory data on variations in iron 
transporter abundance and other biochemical responses (Caputi 
et al., 2019; Nunn et al., 2013) to constrain maximum uptake rates 
in the future, similar to work for phosphorus (Caceres et al., 2019). 
It is highly likely that the maximum uptake rate for iron is also vari-
able, which this study shows would drive significant variability in the 
climate trend in NPP and upper trophic levels at the regional scale. 
There is a need for a new generation of observationally informed 
approaches to representing cellular resource limitation appropriate 
for inclusion in future Earth System Models to inform future climate 
change assessments of ocean ecosystem change.

We find a strong sensitivity of climate change impacts on east-
ern equatorial Pacific upper trophic levels to uncertainties in the re-
sponses of regional NPP. Consistent with previous assessments, this 
study projects negative impacts of ocean warming and changes in 
NPP on upper trophic levels in the PEQD province. However, we also 
find that the uncertainties regarding these projections are higher than 
previously suggested. Under the high emissions RCP8.5 scenario, total 
consumer biomass is projected to continuously decline over the cen-
tury in the PEQD province, for both APECOSM and EcoTroph ecosys-
tem models across all biological iron removal experiments (Figure 4). 

Even in the scenario where NPP slightly increases (BioFeMax = 20), any 
positive effect is offset by the adverse effect of warmer temperatures 
on the food web functioning to some degree (depending on the com-
plexity of the ecosystem model used, Figure 4). This is because warmer 
temperatures are known to lead to amplified effects on upper trophic 
level biomass. Overall, we note that any change in consumer biomass 
does not necessarily cause a parallel change in catch. This is because 
the realized commercial catch also results from fisheries strategies and 
fisheries management, as well as modifications to the productivity of 
each remaining biomass unit, which may increase with warming (e.g. 
Guiet, Aumont, Poggiale, & Maury, 2016).

At present, this study is limited by the lack of in situ data on 
iron cycle processes in the region, nutrient limitation regimes and 
a need to be able to discriminate between the different tempera-
ture sensitivities of upper trophic level models. Future work that 
focused on collecting rate-based measurements of the ocean iron 
cycle in the region, targeting natural variability associated with 
frontal gradients and interannual variations would enable im-
proved constraints on existing Earth System Models. More work 
to intercompare upper trophic level ecosystem models, such as the 
FishMIP network (Lotze et al., 2019), will help identify the rela-
tive importance of the different underlying biological processes 
driving the fisheries responses. Of particular interest is the way 
in which warmer temperatures may interact with changing NPP 
to shape the biomass and productivity of upper trophic levels. In 
that context, additional ecosystem drivers such as acidification, 
oxygen loss and extreme events (e.g. heat waves) are rarely con-
sidered in upper trophic level ecosystem models and may exacer-
bate the projected changes in marine animal biomass. Ultimately, 
past Earth System Model assessments have been hampered by 
the complexity of collecting field data on physiological processes 
such as nutrient acquisition and stress, despite these responses 
underpining climate-driven changes in NPP. Of particular impor-
tance is the role of shifts in resource limitation from one resource 

F I G U R E  5   Broader link between 
changing iron limitation and changing net 
primary production (NPP) in the tropical 
Pacific Ocean. The relationship between 
the percentage change in NPP (relative 
to 1986:2005) and the iron-limited area 
(diatoms) across the total area of the 
Pacific Ocean between 30S:30N for 
the control (black), BioFeMax = 40 μmol/
mol (blue), BioFeMax = 20 μmol/mol 
(red), Vmax = 40 μmol/mol (pink) and 
Vmax = 40 μmol/mol (green)
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to another that control the sensitivity of NPP to climate change. 
Future work that couples field data on biogeochemical rates and 
pools with genomic techniques that illuminate resource limitation 
and the organismal responses to in situ environmental gradients 
has the potential to be transformative when coupled to a new gen-
eration of biogeochemical models.

5  | CONCLUSION

To conclude, understanding how climate change will affect NPP 
and the biomass of upper trophic levels is a crucial component of 
the risk assessment of pelagic ocean ecosystems for policymak-
ers. These assessments arise from the results of projections with 
ecosystem models forced by the output of Earth System Models 
under various greenhouse gas emissions scenarios (Bindoff et al., 
2019; Lotze et al., 2019). However, the degree to which projec-
tions of NPP are affected by uncertainties in poorly known compo-
nents of the biological iron cycle has been neglected in prior work. 
Our results have shown that modifying assumptions regarding the 
strength of biological iron removal play a central role in governing 
the response of NPP in the tropical Pacific Ocean to climate change 
as it exerts a primary control on the strength of regional iron limita-
tion. Thus, shifts in resource limitation and its sensitivity to climate 
change can drive important changes in NPP projections. Moreover, 
these changes in NPP have a significant impact in the projections 
of how climate change under a high emissions scenario RCP8.5 
will alter the biomass of upper trophic levels, even in the context 
of strong ocean warming. This highlights additional challenges in 
making projections of future changes in upper trophic level biomass 
change in the iron-limited regions of the tropics unless a combina-
tion of new observational and modelling tools is able to increase 
confidence in the biological iron cycle and prevailing patterns of 
resource limitation.
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