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Abstract

We study local singularities of holomorphic families of arbitrary square, symmetric
and skew-symmetric matrices, that is, of mappings of smooth manifolds to the matrix
spaces. Our main object is the vanishing topology of the pre-images of the hypersurface
∆ of all degenerate matrices in assumption that the dimension of the source is at least
the codimension of the singular locus of ∆ in the ambient space.

We start with showing that the complex link of ∆ is homotopic to a sphere of the
middle dimension and give a geometric interpretation of such spheres. This allows us
to define vanishing cycles on the singular Milnor fibre of a matrix family, that is, on
the local inverse image of ∆ under a generic perturbation of the family. According
to Lê and Siersma such a fibre is a wedge of middle-dimensional spheres. We prove
that in some important cases, which include the Damon-Pike conjecture and all simple
matrix singularities, the number µ∆ of the spheres in the wedge is equal to the relevant
Tjurina number τ of the family.

We introduce two kinds of bifurcation diagrams for matrix families, and prove a
Lyashko-Looijenga type theorem for the larger diagrams for all simple matrix families.

Making the first steps towards understanding the monodromy of matrix singulari-
ties, we define an intersection form on the singular Milnor fibres of corank 2 symmetric
matrix families, which yields a complete description of the monodromy of such fibres.
A modification of this approach reveals a quite unexpected relationship between certain
Shephard-Todd groups, simple odd functions and simple corank 3 matrix singularities,
those forming a sporadic part of the entire simple matrix classification obtained by
Bruce and Bruce-Tari.

We conclude with a general µ∆ = τ conjecture for matrix singularities.

2010 Mathematics Subject Classification 32S05, 32S30, 32S40, 58K15 (primary), 32S55,
58K05 (secondary)

This paper is about the vanishing topology of holomorphic families of arbitrary square,
symmetric and skew-symmetric matrices, that is, of mappings of smooth manifolds to the
corresponding matrix spaces. Complete classifications of simple families of the first two
kinds were obtained more than 15 years ago by Bruce and Tari [5, 7], and a partial simple
classification of skew-symmetric matrices was done by Haslinger about the same time [21].
Topological and algebraic analysis of their results for a small number of parameters – when
a generically perturbed family avoids singularities of the set ∆ of all degenerate matrices
– was carried out in [6, 19, 18]. In particular, the monodromy of the Milnor fibre of the
inverse image of the discriminant ∆ was described in those papers, and a relation between
the rank of the vanishing homology of such a fibre and the relevant Tjurina number of a
matrix family was obtained. The last relation was actually proved in [18] not just for the
matrix singularities but for sections of a wide class of singular hypersurfaces.
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Moving to a higher number of parameters in the matrix families brings a difference be-
tween two types of related Milnor fibres which have been diffeomorphic previously: the
smooth Milnor fibre of a family which is the inverse image of the Milnor fibre of the discrim-
inant, and the singular Milnor fibre which is the inverse image of ∆ itself under a generic
perturbation of the family.

Like Milnor fibres of isolated function singularities, singular Milnor fibres of the matrix
families are wedges of spheres of the middle dimension. This follows from [22, 29]. However,
being highly singular, they have been promising complicated calculations to yield any quan-
titative information, for example, the numbers µ∆ of the spheres in their wedges (called the
singular Milnor numbers). One of the possible approaches to understand their topology was
developed by Damon and Pike in [11, 12] where they introduced a rather involved machinery
to calculate the Euler characteristic of such fibres via sections corresponding to fixed flags in
the configuration spaces. The method is based on a choice of an appropriate sequence of free
divisors and extends the Lê-Greuel inductive procedure to calculate the Milnor number of
an isolated complete intersection singularity [23]. Nevertheless, numerous questions related
to the geometry of bifurcation diagrams of the matrix families, to the monodromy of these
families, to their relations with other types of singularities and so on have stayed untouched.

The aim of this paper is to initiate a monodromy study of the singular Milnor fibres of
the matrix families. The structure of the paper is as follows.

Section 1 recalls the equivalences of matrix families we are going to work with.
In Section 2 we show that the complex link of the discriminant ∆ in the space of all

arbitrary square, symmetric or skew-symmetric matrices is homotopic to a sphere of the
middle dimension, and describe these spheres in geometric terms. This allows us to define in
Section 3.1 vanishing cycles on singular Milnor fibres of our matrix singularities, and prove
in Section 3.2 the Damon-Pike conjecture on the equality of the Tjurina and singular Milnor
numbers for matrix families of a special type. Section 3.3 recalls the classification of simple
matrix families from [5, 7, 21]. It also extends the above µ∆ = τ result to a wider class of
matrix singularities, namely, to those corresponding to Arnold’s functions on manifolds with
boundaries. The latter, in particular, includes nearly all simple matrix singularities.

In Section 4 we define two natural versions of bifurcation diagrams for matrix families,
and prove a Lyashko-Looijenga type theorem for the majority of simple matrices.

Section 5 introduces a way to understand the monodromy of singular Milnor fibres which
provides us with a complete description of such a monodromy for corank 2 symmetric ma-
trices. Our approach may be considered as a generalisation of a modification of Arnold’s
construction of an intersection form for boundary function singularities (cf. [1]).

In Section 6, our attention is on corank 3 simple symmetric matrix families, the only part
of the simple classification not covered in earlier sections. A higher-corank adjustment of the
methods of the previous section reveals a surprising relationship between these simple matrix
singularities, odd functions and certain Shephard-Todd groups. In Section 6 we also notice
that for these families the µ∆ = τ equality holds as well, which extends the validity of the
equality to all simple matrix singularities and also allows us to extend the Lyashko-Looijenga
type theorem to all such singularities.

We conclude the paper with a general µ∆ = τ conjecture for all three types of our
matrix families. Of course, another attractive theme emerging from the paper is a problem
of description of the monodromy of singular Milnor fibres of matrix families to go beyond
the results of Section 5.
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1 Matrix equivalences

A matrix family in this paper will be a holomorphic mapping M : U → Matn, where U is
an open domain in Cs, and Matn is one of three spaces of complex n× n matrices:

Sqn, arbitrary square matrices,

Symn, symmetric matrices,

Skn, n = 2k, skew-symmetric matrices.

In the Sqn case, we say that two matrix families, M1 and M2, are GL-equivalent if there
exist a biholomorphism ϕ of the source and two holomorphic maps A,B : U → GLn(C) such
that

M1 ◦ ϕ = A>M2B .

For the GL-equivalence in the symmetric and skew-symmetric cases, we require existence of
only one holomorphic s-parameter family A of invertible n× n matrices such that

M1 ◦ ϕ = A>M2A .

Restriction to mappings A,B : U → SLn(C) in all three cases provides notions of the SL-
equivalences.

The relation between the matrix GL- and SL-equivalences is similar to that between the
contact (K) and right (R) equivalences of holomorphic functions.

Germ versions of the above definitions are straightforward. A relevant equivalence class
of germs of matrix families will be called a matrix singularity. We denote by Os the space
of all holomorphic function germs on (Cs, 0), and identify the space of all holomorphic map
germs M : (Cs, 0)→ Matn with the Os-module ONs where N = dimC Matn .

Let Ej` be the n×n matrix with the j`-entry 1, and all other entries zero. The extended
tangent spaces to the GL-equivalence classes of germs M : (Cs, 0)→ Matn, with the source
coordinates x1, . . . , xs, are

TGL,Sqn
M = Os 〈∂M/∂xi, Ej`M, MEpq〉i=1,...,s; j,`,p,q=1,...,n , and

TGL,MatnM = Os 〈∂M/∂xi, Ej`M +ME`j〉i=1,...,s; j,`=1,...,n for Matn = Symn, Skn .

The extended tangent spaces for the SL-equivalences are contained in these: all the diagonal
matrices Ejj and Epp in the above expressions should be replaced, for example, by the
differences Ejj − E11 and Epp − E11.

We will denote by τGL,Matn(M) and τSL,Matn(M) the corresponding Tjurina numbers of
M, that is, the codimensions of the above extended tangent spaces in ONs .

There is an important situation when we have no difference between the two kinds of the
extended tangent spaces, and hence between the two kinds of the Tjurina numbers. Namely,
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we call a matrix family M : (Cs, 0)→ (Matn, 0) quasi-homogeneous if it is possible to assign
positive weights w1, . . . , ws to the source coordinates so that each entry mij(x1, . . . , xs) would
be a quasi-homogeneous function of degree dij and each 2 × 2 minor would also be quasi-
homogeneous, that is, dij + dpq = diq + dpj must hold for the entire range of the indices. The
last condition implies in particular that det(M) or Pf(M) are quasi-homogeneous too. All
normal forms of matrix families appearing in this paper are quasi-homogeneous.

Proposition 1.1 The extended tangent spaces to the GL- and SL-equivalence classes of a
quasi-homogeneous matrix family M coincide.

Proof. Our quasi-homogeneity constraints on the degrees of the entries may be rewritten
as dij − dpj = diq − dpq, that is, the difference between the degrees of the entries of two fixed
rows is the same in all columns. Similar consistency holds when we compare entries in two
fixed columns.

In the Sqn case, this observation allows us to split the degrees into sums of two sets of
summands, dij = δi + δ′j. So, we have for the Euler vector field e = w1x1∂x1 + · · ·+wsxs∂xs :

eM =
(
(δi + δ′j)mij

)
= dM +Md′, with d = diag(δ1, . . . , δn), d′ = diag(δ′1, . . . , δ

′
n). (1)

The ambiguity of shifting the whole δ-set by d and the whole δ′-set by −d corresponds to
the kernel element (In,−In) of the gln × gln action: InM −MIn = 0.

The span of sln × sln and (In,−In) has codimension 1 in gln × gln: in terms of elements
(a, b) of the latter, this span is the hyperplane trace(a+b) = 0. The element (d, d′) is outside
it. Relation (1) shows that its action is replaced by that of the Euler field to provide the
effect of the action of the entire gln × gln in the quasi-homogeneous SLn situation.

In the Symn and Skn cases, one similarly uses the symmetric splitting dij = δi + δj. �

All our groups of matrix equivalences are in Damon’s class of geometric subgroups of the
K-equivalence group (see [8]), and therefore GL- and SL-miniversal deformations of a matrix
family germ M may be written as

M + λ1ϕ1 + · · ·+ λτϕτ ,

where τ is the relevant Tjurina number of M, and the ϕi ∈ ONs form a basis of the quotient
of ONs by the corresponding extended tangent space.

By the matrix corank of a germ M : (Cs, 0)→ Matn we will understand the corank of the
matrix M(0). In our symmetric and arbitrary square settings, a matrix corank c family is

equivalent to a family

(
M ′ 0
0 In−c

)
where M ′ is a germ of a c×c matrix family of the same

type and M ′(0) is the zero matrix. Similar reduction exists in the skew-symmetric case, with
the only difference that the identity corner should be replaced by the block-diagonal matrix

Jn−c with the elementary blocks J2 =

(
0 1
−1 0

)
along the diagonal.

Two germs of matrix families Mi : (Cs, 0) → Matni
, i = 1, 2, will be called stably GL-

or SL-equivalent if there exists n such that the two ‘extended’ families

(
Mi 0
0 In−ni

)
, or

respectively

(
Mi 0
0 Jn−ni

)
, are equivalent.

4



In what follows we will need convenient skew-symmetric analogues of the standard trace
and eigenvalues of a square matrix. So, we set

• the skew trace of A ∈ Sk2k to be sktr(A) =
∑k

i=1 a2i−1,2i, and

• the skew eigenvalues of such an A to be the solutions λ1, . . . , λk of the characteristic
equation Pf(A− λJ2k) = 0.

We will also need a special kind of skew-symmetric matrices which we call quaternionic.

These are matrices A ∈ Sk2k in which all the 2 × 2 cells

(
a2i−1,2j−1 a2i−1,2j

a2i,2j−1 a2i,2j

)
are addi-

tionally required to be of the form

(
z w
−w z

)
, z, w ∈ C. In particular, all diagonal 2× 2

blocks

(
0 a2i−1,2i

−a2i−1,2i 0

)
of a quaternionic matrix are real.

Proposition 1.2 All skew eigenvalues of a quaternionic matrix A ∈ Sk2k are real.

Proof. For convenience, apply the same permutation to rows and columns of A to bring
it to the 4-block form

Â =

(
Z W
−W Z

)
∈ Sk2k ,

with Z skew-symmetric and W Hermitian. The same permutations transform J2k into

Ĵ2k =

(
0 Ik
−Ik 0

)
. Therefore, skew eigenvalues of A are roots (all of them double) of

the characteristic equation

det(Â− λĴ2k) = 0, that is, det(ÂĴ−1
2k − λI2k) = 0 ,

where ÂĴ−1
2k = −ÂĴ2k = −

(
W −Z
Z W

)
is Hermitian due to our constraints on Z and W.

�

2 Complex links of matrix discriminants

We denote by ∆ ⊂ Matn the set of all degenerate matrices, and call this set the discriminant.
Under the discriminant ∆(M) of a particular matrix family M we understand the zero set
of the function det ◦M or Pf ◦M, that is, the inverse image of ∆ under the mapping M.

We use the notation Trα for the hyperplane in Matn of all matrices with the (skew)
trace α. We write ∆sym, Trsq

α , etc. if we want to emphasise which of the three cases we are
considering.

According to [5, 7, 21], a generic map germ (CN−1, 0) → (Matn, 0) is — up to any of
our equivalences — an embedding whose image is the hyperplane germ (Tr0, 0). Moreover,
GL- and SL-miniversal deformations of such maps are one-parameter families of embeddings
of CN−1 into Matn as the hyperplanes Trα, α ∈ (C, 0). Therefore, the complex links of the
matrix discriminants are the sets of all degenerate matrices with a fixed non-zero (skew)
trace.
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Theorem 2.1 The complex link of the discriminant ∆ ⊂ Matn is homotopy equivalent to a
sphere SN−2. If λ is a positive real number, then this sphere may be taken to be the set of
respectively

(Sym) all degenerate real matrices A ∈ Symn with the trace nλ and all eigenvalues non-
negative;

(Sq) all degenerate hermitian matrices A ∈ Sqn with the trace nλ and all eigenvalues non-
negative;

(Sk) all degenerate quaternionic matrices A ∈ Skn, n = 2k, with the skew trace kλ and all
skew eigenvalues non-negative.

Proof. We consider the symmetric case in detail, and point out the adjustments required
in the two other cases.

Symmetric matrices. The only level with non-isolated critical points of the restriction of
the determinantal function to the hyperplane Trsym

nλ , λ 6= 0, is its zero level. If we show that
this restriction of the determinantal function has exactly one Morse critical point outside
the zero level then the claim about the homotopy type of the link will follow from [22, 29].

Lemma 2.2 For λ 6= 0, the only invertible matrix which is a critical point of the restriction
of the determinantal function to Trsym

nλ is λIn.

Proof of the lemma. We parametrise the hyperplane Trsym
nλ ⊂ Symn as a shift of Trsym

0 on
which all the entries xij, 1 ≤ i ≤ j ≤ n, except for x11, are taken as independent coordinates,
that is, by the map Mλ : CN−1 → Symn, N = n(n+ 1)/2 :

Mλ(x) = λIn + Lsym(x), where Lsym(x) =


−
∑n

i=2 xii x12 x13 . . . x1n

x12 x22 x23 . . . x2n

x13 x23 x33 . . . x3n
...

...
...

. . .
...

x1n x2n x3n . . . xnn

 . (2)

Here the partial derivative ∂ det(Mλ(x))/∂xij, i < j, is twice the ij-cofactor of the sym-
metric matrix Mλ(x). Therefore, vanishing of these derivatives for all i < j at an invertible
matrix guarantees that the inverse of such a matrix is diagonal. However, the block-diagonal
structures of a matrix and of its inverse coincide. Hence an invertible critical matrix itself
is also diagonal: xij = 0 for all i < j. This reduces the determinant of a member of the Mλ

family to the product of its diagonal entries subject to the constraints that their sum nλ is
fixed and that all of them are non-zero. Such a product has only one critical point, when all
its factors are equal, that is, all the xii are zero. �

We now look at the terms in det(Mλ(x)) which are quadratic in x. They are λn−2 times
the sum of all 2× 2 principal minors of Lsym. This sum reduces to

−
∑

1≤i<j≤n

x2
ij −

n∑
i=2

x2
ii −

∑
2≤i<j≤n

xiixjj . (3)

This quadratic form is non-degenerate, and therefore the critical point Mλ(0) = λIn is indeed
a Morse critical point of the determinantal function.
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For λ real and positive, the form (3) is negative definite on the real part of Trsym
nλ . This

implies the (Sym) claim of the Theorem. Indeed, taking small ε > 0, we see that the Morse
vanishing sphere SN−2 on the under-critical level det = λn − ε is real (see, for example,
Section 1.3 in [3]), and it is sent by the negative gradient flow of the determinantal function
on the real part of Trsym

nλ to the set of real symmetric matrices specified in the Theorem.

Square matrices. We parametrise Trsq
nλ similar to (2) with the only difference that the

over- and under-diagonal entries are now independent:

Mλ(x) = λIn + Lsq(x), where Lsq(x) =


−
∑n

i=2 xii x12 x13 . . . x1n

x21 x22 x23 . . . x2n

x31 x32 x33 . . . x3n
...

...
...

. . .
...

xn1 xn2 xn3 . . . xnn

 , (4)

x ∈ Cn2−1, λ 6= 0. This replaces the first term in (3) with −
∑

1≤i<j≤n xijxji. After the
replacement we set xji = x̄ij for all i ≤ j to treat the amended form as a negative definite
quadratic form on a real space.

Skew-symmetric matrices. For a parametrisation of Trsk
kλ we take

Mλ(x) = λJ2k + Lsk(x), (5)

where

Lsk(x) =



0 −
∑k

i=2 x2i−1,2i x1,3 x1,4 . . . x1,2k−1 x1,2k∑n
i=2 x2i−1,2i 0 x2,3 x2,4 . . . x2,2k−1 x2,2k

−x1,3 −x2,3 0 x3,4 . . . x3,2k−1 x3,2k

−x1,4 −x2,4 −x3,4 0 . . . x4,2k−1 x4,2k
...

...
...

...
. . .

...
...

−x1,2k−1 −x2,2k−1 −x3,2k−1 −x4,2k−1 . . . 0 x2k−1,2k

−x1,2k −x2,2k −x3,2k −x4,2k . . . −x2k−1,2k 0


,

x ∈ CN−1, N = 2k(2k − 1)/2, λ 6= 0.
Similar to the proof of Lemma 2.2, vanishing of the derivatives of det(Mλ(x)) =

Pf2(Mλ(x)) with respect to all the x-coordinates except for the x2i−1,2i, i > 1, implies that
a critical invertible matrix must be block-diagonal, with the multiples of the J2 blocks along
the diagonal, that is, its Pfaffian is (λ −

∑k
i=2 x2i−1,2i)

∏k
i=2(λ + x2i−1,2i). The only critical

point of this product outside its zero level is Mλ(0) = λJ2k.
The terms of Pf(Mλ(x)) quadratic in x are λk−2 times

−
∑

1≤i<j≤k

∣∣∣∣ x2i−1,2j−1 x2i−1,2j

x2i,2j−1 x2i,2j

∣∣∣∣− k∑
i=2

x2
2i−1,2i −

∑
2≤i<j≤k

x2i−1,2ix2j−1,2j .

The determinants here become positive definite quadratic forms on R4 when we set x2i,2j =
x̄2i−1,2j−1 and x2i,2j−1 = −x̄2i−1,2j. Taking also all the x2i−1,2i real, we end up with our
skew-symmetric matrices being quaternionic. �

Remark 2.3 The observation used in the proof of Lemma 2.2 about the coincidence of the
block-diagonal structures of an invertible matrix M and of its inverse will be also applied in
our later calculations, when it is known that the cofactors of an appropriate subset of entries
of M are zero.
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3 Vanishing cycles

From now on we assume that the dimension s of the domains of our matrix families Cs →
Matn is such that in general their images meet the singular loci of the discriminants ∆ ⊂
Matn, that is, s > 2, 3, 5 in respectively symmetric, arbitrary square and skew-symmetric
cases.

Let M : (Cs, 0) → Matn be a germ of a matrix family with a finite SL Tjurina number
τ, and {Mλ}λ∈Λ, M0 = M, a representative of its SL-miniversal deformation. According to
[22, 29], for sufficiently small radii ε > 0 and η > 0, there exist closed 2s- and 2τ -dimensional
balls Bε ⊂ Cs and Bη ⊂ Λ, centred at the origins, such that the set ∆(Mλ)∩Bε is homotopic
to a wedge of a finite number of (s− 1)-dimensional spheres if λ ∈ Bη.

The variety ∆(Mλ) ∩ Bε is the zero level of the function det ◦Mλ or Pf ◦Mλ on Bε. Due
to the constraints on the dimension s, this is the only level of the function which is critical
for all λ ∈ Λ if the corank of M(0) is higher than the lowest positive, that is, greater than
1 in the Sq and Sym cases and greater than 2 in the Sk case. Moreover, the singular locus
of the zero level is of positive dimension if s is not the minimal we have allowed. Critical
points pi, i = 1, . . . , r, on all other levels are isolated, and therefore the function has the
corresponding ordinary Milnor numbers µi at them. By [22, 29], the number of the spheres
in the wedge of the set ∆(Mλ) ∩Bε is µ1 + · · ·+ µr .

For a generic λ ∈ Bη, the number of the spheres in the wedge achieves its maximum.

Definition 3.1 We denote this maximum µ∆(M) and call it the singular Milnor number of
the matrix family M. The set ∆(Mλ)∩Bε homotopy equivalent to a wedge of µ∆(M) copies
of Ss−1 will be called the singular Milnor fibre of the family M.

For convenience, we will use the same terminology even if the corank of M(0) is the
lowest positive. Of course, in such cases the above ∆(Mλ) ∩ Bε is just the ordinary smooth
Milnor fibre of the function det ◦Mλ or Pf ◦Mλ, and µ∆(M) is its ordinary Milnor number.

In this section we calculate singular Milnor numbers of matrix families related to iso-
lated singularities of functions on manifolds with and without boundaries. In particular,
they include nearly all simple matrix singularities from [5, 7]. The only remaining simple
singularities, of 4-parameter corank 3 symmetric matrices and of their 7-parameter square
versions, will wait till the final section of this paper.

Later on, to avoid reminders about the choice of the balls, we will refer to the sets
∆(Mλ) ∩Bε with λ ∈ Bη as local sets ∆(Mλ).

3.1 Matrix vanishing cycles

In what follows, it will be more convenient for us to write miniversal deformations of the
parametrisations L : (CN−1, 0) → (Matn, 0) of the hyperplanes Tr0 used in (2), (4), (5) in
slightly different ways than in those formulas, namely as respectively

Lsym(x) + λE11, Lsq(x) + λE11, Lsk(x) + λ(E12 − E21) . (6)

As it has already been said, the parametrisations L are the local GL- and SL-normal forms
of generic hypersurface embeddings. So, they are also normal forms of the most generic rank
N − 1 linear parts of map germs M : (Cs, 0)→ (Matn, 0) ' (CN , 0), s = N − 1 +m. Hence
any map M with such a linear part may be considered as an m-parameter deformation
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of the relevant family L, and therefore it reduces to the form (6) with λ = g(z), where
z = (z1, . . . , zm) are the additional variables.

In the simplest situation g has a Morse critical point at the origin, and the matrix families
are SL- and GL-equivalent to

Lsym(x) − (z2
1 + · · ·+ z2

m)E11,
Lsq(x) − (z2

1 + · · ·+ z2
m)E11,

Lsk(x) − (z2
1 + · · ·+ z2

m)(E12 − E21) .
(7)

For these families τSL,Matn = τGL,Matn = 1, and we have the miniversal deformations

Lsym(x) + (λ− z2
1 − · · · − z2

m)E11,
Lsq(x) + (λ− z2

1 − · · · − z2
m)E11,

Lsk(x) + (λ− z2
1 − · · · − z2

m)(E12 − E21) ,
(8)

where we are back to using λ ∈ C as a deformation parameter. These are versal deformations
of the only codimension 1 matrix singularities. Adjusting our proof of Theorem 2.1 to these
deformations, we obtain the following description of all possible vanishing cycles appearing
in singular Milnor fibres of our matrix singularities.

Corollary 3.2 The singular Milnor fibre of each of the matrix families in (7) is homotopy
equivalent to a sphere Ss−1, s = N − 1 +m, m ≥ 0. If λ is a fixed positive real number, then
this sphere may be taken to be the set of respectively

(Sym) all degenerate real matrices A ∈ Symn with the trace λ − z2
1 − · · · − z2

m, z ∈ Rm, and
all eigenvalues non-negative;

(Sq) all degenerate hermitian matrices in A ∈ Sqn with the trace λ− z2
1 − · · · − z2

m, z ∈ Rm,
and all eigenvalues non-negative;

(Sk) all degenerate quaternionic matrices A ∈ Skn, n = 2k, with the skew trace λ − z2
1 −

· · · − z2
m, z ∈ Rm, and all skew eigenvalues non-negative.

For a proof, we just need to notice that, for a fixed λ 6= 0, all families in (8) contain only
one critical point of the determinantal function off its zero level. Indeed, for example in the
symmetric case, the argument used in Lemma 2.2 shows that a critical matrix is diagonal.
After that the vanishing of the derivative of the determinant with respect to any zi yields
zi = 0 outside ∆.

Thus, all the vanishing cycles are the order m suspensions of the complex links of the
matrix discriminants.

Definition 3.3 Vanishing cycles corresponding to the stable GL- or SL-equivalence classes
of the families (7) of the matrix corank n will be called corank n vanishing cycles.

In particular, corank 1 vanishing cycles in the symmetric and square cases, as well as
corank 2 vanishing cycles in the skew-symmetric case are the ordinary Morse vanishing cycles
of isolated hypersurface singularities. Vanishing cycles of higher coranks have singularities,
they are homeomorphic but not diffeomorphic to the spheres.

Remark 3.4 We would like to emphasise that the ‘vanishing’ in the last definition takes
place within the one-parameter sets of the singular Milnor fibres corresponding to the local
deformations (8) when λ tends to zero.
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3.2 Damon-Pike conjecture

We will now prove

Theorem 3.5 Consider matrix singularities M : (Cs, 0) → (Matn, 0) ' (CN , 0) with a
generic rank N − 1 linear part, that is,

Lsym(x) + g(z)E11, Lsq(x) + g(z)E11, Lsk(x) + g(z)(E12 − E21) , (9)

x ∈ CN−1, g ∈ Om. Assume the SL Tjurina number of such a matrix family is finite. Then

µ∆(M) = τSL,Matn(M) = µ(g) .

The µ(g) here is the standard Milnor number of the isolated function singularity g.

This property was conjectured by Damon and Pike in [12], with a quasi-homogeneity of
g requested for the last equality.

Proof. We consider only the symmetric case, the other two being its word-to-word repe-
titions.

So, take a small generic deformation {Mt}t∈(C,0) of

M0(x, z) = M(x, z) = Lsym(x) + g(z)E11.

Following the approach used in the previous subsection, we can set

Mt(x, z) = Lsym(x) + gt(z)E11,

where {gt}t∈(C,0) is a small generic deformation of g0 = g. To prove the equality of µ∆(M)
and µ(g), we need to show that, for a fixed t 6= 0, the function det ◦Mt has exactly µ(g)
Morse critical points close to the origin and outside its zero level ∆(Mt).

Following the argument used in Lemma 2.2 and highlighted in Remark 2.3, we see that
a critical matrix in the Mt family off ∆ must be diagonal and hence has determinant(

−
n∑
i=2

xii + gt(z)

)
·
n∏
i=2

xii .

Vanishing of the derivatives of this expression with respect to all the xii outside zeros of the
expression itself implies

x22 = x33 = · · · = xnn = gt(z)/n .

Therefore the determinant of a critical matrix is (gt(z)/n)n . Critical points of the last func-
tion outside its zeros are exactly critical points of gt. Due to the genericity of the deformation
{gt} of g0 = g, these points are all Morse and their number is µ(g).

The remaining part of the theorem, that τSL,Symn
(M) = µ(g), follows from a calculation

exercise (cf. [5]) showing that

ONN−1+m/TSL,Symn
M ' (Om/Om 〈∂g/∂z1, . . . , ∂g/∂zm〉)E11 . �

The last isomorphism holds also for the square matrices in (9), and — with replacement
of E11 by (E12 − E21) — in the skew-symmetric case too. Due to that, SL-miniversal
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deformations of all matrix families (9) may be obtained by replacing the function g in them
by its R-miniversal deformation.

In the GL situation, for the matrix families (9) we have τGL,Matn(M) = τ(g), where
τ(g) is the Tjurina number for the K-equivalence of functions (see Proposition 4.9 in [5]).
Respectively, for GL-miniversal deformations of these families, we replace the function g by
its K-miniversal deformation.

Remark 3.6 The reduction of the SL- and GL-classifications of the matrix families (9) to
respectively the R- and K-classifications of the function germs g : (Cs, 0)→ (C, 0) is in fact
what is very much expected. Indeed, according to what was said at the beginning of the
previous subsection, the SL-equivalences leave the whole group of diffeomorphisms of (Cs, 0)
for normalising g. In the GL cases we additionally have an opportunity of multiplying the
whole matrix by functional multiples h(z)In of the identity matrix, h(0) 6= 0. Modulo the
same rescaling of all the x-coordinates, the last move is just multiplication of g by h. The
hypersurface g = 0 in Cm has a clear geometric meaning: it is the inverse image of the zero
matrix under the mapping M.

3.3 µ = τ theorem for a matrix version
of boundary function singularities

The type of matrix families we are studying in this subsection generalises that from the
Damon-Pike conjecture, and contains nearly all simple matrix classes, at least in the sym-
metric and square settings. The families we are considering now have a more general top
left corner:

M sym(x, z) =


−
∑n

i=3 xii x12 x13 . . . x1n

x12 x22 x23 . . . x2n

x13 x23 x33 . . . x3n
...

...
...

. . .
...

x1n x2n x3n . . . xnn

+ h(x22, z)E11 , (10)

M sq(x, z) =


−
∑n

i=3 xii x12 x13 . . . x1n

x21 x22 x23 . . . x2n

x31 x32 x33 . . . x3n
...

...
...

. . .
...

xn1 xn2 xn3 . . . xnn

+ h(x22, z)E11 , (11)

M sk(x, z) =



0 −
∑k

i=3 x2i−1,2i x1,3 x1,4 . . . x1,2k−1 x1,2k∑n
i=3 x2i−1,2i 0 x2,3 x2,4 . . . x2,2k−1 x2,2k

−x1,3 −x2,3 0 x3,4 . . . x3,2k−1 x3,2k

−x1,4 −x2,4 −x3,4 0 . . . x4,2k−1 x4,2k
...

...
...

...
. . .

...
...

−x1,2k−1 −x2,2k−1 −x3,2k−1 −x4,2k−1 . . . 0 x2k−1,2k

−x1,2k −x2,2k −x3,2k −x4,2k . . . −x2k−1,2k 0


+ h(x3,4, z)(E12 − E21) . (12)

11



Here again x ∈ CN−1 and z ∈ Cm, while h ∈ Om+1. Note that the summations in the matrices
are one term shorter now compared with the matrices L from the previous subsection. Of
course, we are back to the situation of that subsection if the derivative of h at the origin by
its only x argument is not zero.

We now recall the GL-simple classification under our earlier assumption that the number
s = N − 1 +m of the matrix parameters should be high enough for the singular Milnor fibre
to be indeed singular. The main part of this classification is common to all the sizes, and is
related to the classification of the germs h ∈ Om+1 in (10–12) up to the R∂-equivalence of
functions on the manifold Cm+1 with the boundary Cm given by the vanishing of the only x
coordinate in h [1].

Theorem 3.7 (a) [5, 7, 21] GL-simple matrix singularities of the forms (10), (11) and
(12) are classified by the R∂-simple types Xτ = Aτ , Dτ , Eτ , Bτ , Cτ , F4 of the function
germs h.

(b) [5] Up to the stable GL-equivalence, the only other simple classes in the symmetric case
are the following corank 3 matrix families in four variables:

Ik+1, k ≥ 1 II4 II5 II6 x 0 z
0 y + xk w
z w y

  x w2 y
w2 y z
y z w

  x 0 y+w2

0 y z
y+w2 z w

  x w3 y
w3 y z
y z w


(c) ([7], slightly corrected) Up to the stable GL-equivalence, the only other simple classes

in the square case are corank 3 families in seven variables obtained from the sym-
metric matrices in item (b) by addition of the generic skew-symmetric matrix family

U =

 0 u12 u13

−u12 0 u23

−u13 −u23 0

 in three new variables.

The families of item (a) will be denoted XMatn
τ , for all our three types of matrices. Their

GL Tjurina numbers are τ. For example, the families in (7) are the AMatn
1 singularities, and

their one-parameter deformations (8) are their GL-miniversal deformations. The singularities
of item (b) are also indexed by their GL Tjurina numbers, and these numbers are the same
for the corresponding seven-variable families of square matrices. It is not known if the
skew-symmetric simple classification goes beyond the part of item (a) of the form (12).
The SL-simple classification coincides with the GL one (including the last incompleteness
comment) due to the quasi-homogeneity of all matrix singularities of the theorem. Of course,
GL-non-simplicity implies SL-non-simplicity since the SL-classification is finer.

Thus, matrix singularities of the forms (10–12) are playing a special role in the classifi-
cation, and our aim now is to extend the Damon-Pike conjecture to such families.

So, let us find the singular Milnor numbers for matrices (10–12). According to [5, 7]
and similar skew-symmetric calculations, all possible deformations of these matrix families
may be obtained by deforming the functions h. To make some difference with the previous
subsection, we shall now consider the skew-symmetric case. Therefore, let {ht}t∈(C,0) be
a generic small deformation of h0 = h in (12) and {Mt}t∈(C,0) the corresponding matrix
deformation. Using Remark 2.3, we see that vanishing of the derivatives of the Pf ◦Mt
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outside ∆(Mt) with respect to all the xj,` except for the x2i−1,2i, i > 1, implies that a non-
degenerate critical matrix in the family Mt, t 6= 0, has the same block-diagonal structure as
the standard matrix J2k and therefore its Pfaffian is the product(

−
k∑
i=3

x2i−1,2i + ht(x3,4, z)

)
k∏
i=2

x2i−1,2i .

Vanishing of the derivatives of this product with respect to all the x2i−1,2i, i > 2, implies
that the values of all these coordinates must be the same and equal to ht(x3,4, z)/(k − 1).
This leaves us with the Pfaffian equal to

(ht(x3,4, z)/(k − 1))k−1 · x3,4 . (13)

Vanishing of the derivatives with respect to all the still remaining coordinates gives us the
final conditions

∂ht/∂z1 = ∂ht/∂z2 = · · · = ∂ht/∂zm = ht + (k − 1)x3,4∂ht/∂x3,4 = 0 .

Therefore, if the quotient

Qh = Om+1/Om+1

〈
∂h

∂z1

, . . . ,
∂h

∂zm
, h+ (k − 1)x3,4

∂h

∂x3,4

〉
(14)

is finite-dimensional, then µ∆(M) = dimCQh.
The expression for the local algebra Qh in the symmetric and square cases has n instead

of k, and x22 instead of x3,4.
On the other hand, direct calculations (cf. [5, 7]) of the extended tangent spaces to the

SL-equivalence classes of the families (10), (11) and (12) show that ONN−1+m/TSL,MatnM is
isomorphic to either QhE11 or respectively Qh(E12 − E21).

Thus we have proved

Theorem 3.8 Assume the SL Tjurina number of a matrix family M of a form (10), (11)
or (12) is finite. Then

µ∆(M) = τSL,Matn(M) = dimCQh .

Remark 3.9 If h is quasi-homogeneous then dimCQh is, of course, Arnold’s Milnor number
µ∂(h) of h considered as a function germ on (Cm+1, 0) with the boundary x3,4 = 0 or x22 = 0
[1]. In the quasi-homogeneous case µ∂(h) coincides with τ∂(h), the Tjurina number of the
function with respect to the contact version of the boundary equivalence. The latter appears
in the matrix context on its own if we consider the GL-equivalence within the families (10),
(11) and (12): it has already been noticed in [5, 7] that for these matrix singularities

τGL,Matn(M) = τ∂(h) ,

without any quasi-homogeneity requirements. Indeed, the GL-equivalence splits the last
generator of the ideal in (14) into its two summands.

Problem 3.10 Give an example of a function h ∈ Om+1 for which dimCQh 6= µ∂(h).
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4 Geometry of bifurcation diagrams

4.1 Bifurcation diagram of a matrix family

Let M : (Cs, 0)→ Matn be a germ of a matrix family with a finite SL Tjurina number τ, and
(Λ, 0) ' (Cτ , 0) the germ of the base of its SL-miniversal deformation {Mλ}λ∈(Λ,0), M0 = M.

The discriminant ∆ in the target matrix space Matn is stratified by the sets of matrices
of fixed coranks c: ∆ = ∪nc=1∆c. For a generic λ ∈ Λ, the map Mλ is transversal to this
stratification.

Definition 4.1 The germ (Σ, 0) ⊂ (Λ, 0) of the set of all those values of the deformation
parameter λ ∈ Λ for which the maps Mλ are not transversal to the stratification of the
discriminant ∆ will be called the bifurcation diagram of the matrix family M.

Definition 4.2 The monodromy group of a matrix family M is the image of the represen-
tation of π1(Λ \ Σ) on the middle homology of the singular Milnor fibre of M.

A generic choice of λ ∈ Σ gives us the mappingMλ with one most generic non-transversali-
ty to one of the strata ∆c, that is, with one singularity of the SL-stable class AMatc

1 . The
Tjurina number of each of these singularities is 1, and therefore the diagram Σ is a hyper-
surface which splits into components according to the coranks:

Σ = ∪nc=1Σc.

When a point λ /∈ Σ approaches a generic point of λ∗ ∈ Σc, a corank c vanishing cycle in
the singular Milnor fibre ∆(Mλ) = (det ◦Mλ)

−1(0) of the matrix family M = M0 contracts
to a point in ∆(Mλ∗). (At the same moment a Morse critical point of the determinantal
function lands on its zero level, which reduces by 1 the total Milnor number of critical points
of the determinantal function outside its zero level.) Therefore, the diagram Σ may also be
characterised as the set of all points λ ∈ Λ for which the fibre (det ◦Mλ)

−1(0) is homotopic
to a wedge of spheres of middle dimension whose number is smaller than the singular Milnor
number µ∆(M) of the family M .

Example 4.3 Let M be a symmetric matrix family of the form (10) whose SL Tjurina
number is τ. To obtain its SL-miniversal deformation {Mλ}, we replace the function h(x22, z)
in (10) by a deformation H(x22, z, λ) = Hλ(x22, z) of h = H0 such that its initial velocities
∂H/∂λ1|λ=0, . . . , ∂H/∂λτ |λ=0 form a basis of the symmetric version of the local algebra Qh

from (14). Similar to (13), critical points of the function det ◦Mλ, λ /∈ Σ, outside its zero
level are critical points of the product

(Hλ(x22, z)/(n− 1))n−1 · x22 (15)

outside its own zeros, that is, are given by the conditions

gradzHλ = 0 and Hλ + (n− 1)x22∂Hλ/∂x22 = 0 . (16)

For λ ∈ Σ, some of these critical points land on the zero level of the product. There are two
options for such degenerations:

either x22 = 0, and hence gradzHλ|x22=0 = 0 and Hλ|x22=0 = 0,
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or Hλ = 0 and gradx22,zHλ = 0.

For each option, the number of vanishing factors in (15) is the corank of the vanishing cycle:
the diagram components are respectively Σn and Σn−1.

We notice that the diagrams Σ in this example are exactly what they should be if H is
considered as a deformation of the function germ h on (Cm+1, 0) with the boundary x22 = 0 :
the component Σn corresponds to the restriction of Hλ to the boundary having critical value
0, while Σn−1 corresponds to Hλ itself having critical value 0 on Cm+1.

Remark 4.4 For simple quasi-homogeneous matrix families XMatn
τ of Theorem 3.7

τ = τGL,Matn = τSL,Matn = µ∆ .

GL- or equivalently SL-miniversal deformations of such families may be obtained by replacing
the functions h in (10–12) by their R∂-miniversal deformations.

4.2 The k(π, 1) theorem

We now enlarge the matrix diagrams Σ and include bifurcations of critical values outside
zeros of the determinantal and Pfaffian functions.

Definition 4.5 The full bifurcation diagram of a matrix family germ M : (Cs, 0) → Matn
is the germ of the subset (Θ, 0) in the base (Λ, 0) of an SL-miniversal deformation {Mλ} of
M for which the function det ◦Mλ or Pf ◦Mλ has locally fewer than µ∆(M) distinct non-zero
critical values.

Besides the diagram Σ, the full diagram Θ contains the Maxwell stratum when the func-
tion det ◦Mλ or Pf ◦Mλ has coinciding non-zero values at different critical points, and the
caustic corresponding to non-Morse critical points outside ∆(Mλ).

Let Πd ' Cd be the space of monic degree d polynomials in one variable. For a matrix
family M, we have a Lyashko-Looijenga type map from Λ \ Θ to Πµ∆

which sends a point
λ to the polynomial whose roots are all non-zero critical values of the function det ◦Mλ or
Pf ◦Mλ. By the continuity, it extends to the holomorphic map L : Λ→ Πµ∆

which sends Θ
to the set Ξ ⊂ Πµ∆

of all polynomials with either multiple or zero roots.
For matrix families (10–12), the map L is a map between two τ -dimensional spaces.

Proposition 4.6 For matrix singularities (10–12), the map L : Λ → Πτ is a local biholo-
morphism outside Θ.

Proof. We consider the symmetric case only. The two other settings are absolutely similar
to it.

We will be working with the SL-miniversal deformations {Mλ} of matrices (10) introduced
in Example 4.3. We will be using the reduced expression (15) of det ◦Mλ for finding its critical
points and values.

At a point λ /∈ Θ, the values c1(λ), . . . , cτ (λ) of det ◦Mλ at its isolated critical points
a1(λ), . . . , aτ (λ) ∈ Cm+1

x22,z
are distinct. Therefore, the regularity of L is equivalent to the local

regularity of the map C : λ 7→ (c1, . . . , cτ ). According to (15),

ci(λ) =
x22H

n−1

(n− 1)n−1

∣∣∣∣
(ai(λ),λ)

=⇒ ∂ci
∂λj

(λ) =

[
x22H

n−2

(n− 1)n−2
· ∂H
∂λj

]
(ai(λ),λ)

,
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since gradx22,z(x22H
n−1) vanishes at a point (ai(λ), λ) due to the criticality of the ai(λ). The

fractional factor in the last expression does not depend on j and is not zero since λ /∈ Θ.
Hence the Jacobi matrix of the map C is invertible if and only if {∂H/∂λ1, . . . , ∂H/∂λτ}
(with λ fixed) is a basis of the linear space of functions on the set of points {a1(λ), . . . , aτ (λ)}.

To show that the ∂H/∂λj indeed form such a basis, consider the map germ (Cm+1+τ , 0)→
(Cm+1+τ , 0):

(x22, z, λ) 7→ (H + (n− 1)x22∂H/∂x22, ∂H/∂z1, . . . , ∂H/∂zm, λ)

(cf. [26], section 2.4). Its local algebra is Qh, and the ∂H/∂λj represent a basis of Qh over C.
According to the Weierstrass-Malgrange preparation theorem [27], any holomorphic function
germ in x22 and z may be written as a linear combination of the ∂H/∂λj with holomorphic
coefficients:

τ∑
j=1

αj (H + (n− 1)x22∂H/∂x22, ∂H/∂z1, . . . , ∂H/∂zm, λ) · ∂H/∂λj .

At the critical points ai(λ), the first m + 1 arguments of the coefficients αj vanish. For a
fixed λ /∈ Θ, this yields a representation of a function on the set {a1(λ), . . . , aτ (λ)} as a
linear combination of the ∂H/∂λj with constant coefficients. �

The classical Lyashko-Looijenga theorem [24, 25, 26] concerns the complement to the
bifurcation diagram of a simple isolated boundary function singularity. Proposition 4.6 is
crucial for the following generalisation of that theorem to the simple matrix singularities
XMatn
τ of Theorem 3.7.

Theorem 4.7 For a simple matrix singularity XMatn
τ , the map L : Λ → Πτ is a proper

holomorphic map. Its restriction to the complement Λ\Θ is a finite order unramified covering
of the complement Πτ \ Ξ.

Proof. Once again, we are considering the symmetric case only.
A matrix family X

Symn
τ is a particular case of the families (10), and we can use in its

SL-mniversal deformation described in Example 4.3 a quasi-homogeneous R∂-miniversal de-
formation H of the function h ∈ Xτ . This gives us a quasi-homogeneous matrix deforma-
tion, with all the variables of positive weights. The mapping L is therefore also quasi-
homogeneous, with all its components of positive degrees. So, we consider L as a global map
from Λ = Cτ to Πτ = Cτ . Its properness would follow from L−1(0) = {0}.

Assume λ∗ ∈ L−1(0), and consider a path in Cµ \ Θ leading to λ∗. For λ /∈ Θ, all µ
critical points ai(λ) of det ◦Mλ used in the construction of the map L are critical points of
the function x22H

n−1
λ outside its zero level. Approaching λ∗, all these points land on the

zero level of the function. Due to Example 4.3, the latter means that all critical values of
the function Hλ∗ considered as a function on Cm+1 with the boundary x22 = 0 must also be
zero. The latter implies λ∗ = 0 according to [24, 25, 26].

The Theorem follows now from Proposition 4.6. �

The complement Πτ \ Ξ is a k(π, 1)-space for Brieskorn’s generalised braid group BrBτ

associated with the Weyl group Bτ [4]. Therefore we have
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Corollary 4.8 For a simple matrix singularity XMatn
τ , the complement Λ \ Θ to its full

bifurcation diagram is a k(π, 1)-space, where π is a subgroup of a finite index in the braid
group BrBτ . In the symmetric and square matrix cases, the index is

((n− 1)C + α)τ τ !/|Xτ | .

Here C and |Xτ | are the Coxeter number and the order of the Weyl group Xτ , and the values
of α are as follows:

Xτ Aτ , Dτ , Eτ Bτ Cτ F4

α C 2 2τ − 2 6
.

In the skew-symmetric case, n should be replaced in the formula by k = n/2.

The index has been calculated here as the degree of the quasi-homogeneous map L. In
particular, formula (15) tells that α is the degree of the equation of the boundary when the
degree of the function Xτ is set to be C.

In Section 6.1 we will extend the Theorem and its Corollary to the remaining simple
matrix singularities of Theorem 3.7.

5 Monodromy of corank 2 symmetric families

Let us go back to the miniversal deformations (8) of codimension 1 matrix singularities
AMatn

1 . The quasi-homogeneous lift of the loop λ = e2πit, t ∈ [0, 1], from the base Λ = C
to the families of their singular Milnor fibres ends up with the map (x, z) 7→ (x,−z) of the
domain CN−1

x × Cm
z . Therefore, in all these cases the action of the only Picard-Lefschetz

operator on the only vanishing cycle of the singular Milnor fibre is multiplication by (−1)m.
Description of the monodromy representation of π1(Λ\Σ) on the homology of singular Milnor
fibres of more complicated matrix families requires a good definition of an intersection form
on the homology. In this section we are introducing an approach which allows to understand
the whole monodromy group of a corank 2 symmetric matrix singularity.

Coincidence of simple classifications of corank 2 symmetric matrix families and of func-
tions on manifolds with boundary suggests introduction of an order 2 covering of the singular
Milnor fibres. However, our covering will be different from the one used by Arnold in [1] for
boundary functions.

Namely, since degenerate binary quadratic forms are squares of linear forms, we represent
the cone ∆ ⊂ Sym2 as a quotient of a plane C2

a,b by the antipodal involution σ : (a, b) →
(−a,−b). To a matrix family

M : (Cs
u, 0)→ (Sym2, 0), M(u) =

(
m11(u) m12(u)
m12(u) m22(u)

)
with a finite GL Tjurina number this associates a σ-invariant isolated complete intersection
singularity

M̃ :

(
m11(u) m12(u)
m12(u) m22(u)

)
=

(
a2 ab
ab b2

)
in Cs+2

u,a,b . (17)

The isolatedness of the singularity of M̃ follows from the transversality of the map M to the
stratified variety ∆ on Cs \ {0}. The latter holds due to τGL,Sym2

(M) <∞ (see, for example,
[11, 12]).
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Doing the same for a whole SL-versal deformation of M, we lift the singular Milnor fibre
V of M to the smooth σ-invariant Milnor fibre Ṽ of M̃. The 2-covering Ṽ → V is ramified
over the singularities of V.

This way the vanishing of a corank 2 cycle from Section 3.1(
−x− z2

1 − · · · − z2
s−2 + λ y

y x

)
lifts to the standard vanishing a2 + b2 + z2

1 + · · ·+ z2
s−2 = λ of a Morse cycle in Cs. We call

this σ-invariant Morse cycle a short cycle.
On the other hand, the lift of a corank 1 vanishing cycle consists of two disjoint Morse

cycles e and σ∗(e). We call their sum e+ σ∗(e) a long cycle.
The self-intersections of short and long cycles are the same as in Arnold’s boundary

function situation: zeros if s is even, 2 and respectively 4 if s ≡ 1 mod 4, and −2 and
respectively −4 if s ≡ 3 mod 4.

Definition 5.1 (cf. [1]) The intersection form of a corank 2 matrix family M : (Cs, 0) →
(Sym2, 0) is a pair consisting of

• the σ-invariant part H+ of Hs−1(Ṽ ;Z), and

• the restriction to H+ of the intersection form of Ṽ .

The Picard-Lefschetz operators acting on H+ and corresponding to short and long cycles
e are given by the same formulas as in Arnold’s theory of functions on manifolds with
boundary:

c 7→ c+ (−1)s(s+1)/2(c ◦ e)e and respectively c 7→ c+ (−1)s(s+1)/2(c ◦ e)e/2 , (18)

where (c ◦ e) is the intersection number.

Example 5.2 Consider a deformed A
Sym2
2 familyM ′(x, y, z) =

(
−x+ z3 − z y

y x

)
in three

variables. The surface V = ∆(M ′) = {x(−x+ z3 − z)− y2 = 0} is homotopic to the wedge
of two corank 2 vanishing cycles: its own real parts e− within −1 ≤ z ≤ 0 and e+ within
0 ≤ z ≤ 1. Their only common point is the origin, a singular point of V.

The covering (17) produces the surface Ṽ : z3− z = a2 + b2 homotopic to a wedge of two
2-spheres: the real ẽ− and the purely imaginary ẽ+, which are 2-covers of respectively e−
and e+. The short cycles ẽ− and ẽ+ meet transversally in Ṽ at the origin.

Example 5.3 For a matrix family M(x, y, z) =

(
h(x, z) y
y x

)
, z ∈ Cs−2, the hypersurface

∆(M) lifts to the hypersurface h(b2, z)−a2 = 0 in Cs
a,b,z. The latter is Arnold’s lift h(x, z)|x=b2

of the boundary function h followed by a one-variable stabilisation. The action of Arnold’s
boundary involution b → −b is extended here to the sign change of the stabilising variable
(cf. [30]). We have already noted that replacement of the function h in M by its R∂-versal
deformation provides a GL-versal deformation of M, with the bifurcation diagram of h
becoming the matrix bifurcation diagram Σ. Therefore, the monodromy group of the matrix
family M coincides in this case with the monodromy group of the one-variable stabilisation
of the boundary function h.
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The method we have introduced for understanding the monodromy of corank 2 symmetric
matrix families may be applied to higher corank singularities in the following way.

The singular Milnor fibre V of a corank n matrix family of any of the three types we
have been considering in this paper has a filtration

Vn ⊂ Vn−1 ⊂ · · · ⊂ V2 ⊂ V1 = V ,

where Vc is the set of matrices of corank at least c. The monodromy action of π1(Λ \ Σ)
respects this filtration. The action of π1(Λ \ Σ) on H∗(Vc) reduces to that of its quotient
π1(Λ \ ∪ni=cΣi).

In the case of corank n symmetric matrix families M(u) = (mij(u))ni,j=1, u ∈ Cs, our
corank 2 approach generalises to the description of the monodromy on Vn−1 by introduction
of an isolated complete intersection singularity

M̃ : (mij(u)) = (aiaj) in Cs+n
u,a (19)

symmetric under the involution σ : a→ −a. The subset Vn−1 of the singular Milnor fibre of

M is 2-covered by the σ-invariant Milnor fibre Ṽn−1 of M̃. The definition of the intersection
form on Vn−1 follows Definition 5.1 with the only difference that we should now take the part
H(−)n of the homology of Ṽn−1 on which σ acts as multiplication by (−1)n. Respectively, long
cycles change to e+(−1)nσ∗(e). In the self-intersection numbers of short and long cycles and
in the expressions (18) of the Picard-Lefschetz operators, the dimension s should be replaced
by s+ n− 2.

For symmetric matrix singularities of the form (10), this construction produces onH∗(Vn−1)
either odd or even (depending on the dimension) versions of the monodromy groups corre-
sponding to the isolated boundary function singularities h.

6 Corank 3 simple symmetric matrices

and simple odd functions

Matrix families we have been considering so far are closely related to isolated functions
singularities, at most boundary, and this relationship as a whole was spotted already during
the simple classification carried out in [5, 7]. We are now switching to the kind of ‘mysterious’
part of the simple classification, the one from items (b) and (c) of Theorem 3.7. The
approaches we are developing here for understanding these simple matrix singularities, are
certainly applicable to the study of a much wider range of matrix families, especially of their
bifurcations, topology and monodromy.

The aim of this section is to reveal a natural relation between three sets of objects:

(i) corank 3 simple symmetric matrix singularities in 4 variables, those from item (b) of
Theorem 3.7,

(ii) simple singularities of odd functions on C2,

(iii) some of simple centrally symmetric complete intersection curves in C3.

This relation was suggested by coincidence of the sets of degrees of basic invariants of certain
Shephard-Todd groups and the sets of weights of parameters of miniversal deformations of
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Table 1: Corank 3 simple symmetric matrix families in 4 variables

M SL−miniversal deformation of M
odd M ′ :
C2 → C

icis

M̃ ⊂ C3

Ik+1,
k ≥ 1

 x λk z
λk y + xk + λk−1x

k−1 + · · ·+ λ1x+ λ0 w
z w y

 D2k+2/Z2

ac2+a2k+1

S2k+3

c2+2bc+a2k

ab

II4

 x w2+λ1w+λ0 y+λ3w+λ2

w2+λ1w+λ0 y z
y+λ3w+λ2 z w

 E8/Z2

b3 + c5

U9

b2 − ac
ab− c4

II5

 x λ2w
2+λ1w+λ0 y+w2+λ4w+λ3

λ2w
2+λ1w+λ0 y z

y+w2+λ4w+λ3 z w

 J10/Z2

b3 − bc4

U11

b2−ac+c4

ab

II6



x
w3

+λ2w
2+λ1w+λ0

y
+λ5w

2+λ4w+λ3

w3

+λ2w
2+λ1w+λ0

y z

y
+λ5w

2+λ4w+λ3
z w


E12/Z2

b3 + c7

U13

b2 − ac
ab− c6

such matrix families. Table 1 lists these quasi-homogeneous versal matrix deformations along
with the corresponding odd functions M ′ and curves M̃ ⊂ C3.

To clarify the contents of the last two columns of the Table, let Rodd,p ⊂ R be the sub-
group of diffeomorphism germs of (Cp, 0) commuting with the central symmetry involution
σp on (Cp, 0). It is easy to check that the list of odd functions of item (ii) given in Table 1
is indeed a complete list of Rodd,2-simple classes of such functions. The notations of the odd
functions used in the Table are taken from [16, 17, 20].

The simplicity of the curves in item (iii) is with respect to the action of the subgroup
Kodd,3 ⊂ K in which the action of R on C3 is restricted by that of Rodd,3. There are more
Kodd,3-simple curves in C3 than we have in the Table. For example, (a2 + b4 + c4, bc) is
Kodd,3-simple (but not K-simple).

The subscripts in the notation of the complete intersections M̃ are their Milnor numbers.
The curve singularities M̃ = S2k+3, U9 are from Giusti’s list of simple curves in C3 without
any symmetry requirements [14, 15]. They are the only centrally symmetric curves on that

list. The curves M̃ = U11, U13 become non-simple if the symmetry is removed. The way we
denote them in the Table extends naturally Giusti’s notation.
Kodd,3-miniversal deformations of the curves M̃ and Rodd,2-miniversal deformations of

the functions M ′ may be obtained from respectively their monomial K-miniversal and R-
miniversal deformations by omission of all odd (respectively even) monomials.
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6.1 Critical points and values

Our relationship between the matrix singularities and odd functions on C2 will be based on
comparison of their bifurcations. So, we introduce

Definition 6.1 Let (Λ′, 0) be the base of an Rodd,2-miniversal deformation of an odd holo-
morphic function germ f on (C2, 0). The bifurcation diagram Σ′ ⊂ Λ′ of f is the germ of the
set of all base points for which the zero level of the corresponding function is not smooth.
The full bifurcation diagram Θ′ ⊂ Λ′ is the germ of the set of all base points for which the
corresponding function is either not Morse or has a critical value zero.

All the singularities we are dealing with in this section are quasi-homogeneous as well
as their miniversal deformations. Therefore, all our statements will be not about germs but
about the whole complex coordinate spaces and algebraic varieties in them.

Proposition 6.2 For each simple matrix family M from Table 1 and the odd function M ′

corresponding to it, there is a biholomorphism between the bases of their miniversal defor-
mations containing the full bifurcation diagrams:

(Λ,Θ) ' (Λ′,Θ′).

Proof. Our aim is to relate critical points of the function det ◦Mλ of particular members
of a matrix versal deformation from Table 1 to critical points of the odd perturbations of
the function M ′.

In the case of the Ik+1 series, the first derivatives of det ◦Mλ with respect to z and w are
twice the cofactors C13 = C31 and C23 = C32 of Mλ. Remark 2.3 tells us that their vanishing
at invertible critical matrices yields m13 = m31 = m23 = m32 = 0, that is, z = w = 0. Thus
at critical points off ∆

det(Mλ) = y

∣∣∣∣ x λk
λk y + P (x)

∣∣∣∣ ,
where P is the polynomial in the central entry of the matrix in the table. The vanishing
of the y-derivative of det(Mλ) gives us y = (λ2

k − xP (x))/(2x) (x = 0 would have implied
λk = 0 and the critical point landing on ∆). Exclusion of y reduces the determinant to a
family of functions in just one variable:

ϕ(x;λ) = −
(
λ2
k − xP (x)

)2
/(4x).

The same function family comes from a miniversal deformation of the function singularity
D2k+2 in the class of odd functions on C2

a,c:

G(a, c;λ) = ac2 + aP (a2) + 2λkc, where P is the same as in Ik+1,

when we start looking for critical points of its members outside their zero levels. Here
exclusion of c using ∂G/∂c = 0 reduces G to

ψ(a;λ) =
(
a2P (a2)− λ2

k

)
/a, that is, ϕ(a2;λ) = −ψ(a;λ)2/4. (20)

The situation with the IIτ families is very similar, but more straightforward. Namely,
for all of them ∂(det ◦Mλ)/∂x = C11 and — in the spirit of Section 5 — its vanishing at a
critical matrix allows us to set at the lower right corner of the matrix deformation(

y z
z w

)
:=

(
b2 bc
bc c2

)
,
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where the bc-plane is equipped with the central symmetry involution σ2. This substitution
yields

det ◦Mλ = −
(
b3 + bq(c2)− cp(c2)

)2
, (21)

where p and q are the polynomials in w in the matrix entries m12 and m13 in Table 1 including
the constant λ-terms, but not y. The expression in the brackets here is an Rodd,2-miniversal
deformation of the functions E8, J10 and E12 respectively, that is, exactly those mentioned
in the third column of the table.

The outcome of these calculations is as follows.
Each matrix singularity M in the table is indexed by its SL Tjurina number τ. The

ordinary Milnor number of each odd function M ′ there is 2τ. According to (20) and (21),
we can use the same space Λ = Λ′ = Cτ for the bases of miniversal deformations of both M
and M ′. With such a choice:

(i) A generic member M ′
λ of the Rodd,2-miniversal deformation of M ′ has τ distinct pairs

(ci,−ci) of non-zero critical values of opposite signs taken at centrally symmetric pairs
of critical points. Each pair corresponds to exactly one non-zero critical value of the
determinant of the generic member Mλ of the matrix deformation. All critical points
in this case are Morse.

(ii) If λ ∈ Θ′, then the odd functionM ′
λ has coinciding non-zero critical values or degenerate

critical points off its zero level if and only if the function det ◦Mλ has the same.

(iii) When a generic λ /∈ Θ′ approaches a generic point λ∗ of Σ′, a pair of centrally symmetric
Morse critical points of the function M ′

λ ends up as a pair of distinct Morse points on
M ′

λ∗
= 0. Respectively, one Morse critical point of det ◦Mλ lands on det ◦Mλ∗ = 0.

Therefore, we have Θ′ = Θ, and in particular Σ′ = Σ. �

Corollary 6.3 For all simple matrix singularities of Theorem 3.7, µ∆ = τSL,Matn .

Proof. Singularities in parts (a) and (b) of Theorem 3.7 are covered by respectively
Theorem 3.8 and item (i) by the end of the last proof.

The only remaining case is that of the simple seven-variable families M̂ of 3 × 3 square
matrices. According to Theorem 3.7, each of them has the form M̂ = M + U, where M is a
simple four-variable symmetric family of Table 1, and the additional three variables are the

entries of the skew-symmetric matrix U =

 0 u12 u13

−u12 0 u23

−u13 −u23 0

 . It has been noted that

the GL (same as SL in this case) Tjurina numbers of M̂ and M coincide. Moreover, it is

not so difficult to check (cf. [7]) that for an SL miniversal deformation of M̂ we can take

{M̂λ = Mλ + U}λ∈Λ, where {Mλ}λ∈Λ is an SL miniversal deformation of M. Then

∂(det ◦M̂λ)/∂uij = Cij − Cji ,

the difference of the cofactors of M̂λ. Vanishing of these three derivatives at an invertible
matrix from a family M̂λ implies that the inverse of this matrix is symmetric, and hence the
matrix itself is also symmetric, that is, U = 0. Thus invertible critical matrices in any family
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M̃λ are exactly those in the family Mλ, and therefore µ∆(M̂) = µ∆(M) = τSL,Sym3(M) =

τSL,Sq3(M̂). �

Corollary 6.3 allows us to extend the Lyashko-Looijenga type Theorem 4.7 to all simple
matrix singularities of Theorem 3.7. The proof of the Corollary implies that the full bifur-
cation diagrams and the Lyashko-Looijenga maps of a simple symmetric matrix singularity
M and of its square matrix version M + U are the same. Therefore we are formulating our
statement just for the symmetric matrices. Keeping the notation used in Section 4.2, we
have

Proposition 6.4 For the simple symmetric matrix singularities Iτ and IIτ , the map L :
Λ → Πτ is a proper holomorphic map. Its restriction to Λ \ Θ is a finite order unramified
covering of the complement Πτ \ Ξ.

Proof. An equivalent way to formulate the Proposition would be to state it for the
Lyashko-Looijenga maps of Rodd,2-simple functions which use the squares of the critical
values. Our argument will follow exactly this interpretation.

According to the proof of Proposition 6.2, the map L is now constructed from the squares
of the critical values of odd perturbations of the functions M ′ from Table 1. Therefore, the
local biholomorphicity of L outside Θ follows now directly from the similar local biholomor-
phicity of the Lyashko-Looijenga map of an isolated function singularity (see [24]).

A justification of L−1(0) = {0} is now based on Gabrielov’s theorem from [13] stating
that the Dynkin diagram of an isolated function singularity is connected, which implies that
the L−1(0) is the µ=constant stratum in Λ′ ' Λ (here µ is the ordinary Milnor number of
M ′). In the Rodd,2-miniversal deformations of each of the functions from Table 1 this stratum
is just the origin. �

Corollary 6.5 For any of the simple symmetric matrix singularities Iτ and IIτ , the com-
plement Λ \ Θ to its full bifurcation diagram is a k(π, 1)-space, where π is a subgroup of a
finite index in the braid group BrBτ . The indices are as follows:

M Iτ II4 II5 II6

index 2(2τ − 1)τ 2 · 153 125 70 · 214
.

6.2 Bifurcations of matrices and of centrally symmetric curves

We will now approach the simple 3 × 3 symmetric matrix families in 4 variables from the
point of view indicated at the end of Section 5, that is, looking at bifurcations of the singular
locus of the singular Milnor fibre of a matrix family.

For each of the families M of Table 1, the singular locus V2,λ of its singular Milnor fibre
Vλ, λ ∈ Λ \ Σ, is a smooth curve. Following (19), we lift the SL-miniversal deformations we
had in the Table to C4+τ+3

x,y,z,w;λ;a.b.c by equating them

to

 a2 ab a(c+ b)
ab b2 b(c+ b)

a(c+ b) b(c+ b) (c+ b)2

 for Iτ and to

 a2 ab ac
ab b2 bc
ac bc c2

 for IIτ .

The linear part of each of our map germs M : (C4, 0)→ (Sym3, 0) has rank 4, and therefore

the lift yields deformations {Ṽ2,λ} of complete intersection curves M̃ embeddable into C3
a,b,c
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and symmetric under the involution σ3 : (a, b, c)→ (−a,−b,−c). The curves M̃ form the last

column of Table 1. The lifted SL-miniversal deformations {Ṽ2,λ} turn out to be miniversal
in the class of σ3-symmetric complete intersections. In the notation used in the previous
subsection, the deformations are(

2bc+ c2 + P (a2)
ab− λk

)
for Ik+1 and

(
−ac+ b2 + q(c2)

ab− p(c2)

)
for IIτ . (22)

The subscripts in the Table notation of the complete intersections M̃ are their Milnor
numbers which all turn out to be equal to 2τ+1. The map Ṽ2,λ → V2,λ, λ /∈ Σ, is an unramified
2-covering, and therefore, in all table cases a non-singular curve V2,λ is homotopic to a wedge
of τ + 1 circles. Notice that the whole singular Milnor fibre of each matrix family M is
homotopic to a wedge of just τ = µ∆ copies of S3.

Definition 6.6 Let (Λ̃, 0) be the base of a Kodd,3-miniversal deformation of a centrally sym-

metric one-dimensional icis germ M̃ ⊂ (C3, 0). The bifurcation diagram Σ̃ ⊂ Λ̃ of M̃ is the
germ of the set of all base points corresponding to singular curves.

Identifying the bases of the miniversal deformations of the matrix family M and of the
σ3-symmetric curve M̃, we have Σ̃(M̃) ⊆ Σ(M).

The deformations (22) bring us immediately to the Rodd,2-miniversal deformations of the
odd functions M ′ which should be now considered as Kodd,2-miniversal deformations.

For example, in the IIτ case, equations (22) of the Ṽ2,λ may be considered as a system
of two linear equations in a defining the unique value of a, hence the determinant b3 +
bq(c2)− cp(c2) of this system must be zero. The last expression is exactly the odd miniversal
deformation of the function M ′ we had in (21). There is only one point, the origin, on the
determinantal curve V ′λ = {M ′

λ = 0} ⊂ C2
b,c for which we do not have any value of a unless

p(0) = q(0) = 0, that is, when λ is outside a codimension 2 plane – denote it Υ – in Λ. Thus

the projection C3
a,b,c → C2

b,c establishes a diffeomorphism Ṽ2,λ ' V ′λ \ {0} for all λ ∈ Λ \ Υ.
Under this projection, the central symmetry of C3 becomes the central symmetry of C2.
A reflection of the diffeomorphism between the curves is the relation between the Milnor
numbers: µ(M ′) = µ(M̃)− 1 = 2τ.

The same happens in the Ik+1 case for the projection to the ac-plane. Therefore, for

all pairs of singularities M ′, M̃ from Table 1, we have the coincidence of their bifurcation
diagrams. Taking into account the last line of the proof of Proposition 6.2, we have

Proposition 6.7 For each triplet M,M ′, M̃ of simple singularities from Table 1, the pairs
consisting of the base of a corresponding miniversal deformation and the bifurcation diagram
of a singularity are biholomorphic:

(Λ,Σ) ' (Λ′,Σ′) ' (Λ̃, Σ̃).

In fact, a fourth member may by added to each triplet in the Proposition so that its
claim still stays valid, this time for all four bifurcation diagrams. This additional member is
the simple 3× 3 square matrix family M̂ = M + U in seven variables.

The relation in the Proposition shows in particular that the diagram Σ(M) has just the
corank 2 component Σ2. Indeed, Σ3(M) = ∅ due to the dimension of the domain. On the

24



other hand, according to the previous subsection, all degenerations of the singular Milnor
fibres Vλ of M are reflected in degenerations of the curves M ′

λ = 0, which in their turn

correspond to degenerations of the curves Ṽ2,λ and hence to degenerations of the singular
loci V2,λ ⊂ Vλ. Hence Σ1(M) is also empty.

Proposition 6.8 For all singularities of Table 1, the multiplicities of their bifurcation dia-
grams are τ + 1.

Proof. According to [16], the bifurcation diagrams Σ′ of the odd functions D2k+2/Z2 and
E8/Z2 are the discriminants of the Shephard-Todd groups G(4, 2, k+ 1) and G31. Hence the
multiplicities of Σ′ in these cases are τ + 1 [28].

The diagram Σ(Ik+1) ' Σ′(D2k+2/Z2) may be described as the set of all λ ∈ Ck+1 for
which the polynomials

xP (x)− λ2
k = x(xk + λk−1x

k−1 + · · ·+ λ1x+ λ0)− λ2
k

have either multiple or zero roots [28].
A common description of the diagrams Σ(IIτ ) is as follows (cf. [16]). Consider the

centrally symmetric planar curves b3 + cp(c2)− bq(c2) = 0 forming the miniversal family of
the curve M ′ = 0. Blow up the plane at the origin setting b = uc, take the strict transforms
of the curves, and factorise by the symmetry action setting c2 = w. We end up with

u3w + p(w)− uq(w) = 0 . (23)

In the three table cases this is a deformation of respectively A5, D6 and E7. It extends to an
R-miniversal deformation by addition of the term λτu

2.
Therefore, the bifurcation diagrams of the families II4, III5 and IV6 are non-generic sec-

tions of the discriminants of the Weyl groups A5, D6 and E7 by smooth hypersurfaces. The
deformations (23) contain the constant and linear terms, which confirms that the multiplic-
ities of the diagrams are indeed τ + 1. �

I would like to finish with

Cojecture 6.9 Let M : (Cs, 0) → Matn be a germ of any of the three types of matrix
families considered in this paper. Assume the number s of its parameters is at least the
codimension of the discriminant ∆ in Matn, and the Tjurina number τSL,Matn(M) is finite.
Then

µ∆(M) = τSL,Matn(M).

We have shown that this is true for all known simple singularities and for the matrix
versions of boundary function singularities. A similar amount of evidence existed behind
the similar conjecture about the matrix families with few parameters which was proved
successfully in [18].
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