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ABSTRACT 

Transition metal bond activation is one of the most widespread methods for the synthesis of 

complex molecules. Within this context, C-N bond activation has emerged recently as a powerful 
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strategy for the preparation or utilization of nitrogen-containing compounds, due to the 

prevalence of C-N bonds in organic compounds. A key challenge in this area is that most C-N 

bonds are relatively inert, and this makes their activation a difficult task. Since the turn of the 

millennium the number of published articles regarding C-N bond activation has grown 

exponentially, providing important improvements in methodologies for such transformations. 

Indeed, several distinct strategies have been developed to achieve C-N bond activation. The most 

common have exploited either strain release or quaternization of the nitrogen-center, while other 

state-of-the-art strategies, such as oxidative addition of neutral C-N bonds or the use of directing 

groups have also appeared. Despite considerable progress, deeper insight into the mechanisms of 

activation and improvements in atom economy are still required for the field to advance. In this 

Perspective we give an overview of key advances in catalytic methodologies where C-N bond 

activation is achieved by oxidative addition to transition metals.  

 

1. INTRODUCTION 

The use of transition metals (TMs) for bond activation is one of the most important strategies for 

the preparation of complex molecules. Mainly due to its statistical abundance, C-H activation 

was the first area to gain traction and contemporary C-H activation-based methodologies are 

abundant and widely used.1-2 Great strides have also been made in the areas of C-C3-5 and C-O6-7 

activation. Surprisingly, progress in C-N bond activation has lagged until very recently; this can 

in part be attributed to the usually high C-N bond dissociation energy8 and the general stability of 

unactivated nitrogen-containing compounds. There is a vast number of chemical structures (e.g., 

natural products, synthetic drugs) that bear a C-N bond. Unsurprisingly, therefore, the formation 
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and transformation of C-N bonds is of fundamental importance to organic synthesis,9 and 

enzymatic processes that achieve this, such as protein synthesis, metabolism (e.g. urea synthesis) 

and nucleotide biosynthesis, are essential to life. Thus, new methods for the activation of C-N 

bonds would open the door for novel methodologies that might allow the preparation of a great 

number of complex scaffolds and building blocks.  

As a result of its increasing popularity in recent years, several notable reviews on C-N bond 

activation have been published.10 Since 2010, the activation of C-N single bonds has received 

substantial attention from several groups, and the number of published articles regarding C-N 

cleavage has grown exponentially. Understanding the different strategies for C-N bond activation 

will assist in the development of new disconnection strategies for the preparation of synthetically 

challenging scaffolds or in the optimization of routes to existing ones. 

The aim of this Perspective is to summarize recent progress made in catalytic C-N bond 

activation by TM oxidative addition (termed “C-N bond activation”). The methods discussed are 

categorized according to the strategy employed: A) C-N bond activation via quaternization of the 

nitrogen; B) oxidative addition of neutral C-N bonds; C) C-N bond activation using a directing 

group (DG); D) C-N bond activation via strain release (Scheme 1). There are many reports that 

detail stoichiometric metal-promoted C-N bond activation,11-25 but these will not be discussed in 

this Perspective, which will instead focus on TM-catalyzed methodologies. Although outside the 

primary focus of this Perspective, there are a number of powerful strategies where C-N bonds are 

cleaved in the presence of a transition metal, but where an oxidative addition step is not 

involved; strategies of this type have been covered in a recent, comprehensive review.10a Recent 

advances in such TM-catalyzed C-N bond cleavage strategies include the use of Katritzky salts 

for activation of primary amines,26 copper-catalyzed substitution of ammonium salts,27 and 
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synthesis of amides by dealkylative N-acylation of tertiary amines with carboxylic acids28 or by 

dealkylative carbonylation of amines.29  

 

 

 

Scheme 1. Strategies for oxidative addition triggered TM-catalyzed C-N bond activation. 

2. C-N BOND ACTIVATION VIA QUATERNIZATION OF THE NITROGEN 

One of the reasons why C-N bond activation is challenging is because of the typically high bond 

dissociation energy of this moiety. To overcome this, an increasingly common strategy has been 

to quaternize the nitrogen center, thus weakening the C-N bond. Aryl diazonium salts are 

classical substrates in organic synthesis that have been studied extensively since the late 19th 

century; initially confined to electrophilic substitution reactions,30 and more recently in TM-

catalyzed processes by C-N bond activation. Reactions employing these substrates are not 

covered in this Perspective and the reader is instead directed to a recent review that covers these 

classes of compound in TM-catalyzed reactions.31 Contemporary methods now allow simple 

quaternary aryl- and alkyl-ammonium salts to be used for a number of important transformations, 

including cross-coupling reactions, nucleophilic substitution, carboxylation (with CO2) and 

carbonylation (with CO).32 
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Cross-coupling reactions that employ a discrete quaternization event have been studied 

extensively since the late 1980s. Quaternary ammonium salts are readily prepared from the 

corresponding amines, which are often commercially available at reasonable cost. Wenkert 

reported the first nickel-catalyzed Kumada coupling of aryltrimethylammonium iodides with aryl 

and alkyl Grignard reagents.33 Later, this type of coupling was accomplished with 

aryltrimethylammonium triflates using either a palladium-34 or an iron-based catalyst.35 In a 

similar manner, quaternary aryl- or benzyl-ammonium salts have been used in Negishi,36 Stille,37 

Suzuki-Miyaura,38 Sonogashira,39 Buchwald-Hartwig,40 Murahashi,41 and Hiyama42 cross-

coupling reactions, or with organoaluminium reagents43 (Scheme 2). The general mechanism of 

these reactions typically involves: (i) oxidative addition of the C-N bond of the quaternary 

ammonium salt 1, 4, 7, 10, 13, 16, 19, 22 or 25 to the TM, resulting in cleavage of the C-N bond; 

(ii) transmetallation with the organometallic compound 2, 5, 8, 17, 20, 23, alkyne 11, 26, or 

amine 14; and (iii) reductive elimination to afford products 3, 6, 9, 12, 15, 18, 21, 24 or 27. 

Computational studies have shown that oxidative addition of aryl quaternary ammonium salts to 

TMs proceeds with a low activation energy barrier,37 such that transmetalation is a more 

demanding step. This contrasts neutral aryl C-N bonds which typically do not undergo facile 

oxidative addition.44   

A particularly noteworthy feature for Ni-catalyzed cross coupling reactions with boronic acids is 

the net inversion of stereochemistry with respect to the starting benzylic ammonium salt by 

stereoinvertive (SN2) oxidative addition.32b,38b,c In general, for the cross coupling of aryl- or 

benzyl-ammonium salts, a combination of a strong base and Ni(cod)2, modified by either an 

electron rich phosphine ligand (e.g. P(o-Tol)3) or a strongly σ-donating NHC ligand (e.g. 

IPr•HCl), is most effective. Cross-couplings of organolithium reagents with aryl ammonium salts 
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avoid unwanted lithium-halogen-exchange side reactions observed under conventional 

Murahashi conditions, where aryl halides are used as the electrophile.41,45 The counterion (X = I, 

OTf, BF4 etc.) can have a drastic effect on reactivity35a,41 and, although a clear trend is not 

apparent between different systems, ammonium triflates are most commonly employed. 

 

 

Scheme 2. Cross-coupling reactions of (A) aryl- and (B) benzyl- quaternary ammonium salts and (C) general 

catalytic cycle. 
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In general, cross-coupling reactions involve an electrophilic species (e.g., quaternary ammonium 

salts, halide derivatives or triflate salts) and a nucleophilic species (e.g. Mg, Zn, Sn or B 

derivatives), which is typically a pre-formed organometallic reagent. Such processes are redox 

neutral, although a discrete reduction event is usually used to prepare the organometallic reagent. 

To avoid this additional step, cross-coupling reactions have been developed where two 

electrophiles are used in the presence of a reductant. In a recent study, nickel-catalyzed reductive 

couplings between C-N and C-O electrophiles were described.46 Here, using Mn as a 

stoichiometric reductant, benzyl- and aryltrimethylammonium triflates 28 were coupled with 

vinyl acetates or aryl triflates to construct C-C bonds (Scheme 3). The protocol is compatible 

with a wide range of functional groups, including boronic esters (albeit in a reduced yield). 

Radical trapping and radical clock experiments were used to support a mechanism involving the 

intermediacy of carbon-centered radicals which undergo capture by a Ni(I or II)-species, 

although the precise mechanism has yet to be elucidated.  

 

Scheme 3. Nickel-catalyzed reductive coupling between C-N and C-O electrophiles.  
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The ability to engage C-H bonds by C-H activation is a powerful strategy that has found 

widespread use in synthetic chemistry, particularly in late-stage functionalization of complex 

molecules.47 Methods that combine C-H and C-N functionalization have emerged recently, 

employing benzyl- and aryltrimethylammonium salts as alkylation or arylation reagents, 

respectively. Wang and co-workers reported Pd-catalyzed C-H arylations (Scheme 4A)48 and C-H 

benzylations49 of oxazoles and thiazoles. Related Ni-catalyzed, directing group-assisted ortho-C-

H functionalizations have also been reported for the benzylation of aromatic amides (Scheme 

4B).50 Mechanistically these reactions differ; the reported Pd-catalyzed benzylations and 

arylations likely proceed via oxidative addition of ammonium salt 34 to Pd(0) to give 35, C-H 

palladation (to 36) and reductive elimination to give arylated products 37 or 38. The reported Ni-

catalyzed examples are mechanistically ambiguous, with conflicting reports proposing either 

Ni(II)/Ni(IV) or Ni(I)/Ni(III) catalytic cycles; however, in both scenarios the evidence suggests 

oxidative addition of ammonium salt 40 occurs after insertion of nickel into the aryl C-H bond of 

39 to give 41. From here, oxidative addition to 42 is followed by reductive elimination and 

protodemetalation to give benzylated products 43.  
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Scheme 4. (A) Palladium- and (B) nickel-catalyzed C-H and C-N functionalization reactions of quaternary 

ammonium salts.    

For the installation of a carbonyl, carboxylation reactions (with CO2) and carbonylation reactions 

(with CO) offer atom-economical alternatives to traditional methods29a and incorporating these 

C1 units as feedstocks offers promise for alternative retrosynthetic disconnections in synthetic 

chemistry.51 In 2016, Martin and co-workers reported a Ni-catalyzed reductive carboxylation of 

benzylic C-N bonds with CO2 for the synthesis of carboxylic acids (Scheme 5).52 The success of 

these reactions was attributed to a novel set of ligands (e.g. 45a and 45b), which prevented 

competing homodimerization or -hydride elimination pathways. For primary benzylammonium 

salts 44 where R2 = H, a combination of NiBr2•diglyme and ligand 45a was optimal; whereas for 

secondary benzylammonium salts 44 where R2 = alkyl, a combination of NiCl2 and ligand 45b 

afforded improved yields. The mechanism of this transformation is unclear, however single-
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electron-transfer processes and comproportionation events via benzyl Ni(I) intermediates were 

suggested.52  

 

Scheme 5. Nickel-catalyzed reductive carboxylation of benzylic C-N bonds.  

Derivatizing C-N bonds by carbonylation with CO via C-N bond activation is a highly attractive 

transformation for the formation of new C-C bonds.  Such transformations offer the opportunity 

for carbonylative coupling processes with different nucleophiles, facilitating the rapid generation 

of structural complexity. In a cautionary note concerning the use of phase transfer catalysts (e.g. 

quaternary ammonium salts) in TM-catalyzed reactions, Alper and co-workers showed that 

benzylammonium salts are converted into the corresponding carboxylic acid using stoichiometric 

amounts of Co2(CO)8, under an atmosphere of CO, in the presence of base (Scheme 6A), and 

indicated that a free radial mechanism may be operating (e.g. via benzyl radical 50).53 Soon after 

this, Caubere and co-workers exploited this observation and developed a catalytic variant of this 

reaction using visible light photostimulation for the generation of the proposed benzyl radical 

intermediate.54 More recently, a Pd-catalyzed carbonylation of benzylic ammonium salts, via C-

N bond activation, for the synthesis of amides and esters has been reported (Scheme 6B).55 The 

method tolerates a large variety of nucleophiles, including aryl- and alkyl-amines, -amino 

esters and alcohols. Mechanistically, benzyl quaternary ammonium salt 53 likely undergoes 
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oxidative addition to Pd(0) to generate Pd(II) intermediate 54. From here, CO insertion (to 55), 

nucleophilic attack (to 56) and reductive elimination generates the ester (e.g. 57) or amide (e.g. 

58) product.  

 

Scheme 6.  Carbonylation reactions of benzyl ammonium salts with (A) stochiometric Co2(CO)8 and (B) 

PdCl2(dppf). 

Further to the formation of new C-C bonds from quaternary ammonium salts via C-N bond 

activation, methods for the construction of new C-P,56 C-Si,57 C-B,58 and bonds have also been 

demonstrated, providing access to important synthetic intermediates. For these transformations 

nickel is generally used as the TM in the presence of base (alkoxide or Cs2CO3), with either 1,1'-

bis(diphenylphosphino)ferrocene (dppf) or N-heteterocyclic carbene (NHC) as a ligand. In a 

particularly significant example of Ni-catalyzed carbon-heteroatom bond formation from 

ammonium salts, Watson and co-workers reported a stereospecific Miyaura borylation reaction 

of -alkyl substituted benzylic ammonium salts 59 (Scheme 7).58c Taking advantage of their 
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previous observations of stereospecificity in Suzuki-Miyaura-type cross coupling reactions under 

Ni-catalysis (see e.g. Scheme 2B),38b a range of benzylic boronates (e.g. 62-64) were synthesized 

under mild conditions with inversion of stereochemistry with respect to the starting benzylic 

ammonium salt. The reaction worked best for aryl substituents with extended  systems (e.g. 

naphthyl), however, by switching the ancillary ligand from PPh3 to PPh2Cy, the scope of the 

method was extended to include some non-naphthyl substrates. A rationale for this effect was 

based on a hypothesis that oxidative addition of these substrates (to form 60) would be slower, 

and that a more electron-rich ligand may benefit this step (as well as an increased reaction 

temperature and change of base).   

 

 

 

Scheme 7.  Ni-catalyzed stereospecific Miyaura borylation of benzylic ammonium salts.  

Since the discovery in 2006 that pyridinium salts (e.g. Katritzky salts)59 can be employed as 

electrophilic coupling partners in cross-coupling reactions,60 this strategy for C-N bond cleavage 

has received an increasing amount of attention.26b,c Mechanistically, these processes are distinct 

from reactions of tetraalkyl ammonium salts discussed previously (by C-N bond oxidative 

addition). Pyridinium salt precursors generate an alkyl radical, which can be facilitated by three 
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main strategies: i) nickel catalysis, ii) photoredox catalysis, or iii) photoinduced SET to an 

electron-donor-acceptor complex.26c Significantly, Katritzky salts 67 can be prepared in a single 

step from the corresponding primary alkyl amine 65 by condensation with commercially 

available 2,4,6-triphenylpyrylium tetrafluoroborate (66) (Scheme 8A). Watson and co-workers 

first reported nickel-catalyzed Suzuki-Miyaura cross-coupling reactions of alkyl pyridinium salts 

(Scheme 8B),26a and since then a number of related (deaminative) reactions of Katritzky salts 

have been reported, including borylation,61 alkynylation/alkenylation,62 arylation,63 alkyl-Heck 

type reactions,64 allylation,65 alkylation,66 carbonylation,64b,67 acylation68 and C-heteroatom 

bond-forming reactions.69 

 

Scheme 8.  (A) Strategy for C-N bond cleavage of primary amines via Katritzky salts and (B) Ni-catalyzed Suzuki-

Miyaura cross coupling reactions of alkylpyridinium Katritzky salts. 

 

3. C-N BOND ACTIVATION USING DIRECTING GROUPS  

Aryl C-N bonds can be formed  using a range of TMs and key methods include the Ullman 

coupling,70 Buchwald Hartwig amination,71 and aryl C-H amination.72 However, methods for the 
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reverse disconnection (i.e. the activation of aryl C-N bonds) are much more limited, particularly 

for neutral aryl C-N bonds. This is largely due to two reasons: (1) the thermodynamic stability of 

aryl amines and (2) the strong coordination ability of their N-center.73 One inherent challenge of 

TM-catalyzed (C-H, C-C, C-N) bond activation in general is achieving selectivity (i.e. 

controlling which bond will be activated). The use of directing groups (DGs) provides a well-

established solution; in this scenario, the DG is designed to ligate the catalyst, holding it in close 

proximity to the target bond, thus driving kinetic and/or thermodynamic selectivity. 

The first example of oxidative addition of a neutral C(sp2)-N bond to a TM came in 1996, where 

Wolczanski showed that anilines undergo oxidative addition to stoichiometric Ta(OSit-Bu)3, 

without the use of a directing group.14 However in these processes, controlling C-N vs. N-H 

activation was problematic, and could only be partially resolved by controlling electronic factors 

through variation of the aniline substituents. In 2007, Kakiuchi reported a vast improvement in 

controlled C-N activation of anilines and developed a ruthenium(II)-catalyzed C-N activation/C-

C cross-coupling sequence by employing a directing group strategy.74 In this study, ortho-

ketones or esters 73 facilitated directed oxidative addition of the target C-N bond using 

[RuH2(CO)(PPh3)3]. Interception of the resulting aryl-Ru species 79 or 80 with various 

organoboronates 74 afforded arylated or alkylated products (e.g. 75-78) in good to excellent 

yield (Scheme 9A). Notably, primary anilines, N-substituted and N,N-disubstituted (cyclic and 

aliphatic) variants could all be used. X-ray structures of aryl ruthenium intermediates 79 and 80 

were obtained (Scheme 9B),75 showing the initial coordination of the ortho-ketone to the 

ruthenium catalyst and the cleavage of the C-N bond, respectively. The subsequent 

transmetallation is presumably driven by the coordination of the boron atom to the amino group 

of 80.74 This methodology was later extended to the use of amides,76 imines (with subsequent 
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hydrolysis to form aromatic aldehyde and ketone derivatives),77 and pyridines78 as ortho-

directing groups.  

Orthogonality with conventional Suzuki-Miyaura cross-coupling reactions (e.g. with aryl 

halides) has been flagged as an advantage of ruthenium-catalyzed cross-couplings of this type; 

this allows the synthesis of triaryls via a bromination, Suzuki−Miyaura cross-coupling, and Ru-

catalyzed C−N activation/coupling sequence (Scheme 9C).76 Regioselective bromination of 

anthranilamide derivative 81 reliably gave arylbromide 82, which was selectively coupled with 

phenyl boronic acid under Pd-catalysis to give biaryl 83 in good yield. A second cross-coupling 

reaction (via C-N bond activation) with (p-OMe)PhBnep, under Ru-catalysis, gave triaryl 84 in 

excellent yield, thus illustrating the orthogonality between C-Br and C-N bonds as electrophilic 

motifs in cross-coupling reactions.  

In a recent study, directed C-N bond activation has been demonstrated for carbonylative 

coupling of anilines with organoboranes, using Ru3(CO)12 as the catalyst (Scheme 9D).79 In a 

systematic evaluation of directing groups and of boronic acid derivatives, the 2-pyridyl directing 

group and Bnep was found to be optimal for this system and a variety of benzophenone 

derivatives (e.g. 87-90) were synthesized in good yields.    
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Scheme 9.  Ruthenium-catalyzed cross coupling reactions of aniline derivatives using a directing group strategy. 

Further to the use of ruthenium, DG-assisted activation of the aryl C-N bond of anilines has since 

been demonstrated using chromium. In 2017, Zeng, Chen and co-workers, reported that CrCl2 

could be employed for the imino-directed Kumada cross-coupling of various dialkylanilines 91 

with Grignard reagents under mild conditions (Scheme 10A).80 By using aryl Grignard reagents, 

a wide-range of ortho-formyl biaryls (e.g. 95-96) could be obtained. Alkyl Grignard reagents 

also participate, albeit with generally lower yields. A series of experimental and theoretical 

studies suggested that a low-valent, high-spin chromium species, formed in-situ by two-electron 

reduction with excess Grignard reagent, promotes C-N cleavage, which has a relatively low 

activation energy barrier (13.6 kcal/mol for 95a). This generates Cr(II) species 93, which 
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undergoes transmetalation with the Grignard reagent to give 94. From here, reductive elimination 

followed by imine hydrolysis generates the cross-coupled product e.g. 95-96.  In a very recent 

report, this method was extended to include the cross-coupling of two electrophilic partners 

using magnesium as a stoichiometric reductant (Scheme 10B).81 The authors also demonstrated a 

series of sequential reductive and oxidative couplings of C(sp2)–N/C(sp2)–H bonds for the 

synthesis of 2,6-disubstituted benzaldehydes in an orthogonal fashion (Scheme 10C). Starting 

from anilines 100, application of the standard reductive coupling conditions facilitated the 

synthesis of ortho-arylated products 101, which were condensed with benzylamine and treated 

with Grignard reagents under Cr-catalysis, affording a range of 2,6-disubstituted benzaldehyde 

products (e.g. 102).  
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Scheme 10. (A) Chromium-catalyzed Kumada cross-coupling and (B) reductive cross-coupling reactions of aniline 

derivatives with aryl and alkyl Grignard reagents by directing group-assisted C-N bond activation; and (C) 

sequential reductive and oxidative couplings of C(sp2)–N/C(sp2)–H bonds. 

4. NON-DIRECTED OXIDATIVE ADDITION TO NEUTRAL C-N BONDS 

Despite the major advances in strategies that quaternize nitrogen or employ directing group-

assistance for engaging C-N bonds in TM-catalyzed processes, neutral C-N bond activation 

remains underdeveloped, particularly for aryl- and alkylamines. Nevertheless, such methods are 

appealing because they potentially allow the valorization of biologically derived feedstocks, and 

the diversification of existing pharmaceutical compound libraries. The development of methods 

that do not require prior functionalization or highly specialized substrates would be highly 

desirable and would have the potential to improve the utility of such transformations in organic 

synthesis. There are a number of more specialized or activated substrates that have been used in 

C-N bond activation where the C-N bond may be classed as ‘neutral’; these include 

cyanamides,82 and aminals.83 Aryl hydrazines have received an increasing amount of attention as 

precursors to aryldiazoniums84 or via palladadiaziridine intermediates.85,86 Reactions employing 

these substrates are not covered in this Perspective and the reader is instead directed to recent 

reviews that cover these classes of compound in TM-catalyzed reactions.  

Recently, Shi and co-workers described the direct Suzuki-Miyaura cross-coupling reaction of 

dimethylarylamines 103 with aryl boronates 104, using a Ni(I) catalyst modified by the N-

heterocyclic carbene (NHC) ligand, IMesMe (Scheme 11A).87 This is the first example where this 

particular transformation has been achieved without either pre-activating nitrogen or using a 

directing group. The addition of magnesium was critical for successful reaction, and its role 

likely extends beyond simply functioning as an initiating reductant because attempts use other 
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metallic reductants (e.g. Zn, Mn, Na, Al and Sn) were unsuccessful. On the basis of electron 

paramagnetic resonance (EPR) measurements and DFT calculations, the authors proposed a 

Ni(I)/Ni(III) pathway. Ligand exchange between the proposed catalytic species, (NHC)2Ni(I)Br, 

and aniline 103 gives Ni(I) species 105. Oxidative addition of the C-N bond to the Ni-center 

generates Ni(III) species 106, from which transmetalation with aryl boronate 104 gives 107. 

Reductive elimination then generates the biaryl products (e.g. 108 and 109). The method is most 

effective with highly conjugated tertiary arylamines (primarily alkyl-substituted N,N-dimethyl 

naphthylamines) and does not extend well to phenylamines. Shi and co-workers have also 

demonstrated the suitability of this approach for the Miyaura borylation of arylamines 110 and 

N-arylpyrroles 111, employing a combination of Ni(cod)2 and IMesMe, with B2nep2 as the 

borylation reagent (Scheme 11B). Interestingly, reactions of N-arylpyrroles 111 required the 

addition of base (PhCO2Na) whereas for dimethylarylamines 110 the addition of base had a 

detrimental impact.  
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Scheme 11. (A) Nickel-catalyzed cross-coupling of 

dimethylarylamines with arylboronic esters and proposed 

mechanism via a Ni(I)/Ni(III) catalytic cycle; (B) nickel-catalyzed 

borylations of  dimethylarylamines and N-arylpyrroles. 

Nitroarenes are readily available building blocks for organic synthesis and the chemical 

industry.88 The ability to employ compounds of this type as electrophilic partners in cross-

coupling reactions is a relatively recent development;89 strategically this is significant because 

prior modification of the nitro unit (for example, by reduction to an aniline) is no longer 

required, which, in turn, reduces cost, effort and waste. Nevertheless, methodologies that enable 

the formation of C-C and C-N bonds by C-N bond activation of nitroarenes are scarce and this 
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area is still underdeveloped. Nonetheless, impressive recent developments in C-N bond 

activation of nitroarenes 116 have been reported by the groups of Nakao and others in the 

context of Suzuki-Miyaura cross-couplings,89g,90 Buchwald-Hartwig aminations,89h,91 

intramolecular C-H arylation,92 reductive denitration,93 and Sonogashira-type cross couplings94 

(Scheme 12). Mechanistically, these reactions are thought to proceed through the typical cross-

coupling pathway initiated by oxidative addition of the C-N bond of the nitroarene. 

 

Scheme 12. Representative examples of C-N bond activations in nitroarenes. 

For direct carbonylation of neutral amine C-N bonds, methods commonly employ tertiary amines 

in C-N bond cleavage (dealkylative) carbonylation strategies.29 Alternatively, there are methods 

that exploit strain release (see Section 5) or the thermodynamic stability of palladium -allyl 

complexes derived from allylamines (see Section 6) for C-N bond activation in carbonylative 

reactions. Conversely, the use of primary or secondary alkyl amines for C-N bond activation is 

significantly more challenging.29a In an isolated example employing primary benzylamines as a 

source of neutral C-N bonds for carbonylation reactions via C-N bond activation, Wu and co-
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workers showed that a variety of benzyl amines 121 can be converted into the corresponding 

methyl 2-arylacetates ( e.g. 124 and 125) under Pd(0) catalysis (Scheme 13).95 It was noted that 

the use of dimethyl carbonate (DMC) was essential (other solvents failed), and the reaction 

proceeded more efficiently with excess MeOH (as a co-solvent) – the latter may facilitate 

oxidative addition (to 122) by activating the amine through hydrogen bonding. CO insertion (to 

give 123), is then followed by nucleophilic attack of MeOH to generate ester products (e.g. 124 

and 125).    

 

 

Scheme 13.  Palladium-catalyzed carbonylation of primary benzylamines for the synthesis of methyl 2-arylacetates. 

 

5. C-N BOND ACTIVATION VIA STRAIN RELEASE 

Another class of “activated” C-N bonds are those found in strained N-heterocyclic systems. 

Small nitrogen-containing ring systems (i.e. aziridines, 2H-azirines, azetidines) are versatile 

intermediates, and C-N activation allows them to be used as precursors for a wide range of 

scaffolds (including lactams, pyrrolidines, imines, amines, pyrazines and imidazoles) that are not 

readily accessible through traditional methods.96 C-N activation of such systems is driven by the 

release of ring strain. 
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Transition metal-catalyzed C-N bond activations of aziridines have received an increasing 

amount of attention in recent years.96c These precursors offer a versatile platform for reaction 

development, and efficient carbonylation and cross-coupling protocols are available (Scheme 

14). Methods for accessing azametallacyclobutane intermediates 127 or 128 typically require 

strongly activating N-sulfonyl or bulky N-alkyl (e.g. t-butyl) substituents and require vinylic or 

benzylic activation of the C-N bond (R1 = alkenyl or aryl). In cases where the aziridine is non-

symmetrical, issues of C-N bond regioselectivity arise, which is partially addressed by the latter 

strategy, where the aziridine substituent (R1) impacts which C-N bond undergoes cleavage. 

 

Scheme 14. C-N bond activation of aziridines.  

A key milestone in aziridine C-N bond activation came in the mid-1970s when Aumann reported 

carbonylations of vinylaziridines via oxidative addition of the C-N bond to stoichiometric 

Fe(CO)5.
97 The first catalytic carbonylation of aziridines was reported by Alper in 1983 for the 

ring-expansion of benzylic aziridines 135 to -lactams 136 using [Rh(CO)2Cl]2 as a catalyst 

under high pressures of carbon monoxide (Scheme 15A).98 For this system, a bulky N-alkyl (t-
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butyl or 1-adamanyl) substituent was required to prevent 1,3-dipolar polymerizations and/or 

azametallacyclobutane collapse (by exocyclic -hydride elimination). Further studies showed 

that this reaction is enantiospecific and stereoretentive, allowing enantioenriched -lactams 136 

to be prepared from enantioenriched aziridines 135.99 Later, catalytic carbonylations of 

vinylaziridines to enantiopure -lactams were developed using palladium-based catalysts (via the 

intermediacy of -allyl azapalladacycles, vide infra).100  

Mechanistically distinct strategies for C-N cleavage of unactivated aziridines have also been 

developed by the Alper and Coates groups, by employing Co2(CO)8
101 or Lewis acid-cobalt 

catalysts [Cp2Ti-(THF)2][Co(CO)4] (141) and [(salph)Al(THF)2][Co(CO)4] (142) (Scheme 

15B).102 These processes are postulated to proceed via Lewis acid-assisted and stereoinvertive 

nucleophilic attack of the [Co(CO)4]
- ion (to give 140), followed by carbonylation and ring-

closure; this mechanism has subsequently been studied and supported computationally.103 

Complementary strategies for engaging unactivated aziridine C-N bonds for the synthesis of -

lactams have been developed, such as a Ni(CO)4/LiI system, reported by Pinhas and co-

workers.104 This C-N bond cleavage strategy does not proceed via C-N oxidative addition to the 

metal, but does allow retention of aziridine stereochemistry via a double inversion mechanism.    
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Scheme 15. Methods for carbonylative ring-expansion of aziridines via (A) stereoretentive oxidative addition and 

(B) stereoinvertive oxidative addition. 

There are a number of examples that exploit aziridines as masked 1,3-dipoles for (3+2) 

cycloaddition chemistry (via C-N bond cleavage) with a variety of different dipolarophiles, 

including alkenes, alkynes, ketones, aldehydes, nitriles, and heterocumulenes.105 Typically these 

processes employ strongly Lewis acidic (metal) catalysts to ‘activate’ the aziridine, there are 

however only a limited selection of examples that employ redox active transition metals (e.g. 

palladium). The exact role of the transition metal catalyst in these processes is dubious, as the 

metal may be serving as a Lewis acid only, without undergoing oxidative addition to the C-N 

bond.96c Catalytic hydrogenations of aziridines to form amines have also been demonstrated, 

typically employing either Ni or Pd heterogeneous catalysts.106 

Azametallacyclobutanes 128 (Scheme 14) have also been utilized as intermediates that can be 

intercepted by nucleophilic organometallic species in cross-coupling reactions. This strategy 

opens up the possibility for catalyst-controlled selectivity and scope that is complementary to 
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traditional nucleophilic ring-opening processes.96c,107 In 2002, Hillhouse demonstrated that 

simple (non-allylic) aziridines can undergo oxidative addition and reductive elimination using 

nickel complexes.108 Subsequently, Doyle109 and Jamison110 showed that N-sulfonyl aziridines 

undergo Negishi cross-coupling reactions under Ni-catalyzed conditions. Doyle’s protocol 

encompasses cross-couplings of aryl-substituted N-tosyl aziridines 143 with organozinc reagents 

at room temperature by employing NiCl2•glyme as an inexpensive and air-stable nickel source 

and dimethyl fumarate (144) as an olefinic ligand (Scheme 16A).109 In general, Ni-catalyzed 

cross-coupling reactions of aziridines with organozinc reagents require an electron deficient 

olefin ligand (e.g. 144). This requirement has been exploited in the design of the cinsyl (Cn) N-

protecting group, where the olefin is incorporated within the N-substituent (Scheme 16B).111 

This change expanded cross-coupling scope to include alkyl-substituted aziridines 147, where 

modest selectivity for cleavage of the less substituted C-N bond was observed (approx. 2.5-4.9:1 

linear (L):branched (B)). The development of a novel electron-deficient olefin ligand, Fro-DO 

(153), enabled the generation of quaternary carbon centers from 1,1-disubstituted styrenyl N-

tosyl aziridines 152 (Scheme 16C).112 Ligand 153 was required to promote C-C bond formation 

over -hydride elimination pathways. For these processes, oxidative addition of the C-N bond to 

a low valent Ni species likely occurs via a SET pathway in most cases.   
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Scheme 16. Ni-catalyzed Negishi cross-coupling reactions of N-sulfonyl aziridines.  

In a series of experiments employing N-tosyl aziridines, Wolfe and co-workers were able to 

demonstrate C-N bond oxidative addition to Pd(0), which was initially exploited for the 

isomerization of N-tosyl aziridines to ketimines.113 Subsequently, Wolfe extended this approach 

to the intramolecular trapping of the azametallacyclobutane intermediate with a pendant olefin in 

the presence of CuI.114 These early studies paved the way for the extension of Pd-catalyzed 

reactions of N-sulfonyl aziridines to Suzuki couplings, which was later demonstrated by Michael 

and co-workers in a series of highly regioselective (>20:1 L:B) couplings of alkyl-substituted N-

nosyl aziridines 156 or 159 with both aryl- and alkenylboronic acids, using a Pd/P(1-Npth)3 

system (Scheme 17).115   



 

 28 

 

Scheme 17. Pd-catalyzed Suzuki cross-coupling reactions of N-sulfonyl aziridines. 

In general, linear product selectivity is observed for cross-coupling reactions of alkyl-substituted 

aziridines, whereas branched product selectivity is observed with aryl-substituted aziridines 

(Scheme 18). Mechanistically, Pd- and Ni-catalyzed cross-coupling reactions of aziridines differ: 

Ni-catalyzed processes (Scheme 16) are proposed to proceed via a SET-oxidative addition 

pathway, whereas Pd-catalyzed variants (Scheme 17) occur via direct SN2 oxidative addition. 

 

Scheme 18. Linear vs. branched product selectivity in cross-coupling reactions of aziridines.  
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Since the observation by Doyle that reactions of enantiopure styrenyl aziridines proceeded via 

stereoablation,116 (as demonstrated by the conversion of enantiopure 143 to 145 (11% ee); 

Scheme 16A),109 there have been major advances in stereocontrolled cross-coupling reactions of 

styrenyl N-tosyl aziridines taking advantage of the differing mechanistic options.35b Minakata 

demonstrated the stereoinvertive cross-coupling of enantiopure styrenyl N-tosyl aziridines with 

arylboronic acids under mild conditions using [SIPr-Pd(cinnamyl)Cl] complex (168) via SN2 

oxidative addition (Scheme 19A).117 Doyle later extended Ni-catalyzed cross-coupling reactions 

of racemic styrenyl N-tosyl aziridines 171 to include the enantioselective reductive cross-

electrophile coupling with aryl iodides in a stereoconvergent fashion (Scheme 19B).118  

 

Scheme 19. Stereo-controlled cross-coupling reactions of aziridines.  

Recent advances in cross-coupling reactions of N-sulfonyl aziridines include directing group-

assisted Pd-,119 Rh-120 and Co-catalyzed121 aryl (ortho-) C-H insertions and dual photoredox/Ni-

catalyzed reactions.122 Further to C-C bond forming reactions, Pd-catalyzed borylation (Scheme 

20A),123 and dual Pd/Cu-catalyzed C(sp3)-Si bond forming (Scheme 20B)124 reactions have been 
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reported by Minakata and Takeda. For borylative ring-opening/cross-coupling reactions of 

styrenyl N-tosyl aziridines 175, a combination of B2pin2 (176) with cp(allyl)Pd/phosphine/2,2’-

bipyridine (bpy) system was effective. Interestingly, this reaction proceeded with switched 

regioselectivity (cf. Scheme 18), and the authors suggested that this was dictated by interactions 

between the substrate and the Pd(0) catalyst, which was supported by computational evidence.123 

For C(sp3)-Si bond formation, Minakata, Takeda and co-workers presented a series of catalyst-

controlled, regiodivergent dual Pd/Cu-catalyzed reactions with PhMe2Si–Bpin (180). In these 

examples, variation of the catalyst/ligand system facilitated the synthesis of three different 

regioisomers (e.g. 181-183) from a common precursor 179.    

 

Scheme 20. (A) C(sp3)-B and (B) C(sp3)-Si bond forming reactions from styrenyl N-tosyl aziridines. 
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An alternative reaction pathway is available for vinyl aziridines that involves metal catalyzed 

ionization to generate a metal π-allyl (see Section 6). Only selected examples will be discussed 

herein and the reader is directed to a comprehensive review covering the synthesis and 

applications of vinyl aziridines.125 In 2010, Trost reported the cross-couplings of racemic vinyl-

substituted N-benzyl aziridines 184 with pyrroles and indoles; these processes are postulated to 

proceed via a palladium -allyl complex (Scheme 21A).126 Enantioenriched products (e.g. 188 

and 189) were obtained through a dynamic kinetic asymmetric transformation (DYKAT)127 

using chiral ligand (R,R)-185, where both enantiomers of the substrate were selectively 

converted to a single product. Contemporaneous reports by Aggarwal and co-workers 

demonstrated the suitability of vinyl aziridines for diastereoselective carbonylation128 and 

carboxylation129 reactions under mild conditions (Scheme 21B). Interestingly, for carbonylation, 

the trans--lactam products (e.g. 192 and 193) were formed irrespective of the geometry of the 

starting aziridine (190 or 191). Whereas for carboxylation the geometry of the starting aziridine 

(190 or 191) was transferred to the 5-vinyloxazolidinone products (e.g. 194 and 195).  
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Scheme 21. Stereocontrolled reactions of vinyl aziridines.  

2H-Azirines undergo ring cleavage more easily than aziridines owing to their higher ring strain 

(45-48 kcal mol-1 for 2H-azirines,130 vs. 28 kcal mol-1 for aziridines130a,131) and many reactions 

have been developed that exploit this.132 Of these, some are catalyzed by transition metals 

(including isomerizations, cycloadditions, carbonylations, hydrogenations, reactions with 

carbenoids, hydrogenations, and reactions with enolates),96c yet, in contrast with aziridines, there 

are far fewer examples of TM-catalyzed process that process via oxidative addition of the C-N 
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-bond. In 1981, Alper and co-workers reported that 2H-azirines undergo palladium-catalyzed 

oxidative ionization to generate Pd-azaallyl complexes; CO-insertion and reaction with another 

equivalent of azirine provided bicyclic lactams 200 (Scheme 22).133 An earlier report had shown 

than C-N cleavage could be promoted by stoichiometric [Rh(CO)2Cl]2; here, mechanisms based 

on C-N oxidative addition (to generate a rhodacycle) or the formation of a Rh-nitrene were 

proposed.134 For the process in Scheme 22,  four-membered azetone 198 was not isolated, and 

various catalyst/ligand combinations resulted in different rearrangement processes, forming 

fused -lactam products 202 or vinyl isocyanates 201 (trapped by CH3OH to form carbamates 

202).135 Mechanistically, these processes likely bifurcate at azametallacycle 197.  

 

Scheme 22. Transition metal-catalyzed carbonylation reactions of 2H-azirines to form carbamates and fused -

lactams. *Specific yield for 202 not reported. 

Ohe and co-workers, and later Tonks and co-workers, independently observed an interesting 

disproportionation reaction of 2H-azirines in the presence of catalytic amounts of either 

Ni(cod)2
136 or Cp2Ti(bis(trimethylsilyl)acetylene) (204)137 (Scheme 23). Mechanistically, these 
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processes are proposed to proceed by oxidative addition of the C-N bond to the TM to give 

azametallacyclobutene 205, which would ring-open to give metal-carbene 206. Nucleophilic 

attack of another molecule of 2H-azirine 203 would give azirinium ylide 207 and nitrile 209 by 

elimination, and finally C-N bond cleavage and rearrangement of ylide 207 would give azadiene 

208.  The interception of intermediates in this unique disproportionation reaction may offer novel 

reaction pathways. In general, 2H-azirines are prone to dimerization and disproportionation 

processes, which may offer an explanation as to why this class of compounds have found less 

utility for e.g. cross-coupling reactions via C-N bond activation when compared to aziridines.  

 

Scheme 23. Transition metal-catalyzed disproportionation reactions of 2H-azirines. 

C-N bond activations of azetidines are also considerably more challenging than aziridines and 

there are few reports of effective protocols. Most notably, carbonylation reactions to afford 

pyrrolidinones have been demonstrated by Alper and co-workers using Co2(CO)8 at high CO 

pressures (Scheme 24A).138 The proposed bond activation involves heterolytic cleavage of the 

Co-Co bond, which enables formation of ion pair 211. From here, migratory insertion of CO into 

the Co-N bond and reductive elimination provides the desired pyrrolidinone (e.g. 212 or 213). In 

some cases, the regioselectivity of the CO insertion can be tuned by changing the substituent on 

the nitrogen atom and the reaction temperature. For vinyl azetidines, Tunge and Wang noted that 
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upon the synthesis of vinyl azetidine 215 from cyclic carbamate 214 under Pd(0) catalysis, that if 

left for prolonged reaction times, vinyl azetidine 215 is converted to tetrahydropyridine 

derivative 216 (68%) (Scheme 24B).139 Later, a palladium-catalyzed protocol was reported by 

Yudin and co-workers for ring-contraction and ring-expansion of cyclic allylamines, where in 

the case of vinyl azetidine 217,  tetrahydropyridine derivative 219 (96%) was isolated (Scheme 

24C).140 Mechanistically, these rearrangement processes are driven by the release of ring-strain, 

resulting in the more thermodynamically stable 6-membered ring product (e.g. 216 or 219) via 

the intermediacy of π-allyl complex 218. 
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Scheme 24. (A) Carbonylative ring expansion of azetidines to afford pyrrolidinones; 

(B and C) Pd-catalyzed ring-expansions of vinyl azetidines to tetrahydropyridine 

derivatives. 

 

6. C-N BOND ACTIVATION OF ALLYLAMINES  

Allylic amines are suitable for C-N bond activation because the energetic penalty of C-N bond 

cleavage is offset by the stability of the resulting metal π-allyl complex. The most common 

strategy for achieving C-N bond activation of allyl amines is through prior protonation 

(quaternization) of the nitrogen atom.  

An important observation was made by Trost in 1980 who noted that ‘amine exchange’ occurred 

in a reaction between benzylamine (220) and secondary allylamine 221 and under Pd(0)-

catalysis, but only in the presence of stochiometric amounts acetic acid, and this led Trost to 

propose the intermediacy of a π-allyl complex 223 (Scheme 25A).141 Following this important 

discovery, it was later reported that tertiary allylamines can be coupled with boronic acids in 

nickel-catalyzed Tsuji-Trost-type allylations, where the boronic acid may also act as a Lewis 

acid, thus activating the amine in an analogous fashion (Scheme 25B).142 It was noted that 

regioselectivity with respect to the electrophile could be controlled by judicious selection of 

ligand: sterically bulky phosphine ligands (e.g. triisopropyl phosphine) promoted alkylation at 

the terminus, whereas bidentate phospinite ligands (e.g.  1,l'- binaphthyl-2,2'-

ylbis(diphenylphosphinite), BINAPO) promoted alkylation at the more substituted position.  
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Scheme 25. (A) Pd-catalyzed amine exchange and (B) Ni-catalyzed cross-coupling reactions of allylamines. 

 

Tian later reported an important extension of this strategy to the coupling of primary allylamines 

229 with boronic acids 230 and boronates 231 in a regiospecific and stereospecific fashion under 

palladium catalysis (Scheme 26).143 Here it was observed that the yield of the reaction was 

improved by the addition of inexpensive B(OH)3 and the reaction was exemplified with a variety 

of different aryl-, alkenyl-, allyl- and benzyl-nucleophiles in moderate to excellent yields. For 

chiral allylamines 234, the reaction proceeded with inversion (100% es) and benefitted from the 

addition of TMEDA as a ligand whereas additive B(OH)3 had a detrimental impact. Since 

Trost’s initial observation, there have been numerous reports of Tsuji-Trost-type allylations 

whereby the electrophilic component is a (Brønsted or Lewis acid-activated) allylamine, 

primarily under Pd(0) catalysis, with a variety of nucleophiles, including those based on 

carbon,144 nitrogen (intramolecular),145 phosphorus,146 and sulfur.147  
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Scheme 26. Tsuji-Trost-type allylations of boronic acids and boronates with (A) primary allylamines (B) chiral 

primary allylamines.  

 

Important advances towards catalytic enantio- and regioselective selective allylations starting 

from allylamines have emerged, including a selected example of enantioselective α-allylation of 

branched aldehydes by List (Scheme 27A)148 and a recent example of enantioselective α-

allylation of β‑ketoesters reported by Tian (Scheme 27B).149 For α-allylation of branched 

aldehydes, chiral phosphoric acid (R)-TRIP was essential for reactivity, where a dual role was 

proposed: as a ligand, and as Brønsted acid (for amine activation). For α-allylation of 

β‑ketoesters, L-threonine derivative 244 was employed as a ligand and also likely served a dual 

role; the authors indicated that the reaction was designed such that 244 would condense with 

β‑ketoester 243 to give enamine 245, which then undergoes enantioselective allylation by -allyl 

complex 246 to give ,-disubstituted -ketoesters 247 and 248. These reactions are significant 

as they allow for the generation of all-carbon quaternary stereogenic centers. 
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Scheme 27. Enantioselective Tsuji-Trost-type α-allylation of carbonyl compounds with allylamines. 

 

 

In addition to Tsuji-Trost-type allylations, the activation of allylamines with Brønsted or Lewis 

acids is a strategy that has been successfully employed for a variety of other related noteworthy 

transformations including deallylations,150 finding most utility as a deprotection strategy for N-

allyl derivatives; cyclic allylamine isomerisations,140 for the synthesis of complex cyclic allyl 

amines; and 3-aza-cope reactions,151 for the synthesis of -unsaturated imines or -

unsaturated carbonyls as important synthetic intermediates.   
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Related processes involving insertion of a metal into the C-N bond of non-quaternized allylic 

amines have also been achieved. One of the first reports in this area was by Montreux,152 who 

outlined efficient reactions between allylic amines and soft nucleophiles, such as malonates, β-

ketoesters and 1,3-diketones, using Ni(dppb)2 as a catalyst. In a selected example, Zhang later 

reported palladium-catalyzed C-N bond activations of allylic amines 250 for the allylation of 

carbonyl compounds 249 in a Tsuji-Trost-type process using dppf as a ligand (Scheme 28A).153 

In this case, the formation of the π-allyl intermediate is facilitated by hydrogen bonding of an 

alcoholic solvent to the nitrogen center. Zhang also demonstrated a prototype enantioselective 

version of this method by employing chiral ferrocene-based ligand 256 (Scheme 28B).153  

  

Scheme 28. Enantioselective Tsuji-Trost-type α-allylation of carbonyl compounds with allylamines in alcohol 

solvent. 
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Carbonylation of allylamines as a method for the construction of ,-unsaturated amides was 

first reported by Murahashi and co-workers.154 This method employed Pd(OAc)2 as a catalyst 

and dppp as a ligand, under high pressures (50 atm) at high temperature (110-130 ˚C). Two 

decades later, in 2014, Huang and co-workers reported an improvement by the use of 

Pd(XantPhos)Cl2 as a catalyst, allowing the required  pressures of CO to be dropped (10 atm) 

(Scheme 29).155 Despite the requirement for high temperatures (120 ˚C), this result is significant 

as it illustrates that allyamine C-N bonds are able to undergo oxidative addition to palladium in 

the absence of an additive (e.g. Brønsted or Lewis acid).   

 

Scheme 29. Pd-catalyzed carbonylation of allylamines.  

7. C-N BOND ACTIVATION OF AMIDE DERIVATIVES 

Amide bonds are ubiquitous in both in organic synthesis and biology.156 Despite their 

prevalence, the engagement of amide C-N bonds as the electrophile in cross-coupling reactions is 

hampered by amide resonance (nN → 𝜋*C＝O conjugation), resulting in a shorter (1.47 Å [amine] vs 

1.34 Å [amide])157 and stronger (15–20 kcal/mol)158 C-N bond  (Scheme 30). Additionally, there 

are two options for the site of bond cleavage: the acyl C-N bond (Scheme 30, path a) and the 

non-acyl C-N bond (Scheme 30, path b). Transition metal-based catalysts have shown promise 

for cleaving these types of bond; reactions of these types have been the subject of extensive 

investigations in recent years and the subject of many reviews.159 These findings are of great 
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interest, since the amide functional group can now be exploited as a redox active handle for the 

construction of new bonds. Key milestones and selected reactivity points in the context of C-N 

bond activation will be discussed herein.  

    

Scheme 30. Amides as coupling partners in cross-coupling reactions by cleavage of 

acyl (path a) and non-acyl (path b) C-N bonds. 

 

Regarding acyl C-N bond activation, early examples by Matsubara and Kurahashi include the 

preparation of isoquinolin-1(2H)-one derivatives via decarbonylative carboamination of alkynes 

with N-arylphthalimides,160 and decarboxylative carboamination of alkynes with isatoic 

anhydrides161 under Ni-catalysis. The first direct metal-catalyzed activation of C-N bonds of 

amides was reported in 2015 by Garg and co-workers who described a mild method for the 

transformation of amides into esters;162 typically, esterification of amides requires harsh 

conditions and a large excess of alcohol.158 Garg’s report outlined an alternative approach where 

the acyl C-N bond of amides 262 is cleaved under reasonably mild conditions via oxidative 

addition using a nickel catalyst (Scheme 31A),162 and this allows transacylation using only a 

slight excess of alcohol 263 (1.2 equiv). Chemoselective cleavage of electronically differentiated 

amides (e.g. aliphatic vs. aromatic amide systems) was demonstrated, as well as the cleavage of 

amides in the presence of ester functionality. For transacylation of valine-derived amide 268, no 
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epimerization of the α-stereocenter center was observed, highlighting the mildness of the 

method. DFT calculations indicate that, following C-N oxidative addition, the reactant alcohol 

drives exchange of the amide ligand through hydrogen bonding (via transition state 267), and 

this is followed by C-O bond forming reductive elimination.  

Subsequently, examples of nickel-, palladium-, rhodium- and cobalt-catalyzed C-C bond forming 

cross-couplings of amide-based systems have been reported, including Negishi,163 Suzuki-

Miyaura,164 Sonogashira,165 Heck,166 dual C-H/C-N bond activation167 and reductive coupling168 

reactions. In particular, Szostak disclosed the first Negishi coupling of N-acyl-glutarimides 276 

using [Ni(PPh3)2Cl2] as an inexpensive and air-stable catalyst.163 This provided access to diaryl 

ketones (e.g. 279 and 280) under mild conditions, with the protocol exhibiting excellent 

functional group tolerance and chemoselectivity (Scheme 31B). Key to the success of this 

strategy was the choice of substrate; amide bonds distorted from planarity, termed ‘twisted 

amides’, have been shown to undergo facile bond activation.169 Twisted amides possess 

remarkable reactivity due to disruption of nN → 𝜋*C＝O conjugation and have attracted much 

attention in recent years.170 Furthermore, such amides are able to engage and direct the TM via 

chelation assistance (vide infra). Mechanistically, (chelation-assisted) oxidative addition to the 

TM gives 277. Transmetalation with the aryl zinc reagent gives intermediate 278, which 

undergoes reductive elimination to form ketone products (e.g. 279 and 230).  

A recent review of computational studies offers further insight into the mechanism of Ni-driven 

amide C-N bond activations.171 Two principal mechanistic models have been proposed, 

depending on the substrate: i) a three-membered ring oxidative addition transition state (Type A, 

281), or ii) a chelation-assisted bond activation process (Type B, 282) (Scheme 31C). The most 
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prevalent mode of activation is Type A, which encompasses N-alkyl and N-aryl amide systems, 

whereas Type B is available for N-acyl amides systems (e.g. in twisted amides). In both 

scenarios, 𝜋-coordination of the amide carbonyl to nickel also appears to be important for 

destabilization of the amide C-N bond in advance of C-N bond activation. To elucidate further 

the origins of extraordinarily high reactivity of twisted amides, resonance energies172 (Scheme 

31D) and ground-state distortions (Scheme 31E)173 for various amides were calculated 

computationally, allowing a trend in reactivity for various amides towards C-N bond activation 

to be established. 
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Scheme 31. Ni-catalyzed reactions of amides via C-N bond activation: (A) Esterification and (B) Negishi cross-

coupling; (C) Calculated mechanistic models of Ni(0)-catalysed amide C-N bond activation; (D) Calculated 

resonance energies of various amides; and (E) Twist angles () for twisted amides.  
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In contrast to TM-catalyzed amide C(acyl)-N bond activation, the catalytic cleavage of amide 

C(alkyl/aryl)-N bonds remains underexplored. In a selected example of non-acyl amide bond 

cleavage (Scheme 30, path b), studies by Tobisu and Chatani demonstrated nickel-catalyzed 

reductive (Scheme 32A) and borylative (Scheme 32B) cleavage N-aryl amides and 

carbamates.174 These examples are significant as they represent the first time this bond 

disconnection has been successfully achieved by C-N activation. In this study, HBPin was used 

for reductive cleavage of primarily carbamates, with a single example of N-aryl amide reductive 

cleavage for the synthesis of arene 292 from lactam 291. B2(nep)2 was used for borylative 

cleavage of N-aryl amides 293 to give aryl boronates (e.g. 294 and 295). The method is limited 

to highly conjugated N-aryl amides and both lactam and acyclic substrates were tolerated.  

 

Scheme 32. Ni-catalyzed (A) reductive and (B) borylative cleavages of amide N-C(aryl) bonds.  
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8. CONCLUDING REMARKS 

The development of new reaction initiation processes is the key to unlocking new or improved 

synthetic methodologies. This Perspective outlines key developments in the field of C-N bond 

activation via oxidative addition to transition metals. As can be seen, strategies have been 

developed that enable the activation of increasingly challenging C-N bonds. For example, in the 

field of aryl C-N bond activation, the range of suitable substrates has progressed from aryl 

diazonium salts, through to aryl trialkylammonium salts and finally to processes that encompass 

anilines and aryl nitro compounds. This progression of utilizable C-N bonds allows chemists to 

harness functionality that can be installed more directly from feedstock precursors, thereby 

minimizing “concession” steps. C-N bonds are present in many organic compounds and so the 

ability to use them as functional handles opens new possibilities for e.g. route design or scaffold 

diversification. For example, amide C-N bond activation might enable amino acid derivatives to 

function as enantiopure units for cross-coupling; however, challenges remain in effecting the 

direct activation of “simple” amides. Perhaps the most appealing area for further development 

are processes based on the C-N bond activation of aziridines. Here, the substrates are easily 

accessed in a stereodefined manner and they are automatically pre-activated for C-N cleavage. 

Clearly, more sophisticated catalyst designs will be required to develop the field of C-N bond 

activation further. The strategies and mechanistic considerations outlined in this Perspective 

might provide inspiration towards this endeavor. 
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